
VSI OpenVMS

DCL Dictionary: A—M

Document Number: DO–DDCLAM–01A

Publication Date: April 2020

This manual provides detailed reference information and examples for VSI OpenVMS
DCL commands and lexical functions.

Revision Update Information: This is a new manual.

Operating System and Version: VSI OpenVMS x86-64 Version 9.0
VSI OpenVMS I64 Version 8.4-1H1
VSI OpenVMS Alpha 8.4-2L1

VMS Software, Inc., (VSI)
Bolton, Massachusetts, USA

DCL Dictionary: A—M:

Copyright © 2020 VMS Software, Inc. (VSI), Bolton, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

Intel, Itanium and IA-64 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

Java, the coffee cup logo, and all Java based marks are trademarks or registered trademarks of Oracle Corporation in the United States or
other countries.

Microsoft, Windows, Windows-NT and Microsoft XP are U.S. registered trademarks of Microsoft Corporation. Microsoft Vista is either a
registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

Motif is a registered trademark of The Open Group

UNIX is a registered trademark of The Open Group.

The VSI OpenVMS documentation set is available on CD.

ii

DCL Dictionary: A—M

Preface ... vii
1. About VSI .. vii
2. Intended Audience .. vii
3. Documents Structure ... vii
4. Related Documents ... vii
5. VSI Encourages Your Comments .. viii
6. How to Order Additional Documentation .. viii
7. Typographical Conventions .. viii

I. DCL Commands .. 1
! (Comment Delimiter) ... 1
= (Assignment Statement) ... 1
:= (String Assignment) .. 5
@ (Execute Procedure) ... 8
ACCOUNTING .. 13
ALLOCATE ... 13
ANALYZE/AUDIT ... 16
ANALYZE/CRASH_DUMP .. 17
ANALYZE/DISK_STRUCTURE ... 17
ANALYZE/ERROR_LOG/ELV (Alpha/Integrity servers Only) ... 17
ANALYZE/IMAGE .. 18
ANALYZE/MEDIA .. 27
ANALYZE/OBJECT ... 28
ANALYZE/PROCESS_DUMP .. 36
ANALYZE/RMS_FILE ... 40
ANALYZE/SSLOG (Alpha/Integrity servers Only) ... 41
ANALYZE/SYSTEM .. 41
APPEND .. 41
ASSIGN ... 46
ASSIGN/MERGE ... 52
ASSIGN/QUEUE .. 53
ATTACH .. 54
BACKUP .. 55
CALL ... 56
CANCEL .. 59
CHECKSUM .. 61
CLOSE ... 66
CONNECT ... 67
CONTINUE .. 70
CONVERT ... 71
CONVERT/DOCUMENT .. 71
CONVERT/RECLAIM .. 83
COPY ... 83
COPY/FTP ... 93
COPY/RCP ... 95
COPY/RECORDABLE_MEDIA ... 97
CREATE ... 101
CREATE/DIRECTORY ... 103
CREATE/FDL ... 106
CREATE/MAILBOX (Alpha/Integrity servers Only) ... 106
CREATE/NAME_TABLE .. 108
CREATE/TERMINAL ... 112
DEALLOCATE ... 118

iii

DCL Dictionary: A—M

DEASSIGN .. 119
DEASSIGN/ QUEUE .. 123
DEBUG .. 123
DECK ... 127
DECRYPT .. 129
DEFINE .. 132
DEFINE/CHARACTERISTIC ... 138
DEFINE/FORM .. 140
DEFINE/KEY ... 143
DELETE ... 147
DELETE/BITMAP (Alpha/Integrity servers Only) .. 153
DELETE/CHARACTERISTIC .. 154
DELETE/ENTRY .. 155
DELETE/FORM ... 157
DELETE/INTRUSION_RECORD ... 158
DELETE/KEY .. 160
DELETE/MAILBOX (Alpha/Integrity servers Only) ... 161
DELETE/QUEUE ... 162
DELETE/QUEUE/MANAGER .. 163
DELETE/SYMBOL .. 164
DEPOSIT .. 165
DIFFERENCES .. 169
DIRECTORY .. 178
DISABLE AUTOSTART ... 192
DISCONNECT ... 194
DISMOUNT ... 195
DUMP .. 195
EDIT/ACL .. 205
EDIT/EDT .. 205
EDIT/FDL .. 209
EDIT/SUM ... 209
EDIT/TECO .. 210
EDIT/TPU .. 212
ENABLE AUTOSTART .. 212
ENCRYPT .. 214
ENCRYPT /AUTHENTICATE .. 218
ENCRYPT /CREATE_KEY ... 221
ENCRYPT /REMOVE_KEY ... 223
ENDSUBROUTINE .. 224
EOD ... 224
EOJ .. 226
EXAMINE .. 226
EXCHANGE .. 229
EXCHANGE/NETWORK ... 229
EXIT .. 238
FONT ... 241
GOSUB .. 242
GOTO .. 243
HELP ... 245
HELP/MESSAGE ... 252
IF ... 257
INITIALIZE ... 260

iv

DCL Dictionary: A—M

INITIALIZE/QUEUE .. 275
INQUIRE .. 290
INSTALL .. 292
JAVA .. 292
JOB .. 293
LIBRARY ... 298
LICENSE .. 298
LINK .. 298
LOGIN Procedure ... 299
LOGOUT .. 301
MACRO ... 303
MAIL ... 303
MERGE .. 303
MESSAGE ... 303
MONITOR .. 304
MOUNT ... 304

II. Lexical Functions ... 341
Lexical Functions .. 341
F$CONTEXT .. 343
F$CSID .. 348
F$CUNITS ... 350
F$CVSI .. 351
F$CVTIME ... 353
F$CVUI .. 355
F$DELTA_TIME ... 356
F$DEVICE ... 357
F$DIRECTORY .. 359
F$EDIT .. 359
F$ELEMENT .. 361
F$ENVIRONMENT .. 362
F$EXTRACT .. 365
F$FAO .. 367
F$FID_TO_NAME (Alpha/Integrity servers Only) ... 372
F$FILE_ATTRIBUTES ... 373
F$GETDVI ... 376
F$GETENV .. 391
F$GETJPI ... 392
F$GETQUI ... 399
F$GETSYI .. 421
F$IDENTIFIER ... 437
F$INTEGER ... 438
F$LENGTH .. 439
F$LICENSE (Alpha/Integrity servers Only) ... 439
F$LOCATE ... 440
F$MATCH_WILD .. 442
F$MESSAGE .. 442
F$MODE .. 444
F$MULTIPATH (Alpha/Integrity servers Only) .. 445
F$PARSE .. 447
F$PID ... 450
F$PRIVILEGE .. 451
F$PROCESS ... 452

v

DCL Dictionary: A—M

F$SEARCH .. 452
F$SETPRV ... 454
F$STRING ... 458
F$TIME .. 459
F$TRNLNM ... 459
F$TYPE .. 464
F$UNIQUE (Alpha/Integrity servers Only) .. 465
F$USER ... 466
F$VERIFY ... 466

vi

Preface

1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard
Enterprise to develop and support the OpenVMS operating system.

VSI seeks to continue the legendary development prowess and customer-first priorities that are so
closely associated with the OpenVMS operating system and its original author, Digital Equipment
Corporation.

2. Intended Audience
This manual is intended for all users of the VSI OpenVMS operating system. It includes descriptions
of all DIGITAL Command Language (DCL) commands and lexical functions. If a command has any
restrictions or requires special privileges, they are noted in reference information for that command.

Readers of this manual should be familiar with the material covered in the OpenVMS User’s Manual.

3. Documents Structure
This manual contains detailed descriptions of each command and lexical function. The commands are
listed in alphabetical order. The lexical functions are grouped under the heading Lexical Functions
and are listed alphabetically within that grouping.

The hardcopy version of the VSI OpenVMS DCL Dictionary is a two-part manual. The first volume
contains commands beginning with the letters A to M (including the lexical functions); the second
volume contains commands beginning with the letters N to Z.

Appendix A of this manual (in the second volume of the hardcopy manual) lists the obsolete DCL
commands and the current services that replace them.

The commands that invoke language compilers and other OpenVMS optional software products are
not included in this manual; they are included in the documentation provided with those products.

4. Related Documents
For an introduction to the OpenVMS operating system and for information on using DCL, refer to the
OpenVMS User's Manual. This manual is especially recommended for novice users or users lacking
experience with interactive computer systems.

The OpenVMS User's Manual provides an overview of DCL command language concepts and defines
and illustrates good practices in constructing command procedures with DCL commands and lexical
functions.

Refer to the various utilities reference manuals for detailed information about utilities. These manuals
describe the DCL commands that invoke the various utilities, describe any commands that you can
enter while running a utility, and provide reference information. The VSI OpenVMS DCL Dictionary
provides only a brief description and format information for each utility.

vii

Preface

For message descriptions, use the online Help Message utility.

5. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>.

6. How to Order Additional Documentation
For information about how to order additional documentation, email the VSI OpenVMS information
account: <info@vmssoftware.com>. We will be posting links to documentation on our
corporate website soon.

7. Typographical Conventions
The following conventions are used in this manual:

Convention Meaning
Ctrl/x A sequence such as Ctrl/x indicates that you must hold down the key

labeled Ctrl while you press another key or a pointing device button.
PF1 x A sequence such as PF1 x indicates that you must first press and release the

key labeled PF1 and then press and release another key or a pointing device
button.

... A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been omitted.

• The preceding item or items can be repeated one or more times.

• Additional parameters, values, or other information can be entered.
.
.
.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to
the topic being discussed.

() In command format descriptions, parentheses indicate that you must
enclose choices in parentheses if you specify more than one.

[] In command format descriptions, brackets indicate optional choices. You
can choose one or more items or no items. Do not type the brackets on the
command line. However, you must include the brackets in the syntax for
OpenVMS directory specifications and for a substring specification in an
assignment statement.

| In command format descriptions, vertical bars separate choices within
brackets or braces. Within brackets, the choices are optional; within
braces, at least one choice is required. Do not type the vertical bars on the
command line.

{ } In command format descriptions, braces indicate required choices; you
must choose at least one of the items listed. Do not type the braces on the
command line.

viii

Preface

Convention Meaning
bold type Bold type represents the name of an argument, an attribute, or a reason.

Bold type also represents the introduction of a new term.
italic type Italic type indicates important information, complete titles of manuals,

or variables. Variables include information that varies in system output
(Internal error number), in command lines (/PRODUCER=name), and in
command parameters in text (where dd represents the predefined code for
the device type).

UPPERCASE TYPE Uppercase type indicates a command, the name of a routine, the name of a
file, or the abbreviation for a system privilege.

Example This typeface indicates code examples, command examples, and interactive
screen displays. In text, this type also identifies URLs, UNIX commands
and pathnames, PC-based commands and folders, and certain elements of
the C programming language.

- A hyphen at the end of a command format description, command line,
or code line indicates that the command or statement continues on the
following line.

numbers All numbers in text are assumed to be decimal unless otherwise noted.
Nondecimal radixes—binary, octal, or hexadecimal—are explicitly
indicated.

ix

Preface

x

DCL Commands
! (Comment Delimiter)
! (Comment Delimiter) — Indicates that everything that follows it on a command line is a comment
and should not be processed as part of a command.

Format
! comment-text

Example
$!
$ WRITE SYS$OUTPUT "hello" ! This command should output "hello".
hello
$ FOO = " " ! This command defines FOO as a blank.
$ FOO WRITE SYS$OUTPUT "hello" ! This command should output "hello".
hello
$ FOO = "!" ! This command defines FOO as a !.
$ FOO WRITE SYS$OUTPUT "hello" ! This command should be ignored.
$! WRITE SYS$OUTPUT "hello" ! This command should be ignored too.

= (Assignment Statement)
= (Assignment Statement) — Defines a symbolic name for a character string or integer value.

Synopsis
symbol-name =[=] expression

symbol-name[bit-position,size] =[=] replacement-expression

Note

VSI advises against assigning a symbolic name that is already a DCL command name. VSI especially
discourages the assignment of symbols such as IF, THEN, ELSE, and GOTO, which can affect the
interpretation of command procedures.

Parameters
symbol-name

Specifies a string of 1 to 255 characters for the symbol name. The name can contain any alphanumeric
characters from the DEC Multinational character set, the underscore (_), and the dollar sign ($).
However, the name must begin only with an alphabetic character (uppercase and lowercase characters
are equivalent), an underscore, or a dollar sign. Using one equal sign (=) places the symbol name in
the local symbol table for the current command level. Using two equal signs (==) places the symbol
name in the global symbol table.

1

DCL Commands

expression

Names the value on the right-hand side of an assignment statement. This parameter can consist of
a character string, an integer, a symbol name, a lexical function, or a combination of these entities.
The components of the expression are evaluated, and the result is assigned to the symbol. All literal
character strings must be enclosed in quotation marks (“ ”). If the expression contains a symbol, the
expression is evaluated using the symbol's value.

The result of expression evaluation is either a character string or a signed integer value. If the
expression is evaluated as a string, the symbol is assigned a string value. If the expression is evaluated
as an integer, the symbol is assigned an integer value. If the integer value exceeds the capacity of the
4-byte buffer that holds it, no error message is issued.

For a summary of operators used in expressions, details on how to specify expressions, and details on
how expressions are evaluated, see the VSI OpenVMS User's Manual.

DCL uses a buffer that is 1024 bytes long to hold an assignment statement and to evaluate the
expression. The length of the symbol name, the expression, and the expression's calculations cannot
exceed 1024 bytes.

[bit-position,size]

States that a binary overlay is to be inserted in the current 32-bit value of a symbol name. The current
value of the symbol name is evaluated. Then, the specified number of bits is replaced by the result of
the replacement expression. The bit position is the location relative to bit 0 at which the overlay is to
occur. If the symbol you are overlaying is an integer, then the bit position must be less than 32. The
sum of the bit position and the size must be less than or equal to 32.

If the symbol you are overlaying is a string, then the bit position must be less than 6152. Because
each character is represented using 8 bits, you can begin an overlay at any character through the 768th
character. (The 768th character starts in bit position 6144.) The sum of the bit position and the size
must be less than or equal to 6152.

The size is the number of bits to be overlaid. If you specify a size that is greater than 32, DCL reduces
the size to 32.

The brackets are required notation; no spaces are allowed between the symbol name and the left
bracket. Specify values for the bit position and size as integers.

replacement-expression

Specifies the value that is used to overlay the symbol you are modifying. Specify the replacement
expression as an integer.

If the symbol you are modifying is an integer, the replacement expression defines a bit pattern that is
overlaid on the value assigned to the symbol. If the symbol you are modifying is a character string,
the result of the replacement expression defines a bit pattern that is overlaid on the specified bits
of the character string. If the symbol you are modifying is undefined, the result of the replacement
expression is overlaid on a null string.

Description
Symbols defined using assignment statements allow you to extend the command language. At the
interactive command level, you can use symbols to define synonyms for commands or command

2

DCL Commands

lines. In command procedure files, you can use symbols to provide for conditional execution and
substitution of variables.

The maximum number of symbols that can be defined at any time depends on the following:

• The amount of space available to the command interpreter to contain symbol tables and labels for
the current process. The amount of space is determined for each process by the system parameter
CLISYMTBL.

• The size of the symbol names and their values. The command interpreter allocates space for a
symbol name and its value. In addition, a few bytes of overhead are allocated for each symbol.

Examples
1. $ LIST == "DIRECTORY"

The assignment statement in this example assigns the user-defined synonym LIST as a global
symbol definition for the DCL command DIRECTORY.

2. $ COUNT = 0
$ LOOP:
$ COUNT = COUNT + 1
$ IF P'COUNT' .EQS. "" THEN EXIT
$ APPEND/NEW &P'COUNT' SAVE.ALL
$ DELETE &P'COUNT';*
$ IF COUNT .LT. 8 THEN GOTO LOOP
$ EXIT

This command procedure, COPYDEL.COM, appends files (specified as parameters) to a file
called SAVE.ALL. After a file has been appended, the command procedure deletes the file. Up
to eight file names can be passed to the command procedure. The file names are assigned to the
symbols P1, P2, and so on.

The command procedure uses a counter to refer to parameters that are passed to it. Each time
through the loop, the procedure uses an IF command to check whether the value of the current
parameter is a null string. When the IF command is scanned, the current value of the symbol
COUNT is concatenated with the letter P. The first time through the loop, the IF command tests
P1; the second time through the loop it tests P2, and so on. After the expression P'COUNT' is
evaluated, the substitution of the file names that correspond to P1, P2, and so on is automatic
within the context of the IF command.

The APPEND and DELETE commands do not perform any substitution automatically, because
they expect and require file specifications as input parameters. The ampersand (&) precedes the
P'COUNT' expression for these commands to force the appropriate symbol substitution. When
these commands are initially scanned each time through the loop, COUNT is substituted with its
current value. Then, when the commands execute, the ampersand causes another substitution: the
first file specification is substituted for P1, the second file specification is substituted for P2, and
so on.

To invoke this procedure, use the following command:

$ @COPYDEL ALAMO.TXT BEST.DOC

The files ALAMO.TXT and BEST.DOC are each appended to the file SAVE.ALL and are then
deleted.

3

DCL Commands

3. $ A = 25
$ CODE = 4 + F$INTEGER("6") - A
$ SHOW SYMBOL CODE
 CODE = -15 HEX = FFFFFFF1 Octal = 1777761

This example contains two assignment statements. The first assignment statement assigns the
value 25 to the symbol A. The second assignment statement evaluates an expression containing an
integer (4), a lexical function (F$INTEGER(“6”)), and the symbol A. The result of the expression,
--15, is assigned to the symbol CODE.

4. $ FILENAME = "JOBSEARCH" - "JOB"
$ FILETYPE = ".OBJ"
$ FILESPEC = FILENAME + FILETYPE
$ TYPE 'FILESPEC'

The first command in this example assigns the symbol FILENAME the value “SEARCH”.
Notice that the string “SEARCH” is the result of the string reduction operation performed by the
expression. The second command assigns the symbol FILETYPE the character string “.OBJ”.

The symbols FILENAME and FILETYPE are then added together in an expression assigned
to the symbol FILESPEC. Because the values of the symbols FILENAME and FILETYPE are
concatenated, the resultant value assigned to FILESPEC is the character string “SEARCH.OBJ”.
The symbol FILESPEC is then used as a parameter for the TYPE command. The single quotation
marks (' ') request the command interpreter to replace the symbol FILESPEC with its value
SEARCH.OBJ. Thus, the TYPE command types the file named SEARCH.OBJ.

5. $ BELL[0,32] = %X07
$ SHOW SYMBOL BELL
 BELL = ""

In this example, the symbol BELL is created with an arithmetic overlay assignment statement.
Because the symbol BELL is previously undefined, the hexadecimal value 7 is inserted over a null
character string and is interpreted as the ASCII code for the bell character on a terminal. When
you issue the command SHOW SYMBOL BELL, the terminal beeps.

If the symbol BELL had been previously defined with an integer value, the result of displaying
BELL would have been to show its new integer value.

6. $ $=34
%DCL-W-NOCOMD, no command on line - reenter with alphabetic first
character
$ $$=34
$ SHOW SYMBOL $$
%DCL-W-UNDSYM, undefined symbol - check validity and spelling
$ SHOW SYMBOL $
$ = 34 Hex = 00000022 Octal = 00000000042

If you begin a symbol name with the dollar sign ($), use two dollar signs ($$) because DCL
discards the first instance of the dollar sign.

7. $ COUNT = 0
$ LOOP:
$ COUNT = COUNT + 1
$ IF P'COUNT' .EQS. "" THEN EXIT
$ APPEND/NEW &P'COUNT' SAVE.ALL
$ DELETE &P'COUNT';*
$ IF COUNT .LT. 16 THEN GOTO LOOP

4

DCL Commands

$ EXIT

This command procedure, COPYDEL.COM, appends files (specified as parameters) to a file
called SAVE.ALL. After a file has been appended, the command procedure deletes the file. Up to
sixteen file names can be passed to the command procedure. The file names are assigned to the
symbols P1, P2, and so on. This is applicable only when you set bit 3 of DCL_CTLFLAGS to 1.

The command procedure uses a counter to refer to parameters that are passed to it. Each time
through the loop, the procedure uses an IF command to check whether the value of the current
parameter is a null string. When the IF command is scanned, the current value of the symbol
COUNT is concatenated with the letter P. The first time through the loop, the IF command tests
P1; the second time through the loop it tests P2, and so on. After the expression PCOUNT is
evaluated, the substitution of the file names that correspond to P1, P2, and so on is automatic
within the context of the IF command.

The APPEND and DELETE commands do not perform any substitution automatically, because
they expect and require file specifications as input parameters. The ampersand (&) precedes the
P'COUNT' expression for these commands to force the appropriate symbol substitution. When
these commands are initially scanned each time through the loop, COUNT is substituted with its
current value. Then, when the commands execute, the ampersand causes another substitution: the
first file specification is substituted for P1, the second file specification is substituted for P2, and
so on.

To invoke this procedure, use the following command:

$ @COPYDEL ALAMO.TXT BEST.DOC

The files ALAMO.TXT and BEST.DOC are each appended to the file SAVE.ALL and are then
deleted.

:= (String Assignment)
:= (String Assignment) — Defines a symbolic name for a character string value.

Format
symbol-name :=[=] string

symbol-name[offset,size] :=[=] replacement-string

Note

VSI advises against assigning a symbolic name that is already a DCL command name. VSI especially
discourages the assignment of symbols such as IF, THEN, ELSE, and GOTO, which can affect the
interpretation of command procedures.

Parameters
symbol-name

Specifies a string of 1 to 255 characters for the symbol name. The name can contain any alphanumeric
characters from the DEC Multinational character set, the underscore (_), and the dollar sign ($).
However, the name must begin only with an alphabetic character, an underscore, or a dollar sign.

5

DCL Commands

Using one equal sign (:=) places the symbol name in the local symbol table for the current command
level. Using two equal signs (:==) places the symbol name in the global symbol table.

string

Names the character string value to be equated to the symbol. The string can contain any
alphanumeric or special characters. DCL uses a buffer that is 1024 bytes long to hold a string
assignment statement. Therefore, the length of the symbol name, the string, and any symbol
substitution within the string cannot exceed 1024 characters.

With the string assignment statement (:=), you do not need to enclose a string literal in quotation
marks (“ ”). String values are converted to uppercase automatically. Also, any leading and trailing
spaces and tabs are removed, and multiple spaces and tabs between characters are compressed to a
single space.

To prohibit uppercase conversion and to retain required space and tab characters in a string, place
quotation marks around the string. To use quotation marks in a string, enclose the entire string within
quotation marks and use a double set of quotation marks within the string. For example:

$ TEST := "this is a ""test"" string"
$ SHOW SYMBOL TEST
 TEST = "this is a "test" string"

In this example, the spaces, lowercase letters, and quotation marks are preserved in the symbol
definition.

To continue a symbol assignment on more than one line, use the hyphen (-) as a continuation
character. For example:

$ LONG_STRING := THIS_SYMBOL_ASSIGNMENT_IS_A_VERY_LONG-
_$ _SYMBOL_STRING

To assign a null string to a symbol by using the string assignment statement, do not specify a string.
For example:

$ NULL :=

Specify the string as a string literal, or as a symbol or lexical function that evaluates to a string
literal. If you use symbols or lexical functions, place single quotation marks (' ') around them to
request symbol substitution. See the VSI OpenVMS User's Manual for more information on symbol
substitution.

You can also use the string assignment statement to define a foreign command. See the VSI
OpenVMS User's Manual for more information about foreign commands.

[offset,size]

Specifies that a portion of a symbol value is to be overlaid with a replacement string. This form of the
string assignment statement evaluates the value assigned to a symbol and then replaces the portion
of the value (defined by the offset and size) with the replacement string. The brackets are required
notation, and no spaces are allowed between the symbol name and the left bracket.

The offset specifies the character position relative to the beginning of the symbol name's string value
at which replacement is to begin. Offset values start at 0.

If the offset is greater than the offset of the last character in the string you are modifying, spaces
are inserted between the end of the string and the offset where the replacement string is added. The
maximum offset value you can specify is 768.

6

DCL Commands

The size specifies the number of characters to replace. Size values start at 1.

Specify the offset and size as integer expressions. See the VSI OpenVMS User's Manual for more
information on integer expressions. The value of the size plus the offset must not exceed 769.

replacement-string

Specifies the string that is used to overwrite the string you are modifying. If the replacement string is
shorter than the size argument, the replacement string is filled with blanks on the right until it equals
the specified size. Then the replacement string overwrites the string assigned to the symbol name. If
the replacement string is longer than the size argument, then the replacement string is truncated on the
right to the specified size.

You can specify the replacement string as a string literal, or as a symbol or lexical function that
evaluates to a string literal. If you use symbols or lexical functions, place single quotation marks (' ')
around them to request symbol substitution. For more information on symbol substitution, see the VSI
OpenVMS User's Manual.

Examples
1. $ TIME := SHOW TIME

$ TIME
24-DEC-2001 11:55:44

In this example, the symbol TIME is equated to the command string SHOW TIME. Because
the symbol name appears as the first word in a command string, the command interpreter
automatically substitutes it with its string value and executes the command SHOW TIME.

2. $ STAT := $DKA1:[TEDESCO]STAT
$ STAT

This example shows how to define STAT as a foreign command. The symbol STAT is equated to
a string that begins with a dollar sign followed by a file specification. The command interpreter
assumes that the file specification is that of an executable image, that is, a file with a file type
of .EXE.

When you subsequently enter STAT, the command interpreter executes the image.

3. $ A = "this is a big space."
$ SHOW SYMBOL A
 A = "this is a big space."
$ B := 'A'
$ SHOW SYMBOL B
 B = "THIS IS A BIG SPACE."

This example compares the assignment and the string assignment statements. The symbol A is
defined using the assignment statement, so lowercase letters and multiple spaces are retained. The
symbol B is defined using the string assignment statement. Note that the single quotation marks
(' ') are required; otherwise, the symbol name B would have been equated to the literal string A.
However, when symbol A's value is assigned to symbol B, the letters are converted to uppercase
and multiple spaces are compressed.

4. $ FILE_NAME := MYFILE
$ FILE_NAME[0,2]:= OL
$ SHOW SYMBOL FILE_NAME
 FILE_NAME = "OLFILE"

7

DCL Commands

In this example, the substring expression in the assignment statement overlays the first 2
characters of the string assigned to the symbol FILE_NAME with the letters OL. The offset of 0
requests that the overlay begin with the first character in the string, and the size specification of 2
indicates the number of characters to overlay.

5. $ FILE_NAME := MYFILE
$ FILE_TYPE := .TST
$ FILE_NAME[F$LENGTH(FILE_NAME),4] := 'FILE_TYPE'
$ SHOW SYMBOL FILE_NAME
 FILE_NAME = "MYFILE.TST"

In this example, the symbol name FILE_NAME is equated to the string MYFILE and the symbol
name FILE_TYPE is equated to the string .TST. The third assignment statement uses the lexical
function F$LENGTH to define the offset value where the overlay is to begin. The symbol name
FILE_TYPE is used to refer to the replacement string (.TST). Note that you must use single
quotation marks (' ') to request symbol substitution.

The F$LENGTH lexical function returns the length of the string equated to the symbol
FILE_NAME; this length is used as the offset. The expression requests that 4 characters of the
string currently equated to the symbol FILE_TYPE be placed at the end of the string currently
equated to FILE_NAME. The resultant value of the symbol FILE_NAME is MYFILE.TST.

@ (Execute Procedure)
@ (Execute Procedure) — Executes a command procedure or requests the command interpreter to
read subsequent command input from a specific file or device.

Format
@ filespec [parameter[,...]]

Parameters
filespec

Specifies either the input device or the file for the preceding command, or the command procedure
to be executed. The default file type is .COM. The asterisk (*) and the percent sign (%) wildcard
characters are not allowed in the file specification.

parameter[,...]

Specifies from one to eight optional parameters to pass to the command procedure. The symbols (P1,
P2, … P8) are assigned character string values in the order of entry.

Setting bit 3 of DCL_CTLFLAGS to 1, specifies from one to sixteen optional parameters to pass to
the command procedure. The symbols (P1, P2, … P16) are assigned character string values in the
order of entry. If you clear the bit 3 of DCL_CTLFLAGS, the default parameters are set (that is, (P1,
P2, … P8)).

The symbols are local to the specified command procedure. Separate each parameter with one or
more blanks. Use two consecutive quotation marks (" ") to specify a null parameter. You can specify
a parameter with a character string value containing alphanumeric or special characters, with the
following restrictions:

8

DCL Commands

• The command interpreter converts alphabetic characters to uppercase and uses blanks to delimit
each parameter. To pass a parameter that contains embedded blanks or literal lowercase letters,
place the parameter in quotation marks.

• If the first parameter begins with a slash (/), you must enclose the parameter in quotation marks
(“ ”).

• To pass a parameter that contains literal quotation marks and spaces, enclose the entire string in
quotation marks and use two consecutive quotation marks within the string. For example, the
command procedure TEST.COM contains the following line:

$ WRITE SYS$OUTPUT P1

Enter the following at the DCL prompt ($):

$ @TEST "Never say ""quit"""

When the procedure TEST.COM executes, the parameter P1 is equated to the following string:

Never say "quit"

If a string contains quotation marks and does not contain spaces, the quotation marks are
preserved in the string and the letters within the quotation marks remain in lowercase. For
example, enter the following at the DCL prompt:

$ @TEST abc"def"ghi

When the procedure TEST.COM executes, the parameter P1 is equated to the following string:

ABC"def"GHI

To use a symbol as a parameter, enclose the symbol in single quotation marks (' ') to force symbol
substitution. For example:

$ NAME = "JOHNSON"
$ @INFO 'NAME'

The single quotation marks cause the value “JOHNSON” to be substituted for the symbol NAME.
Therefore, the parameter “JOHNSON” is passed as P1 to INFO.COM.

Description
Use the @ command to execute a command procedure that contains the following:

• DCL command lines or data, or both

• Qualifiers or parameters, or both, for a specific command line

To execute a command procedure containing commands or data, or both, place the @ command at
the beginning of a command line and then specify the name of the command procedure file. The
command procedure can contain DCL commands and input data for a command or program that is
currently executing. All DCL commands in a command procedure must begin with a dollar sign ($). If
a command is continued with a hyphen (-), the subsequent lines must not begin with a dollar sign.

Any line in a command procedure that does not contain a dollar sign in the first character position
(and is not a continuation line) is treated as input data for the command or program that is currently
executing. The DECK command allows you to specify that data contains dollar signs in record
position one.

9

DCL Commands

A command procedure can also contain the @ command to execute another command procedure.
The maximum command level you can achieve by nesting command procedures is 32, including
the top-level command procedure. Command procedures can also be queued for processing as batch
jobs, either by using the SUBMIT command or by placing a deck of cards containing the command
procedure in the system card reader.

To execute a command procedure that contains qualifiers or parameters, or both, for a specific
command line, place the @ command where the qualifiers or parameters normally would be in the
command line. Then specify the name of the command procedure file containing the qualifiers or
parameters.

If the command procedure file begins with parameters for the command, the @ command must be
preceded by a space. For example:

$ CREATE TEST.COM
TIME
Ctrl/Z
$ SHOW @TEST
 14-SEP-2001 17:20:26

If the file begins with qualifiers for the command, do not precede the @ command with a space. For
example:

$ CREATE TEST_2.COM
/SIZE
Ctrl/Z
$ DIR@TEST_2

Directory WORK$:[SCHEDULE]

JANUARY.TXT;8 14-DEC-2001 15:47:45.57
FEBRUARY.TXT;7 14-DEC-2001 15:43:16.20
MARCH.TXT;6 14-DEC-2001 11:11:45.74
 .
 .
 .
Total of 11 files.

If the file contains parameters or qualifiers, or both, do not begin the lines in the file with dollar
signs. Any additional data on the command line following @filespec is treated as parameters for the
procedure.

Qualifier
/OUTPUT=filespec

Specifies the name of the file to which the command procedure output is written. By default,
the output is written to the current SYS$OUTPUT device. The default output file type is .LIS.
The asterisk (*) and the percent sign (%) wildcard characters are not allowed in the output file
specification. System responses and error messages are written to SYS$COMMAND as well as
to the specified file. The /OUTPUT qualifier must immediately follow the file specification of the
command procedure; otherwise, the qualifier is interpreted as a parameter to pass to the command
procedure.

You can also redefine SYS$OUTPUT to redirect the output from a command procedure. If you
place the following command as the first line in a command procedure, output will be directed to
the file you specify:

10

DCL Commands

$ DEFINE SYS$OUTPUT filespec

When the procedure exits, SYS$OUTPUT will be restored to its original equivalence string.
This produces the same result as using the /OUTPUT qualifier when you execute the command
procedure.

Examples
1. $ CREATE DOFOR.COM

$ ON WARNING THEN EXIT
$ IF P1.EQS."" THEN INQUIRE P1 FILE
$ FORTRAN/LIST 'P1'
$ LINK 'P1'
$ RUN 'P1'
$ PRINT 'P1'
Ctrl/Z
$ @DOFOR AVERAGE

This example shows a command procedure, named DOFOR.COM, that executes the FORTRAN,
LINK, and RUN commands to compile, link, and execute a program. The ON command requests
that the procedure not continue if any of the commands result in warnings or errors.

When you execute DOFOR.COM, you can pass the file specification of the FORTRAN program
as the parameter P1. If you do not specify a value for P1 when you execute the procedure, the
INQUIRE command issues a prompting message to the terminal and equates what you enter with
the symbol P1. In this example, the file name AVERAGE is assigned to P1. The file type is not
included because the commands FORTRAN, LINK, RUN, and PRINT provide default file types.

2. $ @MASTER/OUTPUT=MASTER.LOG

This command executes a procedure named MASTER.COM; all output is written to the file
MASTER.LOG.

3. $ CREATE FILES.COM
*.FOR, *.OBJ
Ctrl/Z
$ DIRECTORY @FILES

This example shows a command procedure, FILES.COM, that contains parameters for a DCL
command line. The entire file is treated by DCL as command input. You can execute this
procedure after the DIRECTORY command to get a listing of all FORTRAN source and object
files in your current default directory.

4. $ CREATE QUALIFIERS.COM
/DEBUG/SYMBOL_TABLE/MAP/FULL/CROSS_REFERENCE
Ctrl/Z
$ LINK SYNAPSE@QUALIFIERS

This example shows a command procedure, QUALIFIERS.COM, that contains qualifiers for
the LINK command. When you enter the LINK command, specify the command procedure
immediately after the file specification of the file you are linking. Do not type a space between the
file specification and the @ command.

5. $ CREATE SUBPROCES.COM
$ RUN 'P1' -
 /BUFFER_LIMIT=1024 -

11

DCL Commands

 /FILE_LIMIT=4 -
 /PAGE_FILES=256 -
 /QUEUE_LIMIT=2 -
 /SUBPROCESS_LIMIT=2 -
 'P2' 'P3' 'P4' 'P5' 'P6' 'P7' 'P8'
Ctrl/Z
$ @SUBPROCES LIBRA /PROCESS_NAME=LIBRA

This example shows a command procedure named SUBPROCES.COM. This procedure issues the
RUN command to create a subprocess to execute an image and also contains qualifiers defining
quotas for subprocess creation. The name of the image to be run is passed as the parameter P1.
Parameters P2 to P8 can be used to specify additional qualifiers.

In this example, the file name LIBRA is equated to P1; it is the name of an image to execute in
the subprocess. The qualifier /PROCESS_NAME=LIBRA is equated to P2; it is an additional
qualifier for the RUN command.

6. $ CREATE EDOC.COM
$ ASSIGN SYS$COMMAND: SYS$INPUT
$ NEXT:
$ INQUIRE NAME "File name"
$ IF NAME.EQS."" THEN EXIT
$ EDIT/TPU 'NAME'.DOC
$ GOTO NEXT
Ctrl/Z
$ @EDOC

This procedure, named EDOC.COM, invokes the EVE editor. When an edit session is terminated,
the procedure loops to the label NEXT. Each time through the loop, the procedure requests
another file name for the editor and supplies the default file type .DOC. When a null line
is entered in response to the INQUIRE command, the procedure terminates with the EXIT
command.

The ASSIGN command changes the equivalence name of SYS$INPUT for the duration of the
procedure. This change allows the EVE editor to read input data from the terminal, rather than
from the command procedure file (the default input data stream if SYS$INPUT had not been
changed). When the command procedure exits, SYS$INPUT is reassigned to its original value.

7. ! PEOPLE.DAT
! A set of data with embedded key qualifiers for the SORT command.
!
! Usage: SORT@PEOPLE.DAT
!
/KEY=(POS:10,SIZE:10) sys$input people.out
Fred Flintstone 555-1234
Barney Rubble 555-2244
Wilma Flintstone 555-1234
Betty Rubble 555-2244
George Slate 555-8911
Dino Dinosaur 555-1234
$!
$ SORT@PEOPLE.DAT
$ purge people.out
$ type people.out

Creates a sorted list of people in file PEOPLE.OUT and displays it. This demonstrates when using
"@" in the middle of a DCL command, DCL redirects the entire file as command input.

12

DCL Commands

8. $ CREATE SUBPROCES.COM
$ RUN 'P1' -
 /BUFFER_LIMIT=1024 -
 /FILE_LIMIT=4 -
 /PAGE_FILES=256 -
 /QUEUE_LIMIT=2 -
 /SUBPROCESS_LIMIT=2 -
 'P2' 'P3' 'P4' 'P5' 'P6' 'P7' 'P8' 'P9'
 'P10' 'P11' 'P12' 'P13' 'P14' 'P15' 'P16'
Ctrl/Z
$ @SUBPROCES LIBRA /PROCESS_NAME=LIBRA

This example shows a command procedure named SUBPROCES.COM. This procedure issues the
RUN command to create a subprocess to execute an image and also contains qualifiers defining
quotas for subprocess creation. The name of the image to be run is passed as the parameter P1.
Parameters P2 to P16 can be used to specify additional qualifiers. This is applicable if bit 3 of
DCL_CTLFAGS is set to 1. In this example, the file name LIBRA is equated to P1; it is the name
of an image to execute in the subprocess. The qualifier /PROCESS_NAME=LIBRA is equated to
P2; it is an additional qualifier for the RUN command.

ACCOUNTING
ACCOUNTING — Runs the Accounting utility, which produces reports of resource use.

Format
ACCOUNTING [filespec[,...]]

Description
For more information about the Accounting utility, see the VSI OpenVMS System Management
Utilities Reference Manual or online help.

ALLOCATE
ALLOCATE — Provides your process with exclusive access to a device until you deallocate the
device or terminate your process. Optionally associates a logical name with the device. Requires read
(R), write (W), or control access.

Format
ALLOCATE device-name[:][,...] [logical-name[:]]

Parameters
device-name[:][,...]

Specifies the name of a physical device or a logical name that translates to the name of a physical
device. The device name can be generic: if no controller or unit number is specified, any device that

13

DCL Commands

satisfies the specified part of the name is allocated. If more than one device is specified, the first
available device is allocated.

logical-name[:]

Specifies a string of 1 to 255 alphanumeric characters. Enclose the string in single quotation marks
(' ') if it contains blanks. Trailing colons (:) are not used. The name becomes a process logical name
with the device name as the equivalence name. The logical name remains defined until it is explicitly
deleted or your process terminates.

Qualifiers
/GENERIC
/NOGENERIC (default)

Indicates that the first parameter is a device type rather than a device name. Example device types
are: RX50, RD52, TK50, RC25, RCF25, and RL02. The first free, nonallocated device of the
specified name and type is allocated.

The /[NO]GENERIC qualifier is placed before the device-name parameter in the ALLOCATE
command line. For example, you can allocate an RK07 device by entering the following
command at the DCL prompt ($):

$ ALLOCATE/GENERIC RK07 DISK

The following table shows some device types that you can specify with the /GENERIC qualifier.
To determine which devices apply to specific OpenVMS versions, see SPD.

Devices by Classification
Disk Devices

EF51 EF52 EF53 EF54 EF58
ESE20 ESE25 ESE52 ESE56 ESE58
EZ31 EZ31L EZ32 EZ32L EZ33
EZ33L EZ34 EZ35 EZ51 EZ52
EZ53 EZ54 EZ56R EZ58 HSZ10
HSZ15 HSZ20 HSZ40 ML11 RA60
RA70 RA71 RA72 RA73 RA80
RA81 RA82 RA90 RA92 RAH72
RB02 RB80 RC25 RCF25 RD26
RD31 RD32 RD33 RD51 RD52
RD53 RD54 RF30 RF31 RF31F
RF32 RF35 RF36 RF37 RF70
RF71 RF72 RF73 RF74 RF75
RFF31 RFH31 RFH32 RFH35 RFH72
RFH73 RK06 RK07 RL01 RL02
RM03 RM05 RM80 RP04 RP05
RP06 RP07 RP07HT RX01 RX02
RX04 RX18 RX23 RX23S RX26

14

DCL Commands

Devices by Classification
RX33 RX33S RX35 RX50 RZ01
RZ13 RZ14 RZ15 RZ16 RZ17
RZ18 RZ22 RZ23 RZ23L RZ24
RZ24L RZ25 RZ25L RZ26 RZ26B
RZ26L RZ26M RZ27 RZ27B RZ27L
RZ28 RZ28B RZ28L RZ29 RZ29B
RZ31 RZ34L RZ35 RZ35L RZ36
RZ36L RZ37 RZ38 RZ55 RZ55L
RZ56 RZ56L RZ57 RZ57I RZ57L
RZ58 RZ59 RZ72 RZ73 RZ73B
RZ74 RZ74B RZ75 RZ75B RZF01

Compact Disk Devices
RRD40 RRD40S RRD42 RRD43 RRD44
RRD50 RV20 RV60 RV80 RW504
RW510 RW514 RW516 RWZ01 RWZ21
RWZ31 RWZ51 RWZ52 RWZ53 RWZ54

Tape Devices
TA78 TA79 TA81 TA85 TA86
TA87 TA90 TA90E TA91 TAD85
TAPE9 TD34 TD44 TE16 TF30
TF70 TF85 TF86 TK50 TK50S
TK60 TK70 TK70L TKZ09 TKZ60
TL810 TL820 TLZ04 TLZ06 TLZ07
TLZ6 TLZ7 TM32 TS11 TSZ05
TSZ07 TSZ08 TU45 TU56 TU58
TU77 TU78 TU80 TU81 TZ30
TZ30S TZ85 TZ857 TZ86 TZ865
TZ867 TZ87 TZ875 TZ877 TZ88
TZ885 TZ887 TZ89 TZ895 TZ897
TZK10 TZK11 TZX0

/LOG (default)
/NOLOG

Displays a message indicating the name of the device allocated. If the operation specifies a logical
name that is currently assigned to another device, then the superseded value is displayed.

Examples
1. $ ALLOCATE DMB2:

%DCL-I-ALLOC, _DMB2: allocated

15

DCL Commands

The ALLOCATE command in this example requests the allocation of a specific RK06/RK07 disk
drive, that is, unit 2 on controller B. The system response indicates that the device was allocated
successfully.

2. $ ALLOCATE MT,MF: TAPE:
%DCL-I-ALLOC, _MTB2: allocated
.
.
.
$ SHOW LOGICAL TAPE:
TAPE: = _MTB2: (process)
$ DEALLOCATE TAPE:
$ DEASSIGN TAPE:

The ALLOCATE command in this example requests the allocation of a tape device whose name
begins with MT or MF and assigns it the logical name TAPE. The ALLOCATE command locates
an available tape device whose name begins with MT, and responds with the name of the device
allocated. (If no tape device beginning with MT had been found, the ALLOCATE command
would have searched for a device beginning with MF.) Subsequent references to the device TAPE
in user programs or command strings are translated to the device name MTB2.

When the tape device is no longer needed, the DEALLOCATE command deallocates it and the
DEASSIGN command deletes the logical name. Note that the logical name TAPE was specified
with a colon on the ALLOCATE command, but that the logical name table entry does not have a
colon.

3. $ ALLOCATE/GENERIC RL02 WORK
%DCL-I-ALLOC, _DLA1: allocated
%DCL-I-SUPERSEDE, previous value of WORK has been superseded

The ALLOCATE command in this example requests the allocation of any RL02 disk device and
assigns the logical name WORK to the device. The completion message identifies the allocated
device and indicates that the assignment of the logical name WORK supersedes a previous
assignment of that name.

4. $ ALLOCATE $TAPE1
%DCL-I-ALLOC, _MUA0: allocated

The ALLOCATE command in this example allocates the tape device MUA0, which is associated
with the logical name $TAPE1.

5. $ ALLOCATE /GENERIC RX50 ACCOUNTS

The ALLOCATE command in this example allocates the first free diskette drive and makes its
name equivalent to the process logical name ACCOUNTS.

ANALYZE/AUDIT
ANALYZE/AUDIT — Invokes the Audit Analysis utility, which selectively extracts and displays
information from security audit log files or security archive files.

Format
ANALYZE/AUDIT [filespec]

16

DCL Commands

Description
For more information about the Audit Analysis utility, see the VSI OpenVMS System Management
Utilities Reference Manual or online help.

ANALYZE/CRASH_DUMP
ANALYZE/CRASH_DUMP — Invokes the System Dump Analyzer utility, which analyzes a system
dump file. The /CRASH_DUMP qualifier is required.

Format
ANALYZE/CRASH_DUMP filespec

Description
Invokes the System Dump Analyzer utility, which analyzes a system dump file. The /CRASH_DUMP
qualifier is required. For more information about the System Dump Analyzer utility on Alpha, refer to
the VSI OpenVMS System Analysis Tools Manual or online help.

For OpenVMS Alpha Systems
You can also use the ANALYZE/CRASH_DUMP command with process dumps. However, the
preferred command is ANALYZE/PROCESS, which provides complete access to the information in
the dump.

ANALYZE/DISK_STRUCTURE
ANALYZE/DISK_STRUCTURE — Invokes the Analyze/Disk_Structure utility. Checks the
readability and validity of Files-11 On-Disk Structure Level 1, 2, and 5 disk volumes. Reports errors
and inconsistencies.

Format
ANALYZE/DISK_STRUCTURE device-name:[/qualifier]

Description
The /DISK_STRUCTURE qualifier is required.

For more information about the Analyze/Disk_Structure utility, see the VSI OpenVMS System
Management Utilities Reference Manual or online help.

ANALYZE/ERROR_LOG/ELV (Alpha/Integrity
servers Only)
ANALYZE/ERROR_LOG/ELV (Alpha/Integrity servers Only) — Invokes the Error Log Viewer
(ELV) to selectively report the contents of one or more error log files. This utility is most useful with
error logs written on systems running OpenVMS Version 7.3 and later. For more information about

17

DCL Commands

the Error Log Viewer, see the VSI OpenVMS System Management Utilities Reference Manual or
online help.

Format
ANALYZE/ERROR_LOG/ELV [command]

Description
For error logs written on OpenVMS Version 7.2* systems, you must use the DIAGNOSE command,
which invokes the DEC event utility. DEC event is no longer supported, but those who need it can
download the software and related documentation from the following web site:

http://h41379.www4.hpe.com/openvms/freeware/

For error logs written on OpenVMS versions prior to 7.2, use the ANALYZE/ERROR_LOG
command, which invokes the Error Log Report Formatter (ERF). Documentation for ERF is posted on
the Freeware Web site:

http://h41379.www4.hpe.com/openvms/freeware/

ANALYZE/IMAGE
ANALYZE/IMAGE — Analyzes the contents of an executable image file or a shareable image file
on OpenVMS Alpha systems, and an Executable and Linkable Format (ELF) image file or sharable
image file on OpenVMS Integrity server systems, identifying obvious errors in the file. This analysis
includes translated images on Integrity servers and Alpha systems. The /IMAGE qualifier is required.
For general information about image files, see the description of the linker in the VSI OpenVMS
Linker Utility Manual. (Use the ANALYZE/OBJECT command to analyze the contents of an object
file).

Format
ANALYZE/IMAGE filespec[,...]

Parameter
filespec[,...]

Specifies the name of one or more image files that you want analyzed. You must specify at least one
file name. If you specify more than one file, separate the file specifications with either commas (,) or
plus signs (+). The default file type is .EXE.

The asterisk (*) and percent sign (%) wildcard characters are allowed in the file specification.

Description
The ANALYZE/IMAGE command provides a description of the components of an executable image
file or shareable image file on OpenVMS Alpha systems, and of an Executable and Linkable Format
(ELF) image file or sharable image file on OpenVMS Integrity server systems. It also verifies that the
structure of the major parts of the image file is correct. However, the ANALYZE/IMAGE command
cannot ensure that program execution is error free.

18

DCL Commands

On OpenVMS Integrity server systems, the ANALYZE/IMAGE command automatically
distinguishes between Integrity servers and Alpha images by examining the header information.

If errors are found, the first error of the worst severity is returned. For example, if a warning (A) and
two errors (B and C) are found, the first error (B) is returned as the image exit status. The image exit
status is placed in the DCL symbol $STATUS at image exit.

Notes

For Integrity servers images and objects, the Analyze utility determines whether the file it analyzes is
an image file or object file. Although Analyze allows you to specify ANALYZE/OJBECT on an ELF
image file, use ANALYZE/IMAGE for ELF image files and ANALYZE/OJBECT for ELF object
files.

When parsing output from ANALYZE/IMAGE, be aware that the output for ELF images may change.

When using ANALYZE without a qualifier, the default is/OBJECT. Therefore, when using this default
to analyze an image in the output file, the utility correctly identifies itself as"Analyze Object File".

The OpenVMS Alpha version of ANALYZE/IMAGE does not have the capability of analyzing all
non-platform images.

When you analyze Integrity servers images on I64 platforms, ANALYZE/IMAGE accepts Alpha-only
qualifiers, but ignores any effect of these qualifiers.

Depending on the platform, the ANALYZE/IMAGE command distinguishes Integrity servers images
from Alpha images by examining the meta information (for example, ELF, EIHD, or IHD).

The ANALYZE/IMAGE command provides the following information for image files:

• Image architecture and type – The OpenVMS platform and whether the image is executable or
shareable.

• Image name – The name of the image or shareable image.

• Image identification – The identification given in a link operation.

• Creating linker identification – The linker that generated the image.

• Link date and time – The date and time of the link operation.

• Image transfer addresses – The addresses to which control is passed at image execution time.

• Image version – The revision level (major ID and minor ID)of the image.

• Location and size of the image's symbol vector (Alpha and Integrity servers only).

• List of required sharable images – The dependencies on sharable images.

• Location of the debugger symbol table (DST) – The location of the DST in the image file. DST
information is present only in executable images that have been linked with the /DEBUG or
the /TRACEBACK command qualifier. (Alpha only.)

• Location and interpretation of the debug and traceback information – The sections that contain the
information and formats the data (DWARF) (Integrity servers only).

19

DCL Commands

• Location of the global symbol table (GST) – The location of the GST in the image file. GST
information is present only in shareable image files. (Alpha only.)

• Location of the global symbol table (.symtab) – The location of the GST in the image file. GST
information is present only in shareable image files (Integrity servers only.)

• Patch information – Indicates whether the image has been patched (changed without having
been recompiled or reassembled and relinked). If a patch is present, the actual patch code can be
displayed. (Alpha only.)

• Image section descriptors (ISD) – Identify portions of the image binary contents that are grouped
in OpenVMS Cluster systems according to their attributes. An ISD contains information that the
image activator needs when it initializes the address space for an image. For example, an ISD tells
whether the ISD is shareable, whether it is readable or writable, whether it is based or position
independent, and how much memory should be allocated.

• Summary of internal tables – Lists the program segments and sections of which the image
consists. (Integrity servers only.)

• Fixup vectors – Contain information that the image activator needs to ensure the position
independence of shareable image references. (Alpha only.)

• Fixup information – Information that the image activator needs to ensure the position
independence of shareable image references. (Integrity servers only.)

• System version categories – For an image that is linked against the executive (the system
shareable image on Integrity servers and Alpha), displays both the values of the system version
categories for which the image was linked originally and the values for the system that is currently
running. You can use these values to identify changes in the system since the image was linked
last.

The ANALYZE/IMAGE command has command qualifiers and positional qualifiers. For Alpha
images, by default, if you do not specify any positional qualifiers (for example, /GST or /HEADER),
the entire image is analyzed. If you do specify a positional qualifier, the analysis excludes all other
positional qualifiers except the /HEADER qualifier (which is always enabled) and any qualifier that
you request explicitly.

The default behavior for analyzing ELF images differs from the behavior for analyzing Alpha images.
For ELF images, a summary of the major ELF tables is displayed. With this information, you can
select specific segments and/or sections for analysis. To locate errors, analyze the entire image by
selecting all sections and segments.

Qualifiers
/FIXUP_SECTION (Alpha only)

Positional qualifier.

Specifies that the analysis should include all information in the fixup section of the image.

If you specify the /FIXUP_SECTION qualifier after the ANALYZE/IMAGE command, the fixup
section of each image file in the parameter list is analyzed.

If you specify the /FIXUP_SECTION qualifier after a file specification, only the information in
the fixup section of that image file is analyzed.

20

DCL Commands

/FLAGVALUES=(keyword[,...]) (Integrity servers only)

Several fields in an ELF module represent bit flags. Where possible, these bit-flag values are
examined and displayed individually. By default, only the flag values that are set to 1 (ON) are
displayed.

The keywords are as follows:

Keyword Description
ON The keyword ON displays all flags whose value is 1.
OFF The keyword OFF displays all flags whose value is 0.
ALL The keyword ALL displays all flag values. The keywords ON and OFF, in contrast,

indicate the value of each specific flag bit.

/GST (Alpha only)

Positional qualifier.

Specifies that the analysis should include all global symbol table records. This qualifier is valid
only for shareable images.

If you specify the /GST qualifier after the ANALYZE/IMAGE command, the global symbol table
records of each image file in the parameter list are analyzed.

If you specify the /GST qualifier after a file specification, only the global symbol table records of
that file are analyzed.

/HEADER (Alpha only)

Positional qualifier.

Specifies that the analysis should include all header items and image section descriptions. The
image header items are always analyzed.

/INTERACTIVE
/NOINTERACTIVE (default)

Specifies whether the analysis is interactive. In interactive mode, as each item is analyzed, the
results are displayed on the screen and you are asked whether you want to continue.

/MODULE [=(module_name[,...])] (Integrity servers only)

Selectively formats debug or traceback information for the named module or list of modules. You
must request debug or traceback information by using the /SECTIONS qualifier with keywords
ALL, DEBUG or TRACE. If debug or traceback information is selectively formatted, then the
module name is a subselection.

If you do not specify a module name, only debug or traceback meta information about the
available modules is printed. In this case, any other debug or traceback selection is deactivated.

Note

This qualifier is only valid for ANALYZE/IMAGE. Although ANALYZE/OBJECT can be used to
format Integrity servers images, Analyze rejects the /MODULE qualifier.

21

DCL Commands

/OUTPUT=filespec

Identifies the output file for storing the results of the image analysis. The asterisk (*) and the
percent sign (%) wildcard characters are not allowed in the file specification. If you specify a
file type and omit the file name, the default file name ANALYZE is used. The default file type
is .ANL. If you omit the qualifier, the results are output to the current SYS$OUTPUT device.

/PAGE_BREAK=keyword (Integrity servers only)

Specifies if and where page breaks (form feeds) are inserted in the report file. This qualifier is
only useful if /OUTPUT is used to write a report file. It is ignored if /INTERACTIVE is used to
specify an interactive analysis.

The keywords are as follows:

Keyword Description
NONE Creates a report without any page break.
PRINTABLE_REPORT Creates a printable report with page breaks as in listing

files. The number of lines per page is the default number
of lines on a printer page. This is the default behavior for
ANALYZE_IMAGE when no qualifier is specified.

SEPARATE_INFORMATION Inserts a page break between different section information.

/SECTIONS [=(keyword[,...])] (Integrity servers only)

Selects individual program sections or section types to display.

Note

This qualifier and its keywords can only be used to form an inclusion list of sections to be displayed.
This qualifier is not negatable and cannot be used to form an exclusion list. If no values are specified,
the default keyword is HEADERS.

The keywords are as follows:

Keyword Description
ALL Displays a detailed analysis of every section in the module. Note

that this keyword can generate a large amount of output.
CODE Displays all of all sections of type SHT_PROGBITS where the

executable flag is set (SHDR$M_SHF_EXECINSTR in the
section header). The section data will be displayed as machine
instructions.

DEBUG [=(suffix[,...])] Analyzes and displays sections consisting of debug information.

In addition, you can use a list of debug section name suffixes
to selectively format DEBUG information. The debug section
names, which appear as ".debug_suffix", can be viewed in the
summary table. The suffix can be specified as follows:

• ABBREV -- Format DEBUG abbreviations

• ARANGES -- Formats DEBUG address lookup tables

• FRAME -- Formats DEBUG frame descriptors for unwinding

22

DCL Commands

Keyword Description
• INFO -- Formats DEBUG symbols

• LINE -- Formats DEBUG source line info

• PUBNAMES -- Formats DEBUG name lookup tables

• PUBTYPES -- Formats DEBUG type lookup tables
EXTENSIONS Analyzes and displays sections of type SHT_IA64_EXT. The

data is displayed in hexadecimal format.
GROUP Analyzes and displays sections of type SHT_GROUP. Sections

of this type consist of a list of the section numbers of sections
belonging to that group.

HEADERS The default keyword. Displays the ELF header and the section
header details.

LINKAGES Analyzes and displays sections of type SHT_VMS_LINKAGES.
The data is displayed as a list of linkage descriptors.

NOBITS Analyzes and displays sections of type SHT_NOBITS. There is
no module data associated with sections of this type.

NOTE Analyzes and displays sections of type SHT_NOTE. The data
for this section is displayed as a list of formatted OpenVMS note
entries.

NULL Displays all sections of type PT_NULL. No data will be
displayed for segments of this type.

NUMBERS= (number [,...]) Displays individual sections, as follows:

• The selected sections will have a detailed display of their
header and their contents. An informational message is
displayed for section numbers that do not exist in the module.

• One or more numeric values may be specified.

• Section numbers may be specified in decimal, octal (using
the %O prefix), or hexadecimal (using the %X prefix).

STRTAB Analyzes and displays sections of type SHT_STRTAB. The data
for this section is displayed as a string table.

SYMTAB Displays sections of type SHT_SYMTAB. The data for this
section is displayed as a symbol table.

SYMBOL_VECTOR Sections of this type will only appear in sharable image files.
If present, they point to the same data as the dynamic segment
DT_VMS_SYMVEC tags.

TRACE [=(suffix[,...])] Analyzes and displays sections consisting of traceback
information.

In addition, you can use a list of trace section name suffixes to
selectively format TRACE information. The trace section names,
which appear as ".trace_suffix", can be viewed in the summary
table. The suffix can be specified as shown below. In addition,
because there is one common debug and traceback section,

23

DCL Commands

Keyword Description
".debug_line", the suffix "line" can be specified as shown below
as well:

• ABBREV -- Formats TRACE abbreviations

• ARANGES -- Formats TRACE address lookup tables

• INFO -- Formats TRACE symbols

• LINE -- Formats TRACE source line info
UNWIND Analyzes and displays sections of type SHT_IA64_UNWIND.

Each section of this type has an associated Unwind Information
section of type SHT_PROGBITS. This associated section is also
displayed.

/SEGMENTS [=(keyword[,...])] (Integrity servers only)

Selects individual program segments or program segments of a specified type to be displayed.

Note

This qualifier and its keywords can only be used to form an inclusion list of segments to be displayed.
This qualifier is not negatable and cannot be used to form an exclusion list. If no values are specified,
the default keyword is HEADERS.

The keywords are as follows:

Keyword Description
ALL Analyzes and displays information for every program segment.

Note that this can generate a large amount of output.
CODE Analyzes and displays all executable segments (PHDR$M_PF_X

bit set in the segment header). Segment data is displayed as
machine instructions.

DYNAMIC Analyzes and displays the segment of type PT_DYNAMIC.
EXTENSIONS Analyzes and displays segments of type IA_64_ARCHEXT.
HEADERS The default keyword. Analyzes and displays the ELF header and

segment header details.
LOAD Analyzes and displays segments of type PT_LOAD. If the

segment header indicates this is an executable segment
(PHDR$M_PF_X bit set in the segment header), the contents
will be formatted as machine instructions, otherwise the contents
are formatted as hexadecimal data.

NULL Analyzes and displays segments of type PT_NULL. No a data
will be displayed for segments of this type.

NUMBERS= (number [,...]) Analyzes and displays individual segments, as follows:

• The selected segments have a detailed display of header and
content information. For section numbers that do not exist in
the module, an informational message is displayed.

24

DCL Commands

Keyword Description
• One or more numeric values may be specified.

• Segment numbers may be specified in decimal, octal (using
the %O prefix), or hexadecimal (using the %X prefix).

/SELECT=(keyword[,...])

Allows for the collection of specific image file information and displays the selected keyword
items in the order specified.

Analyze creates DCL symbols for all selectable information with the/SELECT qualifier. The
symbol names consist of the prefix ANALYZE$and a descriptive name of the information they
hold. The symbol value is the selected information, usually printed to SYS$OUTPUT. Effectively,
all of the printed information is duplicated in the symbols. For unselected information, the
corresponding symbols will contain the null string.

The keywords are as follows:

Keyword Description
ARCHITECTURE Writes the architecture information into the DCL symbol

ANALYZE$ARCHITECTURE. Returns "OpenVMS IA64" if
the file is an OpenVMS Integrity servers image file. Returns an
OpenVMS Alpha image file."OpenVMS Alpha" if the file is an
OpenVMS Alpha image file.

BUILD_IDENTIFICATION Writes build identification information into the DCL symbol
ANALYZE$BUILD_IDENTIFICATION. For OpenVMS
Integrity servers and Alpha image files, returns the image build
identification stored in the image file, enclosed in quotation
marks.

FILE_TYPE Writes file type information into the DCL symbol
ANALYZE$FILE_TYPE. Returns "Image" if the file is an
OpenVMS Integrity servers or Alpha image file.

IDENTIFICATION [=keyword] The possible keywords are as follows:

• IMAGE (default) --- Writes the image identification
information into the DCL symbol ANALYZE
$IDENTIFICATION. Returns the image identification that
is stored in the image file, enclosed in quotation marks.
Otherwise, returns "Unknown".

• LINKER --- Writes the linker identification information into
the DCL symbol ANALYZE$LINKER_IDENTIFICATION.
Returns the identification of the linker used to link the image.

IMAGE_TYPE Writes image type information into the DCL symbol ANALYZE
$IMAGE_TYPE. Returns "Shareable" if the file is a shareable
image file. Returns "Executable"if the file is either an OpenVMS
Integrity servers or Alpha executable(non-shareable) image file.

LINK_TIME Writes link time information into the DCL symbol ANALYZE
$LINK_TIME. Returns the image link time that is stored in the
image file, enclosed in quotation marks.

25

DCL Commands

Keyword Description
NAME Writes the image name into the DCL symbol ANALYZE

$NAME. For image files, returns the image name that is stored in
the image header, enclosed in quotation marks.

VERSION_NUMBERS (Alpha/
Integrity servers only)

If an image depends on the system base image and system
components, ANALYZE writes the version numbers from the
image into DCL symbols. The symbols are named after the
components. The symbol values contain the minor and major
version numbers. When the image is for the same platform on
which ANALYZE is running, the version numbers from the
running system are also written and compared.

Note

The Analyze utility can work on several files. Because there is only one set of DCL symbols, the
symbols only contain information from the last analyzed file. When an error occurs, symbol values
are undefined. Check for Analyze errors first, then use the symbols.

Examples
1. $ ANALYZE/IMAGE LINEDT

The ANALYZE/IMAGE command in this example produces a description and an error analysis of
the image LINEDT.EXE. Output is sent to the current SYS$OUTPUT device.

2. $ ANALYZE/IMAGE/OUTPUT=LIALPHEX/FIXUP_SECTION/PATCH_TEXT LINEDT, ALPRIN
(Alpha only)

The ANALYZE/IMAGE command in this example produces a description and an error
analysis of the fixup sections and patch text records of LINEDT.EXE and ALPRIN.EXE in file
LIALPHEX.ANL. Output is sent to the file LIALPHEX.ANL.

3. $ ANALYZE/IMAGE/SELECT=(ARCH,FILE,NAME,IDENT,BUILD,LINK) *.EXE
DISK:[DIRECTORY]ALPHA.EXE;1OpenVMS
 AlphaImage"MAIL""V1.06""XBCA-0080070002"19-MAR-2008 11:17:50.76

On an Alpha system, this example displays the information requested about the executable file
ALPHA.EXE.

4. $ ANALYZE/IMAGE/SELECT=(ARCHITECTURE,IDENT,NAME) HELLO
USER:[JOE]HELLO.EXE;1
OpenVMS IA64
"V1.0"
"HELLO"
$
$ SHOW SYMBOL ANALYZE$*
ANALYZE$ARCHITECTURE = "OpenVMS IA64"
ANALYZE$BUILD_IDENTIFICATION = ""
ANALYZE$FILE_TYPE = ""
ANALYZE$IDENTIFICATION = ""V1.0""
ANALYZE$IMAGE_TYPE = ""
ANALYZE$LINKER_IDENTIFICATION = ""
ANALYZE$LINK_TIME = ""
ANALYZE$NAME = ""HELLO""

26

DCL Commands

$
$ ANALYZE/IMAGE/SELECT=(IDENT=(IMAGE,LINKER),IMAGE,LINK) HELLO
USER:[JOE]HELLO.EXE;1
"V1.0"
"Linker I01-54"
Executable
7-JUN-2004 11:47:08.10
$
$ SHOW SYMBOL ANALYZE$*
ANALYZE$ARCHITECTURE = ""
ANALYZE$BUILD_IDENTIFICATION = ""
ANALYZE$FILE_TYPE = ""
ANALYZE$IDENTIFICATION = ""V1.0""
ANALYZE$IMAGE_TYPE = "Executable"
ANALYZE$LINKER_IDENTIFICATION = ""Linker I01-54""
ANALYZE$LINK_TIME = " 7-JUN-2004 11:47:08.10"
ANALYZE$NAME = ""
$
$ ANALYZE/IMAGE/SELECT=FILE HELLO.*
USER:[JOE]HELLO.C;1
%ANALYZE-E-ILLFIL, Illegal file format encountered
USER:[JOE]HELLO.EXE;1
Image
USER:[JOE]HELLO.MAP;1
%ANALYZE-E-ILLFIL, Illegal file format encountered
USER:[JOE]HELLO.OBJ;1
Object
$
$ SHOW SYMBOL ANALYZE$*
ANALYZE$ARCHITECTURE = ""
ANALYZE$BUILD_IDENTIFICATION = ""
ANALYZE$FILE_TYPE = "Object"
ANALYZE$IDENTIFICATION = ""
ANALYZE$IMAGE_TYPE = ""
ANALYZE$LINKER_IDENTIFICATION = ""
ANALYZE$LINK_TIME = ""
ANALYZE$NAME =
$

This Integrity servers example displays the information requested for the executable file,
HELLO.EXE. The following text is keyed to the callout numbers at the ends of each
ANALYZE/IMAGE command line in the example:

Only the selected information can be found in the DCL symbols. The information in the
symbols is identical to what is printed to SYS$OUTPUT, that is, if quoted strings are
printed, there are quoted strings in the symbol.
If the new linker identification is selected, it is necessary to use IDENT with a keyword list.
When using wildcards, errors in the analyzed file (for example, illegal file format errors) do
not terminate Analyze. Only the information from the last analyzed file can be found in the
DCL symbols.

ANALYZE/MEDIA
ANALYZE/MEDIA — Invokes the Bad Block Locator utility, which analyzes block-addressable
devices and records the location of blocks that cannot store data reliably. For more information about

27

DCL Commands

the Bad Block Locator utility, see the OpenVMS Bad Block Locator Utility Manual (available on the
Documentation CD-ROM) or online help.

Format
ANALYZE/MEDIA device

ANALYZE/OBJECT
ANALYZE/OBJECT — Analyzes the contents of an object file on OpenVMS Alpha systems, and
an Executable and Linkable Format (ELF) object file on OpenVMS Integrity server systems, and
identifies obvious errors. The /OBJECT qualifier is required.

Synopsis
ANALYZE/OBJECT filespec[,...]

Parameter
filespec[,...]

Specifies the object files or object module libraries you want analyzed (the default file type is .OBJ).
Use commas (,) or plus signs (+) to separate file specifications. The asterisk (*) and the percent sign
(%) wildcard characters are allowed in the file specification.

Description
For general information about object files, see the description of the linker in the VSI OpenVMS
Linker Utility Manual. (Use the ANALYZE/IMAGE command to analyze the contents of an image
file.)

The ANALYZE/OBJECT command describes the contents of one or more object modules contained
in one or more files. It also performs a partial error analysis. This analysis determines whether all
records in an object module conform in content, format, and sequence to the specifications of the
Integrity servers or Alpha Object Language.

On OpenVMS Integrity server systems, the ANALYZE/OBJECT command automatically
distinguishes Integrity servers and Alpha objects by examining the format of the object modules
header.

ANALYZE/OBJECT is intended primarily for programmers of compilers, debuggers, or other
software involving the operating system's object modules. It checks that the ELF object format
(Integrity servers or the object language records (Alpha) generated by the object modules are
acceptable to the Linker utility, and it identifies certain errors in the file. It also provides a description
of the records in the object file or object module library. For more information on the linker and on the
Alpha object languages, see the VSI OpenVMS Linker Utility Manual.

Notes

For Integrity servers images and objects, the Analyze utility determines whether the file it analyzes is
an image file or object file. Although Analyze allows you to specify ANALYZE/IMAGE on an ELF

28

DCL Commands

object file, use ANALYZE/IMAGE for ELF image files and ANALYZE/OJBECT for ELF object
files.

The OpenVMS Alpha versions of ANALYZE/OBJECT are not fully capable of analyzing non-
platform objects (for example Integrity servers objects on Alpha).

The output format of ANALYZE/OBJECT for ELF objects may change. Further, the default behavior
for analyzing ELF objects differs from the behavior for analyzing Alpha objects. For ELF objects, a
summary of the major ELF tables is displayed. With this information, you can select specific sections
for further analysis. To locate errors, the entire object should be analyzed by selecting all sections.

When you analyze Integrity servers objects on I64 platforms, ANALYZE/OBJECT accepts Alpha-
only qualifiers, but ignores any effect of these qualifiers.

The ANALYZE/OBJECT command analyzes the object modules in order, record by record, from the
first to the last record in the object module. Fields in each record are analyzed in order from the first
to the last field in the record. After the object module is analyzed, you should compare the content
and format of each type of record to the required content and format of that record as described by the
OpenVMS Integrity servers or Alpha Object Language. This comparison is particularly important if
the analysis output contains a diagnostic message.

ANALYZE/OBJECT displays the following information for object modules:

• Module architecture and type

• Module name

• Module version

• Module creation date and time

• Language processor creator

Linking an object module differs from analyzing an object module. The object's contents are not
interpreted; rather, only the meta information is checked for consistency. As a result, even if the
analysis is error free, the linking operation may not be. In particular, the analysis does not check the
following for Alpha objects:

• That data arguments in TIR commands are in the correct format

• That “Store Data” TIR commands are storing within legal address limits

Therefore, as a final check, you should still link an object module whose analysis is error free.

If an error is found, however, the first error of the worst severity that is discovered is returned. For
example, if a warning (A) and two errors (B and C)are signaled, then the first error (B) is returned as
the image exit status, which is placed in the DCL symbol $STATUS at image exit.

ANALYZE/OBJECT uses positional qualifiers; that is, qualifiers whose function depends on their
position in the command line. When a positional qualifier precedes all of the input files in a command
line, it affects all input files. For example, the following command line requests that the analysis
include the global symbol directory records in files A, B, and C:

$ ANALYZE/OBJECT/GSD A,B,C

29

DCL Commands

Conversely, when a positional qualifier is associated with only one file in the parameter list, only that
file is affected. For example, the following command line requests that the analysis include the global
symbol directory records in file B only:

$ ANALYZE/OBJECT A,B/GSD,C

For Alpha objects, typically all records in an object module are analyzed. However, when
the /DBG, /EOM, /GSD, /LNK, /MHD, /TBT, or /TIR qualifier is specified, only the record types
indicated by the qualifiers are analyzed. All other record types are ignored.

By default, the analysis includes all record types unless you explicitly request a limited analysis using
appropriate qualifiers.

Note

For Alpha objects, End-of-Module (EOM) records and module header (MHD) records are always
analyzed, no matter which qualifiers you specify.

For Integrity servers objects, the Elf header, the section header table and the note section are always
analyzed, no matter which qualifiers you specify.

Qualifiers
/DISASSEMBLE (Integrity servers only)

Positional qualifier.

Displays all sections of type SHT_PROGBITS where the executable flag is set
(SHDR$M_SHF_EXECINSTR in the section header). The section data will be displayed as
machine instructions with symbolization of labels, branch targets, and so on. All local and global
symbols from the symbol table are used for symbolization. The output is similar to compiler
generated machine code listings.

Note

This qualifier is accepted only for objects. Integrity servers images contain only global symbols,
if any at all. In addition, output produced with this qualifier differs from output produced by
ANALYZE/OBJECT/SECTIONS=CODE, which provides machine code output for the same sections,
although without symbolization.

/DBG (Alpha only)

Positional qualifier.

Specifies that the analysis should include all debugger information records. If you want the
analysis to include debugger information for all files in the parameter list, insert the /DBG
qualifier immediately following the /OBJECT qualifier. If you want the analysis to include
debugger information selectively, insert the /DBG qualifier immediately following each of the
selected file specifications.

/EOM (Alpha only)

Positional qualifier.

30

DCL Commands

Specifies that the analysis should be limited to MHD records, EOM records, and records
explicitly specified by the command. If you want this to apply to all files in the parameter list,
insert the /EOM qualifier immediately following the /OBJECT qualifier.

To make the /EOM qualifier applicable selectively, insert it immediately following each of the
selected file specifications.

Note

End-of-module records can be EOM or EOMW records. See the VSI OpenVMS Linker Utility Manual
for more information.

/FLAGVALUES= (keyword[,...]) (Integrity servers only)

Several fields in an ELF module represent bit flags. Where possible, these bit-flag values are
examined and displayed individually. By default, only the flag values that are set to 1 (ON) are
displayed.he keywords are as follows:

Keyword Description
ON Displays all flags whose value is 1.
OFF Displays all flags whose value is 0.
ALL Displays all flag values. The keywords ON and OFF, in contrast, indicate the value of

each specific flag bit.

/GSD (Alpha only)

Positional qualifier.

Specifies that the analysis should include all global symbol directory (GSD) records.

If you want the analysis to include GSD records for each file in the parameter list, specify
the /GSD qualifier immediately following the /OBJECT qualifier.

If you want the analysis to include GSD records selectively, insert the /GSD qualifier immediately
following each of the selected file specifications.

/INCLUDE [=(module[,...])]

When the specified file is an object module library, use this qualifier to list selected object
modules within the library for analysis. If you omit the list or specify an asterisk (*), all modules
are analyzed. If you specify only one module, you can omit the parentheses.

/INTERACTIVE
/NOINTERACTIVE (default)

Controls whether the analysis occurs interactively. In interactive mode, as each record is analyzed,
the results are displayed on the screen, and you are asked whether you want to continue.

/LNK (Alpha only)

Positional qualifier.

31

DCL Commands

Specifies that the analysis should include all link option specification(LNK) records.

If you want the analysis to include LNK records for each file in the parameter list, specify
the /LNK qualifier immediately following the /OBJECT qualifier.

If you want the analysis to include LNK records selectively, insert the /LNK qualifier immediately
following each of the selected file specifications.

/MHD (Alpha only)

Positional qualifier.

Specifies that the analysis should be limited to MHD records, EOM records, and records
explicitly specified by the command. If you want this analysis to apply to all files in the parameter
list, insert the /MHD qualifier immediately following the /OBJECT qualifier.

To make the /MHD qualifier applicable selectively, insert immediately following each of the
selected file specifications.

/OUTPUT [=filespec]

Directs the output of the object analysis (the default is SYS$OUTPUT). If you specify a file type
and omit the file name, the default file name ANALYZE is used. The default file type is .ANL.

The asterisk (*) and the percent sign (%) wildcard characters are not allowed in the file
specification.

/PAGE_BREAK=keyword (Integrity servers only)

Specifies if and where page breaks (form feeds) are inserted in the report file. This qualifier is
only useful if /OUTPUT is used to write a report file. It is ignored if /INTERACTIVE is used to
specify an interactive analysis.

The keywords are as follows:

Keyword Description
NONE Creates a report without any page break.
PRINTABLE_REPORT Creates a printable report with page breaks as in listing

files. The number of lines per page is the default number
of lines on a printer page. This is the default behavior for
ANALYZE_OBJECT when no qualifier is not specified.

SEPARATE_INFORMATION Inserts a page break between different section information.

/SECTIONS [=(keyword[,...])] (Integrity servers only)

Selects individual program sections or section types to display.

Note

This qualifier and its keywords can only be used to form an inclusion list of sections to be displayed.
This qualifier is not negatable and cannot be used to form an exclusion list. If no values are specified,
the default keyword is HEADERS.

32

DCL Commands

The keywords are as follows:

Keyword Description
ALL Displays a detailed analysis of every section in the module. Note

that this keyword can generate a large amount of output.
CODE Displays all sections of type SHT_PROGBITS where the

executable flag is set (SHDR$M_SHF_EXECINSTR in the
section header). The section data will be displayed as machine
instructions.

DEBUG [=(suffix[,...])] Analyzes and displays sections consisting of debug formatted
debug information.

In addition, you can use a list of debug section name suffixes
to selectively format DEBUG information. The debug section
names, which appear as ".debug_suffix", can be viewed in the
summary table. The suffix can be specified as follows:

• ABBREV – Formats DEBUG abbreviations

• ARANGES – Formats DEBUG address lookup tables

• FRAME – Formats DEBUG frame descriptors for unwinding

• INFO – Formats DEBUG symbols

• LINE – Formats DEBUG source line info

• PUBNAMES – Formats DEBUG name lookup tables

• PUBTYPES – Formats DEBUG type lookup tables
EXTENSIONS Analyzes and displays sections of type SHT_IA64_EXT. The

data is displayed in hexadecimal format.
GROUP Analyzes and displays sections of type SHT_GROUP. Sections

of this type consist of a list of the section numbers of sections
belonging to that group.

HEADERS The default keyword. Displays the ELF header and the section
header details.

LINKAGES Analyzes and displays sections of type SHT_VMS_LINKAGES.
The data is displayed as a list of linkage descriptors.

NOBITS Analyzes and displays sections of type SHT_NOBITS. There is
no module data associated with sections of this type.

NOTE Analyzes and displays sections of type SHT_NOTE. The data
for this section is displayed as a list of formatted OpenVMS note
entries.

NULL Displays all sections of type PT_NULL. No data will be
displayed for segments of this type.

NUMBERS=(number [,...]) Displays individual sections, as follows:

• The selected sections will have a detailed display of their
header and their contents. An informational message is
displayed for section numbers that do not exist in the module.

33

DCL Commands

Keyword Description
• One or more numeric values may be specified.

• Section numbers may be specified in decimal, octal (using
the %O prefix), or hexadecimal (using the %X prefix).

PROGBITS Displays all sections of type SHT_PROGBITS, except unwind
sections.

Formatting for the sections of type SHT_PROGBITS depends
on the EXECINSTR flag (SHDR$M_SHF_EXECINSTR)
in its section header. If this bit is set, the section data will be
displayed as machine instructions. Otherwise, it will be displayed
as hexadecimal data.

Unwind sections will be displayed if /SECTIONS=UNWIND is
specified.

RELOCATIONS Analyzes and displays sections of type SHT_RELA. The data for
this section is displayed as table of relocation entries.

STRTAB Analyzes and displays sections of type SHT_STRTAB. The data
for this section is displayed as a string table.

SYMTAB Displays sections of type SHT_SYMTAB. The data for this
section is displayed as a symbol table.

TRACE [=(suffix[,...])] Analyzes and displays sections consisting of traceback
information.

In addition, you can use a list of trace section name suffixes to
selectively format TRACE information. The trace section names,
which appear as ".trace_suffix", can be viewed in the summary
table. The suffix can be specified as shown below. In addition,
because there is one common debug and traceback section,
".debug_line", the suffix "line" can be specified as shown below
as well:

• ABBREV – Formats TRACE abbreviations

• ARANGES – Formats TRACE address lookup tables

• INFO – Formats TRACE symbols

• LINE – Formats TRACE source line info
UNWIND Analyzes and displays sections of type SHT_IA64_UNWIND.

Each section of this type has an associated Unwind Information
section of type SHT_PROGBITS. This associated section is also
displayed.

/SELECT=(keyword[,...])

Allows for the collection of specific object file information and displays the selected keyword
items in the order specified.

34

DCL Commands

Note

The /SELECT qualifier can be used on object and image files. The same keywords are valid
selections. However, some information can not be in an object, such as the link date and time.
Therefore, for some keywords the Analyze utility returns "Unknown". In the following table, only the
keywords (which are useful for object files) and their return values are listed.

Analyze creates DCL symbols for all selectable information with the/SELECT qualifier. The
symbol names consist of the prefix ANALYZE$and a descriptive name of the information they
hold. The symbol value is the selected information, usually printed to SYS$OUTPUT. Effectively,
all of the printed information is duplicated in the symbols. For unselected information, the
corresponding symbols will contain the null string.

The keywords are as follows:

Keyword Description
ARCHITECTURE Writes the architecture information into the DCL symbol

ANALYZE$ARCHITECTURE. Returns "OpenVMS IA64"
if the file is an OpenVMS Integrity servers object file. an
OpenVMS Alpha object file returns "OpenVMS Alpha" if the
file is an OpenVMS Alpha object file.

FILE_TYPE Writes file type information into the DCL symbol
ANALYZE$FILE_TYPE. Returns "Object" if the file is an
OpenVMS Integrity servers or Alpha object file.

/TBT (Alpha only)

Positional qualifier.

Specifies that the analysis should include all module traceback (TBT) records.

If you want the analysis to include TBT records for each file in the parameter list, specify the /
TBT qualifier immediately following the /OBJECT qualifier.

If you want the analysis to include TBT records selectively, insert the /TBT qualifier immediately
following each of the selected file specifications.

/TIR (Alpha only)

Positional qualifier.

Specifies that the analysis should include all text information and relocation (TIR) records.

If you want the analysis to include TIR records for each file in the parameter list, specify the /TIR
qualifier immediately following the /OBJECT qualifier.

If you want the analysis to include TIR records selectively, insert the /TIR qualifier immediately
following the selected file specifications.

Examples
1. $ ANALYZE/OBJECT/INTERACTIVE LINEDT

35

DCL Commands

In this example, the ANALYZE/OBJECT command produces a description and a partial error
analysis of the object file LINEDT.OBJ. Output is to the terminal, because the /INTERACTIVE
qualifier has been used. As each item is analyzed, the utility displays the results on the screen and
asks if you want to continue.

2. $ ANALYZE/OBJECT/OUTPUT=LIOBJ/DBG LINEDT (Alpha only)

In this example, the ANALYZE/OBJECT command analyzes only the debugger information
records of the file LINEDT.OBJ. Output is to the file LIOBJ.ANL.

3. $ ANALYZE/OBJECT/SELECT=(ARCH,FILE) *.OBJ
DISK:[DIRECTORY]ALPHA.OBJ;1
 OpenVMS ALPHA
 Object

This example displays the information requested about the object files ALPHA.OBJ.

ANALYZE/PROCESS_DUMP
ANALYZE/PROCESS_DUMP — Invokes the OpenVMS Debugger to analyze a process dump file
that was created when an image failed during execution. (Use the /DUMP qualifier with the RUN or
the SET PROCESS command to generate a dump file).

Format
ANALYZE/PROCESS_DUMP dump-file

Parameter
dump-file

Specifies the dump file to be analyzed with the debugger.

Description
The ANALYZE/PROCESS_DUMP command examines the dump file of an image that failed during
execution.

Note

Requires read (R) access to the dump file.

The OpenVMS Debugger is invoked automatically. For a complete description of the debugger,
including information about the DEBUG command, see the VSI OpenVMS Debugger Manual. To
cause a dump file to be created for a process, you must use the /DUMP qualifier with the RUN
command when invoking the image, or you must use the SET PROCESS/DUMP command before
invoking the image. On Alpha systems, you can use the DUMP/PROCESS command.

For OpenVMS Alpha Systems
This section applies to Alpha systems running Version 7.2 or before.

36

DCL Commands

Note

VSI strongly recommends that you analyze a process dump on the system where the dump was
generated. It is highly unlikely that you can analyze a dump successfully if you move the dump file to
a different system.

Different configurations can cause the process executing the ANALYZE/PROCESS_DUMP
command to fail to load the dumped image successfully. For example, if the systems have different
versions of the operating system, the analysis might work, but it is not guaranteed.

Other restrictions include the configuration of the control regions in P1 space, the process running
at the time of the dump, and the process performing the ANALYZE/PROCESS_DUMP command.
The location of the base of the user stack for each process, which depends on the size of allocated
space, determines whether the processes are compatible. The size of allocated space for the process
analyzing the dump must be less than the size of allocated space for the process that created the
dump. If you are analyzing the dump on a different system, but with the same version of the operating
system, you can decrease the size of allocated space by modifying one or more of the system
parameters that affect the size of allocated space.

You can modify the system parameter IMGIOCNT dynamically. Other parameters to adjust allocated
space require a reboot of the system.

On Alpha systems running version 7.2 or before, the system parameter IMGREG_PAGES is likely
to cause a problem with allocated size. When a dump comes from a system without DECwindows
and is examined on a system with DECwindows, a P1 message is displayed. DECwindows requires
IMGREG_PAGES to be at least 2000 pages, which means that the value is too large by 1200 to 1400
pages.

Also, in some cases, the OpenVMS Debugger is incapable of analyzing the dumped image. For
example, when the dumped image's PC is set to an invalid address or when the dumped image's
stack is corrupted by a bad process descriptor, you must use the Delta Debugger (DELTA) to analyze
the dump. To use DELTA as the debugger, you must install the SYS$LIBRARY:DELTA image by
invoking the Install utility. For complete information on the Install utility, see the VSI OpenVMS
System Management Utilities Reference Manual.

This section applies to OpenVMS Alpha systems running Version 7.3 or greater.

You can now analyze a dump file on a system other than where the dump was generated.
However, if the base image link date and time are not the same, you will need to also copy the
file, SYS$BASE_IMAGE.EXE from the generating system, and point to it using the logical,
SDA$READ_DIR. For example:

$ COPY other_node::SYS$LOADABLE_IMAGES:SYS$BASE_IMAGE.EXE my_disk$:[my_dir]
$ DEFINE/USER SDA$READ_DIR my_disk$:[my_dir],SYS$SYSROOT:[SYS$LDR], -
 SYS$SYSROOT:[SYSLIB]
$ ANALYZE/PROCESS_DUMP mycrash.dmp

If you are analyzing a threaded process dump on a system other than the system on which it was
generated, you may also need to copy and point to PTHREAD$RTL and PTHREAD$DBGSHR
(DECthread debug assistant) on the generating system. For example:

$ COPY other_node::SYS$LOADABLE_IMAGES:SYS$BASE_IMAGE.EXE my_disk$:[my_dir]
$ COPY other_node::SYS$SHARE:PTHREAD$RTL.EXE my_disk$:[my_dir]
$ COPY other_node::SYS$SHARE:PTHREAD$DBGSHR.EXE my_disk$:[my_dir]
$ DEFINE/USER SDA$READ_DIR my_disk$:[my_dir],SYS$SYSROOT:[SYS$LDR], -
 SYS$SYSROOT:[SYSLIB]

37

DCL Commands

$ DEFINE/USER PTHREAD$RTL my_disk$:[my_dir]PTHREAD$RTL.EXE
$ DEFINE/USER PTHREAD$DBGSHR my_disk$:[my_dir]PTHREAD$DBGSHR.EXE
$ ANALYZE/PROCESS_DUMP mycrash.dmp

If you are unable to analyze a process dump with the debugger, then you should attempt to use the
System Dump Analyzer (SDA) utility. See the ANALYZE/CRASH command in online help for more
information. For example:

$ ANALYZE/CRASH mycrash.dmp

OpenVMS (TM) Alpha system dump analyzer
...analyzing a compressed process dump...

Dump taken on 19-OCT-1999 12:03:40.95
SDA> ..
.
.
.

Qualifiers
/FULL

On Alpha systems, shows the information that is displayed by the following debugger commands:
SHOW IMAGE, SHOW THREAD/ALL, and SHOW CALL.

/IMAGE_PATH[=directory-spec] dump-file
/NOIMAGE_PATH

On Alpha systems, specifies the search path the debugger is to use to find the debugger symbol
table (DST) file. As in prior debuggers, the debugger builds an image list from the saved process
image list. When you set an image (the main image is automatically set), the debugger attempts to
open that image in order to find the DST file.

If you include the /IMAGE_PATH=directory-spec qualifier, the debugger searches for the
DST file in the specified directory. The debugger first tries to translate directory-spec as the
logical name of a directory search list. If that fails, the debugger interprets directory-spec as
a directory specification, and searches that directory for matching .DSF or .EXE files. A .DSF file
takes precedence over an .EXE file. The name of the .DSF or .EXE file must match the image.

If you do not include the /IMAGE_PATH=directory-spec qualifier, the debugger looks for
the DST file first in the directory that contains the dump file. If that fails, the debugger searches
directory SYS$SHARE and then directory SYS$MESSAGE. If the debugger fails to find a DST
file for an image, the symbolic information available to the debugger is limited to global and
universal symbol names.

Version 7.3 and later debuggers check for dump file image specification and DST file link date-
time mismatches and issue a warning if one is discovered.

The dump-file parameter is the name of the process dump file to be analyzed. Note that the
process dump file type must be .DMP and the DST file type must be either .DSF or .EXE.

Restrictions

You cannot use a logical to redirect the search for an image and use the /IMAGE_PATH qualifier at
the same time. If you use the /IMAGE_PATH qualifier, then all images that are not in their original

38

DCL Commands

locations must be found through that path. Individual image logicals (for example, the "SH" in
"DEFINE SH SYS$LOGIN:SH.EXE") are not processed.

Additionally, you cannot input a directory search path directly to the /IMAGE_PATH qualifier, as
it does not process a directory list separated by commas; however, you can specify a logical that
translates into a directory search path.

Examples
$ ANALYZE/PROCESS/FULL WECRASH.DMP

 OpenVMS Alpha Debug64 Version X7.3-010
%SYSTEM-F-IMGDMP, dynamic image dump signal at PC=001D0F8CB280099C,
 PS=001D0028
break on unhandled exception preceding WECRASHth_run%LINE 26412 in THREAD 8
%DEBUG-W-UNAOPNSRC, unable to open source file DSKD$:[IMGDMP]WECRASH.C;11
-RMS-F-DEV, error in device name or inappropriate device type for operation
 26412: Source line not available

 image name set base address end address
 CMA$TIS_SHR no 000000007B8CA000 000000007B8D7FFF
 CODE0 FFFFFFFF80500000 FFFFFFFF805033FF
 DATA1 000000007B8CA000 000000007B8CB3FF
 DATA2 000000007B8CC000 000000007B8D13FF
 DATA3 000000007B8D2000 000000007B8D21FF
 DATA4 000000007B8D4000 000000007B8D41FF
 DATA5 000000007B8D6000 000000007B8D63FF
 DECC$SHR no 000000007BE7A000 000000007BF0DFFF
 CODE0 FFFFFFFF8055C000 FFFFFFFF806C9DFF
 DATA1 000000007BE7A000 000000007BEACFFF
 DATA2 000000007BEBA000 000000007BEC2DFF
 DATA3 000000007BECA000 000000007BED77FF
 DATA4 000000007BEDA000 000000007BEDA9FF
 DATA5 000000007BEEA000 000000007BEEA1FF
 DATA6 000000007BEFA000 000000007BEFE7FF
 DATA7 000000007BF0A000 000000007BF0D1FF
 DPML$SHR no 000000007BB92000 000000007BBD1FFF
 CODE0 FFFFFFFF80504000 FFFFFFFF8055B5FF
 DATA1 000000007BB92000 000000007BBAC1FF
 DATA2 000000007BBAE000 000000007BBBDBFF
 DATA3 000000007BBBE000 000000007BBBE1FF
 DATA4 000000007BBC0000 000000007BBCC9FF
 DATA5 000000007BBCE000 000000007BBCE3FF
 DATA6 000000007BBD0000 000000007BBD07FF
 LIBOTS no 000000007B5AA000 000000007B5B1FFF
 DATA1 000000007B5AA000 000000007B5AC5FF
 DATA2 000000007B5AE000 000000007B5AFBFF
 DATA3 000000007B5B0000 000000007B5B01FF
 LIBRTL no 000000007B558000 000000007B5A9FFF
 CODE0 FFFFFFFF8041C000 FFFFFFFF804BD7FF
 DATA1 000000007B558000 000000007B5669FF
 DATA2 000000007B568000 000000007B5697FF
 DATA3 000000007B578000 000000007B5845FF
 DATA4 000000007B588000 000000007B5881FF
 DATA5 000000007B598000 000000007B59A5FF
 DATA6 000000007B5A8000 000000007B5A99FF
 PTHREAD$RTL no 000000007BBD2000 000000007BC27FFF

39

DCL Commands

 DATA0 000000007BBD2000 000000007BBDA1FF
 DATA1 000000007BBDC000 000000007BBDF3FF
 DATA2 000000007BBE0000 000000007BBE2FFF
 DATA3 000000007BBE4000 000000007BC1E1FF
 DATA4 000000007BC20000 000000007BC20BFF
 DATA5 000000007BC22000 000000007BC247FF
 DATA6 000000007BC26000 000000007BC275FF
*WECRASH yes 0000000000010000 00000000000403FF

 total images: 7

 Thread Name State Substate Policy Pri
 ------ ---------------------- --------------- --------- ------------ ---
 1 default thread blocked join 2 SCHED_OTHER 11
 2 thread 0: counting ready VP 0 SCHED_OTHER 11
 3 thread 1: dumping ready VP 0 SCHED_OTHER 11
 4 thread 2 blocked delay SCHED_OTHER 11
 5 thread 3 blocked delay SCHED_OTHER 11
 6 thread 4 blocked delay SCHED_OTHER 11
 7 thread 5: counting ready VP 0 SCHED_OTHER 11
 8 thread 6: dumping running SCHED_OTHER 11
 9 thread 7 blocked delay SCHED_OTHER 11
 10 thread 8 blocked delay SCHED_OTHER 11
 11 thread 9 blocked delay SCHED_OTHER 11

 module name routine name line rel PC abs PC
*WECRASH th_run 26411 0000000000000244 0000000000030244
 SHARE$PTHREAD$RTL_DATA0 000000000001F15C 000000007BC0315C
 SHARE$PTHREAD$RTL_DATA0 000000000000F494 000000007BBF3494
 0000000000000000 0000000000000000
----- the above looks like a null frame in the same scope as the frame
below SHARE$PTHREAD$RTL_DATA0 ? ?

DBG>
DBG> set source/latest sys$disk:[]
DBG> examine/source .pc-4
module WECRASH
 26411: lib$signal(SS$_IMGDMP);
DBG>

This example shows the output of the ANALYZE/PROCESS command on a multithreaded process
dump, using the /FULL qualifier on an Alpha system.

ANALYZE/RMS_FILE
ANALYZE/RMS_FILE — Invokes the Analyze/RMS_File utility, which is used to inspect and
analyze the internal structure of an OpenVMS RMS file. The /RMS_FILE qualifier is required.
For more information about the Analyze/RMS_File utility, see the OpenVMS Record Management
Utilities Reference Manual or online help.

Format
ANALYZE/RMS_FILE filespec[,...]

40

DCL Commands

ANALYZE/SSLOG (Alpha/Integrity servers
Only)
ANALYZE/SSLOG (Alpha/Integrity servers Only) — Analyzes the SSLOG.DAT file, which contains
system service logging data. The /SSLOG qualifier is required. For more information, see the online
help for ANALYZE/SSLOG or read the chapter about system service logging in the VSI OpenVMS
System Analysis Tools Manual.

Format
ANALYZE/SSLOG [qualifiers] [filespec]

ANALYZE/SYSTEM
ANALYZE/SYSTEM — Invokes the System Dump Analyzer utility, which analyzes a running
system. The/SYSTEM qualifier is required. For more information about the System Dump Analyzer
utility on Alpha and Integrity server systems, see the VSI OpenVMS System Analysis Tools Manual or
online help.

Format
ANALYZE/SYSTEM

APPEND
APPEND — Adds the contents of one or more specified input files to the end of the specified output
file.

Format
APPEND input-filespec[,...] output-filespec

Parameters
input-filespec[,...]

Specifies the names of one or more input files to be appended. Multiple input files are appended
to the output file in the order specified. If you specify more than one input file, separate each file
specification with either a comma (,) or a plus sign (+).

The asterisk (*) and the percent sign (%) wildcard characters are allowed in the input file
specifications.

output-filespec

41

DCL Commands

Specifies the name of the file to which the input files will be appended.

You must specify at least one field in the output file specification. If you do not specify a device or
directory, the APPEND command uses the current default device and directory. Other unspecified
fields default to the corresponding fields of the first input file specification.

If you use the asterisk (*) wildcard character in any fields of the output file specification, the
APPEND command uses the corresponding field of the input file specification. If you are appending
more than one input file, the APPEND command uses the corresponding fields from the first input
file.

Description
The APPEND command is similar in syntax and function to the COPY command. Normally, the
APPEND command adds the contents of one or more files to the end of an existing file without
incrementing the version number. The /NEW_VERSION qualifier causes the APPEND command to
create a new output file if no file with that name exists.

Note that there are special considerations for using the APPEND command with DECwindows
compound documents. For more information, see the Guide to OpenVMS File Applications.

Qualifiers
/ALLOCATION=number-of-blocks

Forces the initial allocation of the output file to the specified number of 512-byte blocks. If you
do not specify the /ALLOCATION qualifier, or if you specify it without the number-of-blocks
parameter, the initial allocation of the output file is determined by the size of the input file.

The allocation size is applied only if a new file is actually created by using the /NEW_VERSION
qualifier.

/BACKUP

Modifies the time value specified with the /BEFORE or the /SINCE qualifier. The /BACKUP
qualifier selects files according to the dates of their most recent backups. This qualifier is
incompatible with the /CREATED, /EXPIRED, and /MODIFIED qualifiers, which also allow you
to select files according to time attributes. If you specify none of these four time qualifiers, the
default is the /CREATED qualifier.

/BEFORE[=time]

Selects only those files dated prior to the specified time. You can specify time as absolute time,
as a combination of absolute and delta times, or as one of the following keywords: BOOT,
LOGIN, TODAY (default), TOMORROW, or YESTERDAY. Specify one of the following
qualifiers with the /BEFORE qualifier to indicate the time attribute to be used as the basis for
selection: /BACKUP, /CREATED (default), /EXPIRED, or /MODIFIED.

For complete information on specifying time values, see the VSI OpenVMS User's Manual or the
online help topic Date.

/BLOCK_SIZE=n

Overrides the default block size (124) used by COPY. You can specify a value in the range of 1
through 127.

42

DCL Commands

/BY_OWNER[=uic]

Selects only those files whose owner user identification code (UIC) matches the specified owner
UIC. The default UIC is that of the current process.

Specify the UIC by using standard UIC format as described in the VSI OpenVMS User's Manual.

/CONFIRM
/NOCONFIRM (default)

Controls whether a request is issued before each append operation to confirm that the operation
should be performed on that file. The following responses are valid:

YES NO QUIT
TRUE FALSE Ctrl/Z
1 0 ALL

Return

You can use any combination of uppercase and lowercase letters for word responses. Word
responses can be abbreviated to one or more letters (for example, T, TR, or TRU for TRUE),
but these abbreviations must be unique. Affirmative answers are YES, TRUE, and 1. Negative
answers include: NO, FALSE, 0, and pressing Return. Entering QUIT or pressing Ctrl/Z indicates
that you want to stop processing the command at that point. When you respond by entering ALL,
the command continues to process, but no further prompts are given. If you type a response other
than one of those in the list, DCL issues an error message and redisplays the prompt.

/CONTIGUOUS
/NOCONTIGUOUS

Specifies that the output file must occupy physically contiguous disk blocks. By default, the
APPEND command creates an output file in the same format as the corresponding input file and
does not report an error if not enough space exists for a contiguous allocation. This qualifier is
relevant only with the /NEW_VERSION qualifier.

If an input file is contiguous, the APPEND command attempts to create a contiguous output file,
but does not report an error if there is not enough space. If you append multiple input files of
different formats, the output file may or may not be contiguous. Use the /CONTIGUOUS qualifier
to ensure that the output file is contiguous.

/CREATED (default)

Modifies the time value specified with the /BEFORE or the /SINCE qualifier. The /CREATED
qualifier selects files based on their dates of creation. This qualifier is incompatible with
the /BACKUP, /EXPIRED, and /MODIFIED qualifiers, which also allow you to select files
according to time attributes. If you specify none of these four time qualifiers, the default is
the /CREATED qualifier.

/EXCLUDE=(filespec[,...])

Excludes the specified files from the append operation. You can include a directory but not a
device in the file specification. Wildcard characters (* and %) are allowed in the file specification.
However, you cannot use relative version numbers to exclude a specific version. If you specify
only one file, you can omit the parentheses.

43

DCL Commands

/EXPIRED

Modifies the time value specified with the /BEFORE or the /SINCE qualifier. The /EXPIRED
qualifier selects files according to their expiration dates. (The expiration date is set with the
SET FILE/EXPIRATION_DATE command.) The /EXPIRED qualifier is incompatible with
the /BACKUP, /CREATED, and /MODIFIED qualifiers, which also allow you to select files
according to time attributes. If you specify none of these four time qualifiers, the default is the /
CREATED qualifier.

/EXTENSION=number-of-blocks

Specifies the number of blocks to be added to the output file each time the file is extended. When
you specify the /EXTENSION qualifier, the /NEW_VERSION qualifier is assumed and need not
be typed on the command line. This qualifier is relevant only with the /NEW_VERSION qualifier.

The extension value is applied only if a new file is actually created.

/LOG
/NOLOG (default)

Controls whether the APPEND command displays the file specifications of each file appended.
If the /LOG qualifier is specified, the command displays the file specifications of the input and
output files as well as the number of blocks or records appended after each append operation.

/MODIFIED

Modifies the time value specified with the /BEFORE or the /SINCE qualifier. The /MODIFIED
qualifier selects files according to the dates on which they were last modified. This qualifier is
incompatible with the /BACKUP, /CREATED, and /EXPIRED qualifiers, which also allow you
to select files according to time attributes. If you specify none of these four time modifiers, the
default is the /CREATED qualifier.

/NEW_VERSION
/NONEW_VERSION (default)

Controls whether the APPEND command creates a new output file if the specified output file does
not exist. (By default, the specified output file already exists.) If the specified output file does
not already exist, use the /NEW_VERSION qualifier to create a new output file. If the output file
does exist, the /NEW_VERSION qualifier is ignored and the input file is appended to the output
file.

/PROTECTION= (ownership[:access][,...])

Specifies protection for the output file.

• Specify the ownership parameter as system (S), owner (O), group (G), or world (W).

• Specify the access parameter as read (R), write (W), execute (E), or delete (D).

The default protection, including any protection attributes not specified, is that of the existing
output file. If no output file exists, the current default protection applies. This qualifier is relevant
only with the /NEW_VERSION qualifier.

For more information on specifying protection codes, see the VSI OpenVMS Guide to System
Security.

44

DCL Commands

/READ_CHECK
/NOREAD_CHECK (default)

Reads each record in the input files twice to verify that it has been read correctly.

/SINCE[=time]

Selects only those files dated on or after the specified time. You can specify time as absolute
time, as a combination of absolute and delta times, or as one of the following keywords: BOOT,
JOB_LOGIN, LOGIN, TODAY (default), TOMORROW, or YESTERDAY. Specify one of the
following qualifiers with the /SINCE qualifier to indicate the time attribute to be used as the basis
for selection: /BACKUP, /CREATED (default), /EXPIRED, or /MODIFIED.

For complete information on specifying time values, see the VSI OpenVMS User's Manual or the
online help topic Date.

/WRITE_CHECK
/NOWRITE_CHECK (default)

Reads each record in the output file after the record is written to verify that it was appended
successfully and that the output file can subsequently be read without error.

Examples
1. $ APPEND TEST3.DAT TESTALL.DAT

The APPEND command appends the contents of the file TEST3.DAT from the default disk and
directory to the file TESTALL.DAT, also located on the default disk and directory.

2. $ APPEND/NEW_VERSION/LOG *.TXT MEM.SUM
%APPEND-I-CREATED, USE$:[MAL]MEM.SUM;1 created
%APPEND-S-COPIED, USE$:[MAL]A.TXT;2 copied to USE$:[MAL]MEM.SUM;1 (1
 block)
%APPEND-S-APPENDED, USE$:[MAL]B.TXT;3 appended to USE$:[MAL]MEM.SUM;1 (3
 records)
%APPEND-S-APPENDED, USE$:[MAL]G.TXT;7 appended to USE$:[MAL]MEM.SUM;1
 (51 records)

The APPEND command appends all files with file types of .TXT to a file named MEM.SUM.
The /LOG qualifier requests a display of the specifications of each input file appended. If the file
MEM.SUM does not exist, the APPEND command creates it, as the output shows. The number of
blocks or records shown in the output refers to the source file and not to the target file total.

3. $ APPEND/LOG A.DAT, B.MEM C.*
%APPEND-S-APPENDED, USE$:[MAL]A.DAT;4 appended to USE$:[MAL]C.DAT;4 (2
 records)
%APPEND-S-APPENDED, USE$:[MAL]B.MEM;5 appended to USE$:[MAL]C.DAT;4 (29
 records)

The APPEND command appends the files A.DAT and B.MEM to the file C.DAT, which must
already exist.

4. $ APPEND/LOG A.* B.*
%APPEND-S-APPENDED, USE$:[MAL]A.DAT;5 appended to USE$:[MAL]B.DAT;1 (5
 records)
%APPEND-S-APPENDED, USE$:[MAL]A.DOC;2 appended to USE$:[MAL]B.DAT;1 (1
 record) Both the input and output file specifications contain wildcard

45

DCL Commands

 characters in the file type field. The APPEND command appends each file
 with a file name of A to an existing file with B as its file name. The
 file type of the first input file located determines the output file
 type.

5. $ APPEND BOSTON"BILL_BESTON YANKEE"::DEMO1.DAT, DEMO2.DAT
$ _To: DALLAS::DISK1:[MODEL.TEST]TEST.DAT

This APPEND command adds the contents of the files DEMO1.DAT and DEMO2.DAT at remote
node BOSTON to the end of the file TEST.DAT at remote node DALLAS.

ASSIGN
ASSIGN — Creates a logical name and assigns an equivalence string, or a list of strings, to the
specified logical name. If you specify an existing logical name, the new equivalence name replaces
the existing equivalence name.

Format
ASSIGN equivalence-name[,...] logical-name[:]

Parameters
equivalence-name[,...]

Specifies a character string of 1 to 255 characters. Defines the equivalence name, usually a file
specification, device name, or other logical name, to be associated with the logical name in the
specified logical name table. If the string contains other than uppercase alphanumeric, dollar sign
($), or underscore (_) characters, enclose it in quotation marks (“ ”). Use two sets of quotation marks
(“‘ ’”) to denote an actual quotation mark within the string. Specifying more than one equivalence
name for a logical name creates a search list. A logical name can have a maximum of 128 equivalence
names.

When you specify an equivalence name that will be used as a file specification, you must include the
punctuation marks (colons (:), brackets ([]), and periods (.)) that would be required if the equivalence
name were used directly as a file specification. Therefore, if you specify a device name as an
equivalence name, terminate the device name with a colon.

The ASSIGN command allows you to assign the same logical name to more than one equivalence
name. When you specify more than one equivalence name for a logical name, you create a search list.
For more information on search lists, see the VSI OpenVMS User's Manual.

logical-name[:]

Specifies the logical name string, which is a character string containing up to 255 characters. You
choose a logical name to represent the equivalence name in the specified logical name table.

If the string contains other than uppercase alphanumeric, dollar sign, or underscore characters, enclose
it in quotation marks. Use two sets of quotation marks to denote an actual quotation mark. If you
terminate the logical-name parameter with a colon, the system removes the colon before placing the
name in a logical name table. (This differs from the DEFINE command, which saves the colon.) If
the logical name is to be entered into the process directory (LNM$PROCESS_DIRECTORY) or
system directory (LNM$SYSTEM_DIRECTORY) logical name tables, the name can have only 1

46

DCL Commands

to 31 alphanumeric characters (including the dollar sign and underscore). If the logical name being
entered into the process or system directory translates to a logical name table name, any alphabetic
characters in the name should all be uppercase. By default, the logical name is placed in the process
logical name table.

If the logical name contains any characters other than alphanumeric characters, the dollar sign, or
the underscore, enclose the name in quotation marks. If the logical name contains quotation marks,
enclose the name in quotation marks and use two sets of quotation marks in the places where you
want one set of quotation marks to occur. Note that if you enclose a name in quotation marks, the case
of alphabetic characters is preserved.

Description
The ASSIGN command creates an entry in a logical name table by defining a logical name to stand
for one or more equivalence names. An equivalence name can be a device name, another logical
name, a file specification, or any other string.

To specify the logical name table where you want to enter a logical name, use
the /PROCESS, /JOB, /GROUP, /SYSTEM, or /TABLE qualifier. If you enter more than one of
these qualifiers, only the last one entered is accepted. If you do not specify a table, the default
is /TABLE=LNM$PROCESS (or /PROCESS).

To specify the access mode of the logical name you are creating, use
the /USER_MODE, /SUPERVISOR_MODE, or /EXECUTIVE_MODE qualifier. If you enter more
than one of these qualifiers, only the last one entered is accepted. If you do not specify an access
mode, then a supervisor-mode name is created. You can create a logical name in the same mode as
the table in which you are placing the name or in an outer mode. (User mode is the outermost mode;
executive mode is the innermost mode.)

You can enter more than one logical name with the same name in the same logical name table, as long
as each name has a different access mode. (However, if an existing logical name within a table has the
NO_ALIAS attribute, you cannot use the same name to create a logical name in an outer mode in this
table.)

If you create a logical name with the same name, in the same table, and in the same mode as an
existing name, the new logical name assignment replaces the existing assignment.

You can also use the DEFINE command to create logical names. To delete a logical name from a
table, use the DEASSIGN command.

Note

Avoid assigning a logical name that matches the file name of an executable image in SYS$SYSTEM:.
Such an assignment will prohibit you from invoking that image.

For additional information on creating and using logical names, see the VSI OpenVMS User's Manual.

Qualifiers
/CLUSTER_SYSTEM

You must be signed in to the SYSTEM account or have SYSNAM (system logical name) or
SYSPRV (system) privilege to use this qualifier.

47

DCL Commands

Assigns a clusterwide logical name in the LNM$SYSCLUSTER table.

/EXECUTIVE_MODE

Requires SYSNAM (system logical name) privilege.

Creates an executive-mode logical name. If you specify executive mode, but do not have
SYSNAM privilege, a supervisor-mode logical name is created. The mode of the logical name
must be the same as or external to (less privileged than) the mode of the table in which you are
placing the name.

/GROUP

Requires SYSPRV (system privilege) or GRPNAM (group logical name) privilege.

Places the logical name in the group logical name table. Other users who have the same group
number in their user identification codes (UICs) can access the logical name. The /GROUP
qualifier is synonymous with the /TABLE=LNM$GROUP qualifier.

/JOB

Places the logical name in the jobwide logical name table. All processes within the same job
tree as the process creating the logical name can access the logical name. The /JOB qualifier is
synonymous with the /TABLE=LNM$JOB qualifier.

/LOG (default)
/NOLOG

Displays a message when a new logical name supersedes an existing name.

/NAME_ATTRIBUTES [=(keyword[,...])]

Specifies the attributes for a logical name. By default, no attributes are set. You can specify the
following keywords for attributes:

CONFINE Does not copy the logical name into a spawned subprocess; this keyword is
relevant only for logical names in a private table.

NO_ALIAS Prohibits creation of logical names with the same name in an outer (less
privileged) access mode within the specified table. If another logical name
with the same name and an outer access mode already exists in this table,
the name is deleted.

If you specify only one keyword, you can omit the parentheses. Only the attributes you specify
are set.

/PROCESS (default)

Places the logical name in the process logical name table. The /PROCESS qualifier is
synonymous with the /TABLE=LNM$PROCESS qualifier.

/SUPERVISOR_MODE (default)

Creates a supervisor-mode logical name in the specified table.

/SYSTEM

Requires SYSNAM (system logical name) or SYSPRV (system privilege) privilege.

48

DCL Commands

Places the logical name in the system logical name table. All system users can access the logical
name. The /SYSTEM qualifier is synonymous with the /TABLE=LNM$SYSTEM qualifier.

/TABLE=name

Requires write (W) access to the table if the table is shareable.

Specifies the logical name table in which the logical name is to be entered. You can
use the /TABLE qualifier to specify a user-defined logical name table (created with the
CREATE/NAME_TABLE command); to specify the process, job, group, or system logical name
tables; or to specify the process or system logical name directory tables.

If you specify the table name using a logical name that has more than one translation, the logical
name is placed in the first table found. For example, if you specify ASSIGN/TABLE=LNM
$FILE_DEV and LNM$FILE_DEV is equated to LNM$PROCESS, LNM$JOB, LNM$GROUP,
and LNM$SYSTEM, then the logical name is placed in LNM$PROCESS.

If you do not explicitly specify the /TABLE qualifier, the default is the /TABLE=LNM
$PROCESS qualifier.

/TRANSLATION_ATTRIBUTES [=(keyword[,...])]

Equivalence-name qualifier.

Specifies attributes of the equivalence-name parameter. Possible keywords are as follows:

CONCEALED Indicates that the equivalence string is the name of a concealed device.

When a concealed device name is defined, the system displays the logical
name, rather than the equivalence string, in messages that refer to the
device. If you specified the CONCEALED attribute, then the equivalence
string must be a physical device name.

TERMINAL Indicates that the equivalence string should not be translated iteratively;
logical name translation should terminate with the current equivalence
string.

If you specify only one keyword, you can omit the parentheses. Only the attributes you specify
are set.

Note that different equivalence strings of the same logical name can have different translation
attributes specified.

/USER_MODE

Creates a user-mode logical name in the specified table.

If you specify a user-mode logical name in the process logical name table, that logical name is
used for the execution of a single image only; user-mode entries are deleted from the logical
name table when any image executing in the process exits; that is, after any DCL command that
executes an image or user program completes execution. Also, user-mode logical names are
automatically deleted when invoking and exiting a command procedure.

Examples
1. $ ASSIGN $DISK1:[CREMERS.MEMOS] MEMOSD

49

DCL Commands

The ASSIGN command in this example equates the partial file specification
$DISK1:[CREMERS.MEMOS] to the logical name MEMOSD.

2. $ ASSIGN/USER_MODE $DISK1:[FODDY.MEMOS]WATER.TXT TM1

The ASSIGN command in this example equates the logical name TM1 to a file specification.
After the next image runs, the logical name is deassigned automatically.

3. $ ASSIGN XXX1:[HEROLD] ED
$ PRINT ED:TEST.DAT
Job 274 entered on queue SYS$PRINT

The ASSIGN command in this example associates the logical name ED with the directory name
[HEROLD] on the disk XXX1. Subsequent references to the logical name ED result in the
correspondence between the logical name ED and the disk and directory specified. The PRINT
command queues a copy of the file XXX1:[HEROLD]TEST.DAT to the system printer.

4. $ ASSIGN YYY2: TEMP:
$ SHOW LOGICAL TEMP
 "TEMP" = "YYY2:" (LNM$PROCESS_TABLE)
$ DEASSIGN TEMP

The ASSIGN command in this example equates the logical name TEMP to the device YYY2.
TEMP is created in supervisor mode and placed in the process logical name table. The SHOW
LOGICAL command verifies that the logical name assignment was made. Note that the logical
name TEMP was terminated with a colon in the ASSIGN command, but that the command
interpreter deleted the colon before placing the name in the logical name table. Thus, you can
specify TEMP without a colon in the subsequent DEASSIGN command. You should omit the
colon in the SHOW LOGICAL command (for example, SHOW LOGICAL TEMP).

5. $ MOUNT TTT1: MASTER TAPE
$ ASSIGN TAPE:NAMES.DAT PAYROLL
$ RUN PAYROLL
.
.
.

The MOUNT command in this example establishes the logical name TAPE for the device TTT1,
which has the volume labeled MASTER mounted on it. The ASSIGN command equates the
logical name PAYROLL with the file named NAMES.DAT on the logical device TAPE. Thus, an
OPEN request in a program referring to the logical name PAYROLL results in the correspondence
between the logical name PAYROLL and the file NAMES.DAT on the tape whose volume label is
MASTER.

6. $ CREATE/NAME_TABLE TABLE1
$ ASSIGN/TABLE=LNM$PROCESS_DIRECTORY TABLE1,-
_$ LNM$PROCESS,LNM$JOB,LNM$GROUP,LNM$SYSTEM LNM$FILE_DEV
$ ASSIGN/TABLE=TABLE1 -
_$ /TRANSLATION_ATTRIBUTES=CONCEALED DKA1: WORK_DISK

The CREATE/NAME_TABLE command in this example creates the process private logical name
table TABLE1.

The first ASSIGN command ensures that TABLE1 is searched first in any logical name translation
of a file specification or device name (because TABLE1 is the first item in the equivalence string

50

DCL Commands

for the logical name LNM$FILE_DEV, which determines the default search sequence of logical
name tables whenever a device or file specification is translated).

The second ASSIGN command assigns the logical name WORK_DISK to the physical device
DKA1, and places the name in TABLE1. The logical name has the concealed attribute. Therefore,
the logical name WORK_DISK will be displayed in system messages.

7. $ ASSIGN/TABLE=LNM$PROCESS/TABLE=LNM$GROUP DKA0: SYSFILES
$ SHOW LOGICAL SYSFILES
 "SYSFILES" = "DKA0:" (LNM$GROUP_000240)

The ASSIGN command in this example contains conflicting qualifiers. When you specify
conflicting qualifiers, the ASSIGN command uses the last qualifier specified. The response from
the SHOW LOGICAL command indicates that the name was placed in the group logical name
table.

8. $ ASSIGN/TABLE=LNM$GROUP 'F$TRNLNM("SYS$COMMAND")' TERMINAL
%DCL-I-SUPERSEDE, previous value of TERMINAL has been superseded

The ASSIGN command in this example uses the lexical function F$TRNLNM to translate the
logical name SYS$COMMAND and use the result as the equivalence name for the logical name
TERMINAL. The message from the ASSIGN command indicates that an entry for the logical
name TERMINAL already existed in the group logical name table, and that the new entry has
replaced the previous one.

If this command is used in a LOGIN.COM file, the entry for TERMINAL will be redefined at
the beginning of each terminal session. The current process and any subprocesses it creates can
execute images that use the logical name TERMINAL to write messages to the current terminal
device.

9. $ ASSIGN DALLAS::DMA1: DATA

The ASSIGN command in this example associates the logical name DATA with the device
specification DMA1 on remote node DALLAS. Subsequent references to the logical name DATA
result in references to the disk on the remote node.

10. $ CREATE AVERAGE.COM
$ ASSIGN/USER_MODE SYS$COMMAND: SYS$INPUT
$ EDIT/EDT AVERAGE.FOR
$ FORTRAN AVERAGE
$ LINK AVERAGE
$ RUN AVERAGE
87
80
90
9999
$ EXIT
Ctrl/Z
$ @AVERAGE.COM

The CREATE command in this example creates the command procedure AVERAGE.COM. Then
the command procedure is executed.

The command procedure uses the ASSIGN command with the /USER_MODE qualifier to change
temporarily the value of SYS$INPUT. When the EDT editor is invoked, it accepts input from the
terminal. This allows you to create or modify the program AVERAGE.FOR interactively.

51

DCL Commands

When you exit from EDT, SYS$INPUT is reassigned to its original value (the input stream
provided by the command procedure). Thus, when the program AVERAGE.FOR is ready to
accept input, it looks for that input in the command procedure.

ASSIGN/MERGE
ASSIGN/MERGE — Removes all jobs from one queue and merges them into another existing queue.
This command does not affect jobs that are executing.

Format
ASSIGN/MERGE target-queue[:] source-queue[:]

Parameters
target-queue[:]

Specifies the name of the queue into which the jobs are being merged.

source-queue[:]

Specifies the name of the queue from which the jobs are being removed.

Description
The ASSIGN/MERGE command removes the pending jobs in one queue and places them in another
queue.

Note

Requires manage (M) access to both queues.

This command does not affect any executing jobs in either the target queue or the source queue. Jobs
currently running in the source queue complete in that queue. This command is generally used with
printer queues, although it can be used with batch queues.

The ASSIGN/MERGE command is particularly useful when a line printer malfunctions. By entering
the ASSIGN/MERGE command, you can reroute existing jobs to a different printing device. To
perform the merge operation without losing or disrupting any jobs, stop the source queue with
the STOP/QUEUE/NEXT command. Then enter the STOP/QUEUE/REQUEUE command to
ensure that the current job on the source queue is re-queued for processing on the target queue.
(If the STOP/QUEUE/REQUEUE command fails to re-queue the job, use the STOP/QUEUE/
RESET command to regain control of the queue.) Once you enter the STOP commands, enter the
ASSIGN/MERGE command.

Example
$ STOP/QUEUE/NEXT LPB0
$ STOP/QUEUE/REQUEUE=LPA0 LPB0

52

DCL Commands

$ ASSIGN/MERGE LPA0 LPB0

In this example, the STOP/QUEUE/NEXT command prevents another job from executing on queue
LPB0. The STOP/QUEUE/REQUEUE command re-queues the current job running on LPB0 to the
target queue LPA0. The ASSIGN/MERGE command removes the remaining jobs from the LPB0
printer queue and places them in the LPA0 printer queue.

ASSIGN/QUEUE
ASSIGN/QUEUE — Assigns, or redirects, a logical queue to a single execution queue. The
ASSIGN/QUEUE command can be used only with printer or terminal queues.

Format
ASSIGN/QUEUE queue-name[:] logical-queue-name[:]

Parameters
queue-name[:]

Specifies the name of the execution queue. The queue cannot be a logical queue, a generic queue, or a
batch queue.

logical-queue-name[:]

Specifies the name of the logical queue.

Description
The ASSIGN/QUEUE command sets up a one-to-one correspondence between a logical queue and an
execution queue.

Note

Requires manage (M) access to both queues.

Jobs submitted to the logical queue are always queued to the specified execution queue for eventual
printing.

When you enter the ASSIGN/QUEUE command, the logical queue cannot be running.

Once you initialize a logical queue, use the ASSIGN/QUEUE command to associate the logical queue
with an existing execution queue. You must perform the following tasks to set up a logical queue:

1. Initialize the logical queue with the INITIALIZE/QUEUE command.(Do not use the /START
qualifier.)

2. Assign the logical queue name to an existing execution queue.

3. Start the logical queue with the START/QUEUE command.

After you enter the START/QUEUE command for the logical queue, jobs can be sent to the logical
queue for processing.

53

DCL Commands

Examples
1. $ INITIALIZE/QUEUE/DEFAULT=FLAG=ONE/START LPA0

$ INITIALIZE/QUEUE TEST_QUEUE
$ ASSIGN/QUEUE LPA0 TEST_QUEUE
$ START/QUEUE TEST_QUEUE

This example first initializes and starts the printer queue LPA0. The LPA0 queue is set to have a
flag page precede each job. The second INITIALIZE/QUEUE command creates the logical queue
TEST_QUEUE. The ASSIGN/QUEUE command assigns the logical queue TEST_QUEUE to the
printer queue LPA0. The START/QUEUE command starts the logical queue.

2. $ INITIALIZE/QUEUE/START LPB0

The ASSIGN/QUEUE command is not needed in this example because a logical queue is not
being initialized. A printer queue is being initialized; LPB0 is the name of a line printer. After you
enter the INITIALIZE/QUEUE/START command, jobs can be queued to LPB0 for printing.

ATTACH
ATTACH — Transfers control from your current process (which then hibernates) to the specified
process.

Format
ATTACH [process-name]

Parameter
process-name

Specifies the name of a parent process or spawned subprocess to which control passes. The
process must already exist, be part of your current job, and share the same input stream as your
current process. However, the process cannot be your current process or a subprocess created with
the /NOWAIT qualifier.

Process names can contain from 1 to 15 alphanumeric characters. If a connection to the specified
process cannot be made, an error message is displayed.

The process-name parameter is incompatible with the /IDENTIFICATION qualifier.

Description
The ATTACH command allows you to connect your input stream to another process. You can use
the ATTACH command to change control from one subprocess to another subprocess or to the parent
process.

Note

The ATTACH and SPAWN commands cannot be used if your terminal has an associated mailbox.

54

DCL Commands

When you enter the ATTACH command, the parent or “source” process is put into hibernation,
and your input stream is connected to the specified destination process. You can use the ATTACH
command to connect to a subprocess that is part of a current job left hibernating as a result of the
SPAWN/WAIT command or another ATTACH command as long as the connection is valid. (No
connection can be made to the current process, to a process that is not part of the current job, or to a
process that does not exist. If any of these connections are attempted, an error message is displayed.)

You can also use the ATTACH command in conjunction with the SPAWN/WAIT command to return
to a parent process without terminating the created subprocess. See the description of the SPAWN
command for more details.

Qualifier
/IDENTIFICATION=pid

Specifies the process identification (PID) of the process to which terminal control will be
transferred. Leading zeros can be omitted. The /IDENTIFICATION qualifier is incompatible with
the process-name parameter.

If you omit the /IDENTIFICATION qualifier, you must specify a process name.

Examples
1. $ ATTACH JONES_2

The ATTACH command transfers the terminal's control to the subprocess JONES_2.

2. $ ATTACH/IDENTIFICATION=30019

The ATTACH command switches control from the current process to a process having the PID
30019. Notice that because the /IDENTIFICATION qualifier is specified, the process-name
parameter is omitted.

BACKUP
BACKUP — Invokes the Backup utility (BACKUP) to perform the backup operations.

Format
BACKUP input-specifier output-specifier

Description
You can perform the following backup operations:

• Make copies of disk files.

• Save disk files as data in a file created by BACKUP on disk or magnetic tape. (Files created by
BACKUP are called save sets.)

• Restore disk files from a BACKUP save set.

55

DCL Commands

• Compare disk files or files in a BACKUP save set with other disk files.

• List information about files in a BACKUP save set to an output device or file.

You cannot invoke BACKUP to back up a system disk. A system disk must be bootstrapped to run.

For more information about BACKUP and backing up the system disk, see the VSI OpenVMS System
Manager's Manual and the VSI OpenVMS System Management Utilities Reference Manual or online
help.

CALL
CALL — Transfers control to a labeled subroutine within a command procedure.

Format
CALL label [parameter [...]]

Parameters
label

Specifies a label of 1 to 255 alphanumeric characters that appears as the first item on a command line.
A label cannot contain embedded blanks. When the CALL command is executed, control passes to the
command following the specified label.

The label can precede or follow the CALL statement in the current command procedure. A label in a
command procedure must be terminated with a colon (:). Labels for subroutines must be unique.

Labels declared in inner procedure levels are inaccessible from outer levels, as in the following
example:

$CALL B
$A: SUBROUTINE
$ B: SUBROUTINE
$ ENDSUBROUTINE
$ENDSUBROUTINE

In this example, the label B in subroutine A is inaccessible from the outer procedure level.

parameter [...]

Specifies from one to eight optional parameters to pass to the command procedure. Use quotation
marks (“ ”) to specify a null parameter. The parameters assign character string values to the symbols
named P1, P2, and so on in the order of entry, to a maximum of eight. The symbols are local to the
specified command procedure. Separate each parameter with one or more spaces.

Setting bit 3 of DCL_CTLFLAGS to 1, specifies from one to sixteen optional parameters to pass to
the command procedure. Use quotation marks (“ ”) to specify a null parameter. The parameters assign
character string values to the symbols named P1, P2, and so on in the order of entry, to a maximum of
sixteen. The symbols are local to the specified command procedure. Separate each parameter with one
or more spaces. If you clear the bit 3 of DCL_CTLFLAGS, the default parameters are set (that is, (P1,
P2, … P8)).

56

DCL Commands

You can specify a parameter with a character string value containing alphanumeric or special
characters, with the following restrictions:

• The command interpreter converts alphabetic characters to uppercase and uses blanks to delimit
each parameter. To pass a parameter that contains embedded blanks or lowercase letters, enclose
the parameter in quotation marks (“ ”).

• If the first parameter begins with a slash (/), you must enclose the parameter in quotation marks.

• To pass a parameter that contains quotation marks and spaces, enclose the entire string in
quotation marks and use two sets of quotation marks within the string. For example:

$ CALL SUB1
"Never say ""quit"""

When control transfers to SUB1, the parameter P1 is equated to the following string:

Never say "quit"

If a string contains quotation marks and does not contain spaces, the quotation marks are
preserved in the string and the letters within the quotation marks remain in lowercase. For
example:

$ CALL SUB2 abc"def"ghi

When control transfers to SUB2, the parameter P1 is equated to the string:

ABCdefGHI

To use a symbol as a parameter, enclose the symbol in single quotation marks (' ') to force symbol
substitution. For example:

$ NAME = "JOHNSON"
$ CALL INFO ’NAME’

The single quotation marks cause the value “JOHNSON” to be substituted for the symbol 'NAME'.
Therefore, the parameter “JOHNSON” is passed as P1 to the subroutine INFO.

Description
The CALL command transfers control to a labeled subroutine within a command procedure. The
CALL command is similar to the @ (execute procedure) command in that it creates a new procedure
level. The advantage of the CALL command is that it does not require files to be opened and closed
to process the procedure. Using the CALL command also makes managing a set of procedures easier
because they can all exist in one file rather than in several files.

When you use the CALL command to transfer control to a subroutine, a new procedure level is
created and the symbols P1 to P8 are assigned the values of the supplied arguments. When bit 3 of
DCL_CTLFLAGS is set to 1, you can use the CALL command to transfer control to a subroutine,
a new procedure level is created and the symbols P1 to P16 are assigned the values of the supplied
arguments. Execution then proceeds until an EXIT command is encountered. At this point, control is
transferred to the command line following the CALL command.

Procedures can be nested to a maximum of 32 levels, which includes any combination of command
procedure and subroutine calls. Local symbols and labels defined within a nested subroutine structure

57

DCL Commands

are treated the same way as if the routines had been invoked with the @ command; that is, labels are
valid only for the subroutine level in which they are defined.

Local symbols defined in an outer subroutine level are available to any subroutine levels at an inner
nesting level; that is, the local symbols can be read, but they cannot be written to. If you assign a
value to a symbol that is local to an outer subroutine level, a new symbol is created at the current
subroutine level. However, the symbol in the outer procedure level is not modified.

The SUBROUTINE and ENDSUBROUTINE commands define the beginning and end of a
subroutine. The label defining the entry point to the subroutine must appear it her immediately before
the SUBROUTINE command or on the same command line.

A subroutine can have only one entry point. The subroutine must begin with the SUBROUTINE
command as the first executable statement. If an EXIT command is not specified in the procedure, the
ENDSUBROUTINE command functions as an EXIT command.

The SUBROUTINE command performs two different functions depending on the context in which it
is executed. If executed as the result of a CALL command, it initiates a new procedure level, defines
the parameters P1 to P8 as specified in the CALL statement, and begins execution of the subroutine. If
bit 3 of DCL_CTLFLAGS is set to 1, CALL command allows you to define the parameters up to P16.
If the SUBROUTINE verb is encountered in the execution flow of the procedure without having been
invoked by a CALL command, all the commands following the SUBROUTINE command are skipped
until the corresponding ENDSUBROUTINE command is encountered.

Note

The SUBROUTINE and ENDSUBROUTINE commands cannot be abbreviated to fewer than 4
characters.

Qualifier
/OUTPUT=filespec

Writes all output to the file or device specified. By default, the output is written to the current
SYS$OUTPUT device and the output file type is .LIS. System responses and error messages
are written to SYS$COMMAND as well as to the specified file. If you specify /OUTPUT, the
qualifier must immediately follow the CALL command. The asterisk (*) and the percent sign (%)
wildcard characters are not allowed in the output file specification.

You can also redefine SYS$OUTPUT to redirect the output from a command procedure. If you
place the following command as the first line in a command procedure, output will be directed to
the file you specify:

$ DEFINE SYS$OUTPUT filespec

When the procedure exits, SYS$OUTPUT is restored to its original equivalence string. This
produces the same result as using the /OUTPUT qualifier when you execute the command
procedure.

Examples
$
$! CALL.COM
$
$! Define subroutine SUB1

58

DCL Commands

$!
$ SUB1: SUBROUTINE
 .
 .
 .
$ CALL SUB2 !Invoke SUB2 from within SUB1
 .
 .
 .
$ @FILE !Invoke another procedure command file
 .
 .
 .
$ EXIT
$ ENDSUBROUTINE !End of SUB1 definition
$!
$! Define subroutine SUB2
$!
$ SUB2: SUBROUTINE
 .
 .
 .
$ EXIT
$ ENDSUBROUTINE !End of SUB2 definition
$!
$! Start of main routine. At this point, both SUB1 and SUB2
$! have been defined but none of the previous commands have
$! been executed.
$!
$ START: !Exit this command procedure file
$ CALL/OUTPUT=NAMES.LOG SUB1 "THIS IS P1"
 .
 .
 .
$ CALL SUB2 "THIS IS P1" "THIS IS P2"
 .
 .
 .
$ EXIT !Exit this command procedure file

The command procedure in this example shows how to use the CALL command to transfer control to
labeled subroutines. The example also shows that you can call a subroutine or another command file
from within a subroutine.

The CALL command invokes the subroutine SUB1, directing output to the file NAMES.LOG and
allowing other users write (W) access to the file. The subroutine SUB2 is called from within SUB1.
The procedure executes SUB2 and then uses the @ (execute procedure) command to invoke the
command procedure FILE.COM.

When all the commands in SUB1 have executed, the CALL command in the main procedure calls
SUB2 a second time. The procedure continues until SUB2 has executed.

CANCEL
CANCEL — Cancels wakeup requests for a specified process, including wakeup requests scheduled
with either the RUN command or the $SCHDWK system service.

59

DCL Commands

Format
CANCEL [[node-name::]process-name]

Parameters
node-name::

The name of the node on which the specified process is running.

You cannot specify a node name on a different OpenVMS Cluster system from the current process.

process-name

The name of the process for which wakeup requests are to be canceled. The process name can have up
to 15 alphanumeric characters.

The specified process must be in the same group as the current process.

Description
The CANCEL command cancels scheduled wakeup requests for the specified process.

Note

Requires one of the following:

• Ownership of the process

• GROUP privilege to cancel scheduled wakeup requests for processes in the same group but not
owned by you

• WORLD privilege to cancel scheduled wakeup requests for any process in the system

The CANCEL command does not delete the specified process. If the process is executing an image
when the CANCEL command is issued for it, the process hibernates instead of exiting after the image
completes execution.

To delete a hibernating process for which wakeup requests have been canceled, use the STOP
command. You can determine whether a sub process has been deleted by entering the SHOW
PROCESS command with the /SUBPROCESSES qualifier.

A local process name can look like a remote process name. Therefore, if you specify
ATHENS::SMITH, the system checks for a process named ATHENS::SMITH on the local node
before checking node ATHENS for a process named SMITH.

You also can use the /IDENTIFICATION=pid qualifier to specify a process name. If you use
the /IDENTIFICATION qualifier and the process-nameparameter together, the qualifier overrides
the parameter. If you do not specify either the process-name parameter or the /IDENTIFICATION
qualifier, the CANCEL command cancels scheduled wakeup requests for the current (that is, the
issuing) process.

60

DCL Commands

Qualifier
/IDENTIFICATION=pid

Identifies the process by its process identification (PID). You can omit leading zeros when you
specify the PID.

Examples
1. $ CANCEL CALENDAR

The CANCEL command in this example cancels a wakeup request for a process named
CALENDAR (which continues to hibernate until it is deleted with the STOP command).

2. $ RUN/SCHEDULE=14:00 STATUS
%RUN-S-PROC_ID, identification of created process is 0013012A
 .
 .
 .
$ CANCEL/IDENTIFICATION=13012A

The RUN command in this example creates a process to execute the image STATUS. The
process hibernates and is scheduled to be awakened at 14:00. Before the process is awakened, the
CANCEL command cancels the wakeup request.

3. $ RUN/PROCESS_NAME=LIBRA/INTERVAL=1:00 LIBRA
%RUN-S-PROC_ID, identification of created process is 00130027
 .
 .
 .
$ CANCEL LIBRA
$ STOP LIBRA

The RUN command in this example creates a subprocess named LIBRA to execute the image
LIBRA.EXE at hourly intervals.

Subsequently, the CANCEL command cancels the wakeup request. The process continues to exist,
but in a state of hibernation, until the STOP command deletes it.

CHECKSUM
CHECKSUM — Invokes a utility to calculate one or more checksums for OpenVMS files. The result,
or checksum, is available in the DCL symbol CHECKSUM$CHECKSUM.

Format
CHECKSUM filespec

Parameter
filespec

61

DCL Commands

Specifies the name of an existing file to be checksummed. The asterisk (*) and percent sign (%)
wildcard characters are allowed in the file specification.

Description
The CHECKSUM utility calculates file, image, or object checksums for an OpenVMS file. For a file
checksum the algorithm used determines if the internal record structure of the file is followed or not.
For an image or object checksum, the utility always follows the image or object structure.

The /FILE, /IMAGE, and /OBJECT qualifiers determine which kind of checksum is calculated. They
imply a default file type (.DAT, .EXE or .OBJ) and determine the amount of information displayed.
The default, /FILE, results in an XOR file checksum, according to the file's record structure. It implies
a default file type .DAT and determines that no information is output to SYS$OUTPUT.

For file checksums, you can specify which algorithm CHECKSUM will use to perform calculations.
By default, the Alpha XOR record-based algorithm is used. Optionally, you can select either the
CRC algorithm or the MD5 algorithm, each using the whole content of the file to calculate the
checksum. The CRC algorithm is the same as the algorithm used for ELF-64 files and is used by
popular compression tools like PKZIP. (That is, a file checksum in a ZIP file can be compared with
the file checksum obtained by the CHECKSUM utility.) The MD5 algorithm is the MD5 digest,
which can be obtained using public domain tools such as MD5.EXE and md5sum.

Image checksums differ between the Alpha platforms and the Integrity servers platform.
Object checksums are only available for the Integrity servers platform. With the platform
qualifiers, /ALPHA, /Integrity servers or VAX non-native images or objects can be checksummed.

For all ELF-64 image and object checksums, CHECKSUM uses a CRC-32 algorithm. The CRC,
known as AUTODIN II, Ethernet, or FDDI CRC, is documented as part of the VAX CRC instructions.
The image or object checksum follows the ELF-64 data structures that are used for OpenVMS
Integrity servers object and image files. For these checksums, only the invariant data is used for
the calculation. Variant data, such as timestamps and versions, are excluded from the checksum
calculation in order to compare results from different compile and link operations.

For Alpha and VAX images, CHECKSUM uses an XOR algorithm. The image checksum follows the
Alpha and VAX image structure and only uses invariant data for the calculation. Variant data, such
as timestamps are excluded in order to compare results from different link operations. Note that on
Alpha and VAX systems, object files cannot be checksummed based on object invariant data.

Qualifiers
/ALGORITHM=option
/ALGORITHM=XOR (default)

Selects the algorithm used for file checksums. The default is the XOR algorithm for data within
records, as used by the previous Checksum utilities on OpenVMS Alpha systems. Options
include:

• CRC – A CRC-32 algorithm for all bytes within the file (possible record structures are
ignored); this algorithm is also known as AUTODIN II, Ethernet, or FDDI CRC.

• MD5 – The MD5 digest, as published by Ronald L. Rivest (RFC 1321), for all bytes within
the file (possible record structures are ignored).

• XOR – An XOR algorithm for all data, according to the record structure of the file.

62

DCL Commands

/ALPHA

Calculates an Alpha-type checksum and is only useful with the /IMAGE qualifier on Integrity
server systems (that is, it checksums Alpha images on Integrity server systems). It is set by default
on Alpha platforms.

/FILE (default)

Calculates a file checksum.

By default, the XOR algorithm (/ALGORITHM=XOR) is used for the checksum. The /FILE
qualifier also implies a default file type of .DAT. By default, unsigned decimal checksum value
is saved in the DCL symbol CHECKSUM$CHECKSUM and not output to the screen. By
specifying /SHOW=DATA, the full file name of the specified input file is output in addition to the
file checksum, an unsigned decimal value.

The /ALPHA, /I64, or /VAX platform qualifiers do not influence the file checksum result.
However, /ALPHA and /VAX prohibit the /SHOW qualifier because these qualifiers were not
available on the original Checksum utility for Alpha systems.

/I64

Calculates an I64-type checksum and is only useful on Alpha systems with /IMAGE or /OBJECT
(that is, it checksums Integrity servers images or objects on Alpha systems). The /I64 qualifier is
set by default on Integrity servers platforms.

/IMAGE

Calculates a checksum of all image bytes. The image structure is followed to include only the
image bytes into the checksum. Invariant data, such as the linker version and the link date, are
omitted.

For Integrity servers images (that is, Integrity servers formatted files), a CRC checksum is
calculated and additional information is output to SYS$OUTPUT, including the following:

• The resulting full file name and checksums for the image segments

• The header checksums and the overall image checksum

The output values are shown in hexadecimal notation. The DCL symbol,
CHECKSUM$CHECKSUM, shows the result in hexadecimal notation.

For Alpha and VAX images, an XOR checksum is calculated and additional information is output
to SYS$OUTPUT:

• The resulting full file name and checksums for the image sections

• The header checksum and the overall image checksum

The output checksum values are in hexadecimal notation. However, the result in the DCL symbol
CHECKSUM$CHECKSUM is in unsigned decimal notation.

Note

For Alpha and VAX images, the unsigned decimal notation of the checksum value in the DCL symbol
CHECKSUM$CHECKSUM retains compatibility with the previous checksum tool.

63

DCL Commands

The /IMAGE qualifier implies the default file type of .EXE. For Integrity servers images, this
qualifier also implies the default keyword values HEADERS and SEGMENTS for the /SHOW
qualifier.

/OBJECT

Calculates a CRC checksum of all Integrity servers object bytes.

The /OBJECT qualifier follows the ELF-64 object structure to include only the object bytes into
the checksum. Invariant data, as the language processor version and the generation date, are
omitted.

Additional information is output to SYS$OUTPUT, including the following:

• The resulting full file name of the specified input file

• The checksums for the object sections, headers, and the overall object checksum

The output checksum values are in hexadecimal notation. The result provided in the DCL symbol,
CHECKSUM$CHECKSUM, is in hexadecimal notation.

The /OBJECT qualifier implies the default file type of .OBJ. This qualifier also implies the
default keyword values HEADERS and SECTIONS for the /SHOW qualifier.

On Alpha platforms, it is only applicable with the /Integrity servers qualifier.

/OUTPUT[=filespec]
/NOOUTPUT

The /OUTPUT qualifier controls where the output of the command is sent. The /NOOUTPUT
qualifier suppresses output.

If you specify /OUTPUT and a file specification (/OUTPUT=filespec), the output is sent to the
specified file, rather than to the current output device, SYS$OUTPUT. If you do not enter the
qualifier, or if you enter the /OUTPUT qualifier without a file specification, the output is sent to
SYS$OUTPUT.

Using the /OUTPUT qualifier does not affect the result (that is, the DCL symbol
CHECKSUM$CHECKSUM).

/SHOW=(option[,...])

Controls which checksum and additional information is output to the device.

Options for this qualifier are as follows:

• ALL – Sets all of the applicable options, with the following restrictions:

• For file checksums, only the DATA keyword is allowed.

• For image checksums, all keywords are allowed.

• For object checksums, the SEGMENT keyword is not allowed.

• DATA – Outputs the full file name and the file checksum. For compatibility, this option is
available for /FILE.

64

DCL Commands

• EXCLUDED – Formats the data excluded from the image or object checksums.

• HEADERS – Output checksums of all Integrity servers headers. This option is set by default
for /IMAGE and /OBJECT.

• SECTIONS – Output checksums of all ELF-64 sections. This option is set by default
for /OBJECT.

• SEGMENTS – Output checksums of all ELF-64 program segments. This option is set by
default for /IMAGE.

/VAX

Calculates a VAX-type checksum and is only useful on Integrity servers or Alpha systems
with /IMAGE to checksum VAX images on non-VAX systems.

Examples
The CHECKSUM/IMAGE command results in different output for Integrity servers and Alpha
platforms. Because there are different image structures, the names for the checksums differ:

• The checksum for Alpha outputs the section number as BLISS constant: %D'1' whereas the
Integrity servers checksum outputs decimal numbers.

• The checksum for Alpha outputs the checksums as BLISS constant: %X'6C5404CB' whereas the
Integrity servers checksum outputs DCL-style hexadecimal numbers.

• The DCL symbol on Alpha is an unsigned decimal value, whereas the DCL symbol for Integrity
servers is a hexadecimal value.

On Alpha systems:

$ CHECKSUM/IMAGE HELLO.EXE
file DISK$USER:[JOE]HELLO.EXE;10
image section %D'1' checksum is %X'6C5404CB'
image section %D'2' checksum is %X'E29D6A3A'
image section %D'3' checksum is %X'114B0786'
image header checksum is %X'00000204'
checksum of all image sections is %X'9F826977'

$ SHOW SYMBOL CHECKSUM$CHECKSUM
CHECKSUM$CHECKSUM = "2676124023"

On Integrity server systems:

$ CHECKSUM/IMAGE FOOBAR.EXE
File DISK$USER:[JOE]FOOBAR.EXE;3
Checksum program segment 0: %X18E293D7
Checksum program segment 1: %XEFBCE000
Checksum program segment 2: %XA6D02DD5
Checksum program segment 3: %X30130E3E
Checksum dynamic segment %X0F704080
Elf header checksum: %X7A6AC80F
Elf program header checksum: %XBF6B41D8
Elf section header checksum: %X6C770CF6
Elf (object/image) checksum: %X2EEE7726

65

DCL Commands

$ SHOW SYMBOL CHECKSUM$CHECKSUM
CHECKSUM$CHECKSUM = "2EEE7726"

CLOSE
CLOSE — Closes a file opened with the OPEN command and deassigns the associated logical name.

Format
CLOSE logical-name[:]

Parameter
logical-name[:]

Specifies the logical name assigned to the file when it was opened with the OPEN command.

Description
Files that are opened for reading or writing at the command level remain open until closed with
the CLOSE command, or until the process terminates. If a command procedure that opens a file
terminates without closing the open file, the file remains open; the command interpreter does not
automatically close it.

Qualifiers
/DISPOSITION=option

Specifies what action to take when the file is closed. The options are:

DELETE Delete the file.
KEEP (default) Keep the file.
PRINT Print the file.
SUBMIT Submit the file.

/ERROR=label

Specifies a label in the command procedure to receive control if the close operation results in
an error. Overrides any ON condition action specified. If an error occurs and the target label is
successfully given control, the global symbol $STATUS retains the code for the error that caused
the error path to betaken.

/LOG (default)
/NOLOG

Generates a warning message when you attempt to close a file that was not opened by DCL.
If you specify the /ERROR qualifier, the /LOG qualifier has no effect. If the file has not been
opened by DCL, the error branch is taken and no message is displayed.

66

DCL Commands

Examples
1. $ OPEN/READ INPUT_FILE TEST.DAT

$ READ_LOOP:
$ READ/END_OF_FILE=NO_MORE INPUT_FILE DATA_LINE
 .
 .
 .
$ GOTO READ_LOOP
$ NO_MORE:
$ CLOSE INPUT_FILE

The OPEN command in this example opens the file TEST.DAT and assigns it the logical name of
INPUT_FILE. The /END_OF_FILE qualifier on the READ command requests that, when the end-
of-file (EOF) is reached, the command interpreter should transfer control to the line at the label
NO_MORE. The CLOSE command closes the input file.

2. $ @READFILE
Ctrl/Y
$ STOP
$ SHOW LOGICAL/PROCESS
 .
 .
 .
"INFILE" = "_DB1"
"OUTFILE" = "_DB1"
$ CLOSE INFILE
$ CLOSE OUTFILE

In this example, pressing Ctrl/Y interrupts the execution of the command
procedure READFILE.COM. Then, the STOP command stops the procedure. The
SHOWLOGICAL/PROCESS command displays the names that currently exist in the process
logical name table. Among the names listed are the logical names INFILE and OUTFILE,
assigned by OPEN commands in the procedure READFILE.COM.

The CLOSE commands close these files and deassign the logical names.

CONNECT
CONNECT — Connects your physical terminal to a virtual terminal that is connected to another
process.

Format
CONNECT virtual-terminal-name

Parameter
virtual-terminal-name

Specifies the name of the virtual terminal to which you are connecting. A virtual terminal name
always begins with the letters VTA. To determine the name of the virtual terminal that is connected to
a process, enter the SHOW USERS command.

67

DCL Commands

Description
The CONNECT command connects you to a separate process, as opposed to the SPAWN and
ATTACH commands, which create and attach subprocesses.

Note

You must connect to a virtual terminal that is connected to a process with your user identification code
(UIC). No other physical terminals may be connected to the virtual terminal.

The CONNECT command is useful when you are logged in to the system using telecommunications
lines. If there is noise over the line and you lose the carrier signal, your process does not terminate.
After you log in again, you can reconnect to the original process and log out of your second process.

To use the CONNECT command, the virtual terminal feature must be enabled for your system with
the System Manager utility (SYSMAN) on OpenVMS Alpha systems.

If virtual terminals are allowed on your system, use the SETTERMINAL/DISCONNECT/
PERMANENT command to enable the virtual terminal characteristic for a particular physical
terminal. When you enable this characteristic, a virtual terminal is created when a user logs in to
the physical terminal. The physical terminal is connected to the virtual terminal, which is in turn
connected to the process.

For new virtual terminals, you must first set the TT2$V_DISCONNECT bit in the TTY_DEFCHAR2
system parameter and reboot the system. This is done by creating the virtual device VTA0: using the
ttdriver. For example, on Alpha:

$ RUN SYS$SYSTEM:SYSMAN
SYSMAN> IO CONNECT/NOADAPTER/DRIVER=SYS$LOADABLE_IMAGES:SYS$TTDRIVER VTA0:

When the connection between the physical terminal and the virtual terminal is broken, you are logged
out of your current process (and any images that the process is executing stop running) unless you
have specified the /NOLOGOUT qualifier.

If you have specified the /NOLOGOUT qualifier, the process remains connected to the virtual
terminal. If the process is executing an image, it continues until the process needs terminal input
or attempts to write to the terminal. At that point, the process waits until the physical terminal is
reconnected to the virtual terminal.

You can connect to a virtual terminal even if you are not currently using a virtual terminal; however,
to log out of your current process you must use the CONNECT command with the /LOGOUT
qualifier. If you connect to a virtual terminal from another virtual terminal, you can save your current
process by using the /NOLOGOUT qualifier.

Qualifiers
/CONTINUE
/NOCONTINUE (default)

Controls whether the CONTINUE command is executed in the current process just before
connecting to another process. This qualifier allows an interrupted image to continue processing
after you connect to another process.

68

DCL Commands

The /CONTINUE qualifier is incompatible with the /LOGOUT qualifier.

/LOGOUT (default)
/NOLOGOUT

Logs out your current process when you connect to another process using a virtual terminal.

When you enter the CONNECT command from a process that is not connected to a virtual
terminal, you must specify the /LOGOUT qualifier; otherwise, DCL displays an error message.

The /LOGOUT qualifier is incompatible with the /CONTINUE qualifier.

Examples
1. $ RUN AVERAGE

Ctrl/Y
$ CONNECT/CONTINUE VTA72

In this example, you use the RUN command to execute the image AVERAGE.EXE. You enter
this command from a terminal that is connected to a virtual terminal. Next, you press Ctrl/Y
to interrupt the image. After you interrupt the image, enter the CONNECT command with
the /CONTINUE qualifier. This operation issues the CONTINUE command, so the image
continues to run and connects you to another virtual terminal. You can reconnect to the process
later.

2. $ SHOW USERS/FULL
OpenVMS User Processes at 21-JUL-2009 14:11:56.91
Total number of users = 51, number of processes = 158
Username Node Process Name PID Terminal
KIDDER BUKETT KIDDER 29A0015E FTA3:
KIDDER BUKETT _FTA4: 29A0015F FTA4:
KIDDER RACEY1 KIDDER 05800062 FTA5:
KIDDER RACEY1 DECW$MWM 0580005D MBA44: Disconnected
KIDDER RACEY1 DECW$SESSION 05800059
KIDDER RACEY1 VUE$KIDDER_2 0580005E (subprocess of 05800059)
KIDDER RACEY1 VUE$KIDDER_3 0580005F MBA51: Disconnected
KIDDER RACEY1 VUE$KIDDER_4 05800060 MBA53: Disconnected
SMITH BUKETT SMITH 29A002C1 FTA7:
SMITH BUKETT SMITH_1 29A006C2 (subprocess of 29A002C1)
SMITH BUKETT SMITH_2 29A00244 (subprocess of 29A002C1)
SMITH HAMLET SMITH 24800126 FTA6:
SMITH HAMLET DECW$BANNER 24800155 (subprocess of 24800126)
SMITH HAMLET DECW$MWM 2480011F MBA170: Disconnected
SMITH HAMLET DECW$SESSION 2480011D FTA5:
 .
 .
 .
$ CONNECT VTA273
SMITH logged out at 22-DEC-2001 14:12:04.53
$

This example shows how to reconnect to your original process after you have lost the carrier
signal. First, you must log in again and create a new process. After you log in, enter the SHOW
USERS/FULL command to determine the virtual terminal name for your initial process. Then
enter the CONNECT command to connect to the virtual terminal associated with your original
process. The process from which you enter the CONNECT command is logged out because you
have not specified any qualifiers.

69

DCL Commands

When you reconnect to the original process, you continue running the image that you were
running when you lost the carrier signal. In this example, the user SMITH was at interactive level
when the connection was broken.

CONTINUE
CONTINUE — Resumes execution of a DCL command, a program, or a command procedure that
was interrupted by pressing Ctrl/Y or Ctrl/C. You cannot resume execution of the image if you have
entered a command that executes another image or if you have invoked a command procedure.

Format
CONTINUE

Parameters
None.

Description
The CONTINUE command enables you to resume processing an image or a command procedure
that was interrupted by pressing Ctrl/Y or Ctrl/C. You cannot resume execution of the image if you
have entered a command that executes another image or if you have invoked a command procedure;
however, you can use CONTINUE after commands that do not execute separate images. For a list of
these commands, see the VSI OpenVMS User's Manual.

You can abbreviate the CONTINUE command to a single letter, C.

The CONTINUE command serves as the target command of an IF or ON command in a command
procedure. The CONTINUE command is also a target command when it follows a label that is the
target of a GOTO command.

Examples
1. $ RUN MYPROGRAM_A

Ctrl/Y
$ SHOW TIME
 14-DEC-2001 13:40:12
$ CONTINUE

In this example, the RUN command executes the program MYPROGRAM_A. While the program
is running, pressing Ctrl/Y interrupts the image. The SHOW TIME command requests a display of
the current date and time. The CONTINUE command resumes the image.

2. $ ON SEVERE_ERROR THEN CONTINUE

In this example, the command procedure statement requests the command interpreter to continue
executing the procedure if any warning, error, or severe error status value is returned from the
execution of a command or program. This ON statement overrides the default action, which is to
exit from a procedure following errors or severe errors.

70

DCL Commands

CONVERT
CONVERT — Invokes the Convert utility, which copies records from one file to another and changes
the organization and format of the input file to those of the output file. For more information about the
Convert utility, see the OpenVMS Record Management Utilities Reference Manual or online help.

Format
CONVERT input-filespec[,...] output-filespec

CONVERT/DOCUMENT
CONVERT/DOCUMENT — Converts a CDA supported revisable input file to another revisable or
final form output file.

Format
CONVERT/DOCUMENT input-filespec output-filespec

Parameters
input-filespec

Specifies the name of the input file to be converted. The default file type is .DDIF.

output-filespec

Specifies the name of the output file. The default file type is .DDIF.

Description
The CONVERT/DOCUMENT command lets you convert documents from one format to another.

Note

You can use this command only if DECwindows Motif for OpenVMS is installed on your system.

You specify the name and format of the input file (a file whose format is incompatible with the
application that needs to read the file) and the output file (the file to be created in a new format).

You can convert a file from one format to another if an input converter exists for the input file format
and an output converter exists for the output file format. The default input and output file format
is DDIF (DIGITAL Document Interchange Format). DDIF is a standard format for the storage and
interchange of compound documents, which can include text, graphics, and images.

DDIF input and output converters, in addition to several other converters, are installed with the CDA
Base Services for DECwindows Motif for OpenVMS. Some of the converters support processing
options, which ensure minimal changes when your input file is converted to a different output

71

DCL Commands

file format. Create an options file with the processing options you need before specifying the
CONVERT/DOCUMENT command with the /OPTIONS qualifier.

Every converter supports a message log option, which is a file name you specify and to which
informational and error messages are logged during the conversion.

Qualifiers
/FORMAT=format-name

Specifies the encoding format of the input or output file. The default input and output format is
DDIF.

Input converters bundled with the CDA Base Services for DECwindows Motif for OpenVMS and
the default file type for the file formats they support are as follows:

Input Format File Type
DDIF .DDIF
DTIF .DTIF
TEXT .TXT

Output converters bundled with the CDA Base Services for DECwindows Motif for OpenVMS
and the default file types for the file formats they support are as follows:

Output Format File Type
DDIF .DDIF
DTIF .DTIF
TEXT .TXT
PS .PS
ANALYSIS .CDA$ANALYSIS

The CDA Converter Library is a layered product that offers several other document, graphics,
image, and data table input and output converters. Independent software vendors also write CDA
conforming applications and converters for the operating system. Contact your system manager
for a complete list of converters available on your system.

Analysis Output Converter
The Analysis output converter produces an analysis of the intermediate representation of the
input file. The analysis output file shows the named objects and values stored in the input file.
Application programmers use an analysis output file for debugging purposes.

Application end users use an analysis output file to determine whether an input file contains
references or links to multiple subfiles. Each subfile must be copied separately across a network
because subfiles are not automatically included when an input file is transferred across the
network.

You can search the analysis output file for all occurrences of the string “ERF_”. The following
example shows that the image file “griffin.img” is linked to the DDIF compound document that is
the input file:

72

DCL Commands

ERF_LABEL ISO LATIN1 "griffin.img" ! Char. string.
ERF_LABEL TYPE RMS_LABEL TYPE "$RMS:
ERF_CONTROL COPY_REFERENCE ! Integer = 1

Note that an analysis output file is intended as a programmer's tool. The coded information in
the file is not intended for modification but rather to examine the content of a file. The previous
example shows how you can search analysis output for references to linked files.

DDIF Input Converter
The DDIF input converter converts a DDIF input file to an intermediate representation that is
subsequently converted to the specified output file format. The following list summarizes the data
mapping, conversion restrictions, external file references, and document syntax errors relevant to
the DDIF input converter:

• Data mapping

The information in the DDIF input file maps directly to an intermediate representation.

• Conversion restrictions

The DDIF input file does not lose any information when converted to the intermediate
representation.

However, if the DDIF input file is a newer version of the DDIF grammar than that understood
by the DDIF input converter, data represented by the new grammar elements is lost.

• External file references

Any external file references within the DDIF input file are converted to the intermediate
representation.

The DDIF input converter makes no attempt to resolve external references, although the
converter kernel can if requested by the output converter.

• Document syntax errors

A document syntax error in the DDIF input file causes a fatal input processing error. If the
DDIF input converter encounters a document syntax error, the conversion stops and no further
input processing occurs.

DDIF Output Converter
The DDIF output converter creates a DDIF output file from the intermediate representation of the
input file. The following list summarizes the data mapping and conversion restrictions relevant to
the DDIF output converter.

• Data mapping

The information in the intermediate representation of the input file maps directly to the DDIF
output file.

• Conversion restrictions

The intermediate representation of the input file does not lose any information when converted
to the DDIF output file.

73

DCL Commands

DTIF Input Converter
The DTIF input converter converts a DTIF input file to an intermediate representation that is
subsequently converted to the specified output file format. The following list summarizes the data
mapping, conversion restrictions, external file references, and document syntax errors relevant to
the DTIF input converter:

• Data mapping

The information in the DTIF input file maps directly to an intermediate representation.

• Conversion restrictions

The DTIF input file does not lose any information when converted to the intermediate
representation.

However, if the DTIF input file is a newer version of the DTIF grammar than that understood
by the DTIF front end, data represented by the new grammar elements is lost.

• External file references

Any external file references within the DTIF input file are converted to the intermediate
representation.

The DTIF input converter makes no attempt to resolve external references.

• Document syntax errors

A document syntax error in the DTIF input file causes a fatal input processing error. If the
DTIF input converter encounters a document syntax error, the conversion stops and no further
input processing occurs.

DTIF Output Converter
The DTIF output converter converts the intermediate representation of the input file to a DTIF
output file. The following list summarizes the data mapping, conversion restrictions, and external
file references relevant to the DTIF output converter:

• Data mapping

The information in the intermediate representation of the input file maps directly to the DTIF
output file.

• Conversion restrictions

The intermediate representation of the input file does not lose any information when converted
to the DTIF output file.

• External file references

The DTIF output converter converts external file references stored in the intermediate
representation of the input file but makes no attempt to resolve external references.

Text Input Converter
The Text input converter converts a Text (ISO Latin1) input file to an intermediate representation
that is subsequently converted to the specified output file format. The following list summarizes

74

DCL Commands

the data mapping, conversion restrictions, external file references, and document syntax errors
relevant to the Text input converter:

• Data mapping

The information in the text input file maps directly to an intermediate representation. Line
breaks and form feeds are mapped to DDIF directives. One or more contiguous blank lines are
interpreted as end-of-paragraph markers.

If the text input file was entered as a DEC Multinational character set file on a character-cell
terminal or terminal emulator, the following conversions occur:

Original Character Converted Character
Concurrency sign Diaeresis
Capital OE ligature Multiplication sign
Capital Y with diaeresis Capital Y with acute accent
Small oe ligature Division sign
Small y with diaeresis Y with acute accent

• Conversion restrictions

The text input file does not lose any information when converted to the intermediate
representation because no structure information is contained in a text file.

All nonprinting characters are converted to space characters. For example, characters
introducing ANSI escape characters are converted to space characters. There is no attempt to
interpret ANSI escape sequences.

• External file references

Text files do not contain external file references.

• Document syntax errors

Text files do not contain syntax, so syntax errors are not reported by the Text input converter.

Text Output Converter
The Text output converter converts the intermediate representation of the input file to a Text
output file. The following list summarizes the data mapping and conversion restrictions relevant
to the Text output converter:

• Data mapping

All Latin1 text in the intermediate representation of the input file is converted to the text
output file.

When converting an input file to a text output file, you should be aware that text output files
can contain only textual content and minimal formatting such as line feeds, page breaks, and
tabs. The Text output converter preserves formatting information to the extent possible. Page
coordinates convert to the nearest character cell (line,column) position.

• Conversion restrictions

75

DCL Commands

All graphics, images, and text attributes in the intermediate representation of the input file are
lost when converted to the text output file.

Because a monospace font is used, it is possible that some text may be lost due to overwriting
to preserve the layout. It is also possible that lines can be truncated if the specified page width
is smaller than the page width specified in the document's format information. Neither of these
cases occur when you use the OVERRIDE_FORMAT processing option because, in that case,
the document's format information is ignored.

PostScript Output Converter
The PostScript output converter converts the intermediate representation of the input file to a
PostScript output file. The following list summarizes the data mapping and conversion restrictions
relevant to the PostScript output converter.

• Data mapping

The information in the intermediate representation of the input file maps directly to the
PostScript output file.

• Conversion restrictions

The intermediate representation of the input file does not lose any information when converted
to the PostScript output file.

/MESSAGE_FILE=filespec
/NOMESSAGE_FILE (default)

Turns on message logging for document conversion. Messages output by the input and output
converters are directed to the file specified with filespec. If filespec is not specified, messages are
output to SYS$ERROR. The default is /NOMESSAGE_FILE.

/OPTIONS=options-filename

Specifies a text file that contains processing options applied to the input file and the output file
during the conversion. The default file type for an options file is .CDA$OPTIONS.

Creating the Options File
You can create an options file prior to specifying the CONVERT/DOCUMENT command with
the /OPTIONS qualifier. An options file is a text file with a default file type of .CDA$OPTIONS
on the operating system.

The options file contains all the processing options for your input file format and your output file
format. Processing options help ensure minimal changes when your input file is converted to a
different output file format.

An options file is not required. Default processing options are applied automatically when you
convert a file. However, you may require an options file if you need to use other than the default
settings.

Use the following guidelines to create an options file:

• Begin each line of the options file with the keyword for the input or output format, followed
by one or more spaces or tabs, or by a slash (/).

76

DCL Commands

For some file formats, such as DDIF and DTIF, there is an input converter and an output
converter. You can restrict a processing option to only the input format or the output format by
following the format keyword with _INPUT or _OUTPUT.

• Specify only one processing option on each line when there are several options for the same
input or output format.

• Use uppercase and lowercase alphabetic characters, digits (0-9), dollar signs ($), and
underscores (_) to specify the processing options.

• Use one or more spaces or tabs to precede values specified for a processing option.

The following example is a typical entry in an options file:

PS PAPER_HEIGHT 10

In this example, the extension _OUTPUT is not required for the format keyword because
PostScript is available only as an output format. The value specified for PAPER_HEIGHT is in
inches by default.

If the options file includes options that do not apply to the converters for a particular conversion,
those options are ignored.

If you specify an invalid option for an input or output format or an invalid value for an option,
you receive an error message. The processing options described in the following sections
document any restrictions.

Processing Options for Analysis Output
The Analysis output converter supports the following options:

• COMMENT DEFAULT_VALUES

Inserts a comment character (!) at the beginning of lines generated by default values. (The
comment prefix is also included on associated aggregate brackets and array parentheses where
they may apply.)

• COMMENT INHERITED_VALUES

Inserts a comment character (!) at the beginning of lines generated by inherited values. (The
comment prefix is also included on associated aggregate brackets and array parentheses where
they may apply.)

• TRANSLATE_BYTE_STRINGS

Overrides the default. For data of type BYTE STRING, the analysis output no longer
displays the hexadecimal translation if all the characters in the byte string are printable
characters (hex values 20 through 7E). This feature can be overridden by supplying the
TRANSLATE_BYTE_STRINGS option.

• IMAGE_DATA

Overrides the default. For the special case of byte string data for item DDIF
$_IDU_PLANE_DATA (a bitmapped image), the analysis output previously included both
a hexadecimal and an ASCII translation display, neither of which were of particular value to
most users. With the new version, both displays will be replaced with the following comment:

77

DCL Commands

! *** Bit-mapped data not displayed here ***

To retain the hexadecimal display, supply the IMAGE_DATA option. Even with this option
turned on, there will be no translation into ASCII.

• INHERITANCE

Specifies that the analysis is shown with attribute inheritance enabled. Inherited attributes are
marked as “[Inherited value.]” in the output. This option also causes external references to be
imported into the main document.

Processing Options for Text Output
The Text output converter supports the following options:

• ASCII_FALLBACK [ON,OFF]

Causes the Text output converter to output text in 7-bit ASCII. The fallback representation of
the characters is described in the ASCII standard. If this option is not specified, the default is
OFF; if this option is specified without a value, the default is ON.

• CONTENT_MESSAGES [ON,OFF]

Causes the Text output converter to put a message in the output file each time a nontext
element is encountered in the intermediate representation of the input file. If this option is not
specified, the default is OFF; if this option is specified without a value, the default is ON.

• HEIGHT value

Specifies the maximum number of lines per page in your text output file. If you specify zero,
the number of lines per page will correspond to the height specified in your document. If
you also specify OVERRIDE_FORMAT, or if the document has no inherent page size, the
document is formatted to the height value specified by this option. The default height is 66
lines.

• OVERRIDE_FORMAT [ON,OFF]

Causes the Text output converter to ignore the document formatting information included in
your document, so that the text is formatted in a single large galley per page that corresponds
to the size of the page as specified by the HEIGHT and WIDTH processing options. If this
option is not specified, the default is OFF; if this option is specified without a value, the
default is ON.

• SOFT_DIRECTIVES [ON,OFF]

Causes the Text output converter to obey the soft directives contained in the document when
creating your text output file. If this option is not specified, the default is OFF; if this option is
specified without a value, the default is ON.

• WIDTH value

Specifies the maximum number of columns of characters per page in your text output file.
If you specify zero, the number of columns per page will correspond to the width specified
in your document. If you also specify OVERRIDE_FORMAT, or if the document has no
inherent page size, the document is formatted to the value specified by this processing option.

78

DCL Commands

If any lines of text exceed this width value, the additional columns are truncated. The default
width is 80 characters.

PostScript Output Converter
The PostScript output converter supports the following options:

• PAPER_SIZE size

Specifies the size of the paper to be used when formatting the resulting PostScript output file.
Valid values for the size argument are as follows:

Keyword Size
A0 841 x 1189 millimeters (33.13 x 46.85 inches)
A1 594 x 841 millimeters (23.40 x 33.13 inches)
A2 420 x 594 millimeters (16.55 x 23.40 inches)
A3 297 x 420 millimeters (11.70 x 16.55 inches)
A4 210 x 297 millimeters (8.27 x 11.70 inches)
A 8.5 x 11 inches (216 x 279 millimeters)
B 11 x 17 inches (279 x 432 millimeters)
C 17 x 22 inches (432 x 559 millimeters)
D 22 x 34 inches (559 x 864 millimeters)
E 34 x 44 inches (864 x 1118 millimeters)
LEDGER 11 x 17 inches (279 x 432 millimeters)
LEGAL 8.5 x 14 inches (216 x 356 millimeters)
LETTER 8.5 x 11 inches (216 x 279 millimeters)
LP 13.7 x 11 inches (348 x 279 millimeters)
VT 8 x 5 inches (203 x 127 millimeters)

The A paper size (8.5 x 11 inches) is the default.

• PAPER_HEIGHT height

Specifies a paper size other than one of the predefined values provided. The default paper
height is 11 inches.

• PAPER_WIDTH width

Specifies a paper size other than one of the predefined sizes provided. The default paper width
is 8.5 inches.

• PAPER_TOP_MARGIN top-margin

Specifies the width of the margin provided at the top of the page. The default value is 0.25
inch.

• PAPER_BOTTOM_MARGIN bottom-margin

Specifies the width of the margin provided at the bottom of the page. The default value is 0.25
inch.

79

DCL Commands

• PAPER_LEFT_MARGIN left-margin

Specifies the width of the margin provided on the left-hand side of the page. The default value
is 0.25 inch.

• PAPER_RIGHT_MARGIN right-margin

Specifies the width of the margin provided on the right-hand side of the page. The default
value is 0.25 inch.

• PAPER_ORIENTATION orientation

Specifies the paper orientation to be used in the output PostScript file. The valid values for the
orientation argument are as follows:

Keyword Meaning
PORTRAIT The page is oriented so that the larger dimension is parallel to the vertical axis.
LANDSCAPE The page is oriented so that the larger dimension is parallel to the horizontal

axis.

The default is PORTRAIT.

• EIGHT_BIT_OUTPUT [ON,OFF]

Specifies whether the PostScript output converter should use 8-bit output. The default value is
ON.

• LAYOUT [ON,OFF]

Specifies whether the PostScript output converter processes the layout specified in the DDIF
document. The default value is ON.

• OUTPUT_BUFFER_SIZE output-buffer-size

Specifies the size of the output buffer. The value you specify must be within the range 64 to
256. The default value is 132.

• PAGE_WRAP [ON,OFF]

Specifies whether the PostScript output converter performs page wrapping of any text that
would exceed the bottom margin. The default value is ON.

• SOFT_DIRECTIVES [ON,OFF]

Specifies whether the PostScript output converter processes soft directives in the DDIF file in
order to format output. (Soft directives specify such formatting commands as new line, new
page, and tab.) If the PostScript output converter processes soft directives, the output file will
look more like you intended. The default value is ON.

• WORD_WRAP [ON,OFF]

Specifies whether the PostScript output converter performs word wrapping of any text that
would exceed the right margin. The default value is ON. If you specify OFF, the PostScript
output converter allows text to exceed the right margin.

80

DCL Commands

Domain Converter
You might create an options file containing processing options that apply to any CDA supported
tabular file format for which there is an input converter. Data tables and spreadsheets are
examples of tabular file formats.

To convert tabular input files to document output files, use the DTIF_TO_DDIF format name,
followed by the processing options described in this section. Specify the DTIF_TO_DDIF
processing options in addition to the processing options for a particular tabular input file format
and a particular document output file format.

You might want to convert tabular input files to document output files so that you can include
textual representations of tables in reports and other documents. You should be aware, however,
that you lose cell borders, headers, grid lines, all formulas, and font types when converting a
tabular input file to a document output file.

The domain converter supports the following options:

• COLUMN_TITLE

Displays the column titles as contained in the column attributes centered at the top of the
column.

• CURRENT_DATE

Displays the current date and time in the bottom left corner of the page. The value is formatted
according to the document's specification for a default date and time.

• DOCUMENT_DATE

Displays the document date and time as contained in the document header in the top left
corner of the page. The value is formatted according to the document's specification for a
default date and time.

• DOCUMENT_TITLE

Displays the document title or titles as contained in the document header centered at the top of
the page, one string per line.

• PAGE_NUMBER

Displays the current page number in the top right corner of the page.

• PAPER_SIZE size

Specifies the size of the paper to be used when formatting the resulting PostScript output file.
Valid values for the size argument are as follows:

Keyword Size
A0 841 x 1189 millimeters (33.13 x 46.85 inches)
A1 594 x 841 millimeters (23.40 x 33.13 inches)
A2 420 x 594 millimeters (16.55 x 23.40 inches)
A3 297 x 420 millimeters (11.70 x 16.55 inches)
A4 210 x 297 millimeters (8.27 x 11.70 inches)

81

DCL Commands

Keyword Size
A5 148 x 210 millimeters (5.83 x 8.27 inches)
A 8.5 x 11 inches (216 x 279 millimeters)
B 11 x 17 inches (279 x 432 millimeters)
B4 250 x 353 millimeters (9.84 x 13.90 inches)
B5 176 x 250 millimeters (6.93 x 9.84 inches)
C 17 x 22 inches (432 x 559 millimeters)
C4 229 x 324 millimeters (9.01 x 12.76 inches)
C5 162 x 229 millimeters (6.38 x 9.02 inches)
D 22 x 34 inches (559 x 864 millimeters)
DL 110 x 220 millimeters (4.33 x 8.66 inches)
E 34 x 44 inches (864 x 1118 millimeters)
10x13_ENVELOPE 13 x 254 millimeters (15600 x 10 inches)
9x12_ENVELOPE 12 x 229 millimeters (14400 x 9 inches)
BUSINESS_ENVELOPE 9.5 x 105 millimeters (11400 x 4.13 inches)
EXECUTIVE 10 x 191 millimeters (12000 x 7.5 inches)
LEDGER 11 x 17 inches (279 x 432 millimeters)
LEGAL 8.5 x 14 inches (216 x 356 millimeters)
LETTER 8.5 x 11 inches (216 x 279 millimeters)
LP 13.7 x 11 inches (348 x 279 millimeters)
VT 8 x 5 inches (203 x 127 millimeters)

The A paper size (8.5 x 11 inches) is the default.

• PAPER_HEIGHT height

Specifies a paper size other than one of the predefined values provided. The default paper
height is 11 inches.

• PAPER_WIDTH width

Specifies a paper size other than one of the predefined sizes provided. The default paper width
is 8.5 inches.

• PAPER_TOP_MARGIN top-margin

Specifies the width of the margin provided at the top of the page. The default value is 0.25
inch.

• PAPER_BOTTOM_MARGIN bottom-margin

Specifies the width of the margin provided at the bottom of the page. The default value is 0.25
inch.

• PAPER_LEFT_MARGIN left-margin

Specifies the width of the margin provided on the left side of the page. The default value is
0.25 inch.

82

DCL Commands

• PAPER_RIGHT_MARGIN right-margin

Specifies the width of the margin provided on the right side of the page. The default value is
0.25 inch.

• PAPER_ORIENTATION orientation

Specifies the paper orientation to be used in the output file. The valid values for the
orientation argument are as follows:

Keyword Meaning
PORTRAIT The page is oriented so that the larger dimension is parallel to the vertical axis.
LANDSCAPE The page is oriented so that the larger dimension is parallel to the horizontal

axis.

The default is PORTRAIT.

Example
$ CONVERT/DOCUMENT/OPTIONS=MY_OPTIONS.CDA$OPTIONS -
_$ MY_INPUT.DTIF/FORMAT=DTIF MY_OUTPUT.DDIF/FORMAT=DDIF

This command converts an input file named MY_INPUT.DTIF, which has the DTIF format, to an
output file named MY_OUTPUT.DDIF, which has the DDIF format. The specified options file is
named MY_OPTIONS.CDA$OPTIONS.

CONVERT/RECLAIM
CONVERT/RECLAIM — Invokes the Convert/Reclaim utility, which makes empty buckets in
Prolog 3 indexed files available so that new records can be written in them. The /RECLAIM qualifier
is required. For more information about the Convert/Reclaim utility, see the OpenVMS Record
Management Utilities Reference Manual or online help.

Format
CONVERT/RECLAIM filespec

COPY
COPY — Creates a new file from one or more existing files.

Synopsis
COPY input-filespec[,...] output-filespec

Parameters
input-filespec[,...]

83

DCL Commands

Specifies the name of an existing file to be copied. The asterisk (*) and the percent sign (%) wildcard
characters are allowed. If you do not specify the device or directory, the COPY command uses your
current default device and directory. If you specify more than one file, separate the file specifications
with either commas (,) or plus signs (+).

output-filespec

Specifies the name of the output file into which the input is copied.

You must specify at least one field in the output file specification. If you do not specify the device or
directory, the COPY command uses your current default device and directory. The COPY command
replaces any other missing fields (file name, file type, version number) with the corresponding field
of the input file specification. If you specify more than one input file, the COPY command generally
uses the fields from the first input file to determine any missing fields in the output file.

You can use the asterisk (*) wildcard character in place of any two of the following: the file name, the
file type, or the version number. The COPY command uses the corresponding field in the related input
file to name the output file.

Description
The COPY command creates a new file from one or more existing files. If you do not specify the
device or directory, the COPY command uses your current default device and directory. The COPY
command can do the following:

• Copy an input file to an output file.

• Concatenate two or more input files into a single output file.

• Copy a group of input files to a group of output files.

The COPY command, by default, creates a single output file. When you specify more than one input
file, the first input file is copied to the output file, and each subsequent input file is appended to the
end of the output file. If a field of the output file specification is missing or contains an asterisk (*)
wildcard character, the COPY command uses the corresponding field from the first, or only, input file
to name the output file.

If you specify multiple input files with maximum record lengths, the COPY command gives the
output file the maximum record length of the first input file. If the COPY command encounters a
record in a subsequent input file that is longer than the maximum record length of the output file, it
issues a message noting the incompatible file attributes and begins copying the next file.

To create multiple output files, specify multiple input files and use at least one of the following:

• An asterisk (*) wildcard character in the output directory specification, file name, file type, or
version number field

• Only a node name, a device name, or a directory specification as the output file specification

• The /NOCONCATENATE qualifier

When the COPY command creates multiple output files, it uses the corresponding field from each
input file in the output file name. You also can use the asterisk (*) wildcard character in the output file
specification to have COPY create more than one output file. For example:

$ COPY A.A;1, B.B;1 *.C

84

DCL Commands

This COPY command creates the files A.C;1 and B.C;1 in the current default directory. When you
specify multiple input and output files you can use the /LOG qualifier to verify that the files were
copied as you intended.

Note that there are special considerations for using the COPY command with DECwindows
compound documents. For more information, see the Guide to OpenVMS File Applications.

Version Numbers
If you do not specify version numbers for input and output files, the COPY command (by default)
assigns a version number to the output files that is either of the following:

• The version number of the input file

• A version number one greater than the highest version number of an existing file with the same
file name and file type

When you specify the output file version number by an asterisk (*) wildcard character, the COPY
command uses the version numbers of the associated input files as the version numbers of the output
files.

If you specify the output file version number by an explicit version number, the COPY command uses
that number for the output file specification. If a higher version of the output file exists, the COPY
command issues a warning message and copies the file. If an equal version of the output file exists,
the COPY command issues a message and does not copy the input file.

File Protection and Creation/Revision Dates
The COPY command considers an output file to be new when you specify any portion of the output
file name explicitly. The COPY command sets the creation date for a new file to the current time and
date.

If you specify the output file by one or more asterisk (*) and percent sign (%) wildcard characters, the
COPY command uses the creation date of the input file.

The COPY command always sets the revision date of the output file to the current time and date; it
sets the backup date to zero. The file system assigns the output file a new expiration date. (The file
system sets expiration dates if retention is enabled; otherwise, it sets expiration dates to zero.)

The protection and access control list (ACL) of the output file is determined by the following
parameters, in the following order:

• Protection of previously existing versions of the output file

• Default Protection and ACL of the output directory

• Process default file protection

(Note that the BACKUP command takes the creation and revision dates as well as the file protection
from the input file.)

Use the /PROTECTION qualifier to change the output file protection.

Normally, the owner of the output file will be the same as the creator of the output file; however,
if a user with extended privileges creates the output file, the owner will be the owner of the parent
directory or of a previous version of the output file if one exists.

85

DCL Commands

Extended privileges include any of the following:

• SYSPRV (system privilege) or BYPASS

• System user identification code (UIC)

• GRPPRV (group privilege) if the owner of the parent directory (or previous version of the output
file) is in the same group as the creator of the new output file

• An identifier (with the resource attribute) representing the owner of the parent directory (or the
previous version of the output file)

Copying Directory Files
If you copy a file that is a directory, the COPY command creates a new empty directory of the
named directory. The COPY command does not copy any files from the named directory to the new
directory. See the examples section for examples of copying directory files.

Qualifiers
/ALLOCATION=number-of-blocks

Forces the initial allocation of the output file to the specified number of 512-byte blocks. If you
do not specify the /ALLOCATION qualifier, or if you specify it without the number-of-blocks
parameter, the initial allocation of the output file is determined by the size of the input file being
copied.

/BACKUP

Modifies the time value specified with the /BEFORE or the /SINCE qualifier. The /BACKUP
qualifier selects files according to the dates of their most recent backups. This qualifier is
incompatible with the /CREATED, /EXPIRED, and /MODIFIED qualifiers, which also allow you
to select files according to time attributes. If you specify none of these four time qualifiers, the
default is the /CREATED qualifier.

/BEFORE[=time]

Selects only those files dated prior to the specified time. You can specify time as absolute time,
as a combination of absolute and delta times, or as one of the following keywords: BOOT,
LOGIN, TODAY (default), TOMORROW, or YESTERDAY. Specify one of the following
qualifiers with the /BEFORE qualifier to indicate the time attribute to be used as the basis for
selection: /BACKUP, /CREATED (default), /EXPIRED, or /MODIFIED.

For complete information on specifying time values, see the VSI OpenVMS User's Manual or the
online help topic Date.

/BLOCK_SIZE=n

Overrides the default block size (124) used by COPY. You can specify a value in the range of 1
through 2**31-1.

/BY_OWNER[=uic]

Selects only those files whose owner user identification code (UIC) matches the specified owner
UIC. The default UIC is that of the current process.

86

DCL Commands

Specify the UIC by using standard UIC format as described in the VSI OpenVMS Guide to
System Security.

/CONCATENATE (default)
/NOCONCATENATE

Creates one output file from multiple input files when you do not use the asterisk (*) or percent
sign (%) wildcard characters in the output file specification. The /NOCONCATENATE qualifier
generates multiple output files. A wildcard character in an input file specification results in a
single output file consisting of the concatenation of all input files matching the file specification.

Files from Files-11 On-Disk Structure Level 2 and 5 disks are concatenated in alphanumeric
order. If you specify an asterisk (*) or percent sign (%) wildcard character in the file version field,
files are copied in descending order by version number. Files from Files-11 On-Disk Structure
Level 1 disks are concatenated in random order.

/CONFIRM
/NOCONFIRM (default)

Controls whether a request is issued before each copy operation to confirm that the operation
should be performed on that file. The following responses are valid:

YES NO QUIT
TRUE FALSE Ctrl/Z
1 0 ALL

Return

You can use any combination of uppercase and lowercase letters for word responses. You can
abbreviate word responses to one or more letters (for example, T, TR, or TRU for TRUE), but
these abbreviations must be unique. Affirmative answers are YES, TRUE, and 1. Negative
answers include: NO, FALSE, 0, and pressing Return. Entering QUIT or pressing Ctrl/Z indicates
that you want to stop processing the command at that point. When you respond by entering ALL,
the command continues to process but no further prompts are given. If you type a response other
than one of those in the list, DCL issues an error message and redisplays the prompt.

/CONTIGUOUS
/NOCONTIGUOUS

Specifies that the output file must occupy contiguous physical disk blocks. By default, the COPY
command creates an output file in the same format as the corresponding input file. Also, by
default, if not enough space exists for a contiguous allocation, the COPY command does not
report an error. If you copy multiple input files of different formats, the output file may or may
not be contiguous. You can use the /CONTIGUOUS qualifier to ensure that files are copied
contiguously.

The /CONTIGUOUS qualifier has no effect when you copy files to or from tapes because the size
of the file on tape cannot be determined until after it is copied to the disk. If you copy a file from a
tape and want the file to be contiguous, use the COPY command twice: once to copy the file from
the tape, and a second time to create a contiguous file.

/CREATED (default)

Modifies the time value specified with the /BEFORE or the /SINCE qualifier. The /CREATED
qualifier selects files based on their dates of creation. This qualifier is incompatible with

87

DCL Commands

the /BACKUP, /EXPIRED, and /MODIFIED qualifiers, which also allow you to select files
according to time attributes. If you specify none of these four time qualifiers, the default is
the /CREATED qualifier.

/EXCLUDE=(filespec[,...])

Excludes the specified files from the copy operation. You can include a directory but not a device
in the file specification. The asterisk (*) and the percent sign (%) wildcard characters are allowed
in the file specification; however, you cannot use relative version numbers to exclude a specific
version. If you specify only one file, you can omit the parentheses.

/EXPIRED

Modifies the time value specified with the /BEFORE or the /SINCE qualifier. The /EXPIRED
qualifier selects files according to their expiration dates. (The expiration date is set with the
SET FILE/EXPIRATION_DATE command.) The /EXPIRED qualifier is incompatible with
the /BACKUP, /CREATED, and /MODIFIED qualifiers, which also allow you to select files
according to time attributes. If you specify none of these four time qualifiers, the default is
the /CREATED qualifier.

/EXTENSION=n

Specifies the number of blocks to be added to the output file each time the file is extended. If you
do not specify the /EXTENSION qualifier, the extension attribute of the corresponding input file
determines the default extension attribute of the output file.

/LOG
/NOLOG (default)

Controls whether the COPY command displays the file specifications of each file copied.

When you use the /LOG qualifier, the COPY command displays the following for each copy
operation:

• The file specifications of the input and output files

• The number of blocks or the number of records copied (depending on whether the file is
copied on a block-by-block or record-by-record basis)

• The total number of new files created

/MODIFIED

Modifies the time value specified with the /BEFORE or the /SINCE qualifier. The /MODIFIED
qualifier selects files according to the dates on which they were last modified. This qualifier is
incompatible with the /BACKUP, /CREATED, and /EXPIRED qualifiers, which also allow you
to select files according to time attributes. If you specify none of these four time modifiers, the
default is the /CREATED qualifier.

/OVERLAY
/NOOVERLAY (default)

Requests that data in the input file be copied into the existing specified file, overlaying the
existing data, rather than allocating new space for the file. The physical location of the file on disk
does not change; however, for RMS indexed and relative files, if the output file has fewer blocks
allocated than the input file, the copy fails giving an RMS-E-EOF error.

88

DCL Commands

The /OVERLAY qualifier is ignored if the output file is written to a non-file-structured device.

/PROTECTION= (ownership[:access][,...])

Specifies protection for the output file.

• Specify the ownership parameter as system (S), owner (O), group (G), or world (W).

• Specify the access parameter as read (R), write (W), execute (E), or delete (D).

The default protection, including any protection attributes not specified, is that of the existing
output file. If no output file exists, the current default protection applies.

For more information on specifying protection codes, see the VSI OpenVMS Guide to System
Security.

/READ_CHECK
/NOREAD_CHECK (default)

Reads each record in the input files twice to verify that it has been read correctly.

/REPLACE
/NOREPLACE (default)

Requests that, if a file exists with the same file specification as that entered for the output
file, the existing file is to be deleted. The COPY command allocates new space for the output
file. In general, when you use the /REPLACE qualifier, include version numbers with the file
specifications. By default, the COPY command creates a new version of a file if a file with that
specification exists, incrementing the version number. The /NOREPLACE qualifier signals an
error when a conflict in version numbers occurs.

/SINCE[=time]

Selects only those files dated on or after the specified time. You can specify time as absolute
time, as combination of absolute and delta times, or as one of the following keywords: BOOT,
JOB_LOGIN, LOGIN, TODAY (default), TOMORROW, or YESTERDAY. Specify one of the
following qualifiers with the /SINCE qualifier to indicate the time attribute to be used as the basis
for selection: /BACKUP, /CREATED (default), /EXPIRED, or /MODIFIED.

For complete information about specifying time values, see the VSI OpenVMS User's Manual or
the online help topic Date.

/STYLE=keyword

Specifies the file name format for display purposes.

The valid keywords for this qualifier are CONDENSED and EXPANDED. Descriptions are as
follows:

Keyword Explanation
CONDENSED (default) Displays the file name representation of what is generated to fit into a

255-length character string. This file name may contain a DID or FID
abbreviation in the file specification.

EXPANDED Displays the file name representation of what is stored on disk. This
file name does not contain any DID or FID abbreviations.

89

DCL Commands

The keywords CONDENSED and EXPANDED are mutually exclusive. This qualifier specifies
which file name format is displayed in the output message, along with the confirmation if
requested.

File errors are displayed with the CONDENSED file specification unless the EXPANDED
keyword is specified.

See the VSI OpenVMS User's Manual for more information.

/SYMLINK=keyword
/NOSYMLINK (default)

If the input file is a symbolic link, the file to which the symbolic link refers is the file that is
copied.

The /SYMLINK qualifier indicates that any input symbolic link is copied.

If the file named in the command is a symlink, the command operates on the symlink target. The
valid keywords for this qualifier are [NO]WILDCARD and [NO]ELLIPSIS. Descriptions are as
follows:

Keyword Explanation
NOWILDCARD Indicates that symlinks are disabled during directory wildcard

searches.
WILDCARD Indicates that symlinks are enabled during wildcard searches.
NOELLIPSIS Indicates that symlinks are matched for all wildcard fields except for

ellipsis.
ELLIPSIS Equivalent to WILDCARD (included for command symmetry).

/TRUNCATE (default)
/NOTRUNCATE

Controls whether the COPY command truncates an output file at the end-of-file (EOF) when
copying it. This operation can only be used with sequential files.

By default, the actual size of the input file determines the size of the output file. If you
select /NOTRUNCATE, the allocation of the input file determines the size of the output file.

/VOLUME=n

Places the output file on the specified relative volume number of a multivolume set. By default,
the COPY command places the output file arbitrarily in a multivolume set.

/WRITE_CHECK
/NOWRITE_CHECK (default)

Reads each record in the output file after it is written to verify that the record copied successfully
and that the file can be read subsequently without error.

Note

Some hardware devices, such as TK50 tape drives, verify data integrity as part of their hardware
function. For devices such as these, you do not need to use /WRITE_CHECK. For information about
which devices provide automatic write checking, consult your hardware documentation.

90

DCL Commands

Examples
1. $ COPY TEST.DAT NEWTEST.DAT

In this example, the COPY command copies the contents of the file TEST.DAT from the default
disk and directory to a file named NEWTEST.DAT on the same disk and directory. If a file named
NEWTEST.DAT exists, the COPY command creates a new version of the file.

2. $ COPY ALPHA.TXT TMP
$ COPY ALPHA.TXT .TMP

In this example, the first COPY command copies the file ALPHA.TXT into a file named
TMP.TXT. The COPY command uses the file type of the input file to complete the file
specification for the output file. The second COPY command creates a file named ALPHA.TMP.
The COPY command uses the file name of the input file to name the output file.

3. $ COPY/LOG TEST.DAT NEW.DAT;1/REPLACE
%COPY-I-REPLACED, DKA0:[MAL]NEW.DAT;1 being replaced
%COPY-S-COPIED, DKA0:[MAL]TEST.DAT;1 copied to DKA0:[MAL]NEW.DAT;1 (1
 block)

In this example, the /REPLACE qualifier requests that the COPY command replace an existing
version of the output file with the new file. The first message from the COPY command indicates
that it is replacing an existing file. The version number in the output file must be explicit;
otherwise, the COPY command creates a new version of the file NEW.DAT.

4. $ COPY *.COM [MALCOLM.TESTFILES]

In this example, the COPY command copies the highest versions of files in the current default
directory with the file type .COM to the subdirectory MALCOLM.TESTFILES.

5. $ COPY/LOG *.TXT *.OLD
%COPY-S-COPIED, DKA0:[MAL]A.TXT;2 copied to DKA0:[MAL]A.OLD;2 (1 block)
%COPY-S-COPIED, DKA0:[MAL]B.TXT;2 copied to DKA0:[MAL]B.OLD;2 (1 block)
%COPY-S-COPIED, DKA0:[MAL]G.TXT;2 copied to DKA0:[MAL]G.OLD;2 (4 blocks)
%COPY-S-NEWFILES, 3 files created

In this example, the COPY command copies the highest versions of files with file types .TXT into
new files. Each new file has the same file name as an existing file, but a file type .OLD. The last
message from the COPY command indicates the number of new files that have been created.

6. $ COPY/LOG A.DAT,B.MEM C.*
%COPY-S-COPIED, DKA0:[MAL]A.DAT;5 copied to DKA0:[MAL]C.DAT;11 (1 block)
%COPY-S-COPIED, DKA0:[MAL]B.MEM;2 copied to DKA0:[MAL]C.MEM;24 (58
 records)
%COPY-S-NEWFILES, 2 files created

In this example, the two input file specifications are separated with a comma. The asterisk (*)
wildcard character in the output file specification indicates that two output files are to be created.
For each copy operation, the COPY command uses the file type of the input file to name the
output file.

7. $ COPY/LOG *.TXT TXT.SAV
%COPY-S-COPIED, DKA0:[MAL]A.TXT;2 copied to DKA0:[MAL]TXT.SAV;1 (1
 block)
%COPY-S-APPENDED, DKA0:[MAL]B.TXT;2 appended to DKA0:[MAL]TXT.SAV;1 (3
 records)

91

DCL Commands

%COPY-S-APPENDED, DKA0:[MAL]G.TXT;2 appended to DKA0:[MAL]TXT.SAV;1 (51
 records)
%COPY-S-NEWFILES, 1 file created

In this example, the COPY command copies the highest versions of all files with the file type TXT
to a single output file named TXT.SAV. After the first input file is copied, the messages from the
COPY command indicate that subsequent files are being appended to the output file.

Note that, if you use the /NOCONCATENATE qualifier in this example, the COPY command
creates one TXT.SAV file for each input file. Each TXT.SAV file has a different version number.

8. $ COPY MASTER.DOC DKA1:[BACKUP]

In this example, the COPY command copies the highest version of the file MASTER.DOC to the
device DKA1. If no file named MASTER.DOC exists in the directory [BACKUP], the COPY
command assigns the version number of the input file to the output file. You must have write (W)
access to the directory [BACKUP] on device DKA1 for the command to work.

9. $ COPY SAMPLE.EXE DALLAS::DISK2:[000,000]SAMPLE.EXE/CONTIGUOUS

In this example, the COPY command copies the file SAMPLE.EXE on the local node to a file
with the same name at remote node DALLAS. The /CONTIGUOUS qualifier indicates that the
output file is to occupy consecutive physical disk blocks. You must have write (W) access to the
device DISK2 on remote node DALLAS for the command to work.

10. $ COPY *.* PRTLND::*.*

In this example, the COPY command copies all files within the user directory at the local node to
the remote node PRTLND. The new files have the same names as the input file. You must have
write (W) access to the default directory on remote node PRTLND for the command to work.

11. $ COPY BOSTON::DISK2:TEST.DAT;5
_To: DALLAS"SAM SECReturn"::DISK0:[MODEL.TEST]TEST.DAT/ALLOCATION=50

In this example, the COPY command copies the file TEST.DAT;5 on the device DISK2 at node
BOSTON to a new file named TEST.DAT at remote node DALLAS. The /ALLOCATION
qualifier initially allocates 50 blocks for the new file TEST.DAT at node DALLAS. The access
control string SAM SECReturn is used to access the remote directory.

12. $ MOUNT TAPED1: VOL025 TAPE:
$ COPY TAPE:*.* *

In this example, the MOUNT command requests that the volume labeled VOL025 be mounted on
the magnetic tape device TAPED1 and assigns the logical name TAPE to the device.

The COPY command uses the logical name TAPE as the input file specification, requesting that
all files on the magnetic tape be copied to the current default disk and directory. All the files
copied retain their file names and file types.

13. $ ALLOCATE CR:
 _CR1: ALLOCATED
$ COPY CR1: CARDS.DAT
$ DEALLOCATE CR1:

In this example, the ALLOCATE command allocates a card reader for exclusive use by the
process. The response from the ALLOCATE command indicates the device name of the card
reader, CR1.

92

DCL Commands

After the card reader is allocated, you can place a deck of cards in the reader and enter the COPY
command, specifying the card reader as the input file. The COPY command reads the cards into
the file CARDS.DAT. The end-of-file (EOF) in the card deck must be indicated with an EOF card
(12-11-0-1-6-7-8-9 overpunch).

The DEALLOCATE command relinquishes use of the card reader.

14. $ COPY [SMITH]MONKEY.DIR [JONES]
$ COPY [SMITH.MONKEY]*.* [JONES.MONKEY]*.*

In this example, the COPY command creates the new empty directory [JONES.MONKEY]
that is registered in the [JONES]MONKEY.DIR directory file. After the COPY command
creates the new [JONES]MONKEY.DIR directory file, you can copy or create files in the
[JONES.MONKEY] directory.

The second COPY command in this example copies files from the [SMITH.MONKEY] directory
to the [JONES.MONKEY] directory.

15. $ COPY [SMITH]CATS.DIR [SMITH]DOGS.DIR

In this example, the COPY command creates the new empty directory file, called
[SMITH]DOGS.DIR. Use this copy command to create a directory file that has the same attributes
as the [SMITH]CATS.DIR file. This command example has the same effect as entering the
command:

$ CREATE/DIRECTORY [SMITH.DOGS]

16. $ COPY [SMITH]TIGER.DIR [SMITH.ANIMALS]
$ COPY [SMITH.TIGER]*.* [SMITH.ANIMALS.TIGER]*.*
$ DELETE [SMITH.TIGER]*.*;*
$ SET SECURITY/PROTECTION=(WORLD:DELETE) TIGER.DIR
$ DELETE TIGER.DIR;

In this example, the COPY command creates the new empty directory file called
[SMITH.ANIMALS]TIGER.DIR. The subsequent commands in this example then copy the files
from the [SMITH.TIGER] directory to the [SMITH.ANIMALS.TIGER] directory, then delete the
original TIGER.DIR directory file. Because TIGER.DIR is a directory file, you must specify a
protection code of DELETE before you can delete the directory.

COPY/FTP
COPY/FTP — Transfers files between hosts with possibly dissimilar file systems over a TCP/IP
connection by invoking the FTP utility.

Format
COPY/FTP input-filespec output-filespec

Parameters
input-filespec

Specifies the name of an existing file (the source file) to be copied.

93

DCL Commands

output-filespec

Specifies the name of the output file (the destination file) into which the input file is copied.

Description
The COPY/FTP command copies files to and from remote nodes using the File Transfer Protocol
(FTP). The services provided by this command are a subset of the architectured features of FTP (see
vendor documentation for usage of their supplied FTP program).

For OpenVMS to OpenVMS Transfers

If both machines support OpenVMS structured transfers, the /BINARY, /ASCII, and /FDL qualifiers
will be ignored. The cooperating OpenVMS FTP client and server will automatically transfer the file
with proper OpenVMS attributes.

COPY/FTP commonly supports the asterisk wildcard character (*) in remote file specifications.

Qualifiers
/ANONYMOUS

Causes an anonymous access to the remote node or nodes. /ANONYMOUS is the
default remote access. The password passed to the remote node should be in the form of
"user@fullyqualifiednodename".

/ASCII

Used to identify an ASCII file (text file). /ASCII is the default.

/BINARY

Required to identify binary files.

/FDL

This qualifier is optional. Causes interaction with an FDL (file definition language) file. If the
file is being copied to the local OpenVMS system, are mote FDL file is sought and interpreted
for the operation. If the file is being copied outside the local OpenVMS system, an FDL file is
generated and copied in addition to the requested file. If the /FDL qualifier is specified and the
vendor application does not support it, a warning message may be issued.

/LOG

Displays a message at SYS$OUTPUT when a file is transferred.

/NOSTRUVMS

Used to explicitly disable the negotiation of STRU OpenVMS transfers. Otherwise, some servers
will immediately abort when negotiating the feature.

/PASSIVE=option

Controls whether the FTP client or server initiates the data connection. If you do not specify this
qualifier, the Internet Protocol appropriate value is used. The values are: OFF for IPv4, ON for
IPv6.

94

DCL Commands

The following table describes the /PASSIVE options:

Option Description
OFF The FTP server initiates the data connection.
ON (default) The FTP client initiates the data connection.

This is often used where a firewall between the FTP client and server prevents the
server from making an outbound connection.

ON is the default value only if /PASSIVE is specified.

The underlying TCP/IP Networking product must recognize this qualifier and must support FTP
passive in order for this qualifier to have an effect.

Note that the /PASSIVE qualifier is equivalent to the FTP PASV command.

/VERBOSE
/NOVERBOSE

Specifies whether all messages (including banner messages) are to be displayed on the terminal.
By default, disables the display of the messages.

Examples
1. $ COPY/FTP/FDL/ANON rms_indexed_file.idx -

 remotehst5::"/public/rms.idx.file"

This example transfers the OpenVMS RMS file rms_indexed_file.idx to the remote file
public/rms.idx.file on remotehst5 over a TCP/IP connection. Access to the remote host is
anonymous and an FDL file is generated and copied along with rms_indexed_file.idx.

2. $ COPY/FTP/VERBOSE sys$login:login.com -
 xdelta.zko.dec.com"username password"::sys$login:login.tmp

This example transfers the OpenVMS RMS file sys$login:login.com to the remote file sys
$login:login.tmp over a TCP/IP connection while specifying the user name and password on the
remote system.

3. $ COPY/FTP/LOG RESULTS.LOG -
_To: grad.uq.edu.au"JONES BYRONBAY"::DKA200$:[JONES.DATA]

In this example, the COPY/FTP command copies the file RESULTS.LOG to the file
DKA200$:[JONES.DATA]RESULTS.LOG using the user account JONES, with password
BYRONBAY on node grad, that is located in the uq.edu.au internet domain.

COPY/RCP
COPY/RCP — Copies files from host to host over a TCP/IP connection by invoking the RCP utility.

Format
COPY/RCP input-filespec output-filespec

95

DCL Commands

Parameters
input-filespec

Specifies the name of an existing file (the source file) to be copied.

output-filespec

Specifies the name of the output file (the destination file) into which the input file is copied.

Description
The COPY/RCP command copies one or more files (or directory trees) to or from a remote host using
the RCP utility.

The OpenVMS DCL commands for TCP/IP support the same remote file specification format as
the DCL commands for DECnet network connections. Some implementations of the file transaction
applications support file transfers in which both the source file and the destination file are remote file
specifications.

The full format for a remote file specification is as follows:

node"username password account"::filename.ext

If a file resides on a system other than OpenVMS, enclose the name of the file in quotation marks.
For example, to access a file named /usr/users/user/Orders on a Tru64 UNIX node named U32, you
would use the following format for the file specification:

U32"user password"::"/usr/users/user/Orders"

Note that UNIX ® systems support case sensitive file specifications.

Qualifiers
/AUTHENTICATE

Specifies that Kerberos authentication should be used for acquiring access to the remote node.

/LOG

Displays a message in SYS$OUTPUT when a file is transferred.

/PRESERVE

Preserves the file protection codes.

/RECURSIVE

Requests a subdirectory copy operation.

/TRUNCATE= USERNAME

Truncates the user name to 8 characters.

/USERNAME=username

Optional qualifier that specifies the remote user name. The standard operation is to log in to a
remote system using the same user name as at the local terminal. The command supports quoted
parameters in the /USERNAME value.

96

DCL Commands

Example
$ COPY/RCP local_file.c remotehst4"Smith smpw"::rem_file.c

This example copies local_file.c to rem_file.c on the remote host remotehst4 over a TCP/IP
connection.

COPY/RECORDABLE_MEDIA
COPY/RECORDABLE_MEDIA — The COPY/RECORDABLE_MEDIA (CDDVD) Utility allows
users to create Compact Disk (CD) and Digital Versatile Disk (DVD) media directly on OpenVMS,
using an optional optical disk recorder. CDDVD generates ISO/IEC 10149 Mode 1 (2048-byte blocks,
data) single-session optical media recordings. CDDVD supports the recording of various optical
media formats, including CD Recordable (CD-R), CD Rewritable (CD-RW), DVD Recordable (DVD
+R) and DVD Rewritable (DVD+RW) formats. For a successful recording operation, one or more of
these formats must be available within the target optical disk recording device. Compatible recording
media must also be loaded into the recording device. The COPY/RECORDABLE_MEDIA command
opens the specified input disk image file or input master device and records the entire contents to the
specified CD-R, CD-RW, DVD+R, and DVD+RW media formats.

Format
COPY/RECORDABLE_MEDIA ource-path-name target-path-name

Parameters
input-filespec

Specifies the name of an existing file (the source file) to be copied.

source-path-name

This is the data source for the recording operation.

Specify the name of a disk file containing a disk image to be copied onto the target recording media,
or the device name of the input device containing the disk volume master for the recording.

On OpenVMS systems, this is usually a Logical Disk (LD) Utility LDAu: device.

target-device-name

The device name of the target recordable media device.

This is usually the name of an ATAPI (DQcu:) SCSI (DKcu:), or USB (DNcu:): CD-R/RW or DVD
+R/RW recording device, or both.

Description
The COPY/RECORDABLE_MEDIA command records the entire contents of the specified input
disk image file or input device onto the media loaded into the specified output CD or DVD recording
device.

97

DCL Commands

The output media format is sensed automatically, and the utility automatically configures the
recording appropriately for the particular target device and for the output media that are loaded.

You cannot record more than the capacity of the target media permits. Therefore, you need to select
the size of the input disk image or the master appropriate for the capacity of the target media. The
input data source must also be an even multiple of the sector size on optical media; the size of the
input must be a multiple of four blocks.

The recording operation is independent of the input volume structure or input file data used for the
master, and is based solely on the block-level contents of the specified input master.

Qualifiers
/BELL

Sounds an audible signal when the requested recording operation completes successfully.

/FORMAT[=keyword]
/NOFORMAT (default)

Requests that rewritable (RW) media be formatted or reformatted prior to use. This qualifier is
required for writing to blank rewritable media or rewriting rewritable media.

If the target media cannot be formatted, this command qualifier is ignored.

If not specified, the appropriate keyword is automatically selected for the fastest formatting speed
available for the target recording media.

Keywords for the /FORMAT Qualifier lists available keywords.

Keyword Description
WAIT Applies to DVD+RW. The default for the /FORMAT qualifier is not to wait

for the formatting to complete because waiting is usually unnecessary and far
slower.

Selecting WAIT causes the entire format to run synchronously to completion
before beginning the recording operation.

The default is to:

• Operate asynchronously

• Perform background formatting

• Run both the media format operation and the recording operations
concurrently

ERASE Applies to CD-RW.

The default for the /FORMAT qualifier is to perform a quick erasure because a
full erasure is usually both unnecessary and far slower.

Selecting ERASE causes the CD-RW rewritable disk to be entirely erased as part
of the format operation. This erasure is performed and is completed before the
recording operation begins.

98

DCL Commands

Keyword Description
The default is to perform a quick erasure.

/LOG (default)
/NOLOG

Shows basic device information and the progress of the recording operation. Use /NOLOG to
disable the normal output from the utility.

/SPEED

If you must use the lower-speed or poor-quality CD recording media, the /SPEED qualifier is
often required for successful completion of the recording process. You might need to select a
recording speed below the rated speed of the CD drive itself.

Specifically, you might need to select a recording speed that is compatible with both the CD drive
and the CD recording media loaded in the drive.

The /SPEED qualifier accepts a single keyword for a requested device speed:

• 1X

• 2X

• 4X

• 8X

• 16X

• 32X

• MAXIMUM

The CDDVD utility attempts to match the requested speed to a speed that the device supports.
(Not all devices support all speeds, including the lowest speed, 1X, or the highest speed
available.) The default speed is the maximum speed that the target device supports. DVD+R/RW
drives select the maximum recording speed based on information encoded on the media.

You need to specify this qualifier only under one of the following circumstances:

• When incompatibilities or recording errors are reported during a previous failed recording
operation.

• If the CD media in use has a rated recording speed below the drive default recording settings.

• If CDDVD application, processor, or system I/O perform an constraints exist.

CD drives can select speeds faster than those supported by the particular media loaded in the
drive. VSI recommends that you select only media that match the recording capabilities of the
drive. In other words, do not attempt to exceed the recording speed limits of the particular CD
media. Selecting faster media will not make a slow drive record any faster, and selecting faster
speeds with slow media can trigger recording errors and corrupt media.

If the recording process fails during the recording operation, discard the write-once media and
try a slower recording speed. (Note that you can attempt to reformat and rerecord on rewritable
media.)

99

DCL Commands

/VERIFY

Specifies that the contents of the output media be compared to the contents of the input source
after the recording operation. Any data comparison errors detected are displayed.

/WRITE (default)
/NOWRITE

Allows you to test the system and device I/O throughput and the command syntax without
recording on the target media.

If you specify /NOWRITE and if the target drive supports the underlying test-write hardware
capability, all I/O operates as usual although /NOWRITE disables writing to the media.

/WRITE is the default, and causes the target optical media to be written.

Examples
1. $ $ COPY/RECORDABLE_MEDIA -

$_ [/BELL] -
$_ [/DATA_CHECK=WRITE] -
$_ [/DIAGNOSTICS=(DETAILS,COMMANDS,ALL)] -
$_ [/EXTENSIONS[=(keywords)]] -
$_ [/[NO]LOG] -
$_ [/SPEED={1X|2X|4X|8X|16X|32X|MAXIMUM}] -
$_ source-path-name target-device-name
$

This example shows the generic format of the COPY/RECORDABLE_MEDIA command.

2. $ COPY/RECORDABLE_MEDIA/FORMAT LDA1 DQA1
HP OpenVMS CD-R/RW and DVD+R/RW Utility V1.0-0
Copyright 1976, 2006 Hewlett-Packard Development Company, L.P.
Output device vendor: HP
Output device product name: DVD Writer 740b
Commencing media format operation
Formatting may require up to an hour
Output medium format: DVD+RW
Input data being read from: LDA1:
Input data size: 1200000 blocks
Starting operation at: 15:28:16
16 sectors written
30000 sectors written; estimated completion in 00:06:52; at 15:35:55
37000 sectors written; estimated completion in 00:06:54; at 15:36:07
46000 sectors written; estimated completion in 00:06:36; at 15:36:03
57000 sectors written; estimated completion in 00:06:08; at 15:35:51
71000 sectors written; estimated completion in 00:06:00; at 15:36:04
88000 sectors written; estimated completion in 00:05:26; at 15:35:56
110000 sectors written; estimated completion in 00:04:55; at 15:35:58
137000 sectors written; estimated completion in 00:04:12; at 15:35:56
171000 sectors written; estimated completion in 00:03:14; at 15:35:48
213000 sectors written; estimated completion in 00:02:10; at 15:35:48
266000 sectors written; estimated completion in 00:00:54; at 15:35:50
300000 sectors written; operation completed
Operation completed at: 15:35:47
Elapsed time for operation: 00:07:30
Synchronizing with output device cache

100

DCL Commands

Processing completed

This example demonstrates recording the contents of LDA1:device onto the DVD+RW media
loaded into device DQA1:.

CREATE
CREATE — Creates a sequential disk file or files.

Format
CREATE filespec[,...]

Parameter
filespec[,...]

Specifies the name of one or more input files to be created. Wildcard characters are not allowed. If
you omit either the file name or the file type, the CREATE command does not supply any defaults.
The file name or file type is null. If the specified file already exists, a new version is created.

Description
The CREATE command creates a new sequential disk file. In interactive mode, each separate line that
you enter after you enter the command line becomes are cord in the newly created file. To terminate
the file input, press Ctrl/Z.

When you enter the CREATE command from a command procedure file, the system reads all
subsequent records in the command procedure file into the new file until it encounters a dollar sign ($)
in the first position in are cord. Terminate the file input with a line with a dollar sign in column 1 (or
with the end of the command procedure).

If you use an existing file specification with the CREATE command, the newly created file has a
higher version number than any existing files with the same specification.

If you use the CREATE command to create a file in a logical name search list, the file will only be
created in the first directory produced by the logical name translation.

Normally, the owner of the output file will be the same as the creator of the output file. However,
if a user with extended privileges creates the output file, the owner will be the owner of the parent
directory or any previous versions of the output file.

Extended privileges include any of the following:

• SYSPRV (system privilege) or BYPASS

• System user identification codes (UICs)

• GRPPRV (group privilege) if the owner of the parent directory (or previous version of the output
file) is in the same group as the creator of the new output file

• An identifier (with the resource attribute) representing the owner of the parent directory (or
previous version of the output file)

101

DCL Commands

Qualifiers
/LOG
/NOLOG (default)

Displays the file specification of each new file created as the command executes.

/OWNER_UIC=uic

Requires SYSPRV (system privilege) privilege to specify a user identification code (UIC) other
than your own.

Specifies the UIC to be associated with the file being created. Specify the UIC by using standard
UIC format as described in the VSI OpenVMS User's Manual.

/PROTECTION= (ownership[:access][,...])

Specifies protection for the file.

• Specify the ownership parameter as system (S), owner (O), group (G), or world (W).

• Specify the access parameter as read (R), write (W), execute (E), or delete (D).

If you do not specify a value for each access category, or if you omit the /PROTECTION
qualifier, the CREATE command applies the following protection for each unspecified category:

File Already Exists? Protection Applied
Yes Protection of the existing file
No Current default protection

Note

If you attempt to create a file with no access, the file is created with the system default RMS
protection values. To create a file with no access, use the SET SECURITY/PROTECTION command.

For more information on specifying protection codes, see the VSI OpenVMS Guide to System
Security.

/SYMLINK="text"

Creates a symbolic link containing the specified text without the enclosing quotation marks. If the
created symbolic link is subsequently encountered during any file-name processing, the contents
of the symbolic link are read and treated as a POSIX pathname specification. No previous version
of the symbolic link can exist.

If the path is absolute (that is, it starts with a slash character), RMS attempts to translate its first
field as a logical name.

/VOLUME=n

Places the file on the specified relative volume of a multivolume set. By default, the file is placed
arbitrarily in a multivolume set.

Examples
1. $ CREATE MEET.TXT

102

DCL Commands

John, Residents in the apartment complex will hold their annual
meeting this evening. We hope to see you there, Regards, Elwood
Ctrl/Z

The CREATE command in this example creates a text file named MEET.TXT in your default
directory. The text file MEET.TXT contains the lines that follow until the Ctrl/Z.

2. $ CREATE A.DAT, B.DAT
Input line one for A.DAT...
Input line two for A.DAT...
 .
 .
 .
Ctrl/Z
Input line one for B.DAT...
Input line two for B.DAT...
 .
 .
 .
Ctrl/Z
$

After you enter the CREATE command from the terminal, the system reads input lines into the
sequential file A.DAT until Ctrl/Z terminates the first input. The next set of input data is placed in
the second file, B.DAT. Again, Ctrl/Z terminates the input.

3. $ FILE = F$SEARCH("MEET.TXT")
$ IF FILE .EQS. ""
$ THEN CREATE MEET.TXT
 John, Residents in the apartment complex will hold their annual
 meeting this evening. We hope to see you there, Regards, Elwood
$ ELSE TYPE MEET.TXT
$ ENDIF
$ EXIT

In this example, the command procedure searches the default disk and directory for the file
MEET.TXT. If the command procedure determines that the file does not exist, it creates a file
named MEET.TXT using the CREATE command.

4. $ SET DEFAULT DKA500:[TEST]
$ SET PROCESS /CASE=CASE_LOOKUP=SENSITIVE /PARSE_STYLE=EXTENDED
$ CREATE COEfile.txt
Ctrl/Z
$ CREATE COEFILE.TXT
Ctrl/Z
$ CREATE CoEfIlE.txt
Ctrl/Z
$ DIRECTORY

Directory DKA500:[TEST]
CoEfIlE.txt;
1COEFILE.TXT;
1COEfile.txt;1

In this example, DKA500 is an ODS-5 disk. If your process is set to
CASE_LOOKUP=SENSITIVE and you create more than one file with the same name differing
only in case, DCL treats subsequent files as new files and lists them as such.

103

DCL Commands

CREATE/DIRECTORY
CREATE/DIRECTORY — Creates one or more new directories or subdirectories. The /DIRECTORY
qualifier is required.

Format
CREATE/DIRECTORY directory-spec[,...]

Parameter
directory-spec[,...]

Specifies the name of one or more directories or subdirectories to be created. The directory
specification optionally can be preceded by a device name (and colon [:]). The default is the current
default directory. Wildcard characters are not allowed. When you create a subdirectory, separate the
names of the directory levels with periods (.).

Note that it is possible to create a series of nested subdirectories with a single CREATE/DIRECTORY
command. For example, [a.b.c] can be created, even though neither [a.b] nor [a] exists at the time the
command is entered. Each subdirectory will be created, starting with the highest level and proceeding
downward.

Description
The CREATE/DIRECTORY command creates new directories as well as subdirectories. Special
privileges are needed to create new first-level directories.

Note

Requires write (W) access to the master file directory (MFD) to create a first-level directory. On a
system volume, generally only users with a system user identification code (UIC) or the SYSPRV
(system privilege) or BYPASS user privileges have write (W) access to the MFD to create a first-level
directory.

Requires write (W) access to the lowest level directory that currently exists to create a subdirectory.
Generally, users have sufficient privileges to create subdirectories in their own directories. Use the
SET DEFAULT command to move from one directory to another.

Qualifiers
/ALLOCATION=n

Specifies the initial number of blocks to be allocated to each of the specified directories. The
default allocation is 1 block.

This qualifier is useful for creating large directories, for example MAIL.DIR;1. It can improve
performance by avoiding the need for later dynamic expansion of the directory.

This qualifier does not apply to Files-11 ODS-1, ODS-3, or ODS-4 volumes.

104

DCL Commands

/LOG
/NOLOG (default)

Controls whether the CREATE/DIRECTORY command displays the directory specification of
each directory after creating it.

/OWNER_UIC=option

Requires SYSPRV (system privilege) privilege for a user identification code (UIC) other than
your own.

Specifies the owner UIC for the directory. The default is your UIC. You can specify the keyword
PARENT in place of a UIC to mean the UIC of the parent (next-higher-level) directory. If a user
with privileges creates a subdirectory, by default, the owner of the subdirectory will be the owner
of the parent directory (or the owner of the MFD, if creating a main level directory). If you do not
specify the /OWNER_UIC qualifier when creating a directory, the command assigns ownership
as follows: (1) if you specify the directory name in either alphanumeric or subdirectory format,
the default is your UIC (unless you are privileged, in which case the UIC defaults to the parent
directory); (2) if you specify the directory in UIC format, the default is the specified UIC.

Specify the UIC by using standard UIC format as described in the VSI OpenVMS User's Manual.

/PROTECTION= (ownership[:access][,...])

Specifies protection for the directory.

• Specify the ownership parameter as system (S), owner (O), group (G), or world (W).

• Specify the access parameter as read (R), write (W), execute (E), or delete (D).

The default protection is the protection of the parent directory (the next-higher level directory, or
the master directory for top-level directories) minus any delete (D) access.

If you are creating a first-level directory, then the next-higher-level directory is the MFD. (The
protection of the MFD is established by the INITIALIZE command.)

For more information on specifying protection code, see the VSI OpenVMS Guide to System
Security.

/VERSION_LIMIT[=n]

Sets the maximum number of versions that files in the directory can have. If you do not set a
version limit, a value of 0 is used, indicating that the number of file versions is limited only to
the Files-11 architectural limit of 32,767. If you change the version limit for a directory, the new
version limit applies only to files created after the change has been made. When creating a file,
if the total number of versions of that file name exceeds the specified version limit, then the file
with the lowest version number is deleted from the directory without notification to the user.

The version limit set on a directory has no effect on the version limit set on a particular
file in that directory. To set a version limit on a particular file in a directory, use the SET
FILE/VERSION_LIMIT[=n] command.

To view the version limit on a directory, use the DIRECTORY/FULL command on a directory file
and look at the File Attributes field of the output.

105

DCL Commands

/VOLUME=n

Requests that the directory file be placed on the specified relative volume of a multivolume set.
By default, the file is placed arbitrarily within the multivolume set.

Examples
1. $ CREATE/DIRECTORY/VERSION_LIMIT=2 $DISK1:[ACCOUNTS.MEMOS]

In this example, the CREATE/DIRECTORY command creates a subdirectory named MEMOS in
the ACCOUNTS directory on $DISK1. No more than two versions of each file can exist in the
directory.

2. $ CREATE/DIRECTORY/PROTECTION=(SYSTEM:RWED,OWNER:RWED,GROUP,WORLD) -
_$[KONSTANZ.SUB.HLP]

In this example, the CREATE/DIRECTORY command creates a subdirectory named
[KONSTANZ.SUB.HLP]. The protection on the subdirectory allows read (R), write (W), execute
(E), and delete (D) access for the system and owner categories, but prohibits all access for the
group or world categories.

3. $ CREATE/DIRECTORY DISK2:[GOLDSTEIN]

In this example, the CREATE/DIRECTORY command creates a directory named [GOLDSTEIN]
on the device DISK2. Special privileges are required to create a first-level directory.

4. $ CREATE/DIRECTORY [HOFFMAN.SUB]
$ SET DEFAULT [HOFFMAN.SUB]

In this example, the CREATE/DIRECTORY command creates a subdirectory named
[HOFFMAN.SUB]. This directory file is placed in the directory named [HOFFMAN]. The
command SET DEFAULT [HOFFMAN.SUB] changes the current default directory to this
subdirectory. All files subsequently created are cataloged in [HOFFMAN.SUB].

5. $ CREATE/DIRECTORY [BOAEN.SUB1.SUB2.SUB3]

In this example, the CREATE/DIRECTORY command creates a top-level directory
([BOAEN]) and three subdirectories ([BOAEN.SUB1], [BOAEN.SUB1.SUB2], and
[BOAEN.SUB1.SUB2.SUB3]).

CREATE/FDL
CREATE/FDL — Invokes the Create /FDL utility, which uses the specifications in a File Definition
Language (FDL) file to create a new, empty data file. The /FDL qualifier is required. For more
information about the Create /FDL utility, see the OpenVMS Record Management Utilities Reference
Manual or online help.

Format
CREATE/FDL=fdl-filespec [filespec]

106

DCL Commands

CREATE/MAILBOX (Alpha/Integrity servers
Only)
CREATE/MAILBOX (Alpha/Integrity servers Only) — Creates a virtual mailbox named MBAn and
assigns an I/O channel number to it. The /MAILBOX qualifier is required.

Format
CREATE/MAILBOX logical-name

Parameter
logical-name

Specifies a logical name for the new mailbox. The system creates the mailbox and sets the logical
name to point to it.

Description
The CREATE/MAILBOX command creates a virtual mailbox.

Note

The following privileges are required:

• TMPMBX (temporary mailbox) to create a temporary mailbox (which is the default)

• CMEXEC (change mode to executive) to create a temporary mailbox (which is the default).
Note: This requirement is temporary and will be removed in a future release.

• PRMMBX (permanent mailbox) to create a permanent mailbox (using the /PERMANENT
qualifier)

• SYSNAM (system logical name) to place a logical name for a mailbox in the system logical name
table

• GRPNAM (group logical name) to place a logical name for a mailbox in the group logical name
table

Qualifiers
/BUFFER_SIZE=n

Specifies the number of bytes of system dynamic memory that can be used to buffer messages
sent to the mailbox. If you do not specify /BUFFER_SIZE or specify it as 0, the operating system
provides a default value from the DEFMBXBUFQUO system parameter.

/LOG
/NOLOG (default)

Displays the name of the new mailbox when it is created.

107

DCL Commands

/MESSAGE_SIZE=n

Specifies the maximum size (in bytes) of a message that can be sent to the mailbox. The
maximum value is 65535. If you do not specify /MESSAGE_SIZE or specify the value as 0, the
operating system provides a default value from the DEFMBXMXMSG system parameter.

/PERMANENT

Specifies that the mailbox is to be permanent. By default, mailboxes are temporary.

/PROTECTION= (ownership[:access][,...])

Specifies protection for the mailbox.

• Specify the ownership parameter as system (S), owner (O), group (G), or world (W).

• Specify the access parameter as read (R), write (W), logical I/O (L), or physical I/O (P).

If no protection is specified, the mailbox template is used.

For more information about specifying protection codes, see the VSI OpenVMS Guide to System
Security.

/TEMPORARY (default)

Specifies that the mailbox is temporary. By default, mailboxes are temporary unless you
specify /PERMANENT.

Example
$ CREATE/MAILBOX/PERMANENT/MESSAGE_SIZE=512/LOG MY_MAILBOX
%CREATE-I-CREATED, MBA38: created
$ SHOW DEVICE MBA38/FULL
Device MBA38:, device type local memory mailbox, is online,
 record-oriented device, shareable, mailbox device.

 Error count 0 Operations completed 0
 Owner process "" Owner UIC [SYSTEM]
 Owner process ID 00000000 Dev Prot S:RWPL,O:RWPL,G:RWPL,W:RWPL
 Reference count 0 Default buffer size 512

In this example, a permanent mailbox is created with the logical name MY_MAILBOX. The SHOW
DEVICE command displays the full characteristics of the mailbox.

CREATE/NAME_TABLE
CREATE/NAME_TABLE — Creates a new logical name table. The /NAME_TABLE qualifier is
required.

Synopsis
CREATE/NAME_TABLE table-name

Parameter
table-name

108

DCL Commands

Specifies a string of 1 to 31 characters that identifies the logical name table you are creating. The
string can include alphanumeric characters, the dollar sign ($), and the underscore (_). Table names
must be in uppercase letters; if you specify a name using lowercase letters, it will be converted
to all uppercase. The table name is entered as a logical name in either the process directory
logical name table (LNM$PROCESS_DIRECTORY) or the system directory logical name table
(LNM$SYSTEM_DIRECTORY).

Description
The CREATE/NAME_TABLE command creates a new logical name table. The name of the table is
contained within the LNM$PROCESS_DIRECTORY directory table if the table is process-private,
and within the LNM$SYSTEM_DIRECTORY directory table if the table is shareable.

Every new table has a parent table, which determines whether the new table is process-private or
shareable. To create a process-private table, use the /PARENT_TABLE qualifier to specify the name
of a process-private table (the process directory table). To create a shareable table, specify the parent
as a shareable table.

If you do not explicitly provide a parent table, the CREATE/NAME_TABLE command creates a
process-private table whose parent is LNM$PROCESS_DIRECTORY; that is, the name of the table is
entered in the process directory.

Every table has a size quota. The quota may either constrain the potential growth of the table or
indicate that the table's size can be virtually unlimited. The description of the /QUOTA qualifier
explains how to specify a quota.

To specify an access mode for the table you are creating, use the /USER_MODE,
the /SUPERVISOR_MODE, or the /EXECUTIVE_MODE qualifier. If you specify more than one of
these qualifiers, only the last one entered is accepted. If you do not specify an access mode, then a
supervisor-mode table is created.

To delete a logical name table, use the DEASSIGN command, specify the name of the table you want
to delete, and use the /TABLE qualifier to specify the directory table where the name of the table was
entered.

For more information about logical name tables, see the VSI OpenVMS System Manager's Manual.

Qualifiers
/ATTRIBUTES[=(keyword[,...])]

Specifies attributes for the logical name table. If you specify only one keyword, you can omit the
parentheses. If you do not specify the /ATTRIBUTES qualifier, no attributes are set.

You can specify the following keywords for attributes:

CONFINE Specifies that the table name and the logical names contained in the table
are not copied into a spawned subprocess. This keyword can be used only
when creating a private logical name table. If a table is created with the
CONFINE attribute, all names subsequently entered into the table are also
confined.

NO_ALIAS Specifies that no identical names (either logical names or names of logical
name tables) can be created in an outer (less privileged) mode in the current

109

DCL Commands

directory. Unless you specify the NO_ALIAS attribute, the table can be
“aliased” by an identical name created in an outer access mode. This
attribute deletes any previously created identical table names in an outer
access mode in the same logical name table directory.

SUPERSEDE Creates a new table that supersedes any previous (existing) table that
contains the name, access mode, and directory table that you specify. The
new table is created regardless of whether the previous table exists. (If you
do not specify the SUPERSEDE attribute, the new table is not created if
the previous table exists.) This attribute applies to all types of logical name
tables except clusterwide logical name tables.

Whether or not you specify SUPERSEDE, the following conditions apply:

• You cannot create a new clusterwide logical name table with the same
name and access mode as an existing clusterwide logical name table
until you delete the existing table.

• If you specify a new clusterwide logical name table with the same
name and access mode as an existing local logical name table, the new
clusterwide logical name table is created, and the local table and its
logical names are deleted.

If you specify or accept the default for the qualifier /LOG, you receive a
message indicating the result.

/EXECUTIVE_MODE

Requires SYSNAM (system logical name) privilege.

Creates an executive-mode logical name table. If you specify executive mode, but do not have
SYSNAM privilege, a supervisor-mode logical name table is created.

/LOG (default)
/NOLOG

Controls whether an informational message is generated when the SUPERSEDE attribute is
specified, or when the table already exists but the SUPERSEDE attribute is not specified. The
default is the /LOG qualifier; that is, the informational message is displayed.

/PARENT_TABLE=table

Requires either create (C) access to the parent table and write (W) access to the system directory
or the SYSPRV privilege.

Specifies the name of the parent table. The parent table determines whether a table is
private or shareable; it also determines the size quota of the table. If you do not specify a
parent table, the default table is LNM$PROCESS_DIRECTORY. A shareable table has
LNM$SYSTEM_DIRECTORY as its parent table. The parent table must have the same access
mode or a higher level access mode than the one you are creating.

/PROTECTION= (ownership[:access][,...])

Applies the specified protection to shareable name tables.

• Specify the ownership parameter as system (S), owner (O), group (G), or world (W).

110

DCL Commands

• Specify the access parameter as read (R), write (W), create (C), or delete (D).

For more information on specifying protection codes, see the VSI OpenVMS Guide to System
Security.

The /PROTECTION qualifier affects only shareable logical name tables; it does not affect
process-private logical name tables.

/QUOTA=number-of-bytes

Specifies the size limit of the logical name table. The size of each logical name entered in the new
table is deducted from this size limit. The new table's quota is statically subtracted from the parent
table's quota holder. The parent table's quota holder is the first logical name table encountered
when working upward in the table hierarchy that has an explicit quota and is therefore its own
quota holder. If the /QUOTA qualifier is not specified or the size limit is 0, the parent table's
quota holder becomes the new table's quota holder and space is dynamically withdrawn from it
whenever a logical name is entered in this new table. If the table has no quota holder and you
specify /QUOTA=0, the table has unlimited quota.

/SUPERVISOR_MODE (default)

Creates a supervisor-mode logical name table. If you do not specify a mode, a supervisor-mode
logical name table is created.

/USER_MODE

Creates a user-mode logical name table. If you do not explicitly specify a mode, a supervisor-
mode logical name table is created.

Note

User-mode logical names are automatically deleted when invoking and exiting a command procedure.

Examples
1. $ CREATE/NAME_TABLE TEST_TAB

$ SHOW LOGICAL TEST_TAB
%SHOW-S-NOTRAN, no translation for logical name TEST_TAB
$ SHOW LOGICAL/TABLE=LNM$PROCESS_DIRECTORY TEST_TAB

In this example, the CREATE/NAME_TABLE command creates a new table called TEST_TAB.
By default, the name of the table is entered in the process directory. The first SHOW LOGICAL
command does not find the name TEST_TAB because it does not, by default, search the process
directory table. You must use the /TABLE qualifier to request that the process directory be
searched.

2. $ CREATE/NAME_TABLE/ATTRIBUTES=CONFINE EXTRA
$ DEFINE/TABLE=EXTRA MYDISK DISK4:
$ DEFINE/TABLE=LNM$PROCESS_DIRECTORY LNM$FILE_DEV -
_$ EXTRA, LNM$PROCESS, LNM$JOB, LNM$GROUP, LNM$SYSTEM
$ TYPE MYDISK:[COHEN]EXAMPLE1.LIS

This example creates a new logical name table called EXTRA that is created with the
CONFINE attribute. Therefore, the EXTRA table and the names it contains will not be copied to
subprocesses.

111

DCL Commands

Next, the logical name MYDISK is placed into the table EXTRA. To use the name MYDISK
in file specifications, you must make sure that the table EXTRA is searched when RMS parses
file specifications. To do this, you can define a process-private version of the logical name
LNM$FILE_DEV to include the name EXTRA as one of its equivalence strings. (The system uses
LNM$FILE_DEV to determine the tables to search during logical name translation for device or
file specifications, and will use the process-private version of the logical name before using the
default system version.) After you define LNM$FILE_DEV, the system searches the following
tables during logical name translation: EXTRA, your process table, your job table, your group
table, and the system table. Now, you can use the name MYDISK in a file specification and the
equivalence string DISK4 will be substituted.

CREATE/TERMINAL
CREATE/TERMINAL — Creates a window that emulates another terminal type.

Format
CREATE/TERMINAL [command-string]

Parameter
command-string

Specifies a command string that is to be executed in the context of the created subprocess. You cannot
specify this parameter with the /DETACH or the /NOPROCESS qualifier. The CREATE/TERMINAL
command is used in much the same way as the SPAWN command.

Description

Note

At present, only DECterm windows are available with this command.

The CREATE/TERMINAL command creates a subprocess of your current process. When the
subprocess is created, the process-permanent open files and any image or procedure context are not
copied from the parent process. The subprocess is set to command level 0 (DCL level with the current
prompt).

If you do not specify the /PROCESS qualifier, the name of this subprocess is composed of the same
base name as the parent process and a unique number. For example, if the parent process name is
SMITH, the subprocess name can be SMITH_1, SMITH_2, and so on.

The LOGIN.COM file of the parent process is not executed for the subprocess, because the context
is copied separately, allowing quicker initialization of the subprocess. When the /WAIT qualifier is in
effect, the parent process remains in hibernation until the subprocess terminates and returns control tot
he parent by using the ATTACH command.

You should use the LOGOUT command to terminate the subprocess and return to the parent process.
You can also use the ATTACH command to transfer control of the terminal to another process in the

112

DCL Commands

subprocess tree, including the parent process. (The SHOW PROCESS/SUBPROCESS command
displays the process in the subprocess tree and points to the current process.)

Note

Because a tree of subprocesses can be established using the CREATE/TERMINAL command,
you must be careful when terminating any process in the tree. When a process is terminated,
all the subprocesses below that point in the tree are automatically terminated. For example, the
SPAWN/NOWAIT CREATE/TERMINAL command creates a subprocess that exits as soon as the
DECterm window is created. Once this process exits, the DECterm window disappears. Instead, use
the SPAWN/NOWAIT CREATE/TERMINAL/WAIT command to allow the process to continue.

Qualifiers with the CREATE/TERMINAL command must directly follow the command verb. The
command-string parameter begins after the last qualifier and continues to the end of the command
line.

Qualifiers
/APPLICATION_KEYPAD

Sets the APPLICATION_KEYPAD terminal characteristic in the created terminal window. If
the /APPLICATION_KEYPAD or the /NUMERIC_KEYPAD qualifier is not specified, the
default is to inherit the characteristic from the parent. (See also /NUMERIC_KEYPAD.)

/BIG_FONT

Specifies that the big font (as specified in resource files) be selected when the created terminal
window is initialized. It is an error to specify the /BIG_FONT qualifier in combination
with the /LITTLE_FONT qualifier. If you do not specify either the /BIG_FONT or
the /LITTLE_FONT qualifier, the initial font is the big font.

/BROADCAST
/NOBROADCAST

Determines whether the terminal window is created with broadcast messages enabled. If neither
qualifier is specified, the created terminal window inherits the broadcast characteristic of the
parent.

/CARRIAGE_CONTROL
/NOCARRIAGE_CONTROL

Determines whether carriage-return and line-feed characters are prefixed to the subprocess's
prompt string. By default, the CREATE/TERMINAL command copies the current setting of
the parent process. The CARRIAGE_CONTROL qualifier is used only with the /NODETACH
qualifier.

/CLI=cli-filespec
/NOCLI

Specifies the name of a command language interpreter (CLI) to be used by the subprocess. The
default CLI is the same as that of the parent process (defined in SYSUAF). If you specify the /CLI
qualifier, the attributes of the parent process are copied to the subprocess. The CLI you specify
must be located in SYS$SYSTEM and have the file type .EXE. This qualifier is used only with
the /NODETACH qualifier.

113

DCL Commands

/CONTROLLER=filespec

Specifies the name of the terminal window controller image. This name allows the
CREATE/TERMINAL command to create a window on a variant controller, such as for
a language not supported by the base product. For a DECterm window, the default is
SYS$SYSTEM:DECW$TERMINAL.EXE. The device and directory default to SYS$SYSTEM
and the file type defaults to .EXE.

Note

The “name” field of the file name as returned by $PARSE is used to form the mailbox logical
name. For example, if the file “name” is DECW$TERMINAL, the mailbox logical name will be
DECW$TERMINAL_MAILBOX_node::0.0. For backward compatibility, the controller also defines
a logical name DECW$DECTERM_MAILBOX_host::0.0 to point to the same mailbox.

/DEFINE_LOGICAL=({logname, TABLE=tablename} [,...])

Specifies one or more logical names that are set to the name of the created pseudo terminal
device. Each element in the list is either a logical name or T ABLE= followed by the name of
a logical name table in which all subsequent logical names will be entered. The default is the
process logical name table.

/DETACH
/NODETACH (default)

Determines whether the created terminal process is detached or a subprocess of the current
process. The /DETACH qualifier cannot be used with the command-string parameter.

/DISPLAY=display-name

Specifies the name of the display on which to create the terminal window. If this parameter is
omitted, the DECW$DISPLAY logical name is used.

/ESCAPE
/NOESCAPE

Sets or clears the ESCAPE characteristic of the created terminal window. The default is to inherit
the characteristic of the parent.

/FALLBACK
/NOFALLBACK

Sets or clears the FALLBACK characteristic of the created terminal window. The default is to
inherit the characteristic of the parent.

/HOSTSYNC (default)
/NOHOSTSYNC

Sets or clears the HOSTSYNC characteristic of the created terminal window. The default is to
inherit the characteristic of the parent.

/INPUT=filespec

Specifies an alternate input file or device to use as SYS$INPUT for the new process. The default
is to use the created terminal window for input. This qualifier can be used with or without
the /DETACH qualifier.

114

DCL Commands

/INSERT

Creates the terminal window with insert mode as the default for line editing. If the /INSERT or
the /OVERSTRIKE qualifier is not specified, the default is to inherit the characteristic from the
parent. (See also /OVERSTRIKE.)

/KEYPAD (default)
/NOKEYPAD

Determines whether keypad definitions and the current keypad state are copied from the parent
process. This qualifier is used only with the /NODETACH qualifier.

/LINE_EDITING
/NOLINE_EDITING

Determines whether the terminal window is created with line editing enabled. If neither qualifier
is specified, the created terminal window inherits the line editing characteristic of the parent.

/LITTLE_FONT

Specifies that the little font (as specified in resource files) be selected when the created terminal
window is initialized. It is an error to specify the/LITTLE_FONT qualifier in combination with
the /BIG_FONT qualifier. If you do not specify either the /BIG_FONT or the /LITTLE_FONT
qualifier, the initial font is the big font.

/LOGGED_IN (default)
/NOLOGGED_IN

Determines whether a prompt for a user name and password are supplied (/NOLOGGED_IN) or
the created terminal window is logged in automatically (/LOGGED_IN). This qualifier is used
only with the /DETACH qualifier.

/LOGICAL_NAMES (default)
/NOLOGICAL_NAMES

Determines whether the created terminal window inherits the parent's logical names. This
qualifier is used only with the /NODETACH qualifier.

/NOTIFY
/NONOTIFY (default)

Determines whether a notification message is broadcast to the parent when the created terminal
window exits. This qualifier is used only with the /NODETACH qualifier.

/NUMERIC_KEYPAD

Sets the NUMERIC_KEYPAD terminal characteristic in the created terminal window. If
the /NUMERIC_KEYPAD or the /APPLICATION_KEYPAD qualifier is not specified, the
default is to inherit the characteristic from the parent. (See also /APPLICATION_KEYPAD.)

/OVERSTRIKE

Creates the terminal window with overstrike mode as the default for line editing. If
the /OVERSTRIKE or the /INSERT qualifier is not specified, the default is to inherit the
characteristic from the parent. (See also /INSERT.)

115

DCL Commands

/PASTHRU
/NOPASTHRU

Sets or clears the PASTHRU characteristic in the created terminal window. The default is to
inherit the characteristic of the parent.

/PROCESS (default)
/PROCESS=process-name
/NOPROCESS

Specifies the name of the process or subprocess to be created. The /NOPROCESS qualifier causes
a window to be created without a process. You can log in from this window.

If you specify the /PROCESS qualifier without a process name, a unique process name is assigned
with the same base name as the parent process and a unique number. The default process name
format is username_n. If you specify a process name that already exists, an error message is
displayed. This qualifier is used with either the /DETACH or the /NODETACH qualifier.

/PROMPT=prompt

Specifies the prompt string of the created terminal window. This qualifier is used only with
the /NODETACH qualifier.

/READSYNC
/NOREADSYNC

Sets or clears the READSYNC terminal characteristic in the created terminal window. The default
is to inherit the characteristic from the parent.

/RESOURCE_FILE=filespec

Specifies that the created terminal window use the resource file “filespec” instead of the default
resource file, DECW$USER_DEFAULTS:DECW$TERMINAL_DEFAULT.DAT.

/SYMBOLS (default)
/NOSYMBOLS

Determines whether the subprocess inherits the parent's DCL symbols. This qualifier is used only
with the /NODETACH qualifier.

/TABLE=command-table

Specifies the name of an alternate command table to be used by the subprocess. This qualifier is
used only with the /NODETACH qualifier.

/TTSYNC
/NOTTSYNC

Sets or clears the TTSYNC terminal characteristic in the created terminal window; the default is
to inherit the characteristic of the parent.

/TYPE_AHEAD
/NOTYPE_AHEAD

Sets or clears the TYPE_AHEAD terminal characteristic in the created terminal window. The
default is to inherit the characteristic of the parent.

116

DCL Commands

/WAIT
/NOWAIT (default)

Requires that you wait for the subprocess to terminate before you enter another DCL command.
The /NOWAIT qualifier allows you to enter new commands while the subprocess is running. This
qualifier is used only with the /NODETACH qualifier.

/WINDOW_ATTRIBUTES= (parameter [,...])

Specifies initial attributes for the created terminal window to override the defaults read from the
resource file. These parameters include:

Parameter Description
BACKGROUND The background color.
FOREGROUND The foreground color.
WIDTH The width, in pixels.
HEIGHT The height, in pixels.
X_POSITION The x-position, in pixels.
Y_POSITION The y-position, in pixels.
ROWS The number of rows in the window, in character cells. If the Auto

Resize Window option is enabled, the ROWS and COLUMNS
parameters override the size specified by the WIDTH and HEIGHT
parameters.

COLUMNS The number of columns in the window, in character cells. If the
Auto Resize Window option is enabled, the ROWS and COLUMNS
parameters override the size specified by the WIDTH and HEIGHT
parameters.

INITIAL_STATE The initial state of the window, either ICON or WINDOW.
TITLE A character string specifying the window title.
ICON_NAME A character string specifying the window icon name.
FONT The name of the font to be used in the window. If you specify

the /LITTLE_FONT qualifier, or omit both the /LITTLE_FONT
and /BIG_FONT qualifiers, this overrides the name of the little font
that is set in the resource files; otherwise it overrides the name of the
big font. The font name can be a logical name, and it can be (but does
not have to be) the base font in a complete font set.

Examples
1. $ CREATE/TERMINAL=DECTERM/DETACH -

_$ /DISPLAY=MYNODE::0 -
_$ /WINDOW_ATTRIBUTES=(-
_$ ROWS=36, -
_$ COLUMNS=80, -
_$ TITLE="REMOTE TERMINAL", -
_$ ICON_NAME="REMOTE TERMINAL")

In this example, the command creates a detached process in a DECterm window on node
MYNODE:: that is 36 rows by 80 columns and has its title and icon name set to “Remote
terminal”.

117

DCL Commands

2. $ CREATE/TERMINAL=DECTERM -
$_ /NOPROCESS -
$_ /DEFINE_LOGICAL=(TABLE=LNM$GROUP,DBG$INPUT,DBG$OUTPUT)

In this example, the command creates a DECterm with no associated process. The command
defines DBG$INPUT and DBG$OUTPUT in the group table as the new terminal or the purposes
of debugging a problem with a detached process that is subsequently created.

DEALLOCATE
DEALLOCATE — Makes an allocated device available to other processes (but does not deassign any
logical name associated with the device). DEALLOCATE does not deallocate devices that are in use.

Synopsis
DEALLOCATE device-name[:]

Parameter
device-name[:]

Name of the device to be deallocated. The device name can be a physical device name or a logical
name that is not in use. On a physical device name, the controller defaults to A and the unit to 0. This
parameter is incompatible with the /ALL qualifier.

Qualifier
/ALL

Deallocates all devices currently allocated by your process that are not in use. This qualifier is
incompatible with the device-name parameter.

Examples
1. $ DEALLOCATE DMB1:

In this example, the DEALLOCATE command deallocates unit 1 of the RK06/RK07 devices on
controller B.

2. $ ALLOCATE MT: TAPE
%DCL-I-ALLOC, _MTB1: allocated
 .
 .
 .
$ DEALLOCATE TAPE:

In this example, the ALLOCATE command requests that any magnetic tape drive be allocated and
assigns the logical name TAPE to the device. The response to the ALLOCATE command indicates
the successful allocation of the device MTB1. The DEALLOCATE command specifies the logical
name TAPE to release the tape drive.

3. $ DEALLOCATE/ALL

In this example, the DEALLOCATE command deallocates all devices that are currently allocated.

118

DCL Commands

DEASSIGN
DEASSIGN — Cancels a logical name assignment that was made with one of the following
commands: ALLOCATE, ASSIGN, DEFINE, or MOUNT. The DEASSIGN command also deletes a
logical name table that was created with the CREATE/NAME_TABLE command.

Format
DEASSIGN [logical-name[:]]

Parameter
logical-name[:]

Specifies the logical name to be deassigned. Logical names can have from 1 to 255 characters. If the
logical name contains any characters other than alphanumerics, dollar signs ($), or underscores (_),
enclose it in quotation marks (“ ”). The logical-name parameter is required unless you use the /ALL
qualifier.

If the logical-name parameter ends with a colon (:), the command interpreter ignores the colon. (Note
that the ASSIGN and ALLOCATE commands remove a trailing colon, if present, from a logical
name before placing the name in a logical name table.) If the logical name contains one or more
trailing colons, you must append one additional colon to the DEASSIGN logical-name parameter (for
example, type DEASSIGN FILE:: to deassign the logical name FILE:).

To delete a logical name table, specify the table name as the logical-name parameter. You must also
use the /TABLE qualifier to indicate the logical name directory table where the table name is entered.

Description
The DEASSIGN command cancels a logical name assignment that was made with one of the
following commands: ALLOCATE, ASSIGN, DEFINE, or MOUNT. The DEASSIGN command
also deletes a logical name table that was created with the CREATE/NAME_TABLE command. You
can use the /ALL qualifier with DEASSIGN to cancel all logical names in a specified table. If you
use the /ALL qualifier and do not specify a table, then all names in the process table (except names
created by the command interpreter) are deassigned; that is, all names entered at the indicated access
mode or an outer access mode are deassigned.

To specify the logical name table from which you want to deassign a logical name, use
the /PROCESS, /JOB, /GROUP, /SYSTEM, or /TABLE qualifier. If you enter more than one
of these qualifiers, only the last one entered is accepted. If entries exist for the specified logical
name in more than one logical name table, the name is deleted from only the last logical name
table specified on the command line. If you do not specify a logical name table, the default is
the /TABLE=LNM$PROCESS qualifier.

To delete a shareable logical name, you need write (W) access to the logical name table. To delete a
shareable logical name table, you need write (W) access to the parent table and delete (D) access to
the target logical name table.

To specify the access mode of the logical name you want to deassign, use
the /USER_MODE, /SUPERVISOR_MODE, or /EXECUTIVE_MODE qualifier. If you enter
more than one of these qualifiers, only the last one is accepted. If you do not specify a mode, the

119

DCL Commands

DEASSIGN command deletes a supervisor-mode name. When you deassign a logical name, any
identical names created with outer access modes in the same logical name table are also deleted.

You must have SYSNAM (system logical name) privilege to deassign an executive-mode logical
name.

If you specify the /EXECUTIVE_MODE qualifier and you do not have SYSNAM privilege, then the
DEASSIGN command ignores the qualifier and attempts to deassign a supervisor-mode logical name.

All process-private logical names and logical name tables are deleted when you log out of the system.
User-mode entries within the process logical name table are deassigned when any image exits. The
logical names in the job table, and the job table itself, are deleted when you log off the system.

Names in all other shareable logical name tables remain there until they are explicitly deassigned,
regardless of whether they are user-, supervisor-, or executive-mode names. You must have write (W)
access to a shareable logical name table to delete any name in that table.

If you delete a logical name table, all the logical names in the table are also deleted. Also, any
descendant tables are deleted. To delete a shareable logical name table, you must have delete (D)
access to the table.

Qualifiers
/ALL

Deletes all logical names in the same or an outer (less privileged) access mode. If no logical name
table is specified, the default is the process table, LNM$PROCESS. If you specify the /ALL
qualifier, you cannot enter a logical-name parameter.

/CLUSTER_SYSTEM

You must be signed in to the SYSTEM account or have SYSNAM (system logical name) or
SYSPRV (system) privilege to deassign a clusterwide logical name.

Deassigns a logical name from the LNM$SYSCLUSTER table.

/EXECUTIVE_MODE

Requires SYSNAM (system logical name) privilege to deassign executive-mode logical names.

Deletes only entries that were created in the specified mode or an outer (less privileged) mode. If
you do not have SYSNAM privilege for executive mode, a supervisor-mode operation is assumed.

/GROUP

Requires GRPNAM (group logical name) or SYSPRV privilege to delete entries from the group
logical name table.

Indicates that the specified logical name is in the group logical name table. The /GROUP qualifier
is synonymous with the /TABLE=LNM$GROUP qualifier.

/JOB

Indicates that the specified logical name is in the jobwide logical name table. The /JOB qualifier
is synonymous with the /TABLE=LNM$JOB qualifier. If you do not explicitly specify a logical
name table, the default is the /PROCESS qualifier.

120

DCL Commands

You should not deassign jobwide logical name entries that were made by the system at login
time, for example, SYS$LOGIN, SYS$LOGIN_DEVICE, and SYS$SCRATCH. However, if you
assign new equivalence names for these logical names (that is, create new logical names in outer
access modes), you can deassign the names you explicitly created.

/LOG (default)
/NOLOG

/NOLOG overrides the default /LOG to suppress output of a fatal error that would be returned
if the specified logical name were not found. When you specify /NOLOG, $STATUS is set to
Success instead of to Fatal and no error message is output.

/PROCESS (default)

Indicates that the specified logical name is in the process logical name table. The /PROCESS
qualifier is synonymous with the /TABLE=LNM$PROCESS qualifier.

You cannot deassign logical name table entries that were made by the command interpreter,
for example, SYS$INPUT, SYS$OUTPUT, and SYS$ERROR. However, if you assign new
equivalence names for these logical names (that is, create new logical names in outer access
modes), you can deassign the names you explicitly created.

/SUPERVISOR_MODE (default)

Deletes entries in the specified logical name table that were created in supervisor mode. If you
specify the /SUPERVISOR_MODE qualifier, the DEASSIGN command also deassigns user-
mode entries with the same name.

/SYSTEM

Indicates that the specified logical name is in the system logical name table. The /SYSTEM
qualifier is synonymous with the /TABLE=LNM$SYSTEM qualifier.

/TABLE=name

Specifies the table from which the logical name is to be deleted. Defaults to LNM$PROCESS.
The table can be the process, group, job, or system table, one of the directory tables, or the
name of a user-created table. (The process, job, group, and system logical name tables should
be referred to by the logical names LNM$PROCESS, LNM$JOB, LNM$GROUP, and
LNM$SYSTEM, respectively.)

The /TABLE qualifier also can be used to delete a logical name table. To delete a process-private
table, enter the following command:

$ DEASSIGN/TABLE=LNM$PROCESS_DIRECTORY table-name

To delete a shareable table, enter the following command:

$ DEASSIGN/TABLE=LNM$SYSTEM_DIRECTORY table-name

To delete a shareable logical name table, you must have delete (D) access to the table or write (W)
access to the directory table in which the name of the shareable table is cataloged.

If you do not explicitly specify the /TABLE qualifier, the default is
the /TABLE=LNM$PROCESS qualifier.

121

DCL Commands

/USER_MODE

Deletes entries in the process logical name table that were created in user mode. If you specify
the /USER_MODE qualifier, the DEASSIGN command can deassign only user-mode entries.
Also, user-mode logical names are automatically deleted when invoking and exiting a command
procedure.

Examples
1. $ DEASSIGN MEMO

The DEASSIGN command in this example deassigns the process logical name MEMO.

2. $ DEASSIGN/ALL

The DEASSIGN command in this example deassigns all process logical names that were created
in user and supervisor mode. This command does not, however, delete the names that were placed
in the process logical name table in executive mode by the command interpreter (for example,
SYS$INPUT, SYS$OUTPUT, SYS$ERROR, SYS$DISK, and SYS$COMMAND).

3. $ DEASSIGN/TABLE=LNM$PROCESS_DIRECTORY TAX

The DEASSIGN command in this example deletes the logical name table TAX, and
any descendant tables. When you delete a logical name table, you must specify either
the /TABLE=LNM$PROCESS_DIRECTORY or the /TABLE=LNM$SYSTEM_DIRECTORY
qualifier, because the names of all tables are contained in these directories.

4. $ ASSIGN USER_DISK: COPY
$ SHOW LOGICAL COPY
 "COPY" = "USER_DISK:" (LNM$PROCESS_TABLE)
$ DEASSIGN COPY

The ASSIGN command in this example equates the logical name COPY with the device
USER_DISK and places the names in the process logical name table. The DEASSIGN command
deletes the logical name.

5. $ DEFINE SWITCH: TEMP
$ DEASSIGN SWITCH::

The DEFINE command in this example places the logical name SWITCH: in the process logical
name table. The trailing colon is retained as part of the logical name. Two colons are required on
the DEASSIGN command to delete this logical name because the DEASSIGN command removes
one trailing colon, and the other colon is needed to match the characters in the logical name.

6. $ ASSIGN/TABLE=LNM$GROUP DKA1: GROUP_DISK
$ DEASSIGN/PROCESS/GROUP GROUP_DISK

The ASSIGN command in this example places the logical name GROUP_DISK in the group
logical name table. The DEASSIGN command specifies conflicting qualifiers; because
the /GROUP qualifier is last, the name is successfully deassigned.

7. $ ASSIGN DALLAS::USER_DISK: DATA
 .
 .
 .
$ DEASSIGN DATA

122

DCL Commands

The ASSIGN command in this example associates the logical name DATA with the device
specification USER_DISK on remote node DALLAS. Subsequent references to the logical name
DATA result in references to the disk on the remote node. The DEASSIGN command cancels the
logical name assignment.

DEASSIGN/ QUEUE
DEASSIGN/ QUEUE — Deassigns a logical queue from a printer or terminal queue and stops the
logical queue. The DEASSIGN/QUEUE command cannot be used with batch queues.

Format
DEASSIGN/QUEUE logical-queue-name[:]

Parameter
logical-queue-name[:]

Specifies the name of the logical queue that you want to deassign from a specific printer or terminal
queue.

Description
Once you enter the DEASSIGN/QUEUE command, the jobs in the logical queue remain pending until
the queue is reassigned to another printer queue or device with the ASSIGN/QUEUE command.

Note

Requires manage (M) access to the queue.

Example
$ ASSIGN/QUEUE LPA0 ASTER
 .
 .
 .
$ DEASSIGN/QUEUE ASTER
$ ASSIGN/MERGE LPB0 ASTER

The ASSIGN/QUEUE command in this example associates the logical queue ASTER with the print
queue LPA0. Later, you deassign the logical queue with the DEASSIGN/QUEUE command. The
ASSIGN/MERGE command reassigns the jobs from ASTER to the print queue LPB0.

DEBUG
DEBUG — Invokes the OpenVMS Debugger. For a complete description of the OpenVMS Debugger,
see the VSI OpenVMS Debugger Manual.

123

DCL Commands

Format
DEBUG

Description
To get help on debugger commands from DCL level, type the following command:

$ HELP/LIBRARY=SYS$HELP:DBG$HELP DEBUG

(Heap Analyzer)

The Heap Analyzer provides a graphical representation of memory use in real time. This allows you
to quickly identify inefficient memory usage in your application such as allocations that are made too
often, memory blocks that are too large, fragmentation, or memory leaks.

For details on running the Heap Analyzer from within the debugger, see the VSI OpenVMS Debugger
Manual.

On OpenVMS Integrity servers, the standalone Heap Analyzer is started within the kept debugger
using the START HEAP_ANALYZER command.

On OpenVMS Alpha, the standalone Heap Analyzer is started within the kept debugger using the
RUN/HEAP command.

Qualifiers
/CLIENT

Invokes the DEBUG client Motif interface. From the client, use the network binding string
displayed by the server at startup to establish the connection. The first client to connect to the
server is the primary client, and controls the number of secondary clients allowed to connect to
the server.

/KEEP

Invokes the kept debugger. The kept debugger includes a Run/Rerun capability that allows you to
debug an image multiple times or debug a series of distinct images without exiting the debugger.

Issuing the DEBUG/KEEP command is the only way to invoke the kept debugger.

/RESUME (default)

Reinvokes the non-kept debugger after a Ctrl/Y key sequence has interrupted the execution
of a program you are debugging. (The interrupted program must not have been linked with
a /NOTRACEBACK qualifier on the LINK command.)

If you issue the DEBUG/RESUME command without a previous Ctrl/Y key sequence, no action
occurs.

/SERVER[= ([BINDING_INFO=filespec][,PROTOCOLS=(protocol[,...])])]

Invokes the DEBUG server. The DEBUG server allows up to 30 simultaneous connections from
clients on the same or remote OpenVMS nodes, or from PC nodes running a supported Microsoft
®Windows ® platform.

124

DCL Commands

(Optional) If specified, the BINDING_INFO keyword specifies that the server binding
identification strings are to be written to filespec.If not specified, no file is created.

(Optional) If specified, the PROTOCOLS keyword specifies which network protocols should
be enabled for connection to the DEBUG server. Only the specified protocols are enabled. If not
specified, all protocols are enabled. The protocolargument can be one or more of the following
keywords:

ALL
[NO]DECNET
[NO]TCP_IP
[NO]UDP

The first client to connect to the server is the primary client. A client that connects to the server
after the primary client establishes the connection is a secondary client. The primary client
controls the number of secondary clients allowed to connect to the server.

The server displays a series of RPC binding strings that identify the port numbers through which
the client can connect to the server. The port number appears in square brackets ([]) at the end of
the identification strings.

When connecting from the client, the simplest port identification string consists of the node name
of the server followed by the port number in square brackets. The following are all valid binding
identification strings:

NODNAM[1234]
NCACN_IP_TCP:16.32.16.25[1112]
16.32.16.25[1112]
NCACN_DNET_NSP:63.1004[RPC20A020DD0001]

Note

You must hold the DBG$ENABLE_SERVER identifier in the rights database to be able to run the
debug server. Exercise care when using the debug server. Once a debug server is running, anyone on
the network has the ability to connect to the debug server.

Before granting the DBG$ENABLE_SERVER identifier, the system manager must create it
by entering the command DEBUG/SERVER from an account with write access to the rights
database. The system manager needs to do this only once. The system manager can then run the
Authorize utility to grant the DBG$ENABLE_SERVER identifier to the user's account in the
rights database.

Examples
1. $ FORTRAN/DEBUG/NOOPTIMIZE WIDGET

$ LINK/DEBUG WIDGET
$ RUN WIDGET
 [Debugger Banner and Version]
%DEBUG-I-INITIAL, language is FORTRAN, module set to WIDGET
DBG>

The FORTRAN and LINK commands both specify the /DEBUG qualifier to compile the program
WIDGET.FOR with debugger symbol table information. Because the program has been compiled

125

DCL Commands

and linked with debug information, the debugger is automatically invoked by the image activator
upon starting the program with the RUN command. No program code has yet been executed when
the debugger is invoked.

2. $ FORTRAN/DEBUG/NOOPTIMIZE WIDGET
$ LINK/DEBUG WIDGET
$ RUN/NODEBUG WIDGET
 NAME: NAME: NAME:
^Y
$ DEBUG/RESUME
 [Debugger Banner and Version]
 %DEBUG-I-INITIAL, language is FORTRAN, module set to WIDGET
 DBG>

The FORTRAN and LINK commands both specify the /DEBUG qualifier to compile the program
WIDGET.FOR with debugger symbol table information. The RUN command begins execution
of the image WIDGET.EXE, which loops uncontrollably. Ctrl/Y interrupts the program, and the
DEBUG/RESUME command gives control to the debugger.

3. $ CC/DEBUG/NOOPTIMIZE ECHOARGS
$ LINK/DEBUG ECHOARGS
$ ECHO == "$ sys$disk:[]echoargs.exe"
$ DEBUG/KEEP
 [Debugger Banner and Version]
DBG>
RUN/COMMAND="ECHO"/ARGUMENTS="fa sol la mi"
%DEBUG-I-INITIAL, language is C, module set to ECHOARGS
%DEBUG-I-NOTATMAIN, type GO to get to start of main program
DBG>
 .
 .
 .
DBG>
RERUN/ARGUMENTS="fee fii foo fum"
%DEBUG-I-INITIAL, language is C, module set to ECHOARGS
%DEBUG-I-NOTATMAIN, type GO to get to start of main program
DBG>
 .
 .
 .
DBG> RUN/ARGUMENTS="a b c" ECHOARGS
%DEBUG-I-INITIAL, language is C, module set to ECHOARGS
%DEBUG-I-NOTATMAIN, type GO to get to start of main program
DBG>

The CC and LINK commands both specify the /DEBUG qualifier to compile the program
ECHOARGS.C with debugger symbol table information.

The symbol definition command defines a foreign command for use during the debugging session.

The DEBUG/KEEP command invokes the kept debugger.

The first RUN command uses the /COMMAND qualifier to specify a foreign command to invoke
the image file and the /ARGUMENTS qualifier to specify a string of arguments.

The RERUN command reinvokes the same image file and uses the /ARGUMENTS qualifier to
specify a new string of arguments.

126

DCL Commands

The second RUN command specifies a new image file and a new string of arguments.

On Integrity server systems, start the Heap Analyzer within the kept debugger:

4. $ debug/keep
DBG> run/heap 8queens

or, alternately:

5. $ debug/keep
DBG> run 8queens
 .
 .
 .
DBG> deactivate break/all
DBG> deactivate watch/all
DBG> deactivate trace/all
DBG> start heap_analyzer
DBG> activate break/all
DBG> activate watch/all
DBG> activate trace/all

Using this method, you must first deactivate all watch points, breakpoints, and trace points before
starting the heap analyzer with the START HEAP_ANALYZER command. This procedure
prevents a potential race condition from occurring. After starting the heap analyzer, re-activate the
breakpoints, watch points, and trace points.

On Alpha systems, start the Heap Analyzer within the kept debugger:

6. $ debug/keep
DBG> run/heap 8queens

7. $ DEBUG/SERVER=(PROTOCOLS=(TCP_IP,DECNET))
%DEBUG-I-SPEAK: TCP/IP: YES, DECnet: YES, UDP: NO
%DEBUG-I-WATCH: Network Binding: ncacn_ip_tcp:16.32.16.25[1112]
%DEBUG-I-WATCH: Network Binding: ncacn_dnet_nsp:63.1004[RPC20A020DD0001]
%DEBUG-I-AWAIT: Ready for client connection...

The DEBUG/SERVER command establishes a connection to the debug server, requesting network
protocols TCP/IP and DECnet. Note that the binding strings are saved in file TEMP.TMP. You can
use the TYPE command to display the contents of TEMP.TMP.

DECK
DECK — Marks the beginning of an input stream for a command or program.

Format
DECK

Description
The DECK command marks the data that follows it as input for a command or program. The DECK
command can be used only after a request to execute a command or program that requires input data.

127

DCL Commands

In command procedures, this command is required when the first nonblank character in any data
record in the input stream is a dollar sign. Also in command procedures, the DECK command must be
preceded by a dollar sign; the dollar sign must be in the first character position (column 1) of the input
record.

The DECK command defines an end-of-file (EOF) indicator only for a single data stream. Using the
DECK command enables you to place data records beginning with dollar signs in the input stream.
You can place one or more sets of data in the input stream following a DECK command, if each is
terminated by an EOF indicator.

After an EOF indicator specified with the /DOLLARS qualifier is encountered, the EOF indicator is
reset to the default, that is, to any record beginning with a dollar sign. The default is also reset if an
actual EOF indicator occurs for the current command level.

Qualifier
/DOLLARS[=string]

Sets the EOF indicator to the specified string of 1 to 15 characters. Specify a string if the
input data contains one or more records beginning with the string $EOD. Enclose the string in
quotation marks (“ ”) if it contains literal lowercase letters, multiple blanks, or tabs. If you do not
specify /DOLLARS or if you specify /DOLLARS without specifying a string, you must use the
EOD command to signal the end-of-file (EOF).

Note

A single dollar sign is not allowed as the end-of-deck or file indicator.

Examples
1.

128

DCL Commands

In this example, the Fortran and LINK commands compile and link program A. When the
program is run, any data the program reads from the logical device SYS$INPUT is read from the
command stream. The DECK command indicates that the input stream can contain dollar signs in
column 1 of the record. The EOD command signals end-of-file (EOF) for the data.

2.

The CREATE command in this example creates the command procedure file TEST.COM from
lines entered into the input stream. The DECK/DOLLARS command indicates that the percent
sign (%) is the EOF indicator for the CREATE command. This allows the string $EOD to be read
as an input record, signaling the end of the input for the RUN command.

DECRYPT
DECRYPT — Decrypts files previously encrypted with the ENCRYPT command. DES is the default
algorithm unless otherwise specified with the /KEY_ALGORITHM qualifier. The key specified must
match the algorithm (DES or AES), and the same key is used to decrypt as was used to encrypt; a
symmetric key algorithm.

129

DCL Commands

Format
DECRYPT input-file key-name [qualifiers]

Parameters
input-file

File names of the files to decrypt. If you use wildcard characters, do not include directory files or files
with bad blocks.

key-name

Key name that was previously stored in the key storage table by the ENCRYPT /CREATE_KEY
command.

Qualifiers
/BACKUP[=time]

Selects files according to the dates of their most recent backup.

This qualifier is relevant only when used with the /BEFORE or the /SINCE qualifier. In addition,
do not use /BACKUP with /EXPIRED or /MODIFIED.

If you omit time, TODAY is used. For more information on time specifications, see the VSI
OpenVMS User's Manual.

/BEFORE[=time]

Selects files that have a creation time before the time you specify.

If you omit time, TODAY is used. For more information on time specifications, see the VSI
OpenVMS User's Manual.

/BY_OWNER[=uic]
/NOBY_OWNER

Selects files with the owner UIC you specify.

If you omit uic, the UIC of the current process is used. For more information on specifying UIC
format, see the VSI OpenVMS User's Manual.

/CONFIRM
/NOCONFIRM

Controls whether or not a confirmation request is displayed before each decryption, as follows:

Response Meaning
YES Decrypts the file
NO or Return Does not decrypt the file (default)
QUIT or Ctrl/Z Does not decrypt the file or any subsequent files
ALL Decrypts the file plus all subsequent files

130

DCL Commands

/DELETE
/NODELETE (default)

Controls whether or not the input files are deleted after the decryption operation is complete and
the output file is written and closed.

/ERASE
/NOERASE

Controls whether or not the input files are erased with the data security pattern before being
deleted. By default, the location in which the data was stored is not overwritten with the data
security pattern. The /ERASE qualifier must be used with /DELETE.

/EXCLUDE=file-spec
/NOEXCLUDE

Excludes the specified files from the decryption operation. You can use wildcard characters. You
do not need to enter an entire file specification. Any field that you omit defaults to the input file
specification.

Because directory files are never encrypted, you need not specify them.

/EXPIRED[=time]

Selects files according to the dates on which they expire.

This qualifier is relevant only when used with the /BEFORE or the /SINCE qualifier. In addition,
do not use /EXPIRED with /BACKUP or /MODIFIED.

If you omit time, TODAY is used. For more information on time specifications, see the VSI
OpenVMS User's Manual.

/KEY_ALGORITHM=

1. DESCBC (default)

2. AESmmmkkk

Where mmm is the mode CBC, ECB, CFB, or OFB; and kkk is 128, 192, or 256 bits. Cipher
Block Chaining (CBC) and Electronic Code Book (ECB) are 16-byte block modes, meaning
blocks are padded to 16 bytes if necessary during encryption. The padding is removed during
decryption. Cipher Feedback (CFB) and Output Feedback (OFB) are 8-bit character stream
mode emulation, useful in data communications and where no padding is required. Note
that /KEY_ALGORITHM=AES is a shortcut for specifying AESCBC128.

The algorithm by which the random key and the initialization vector are protected within the
encrypted file. Specify the same algorithm (AES or DES) that you used to encrypt the file and
create the key, if not, the default is DESCBC.

/MODIFIED[=time]

Selects files according to the dates on which they were last modified.

This qualifier is relevant only when used with the /BEFORE or the /SINCE qualifier. In addition,
do not use /MODIFIED with /BACKUP or /EXPIRED.

If you omit time, TODAY is used. For more information on time specifications, see the VSI
OpenVMS User's Manual.

131

DCL Commands

/OUTPUT=file-spec

Alternate output file name for the decryption operation.

By default, each input file decrypted is written to a separate output file that is one version higher
than that of the input file. When using the /OUTPUT qualifier, specify the parts of the file
specification different from the defaults. You do not need to provide an entire file specification.
Any field that you omit defaults to the input file specification.

/SHOW=(keyword-list)

Controls whether or not the following information about the decryption operation is displayed on
SYS$COMMAND:

Keyword Meaning
FILES Displays input and output file names on SYS$COMMAND
STATISTICS Displays the encryption stream statistics:

• Bytes processed

• Internal records processed

• CPU time consumed within the encryption algorithm

/SINCE[=time]

Selects files that have a creation date before the time you specify.

If you omit time, TODAY is used. For more information on time specifications, see the VSI
OpenVMS User's Manual.

/STATISTICS

Similar to /SHOW, except that /STATISTICS lists both files and statistics, whereas /SHOW can
be customized to list only one or the other.

Examples
1. $ DECRYPT BOSTON MYKEY

Decrypts the file name BOSTON using the DES key, MYKEY, and the DESCBC algorithm.

2. $ DECRYPT CHIGAGO.ENC KEY2 /KEY=AESECB256 /OUT=CHICAGO.DEC

Decrypts the file named CHICAGO.ENC using the AES key, KEY2, and the AESECB256
algorithm, renaming the decrypted output file to CHICAGO.DEC, the original plain text file.

DEFINE
DEFINE — Associates an equivalence name with a logical name.

Format
DEFINE logical-name equivalence-name[,...]

132

DCL Commands

Parameters
logical-name

Specifies the logical name string, which is a character string containing from 1 to 255 characters. The
following rules apply:

• If the logical name is to be entered into the process or system directory logical name tables
(LNM$PROCESS_DIRECTORY, LNM$SYSTEM_DIRECTORY), then the name can only have
from 1 to 31 alphanumeric characters, including the dollar sign ($) and underscore (_). If the
logical name translates to a logical name table name, any alphabetic characters in the name should
all be uppercase.

• If you specify a colon (:) at the end of a logical name, the DEFINE command saves the colon as
part of the logical name. (This is in contrast to the ASSIGN command, which removes the colon
before placing the name in a logical name table.) By default, the logical name is placed in the
process logical name table.

• If the string contains any characters other than uppercase alphanumerics, the dollar sign, or the
underscore character, enclose the string in quotation marks (“ ”). Use two sets of quotation marks
(“‘ ’”) to denote actual quotation marks. When you enclose a name in quotation marks, the case of
alphabetic characters is preserved.

equivalence-name[,...]

Specifies a character string containing from 1 to 255 characters. The following rules apply:

• If the string contains any characters other than uppercase alphanumerics, the dollar sign, or the
underscore character, enclose the string in quotation marks. Use two sets of quotation marks to
denote an actual quotation mark. Specifying more than one equivalence name for a logical name
creates a search list. A logical name can have a maximum of 128 equivalence names.

• When you specify an equivalence name that will be used as a file specification, you must include
the punctuation marks (colons, brackets, periods) that would be required if the equivalence
name were used directly as a file specification. Therefore, if you specify a device name as an
equivalence name, you must terminate the equivalence name with a colon.

The DEFINE command allows you to assign multiple equivalence names to a single logical name.
For example, you can use the same logical name to access different directories on different disks or to
access different files in different directories.

Description
The DEFINE command creates a logical name that represents one or more equivalence names. An
equivalence name can be a device name, another logical name, a file specification, or any other string.

You can limit the use of a logical name to a process, a job, a group, an entire system, or an entire
OpenVMS Cluster system. How you use a logical name depends on the table you created in it. You
can specify a table with one of the following qualifiers: /PROCESS, /JOB, /GROUP, /SYSTEM,
or /TABLE.

The first four qualifiers represent the process, job, group, or system logical name tables, respectively,
whereas the /TABLE qualifier is used to specify any type of table. Furthermore, the /TABLE qualifier
is the only one to use when specifying a clusterwide logical name table.

133

DCL Commands

If you enter more than one of the qualifiers, only the last one entered is accepted. If you do not specify
a table with one of the qualifiers, the logical name is added to your process logical name table.

To specify the access mode of the logical name you are creating, use the /USER_MODE,
the /SUPERVISOR_MODE, or the /EXECUTIVE_MODE qualifier. If you enter more than one
of these qualifiers, only the last one entered is accepted. If you do not specify an access mode, a
supervisor-mode name is created. You can create a logical name in the same mode as the table in
which you are placing the name, or in an outer mode. (User mode is the outermost mode; executive
mode is the innermost mode.)

You can enter more than one logical name with the same name in the same table, as long as each name
has a different access mode. (However, if an existing logical name within a table has the NO_ALIAS
attribute, you cannot use the same name to create a logical name in an outer mode in this table.)

If you create a logical name with the same name, in the same table, and in the same mode as an
existing name, the new logical name assignment replaces the existing assignment.

You can also use the ASSIGN command to create logical names. To delete a logical name from a
table, use the DEASSIGN command.

Note

Avoid assigning a logical name that matches the file name of an executable image in SYS$SYSTEM:.
Such an assignment prohibits you from invoking that image.

To create a logical name with no equivalence name (and therefore no indices), use the $CRELNM
system service.

If you want to specify an ODS-5 file name as an equivalence name, see the VSI OpenVMS System
Manager's Manual, Volume 1: Essentials.

For a complete description of logical names and logical name tables, except for their use in
applications, see the VSI OpenVMS User's Manual. For the use of logical names in applications, see
the VSI OpenVMS Programming Concepts Manual. For managing clusterwide logical names, see the
VSI OpenVMS Cluster Systems manual. In this manual, see also the description of the lexical function
F$TRNLNM, which is used to translate logical names.

Qualifiers
/CLUSTER_SYSTEM

You must be signed in to the SYSTEM account or have SYSNAM (system logical name) or
SYSPRV (system) privilege to use this qualifier.

Defines a clusterwide logical name in the LNM$SYSCLUSTER table.

/EXECUTIVE_MODE

Requires SYSNAM (system logical name) privilege to create an executive-mode logical name.

Creates an executive-mode logical name in the specified table.

If you specify the /EXECUTIVE_MODE qualifier and you do not have SYSNAM privilege, the
DEFINE command ignores the qualifier and creates a supervisor-mode logical name. The mode
of the logical name must be the same or less privileged than the mode of the table in which you
are placing the name.

134

DCL Commands

/GROUP

Requires GRPNAM (group logical name) or SYSNAM (system logical name) privilege to place a
name in the group logical name table.

Places the logical name in the group logical name table. Other users who have the same group
number in their user identification codes (UICs) can access the logical name. The /GROUP
qualifier is synonymous with the /TABLE=LNM$GROUP qualifier.

/JOB

Places the logical name in the jobwide logical name table. All processes in the same job tree
as the process that created the logical name can access the logical name. The /JOB qualifier is
synonymous with the /TABLE=LNM$JOB qualifier.

/LOG (default)
/NOLOG

Displays a message when a new logical name supersedes an existing name.

/NAME_ATTRIBUTES[= (keyword[,...])]

Specifies attributes for a logical name. By default, no attributes are set. Possible keywords are as
follows:

CONFINE The logical name is not copied into a spawned subprocess. This qualifier is
relevant only for logical names in a private table.

The logical name inherits the CONFINE attribute from the logical name
table where it is entered; if the logical name table is “confined,” then all
names in the table are “confined.”

NO_ALIAS A logical name cannot be duplicated in the specified table in a less
privileged access mode; any previously created identical names in an outer
(less privileged) access mode within the specified table are deleted.

If you specify only one keyword, you can omit the parentheses. Only the attributes you specify
are set.

/PROCESS (default)

Places the logical name in the process logical name table. The /PROCESS qualifier is
synonymous with the /TABLE=LNM$PROCESS qualifier.

/SUPERVISOR_MODE (default)

Creates a supervisor-mode logical name in the specified table. The mode of the logical name must
be the same as or less privileged than the mode of the table in which you are placing the name.

/SYSTEM

Requires write (W) access or SYSNAM (system logical name) privilege to place a name in the
system logical name table.

Places the logical name in the system logical name table. All system users can access the logical
name. The /SYSTEM qualifier is synonymous with the /TABLE=LNM$SYSTEM qualifier.

135

DCL Commands

/TABLE=name

Requires write (W) access to the table to specify the name of a shareable logical name table.

Specifies the name of the logical name table in which the logical name is to be entered. You can
use the /TABLE qualifier to specify a user-defined logical name table (created with the CREATE/
NAME_TABLE command); to specify the process, job, group, system, or clusterwide logical
name tables; or to specify the process or system logical name directory tables.

If you specify the table name using a logical name that has more than one translation, the logical
name is placed in the first table found. For example, if you specify DEFINE/TABLE=LNM
$FILE_DEV and LNM$FILE_DEV is equated to LNM$PROCESS, LNM$JOB, LNM$GROUP,
and LNM$SYSTEM, then the logical name is placed in LNM$PROCESS.

The default is the /TABLE=LNM$PROCESS qualifier.

/TRANSLATION_ATTRIBUTES [=(keyword[,...])]

Equivalence-name qualifier.

Specifies one or more attributes that modify an equivalence string of the logical name. Possible
keywords are as follows:

CONCEALED Indicates that the equivalence string is the name of a concealed device.
When a concealed device name is defined, the system displays the logical
name, rather than the equivalence string, in messages that refer to the
device.

TERMINAL Logical name translation should terminate with the current equivalence
string; indicates that the equivalence string should not be translated
iteratively.

If you specify only one keyword, you can omit the parentheses. Only the attributes you specify
are set.

Note that different equivalence strings of a logical name can have different translation attributes.

/USER_MODE

Creates a user-mode logical name in the specified table.

User-mode logical names created within the process logical name tables are used for the
execution of a single image; for example, you can create a user-mode logical name to allow an
image executing in a command procedure to redefine SYS$INPUT. User-mode entries are deleted
from the process logical name table when any image executing in the process exits (that is, after
a DCL command or user program that executes an image completes execution). Also, user-mode
logical names are automatically deleted when invoking and exiting a command procedure.

Examples
1. $ DEFINE/USER_MODE TM1 $DISK1:[ACCOUNTS.MEMOS]WATER.TXT

In this example, the DEFINE command defines TM1 as equivalent to a file specification. After the
next image runs, the logical name TM1 is automatically deassigned.

2. $ DEFINE CHARLIE XXX1:[CHARLES]
$ PRINT CHARLIE:TEST.DAT

136

DCL Commands

Job 274 entered on queue SYS$PRINT

In this example, the DEFINE command associates the logical name CHARLIE with the
directory name [CHARLES] on the disk XXX1. The PRINT command queues a copy of the file
XXX1:[CHARLES]TEST.DAT to the system printer.

3. $ DEFINE PROCESS_NAME LIBRA
$ RUN WAKE

In this example, the DEFINE command places the logical name PROCESS_NAME in the process
logical name table with an equivalence name of LIBRA. The logical name is created in supervisor
mode. The program WAKE translates the logical name PROCESS_NAME to perform some
special action on the process named LIBRA.

4. $ DEFINE TEMP: XXX1:
 .
 .
 .
$ DEASSIGN TEMP::

In this example, the DEFINE command creates an equivalence name for the logical name TEMP:
and places the name in the process logical name table. The colon is retained as part of the logical
name. The DEASSIGN command deletes the logical name. Note that two colons are required on
the logical name in the DEASSIGN command. One colon is deleted by the DEASSIGN command.
The other colon is kept as part of the logical name.

5. $ DEFINE PORTLAND PRTLND::YYY0:[DECNET.DEMO.COM]

In this example, the DEFINE command places the logical name PORTLAND in the process
logical name table with an equivalence name of PRTLND::YYY0:[DECNET.DEMO.COM].
Subsequent references to the logical name PORTLAND result in the correspondence between the
logical name PORTLAND and the node, disk, and subdirectory specified.

6. $ DEFINE LOCAL "BOSTON""JAY_SABLE JKS""::"

In this example, the DEFINE command places the logical name LOCAL in the process logical
name table with a remote node equivalence name of BOSTON"JAY_SABLE JKS"::. To satisfy
conventions for local DCL command string processing, you must use three sets of quotation
marks. The quotation marks ensure that access control information is enclosed in one set of
quotation marks in the equivalence name.

7. $ DEFINE MYDISK XXX0:[MYDIR], YYY0:[TESTDIR]

In this example, the DEFINE command places the logical name MYDISK in the process logical
name table with two equivalence names: XXX0:[MYDIR] and YYY0:[TESTDIR].

8. $ DEFINE/TABLE=LNM$CLUSTER_TABLE FIRENZE FIRENZE::FIESOLE:[ETRUSCAN]

In this example, the DEFINE command equates FIRENZE to the directory specification
FIRENZE::FIESOLE:[ETRUSCAN] and places both the new logical name (FIRENZE) and its
equivalence string (FIRENZE::FIESOLE:[ETRUSCAN]) in the default clusterwide table. The
new logical name is automatically propagated to all nodes in the cluster.

9. $ CREATE/NAME_TABLE TABLE1
$ DEFINE/TABLE=LNM$PROCESS_DIRECTORY LNM$FILE_DEV -
_$ TABLE1,LNM$PROCESS,LNM$JOB,LNM$GROUP,LNM$SYSTEM
$ DEFINE/TABLE=TABLE1 -

137

DCL Commands

_$ /TRANSLATION_ATTRIBUTES=CONCEALED WORK_DISK DKA1:

In this example, the CREATE/NAME_TABLE command creates the process private logical name
table TABLE1.

The first DEFINE command ensures that TABLE1 is searched first in any logical name translation
of a device or file specification (because TABLE1 is the first item in the equivalence string for the
logical name LNM$FILE_DEV, which determines the default search sequence of logical name
tables whenever a device or file specification is translated).

The second DEFINE command assigns the logical name WORK_DISK to the physical device
DKA1 and places the name in TABLE1. The logical name has the concealed attribute. Therefore,
the logical name WORK_DISK is displayed in system messages.

10. $ CREATE/NAME_TABLE SPECIAL
$ DEFINE/TABLE=LNM$PROCESS_DIRECTORY LNM$FILE_DEV -
_$ SPECIAL,LNM$PROCESS,LNM$JOB,LNM$GROUP,LNM$SYSTEM
$ DEFINE/TABLE=LNM$PROCESS_DIRECTORY TAB SPECIAL
$ DEFINE/TABLE=TAB REPORT [CHELSEA]STORES
$ SHOW LOGICAL/TABLE=SPECIAL REPORT
 "REPORT" = "[CHELSEA]STORES" (SPECIAL)

In this example, the CREATE/NAME_TABLE command is used to create a new
logical name table called SPECIAL. This table is defined in the process directory,
LNM$PROCESS_DIRECTORY.

The first DEFINE command ensures that SPECIAL is searched first in any logical name
translation of a device or file specification (because SPECIAL is the first item in the equivalence
string for the logical name LNM$FILE_DEV, which determines the default search sequence of
logical name tables whenever a device or file specification is translated). The logical name LNM
$FILE_DEV is placed in the process directory, LNM$PROCESS_DIRECTORY.

With the next DEFINE command, a new logical name, TAB, is defined. TAB translates to the
string SPECIAL, which identifies a logical name table. You must define TAB in the process
directory because it translates iteratively to a logical name table.

Next, the logical name REPORT is placed into the logical name table TAB. Because TAB
translates to the table SPECIAL, the name REPORT is entered into SPECIAL table. The SHOW
LOGICAL command verifies that the name REPORT has been entered into the table SPECIAL.

Note that you can redefine TAB so it translates to a different table. Therefore, if you run different
programs that use the name TAB as a table name, you can change the actual tables where the
names are entered or referenced.

DEFINE/CHARACTERISTIC
DEFINE/CHARACTERISTIC — Assigns a numeric value to a queue characteristic.
The /CHARACTERISTIC qualifier is required. If a value has been assigned to the characteristic, you
must delete and redefine the characteristic to alter the assignment of the existing characteristic.

Format
DEFINE/CHARACTERISTIC characteristic-name characteristic-number

138

DCL Commands

Parameters
characteristic-name

Assigns a name to the characteristic being defined. The characteristic name can be the name of an
existing characteristic or a string of 1 to 31 characters that defines a new characteristic. The character
string can include any uppercase and lowercase letters, digits, the dollar sign ($), and the underscore
(_), and must include at least one alphabetic character. Only one characteristic name can be defined to
each number.

characteristic-number

Assigns a number in the range 0 to 127 to the characteristic being defined.

Description

Note

Requires OPER (operator) privilege.

The system manager or operator uses the DEFINE/CHARACTERISTIC command to assign a name
and number to a particular characteristic for queues in the system. Characteristics can refer to any
attribute of a print or batch job that is meaningful for your environment. The name and number of a
characteristic are arbitrary, but they must be unique for that characteristic.

Note

Prior to OpenVMS Version 6.0, the DEFINE/CHARACTERISTIC command allowed you to define
more than one characteristic name to a number, although this capability was unsupported.

The DEFINE/CHARACTERISTIC command no longer allows you to define more than one
characteristic name to a number; however, if your queue configuration requires you to have more than
one characteristic name for a single number, you can define logical names to achieve the same result.
For example, you might enter the following commands:

$ DEFINE/CHARACTERISTIC SECOND_FLOOR 2
$ DEFINE/SYSTEM/EXECUTIVE_MODE SALES_FLOOR SECOND_FLOOR
$ DEFINE/SYSTEM/EXECUTIVE_MODE SALES_DEPT SECOND_FLOOR

In this example, the characteristic name SECOND_FLOOR is assigned to the characteristic
number 2. The logical names SALES_FLOOR and SALES_DEPT are then defined as equivalent
to the characteristic name SECOND_FLOOR. As a result, the logical names SALES_FLOOR
and SALES_DEPT are each equivalent to the characteristic name SECOND_FLOOR and the
characteristic number 2. These logical names can be specified as the characteristic-name value for
any /CHARACTERISTIC=characteristic-name qualifier.

In an OpenVMS Cluster environment, you must define the logical names on every node that requires
them.

After characteristics have been defined, they can be associated with print or batch jobs and
execution queues. For information on specifying characteristics with jobs, see the description of
the /CHARACTERISTICS qualifier of the PRINT and SUBMIT commands.

139

DCL Commands

To find out what characteristics are currently defined for the system, use the SHOW QUEUE/
CHARACTERISTICS command. To find out which characteristics have been specified for
a particular queue, use the SHOW QUEUE/FULL command. For information on associating
characteristics with queues, see the descriptions of the /CHARACTERISTICS qualifier of the
INITIALIZE/QUEUE, SET QUEUE, and START/QUEUE commands.

The DELETE/CHARACTERISTIC command deletes a previously defined characteristic.

For more information on specifying queue characteristics, see the VSI OpenVMS System Manager's
Manual.

Example
$ DEFINE/CHARACTERISTIC REDINK 3

The DEFINE/CHARACTERISTIC command in this example defines the characteristic REDINK
with the number 3. When a user enters the command PRINT/CHARACTERISTICS=REDINK (or
PRINT/CHARACTERISTICS=3), the job is printed only if the printer queue has been established
with the REDINK or 3 characteristic.

DEFINE/FORM
DEFINE/FORM — Assigns a numeric value and attributes to a print form name. The /FORM
qualifier is required. To modify a form's name or number, you must delete and redefine the form.
Values for any DEFINE/FORM qualifier can be modified by reentering the DEFINE/FORM
command with different values, as long as the form name and number remain the same.

Format
DEFINE/FORM form-name form-number

Parameters
form-name

Assigns a name to the form being defined. The form name can be the name of an existing form type
or a string of 1 to 31 characters that defines a new form type. The character string can include any
uppercase and lowercase letters, digits, the dollar sign ($), and the underscore (_), and must include at
least one alphabetic character.

form-number

Assigns a number in the range 0 to 9999 to the form being defined. The DEFAULT form, which is
defined automatically when the system is bootstrapped, is assigned number zero.

Description

Note

Requires OPER (operator) privilege.

The system manager or operator uses the DEFINE/FORM command to assign a name and number to
a type of paper stock and printing area for use with printer or terminal queues. When a new queue file

140

DCL Commands

is created, the system defines a form named DEFAULT with a form number of zero and all the default
attributes.

Some DEFINE/FORM qualifiers specify the area for printing. The LEFT and RIGHT options of
the /MARGIN qualifier and the /WIDTH qualifier determine the number of characters per line. Using
the RIGHT option of the MARGIN qualifier and the /WIDTH qualifier, you can affect the point at
which lines of text wrap. (You cannot use the LEFT and RIGHT options of the /MARGIN qualifier
and the /WIDTH qualifier for filling or formatting the text, however.)

You also can use the DEFINE/FORM command to specify different types of paper stock.
The /DESCRIPTION qualifier enables you to describe more fully the form name.

After forms have been defined, they can be associated with print jobs and output execution queues.
For information on specifying forms with jobs, see the description of the PRINT/FORM command.

To find out what forms have been defined for the system, use the SHOW QUEUE/FORM command.
To find out which form is mounted currently on a particular queue and which form is specified as
that queue's default form, use the SHOW QUEUE/FULL command. For information on associating
forms with queues, see the descriptions of the /DEFAULT and /FORM_MOUNTED qualifiers of the
INITIALIZE/QUEUE, SET QUEUE, and START/QUEUE commands.

For more information on how to use forms to control print jobs, see the VSI OpenVMS System
Manager's Manual.

Qualifiers
/DESCRIPTION=string

A string of up to 255 characters used to provide operator information about the form. The default
string is the specified form name.

The string can be used to define the form type more specifically. For example, if you have form
names such as LETTER1, LETTER2, and LETTER3, the /DESCRIPTION qualifier could be
used to let the users and operators know that LETTER1 refers to the standard corporate letterhead
paper (8.5 inches x 11 inches), LETTER2 refers to the smaller corporate letterhead paper (6
inches x 9 inches), and LETTER3 refers to the president's personalized letterhead paper.

Enclose strings containing lowercase letters, blanks, or other nonalphanumeric characters
(including spaces) in quotation marks (“ ”).

/LENGTH=n

Specifies the physical length of a form page in lines. The default page length is 66 lines, which
assumes a standard page length of 11 inches with 6 lines of print per inch. The parameter n must
be a positive integer greater than zero and not more than 255.

The print symbiont sets the page length of the device equal to the form length. This enables the
driver to compute the number of line feeds for devices lacking mechanical form feed.

/MARGIN=(option[,...])

Specifies one or more of the four margin options: BOTTOM, LEFT, RIGHT, and TOP.

BOTTOM=n Specifies the number of blank lines between the end of the print image area
and the end of the physical page; the value of n must be between 0 and the

141

DCL Commands

value of the /LENGTH qualifier. The default value is 6, which generally
means a 1-inch bottom margin.

LEFT=n Specifies the number of blank columns between the leftmost printing
position and the print image area; the value of n must be between 0 and the
value of the /WIDTH qualifier. The default is 0, which means that the print
image area starts as far to the left of the paper as the printer can go.

RIGHT=n Specifies the number of blank columns between the /WIDTH qualifier
and the image area; the value of n must be between 0 and the value of
the /WIDTH qualifier. When determining the value of the RIGHT option,
start at the /WIDTH value and count to the left. The default value is 0,
which means that the print image extends as far to the right as the /WIDTH
value.

TOP=n Specifies the number of blank lines between the top of the physical page
and the top of the print image; the value of n must be between 0 and the
value of the /LENGTH qualifier. The default value is 0, which generally
means that there is no top margin.

/PAGE_SETUP=(module[,...])
/NOPAGE_SETUP (default)

Specifies one or more modules that set up the device at the start of each page. The modules are
located in the device control library. While the form is mounted, the system extracts the specified
module and copies it to the printer before each page is printed.

/SETUP=(module[,...])

Specifies one or more modules that set up the device at the start of each file. The modules are
located in the device control library. While the form is mounted, the system extracts the specified
module and copies it to the printer before each file is printed.

For more information on device control modules, see the chapter on Batch and Print Operations in
the VSI OpenVMS System Manager's Manual.

/SHEET_FEED
/NOSHEET_FEED (default)

Specifies that print jobs pause at the end of every physical page so that a new sheet of paper can
be inserted.

/STOCK=string

Specifies the type of paper stock to be associated with the form. The string parameter can be a
string of 1 to 31 characters, including the dollar sign, underscore, and all alphanumeric characters.
If you specify the /STOCK qualifier, you must specify the name of the stock to be associated with
the form. If you do not specify the /STOCK qualifier, the name of the stock will be the same as
the name of the form.

You can create any string that you want; however, when you are creating forms with the same
stock, be sure that the /STOCK string is identical in all the DEFINE/FORM commands that refer
to the same type of paper.

If you are defining a number of forms to provide different formatting options, specify the same
stock type for each form. Jobs that request any of these forms will print on the same queue. If

142

DCL Commands

you want to modify the stock string associated with a form, you can do this only if the form is not
referenced by any job or queue.

/TRUNCATE (default)
/NOTRUNCATE

Discards any characters that exceed the current line length (specified by the /WIDTH
and /MARGIN=RIGHT qualifiers). The /TRUNCATE qualifier is incompatible with the /WRAP
qualifier. If you specify both the /NOTRUNCATE and /NOWRAP qualifiers, the printer prints as
many characters on a line as possible. This combination of qualifiers is useful for some types of
graphics output.

/WIDTH=n

Specifies the physical width of the paper in terms of columns or character positions. The
parameter n must be an integer from 0 to 65,535; the default value is 132.

Any lines exceeding this value wrap if the /WRAP qualifier is in effect or are truncated if
the /TRUNCATE qualifier is in effect. (If both the /NOTRUNCATE and /NOWRAP qualifiers are
in effect, lines print as far as possible.)

The /MARGIN=RIGHT qualifier overrides the /WIDTH qualifier when determining when to
wrap lines of text.

/WRAP
/NOWRAP (default)

Causes lines that exceed the current line length (specified by the /WIDTH
and /MARGIN=RIGHT qualifiers) to wrap onto the next line. The /WRAP qualifier
is incompatible with the /TRUNCATE qualifier. If you specify both the /NOWRAP
and /NOTRUNCATE qualifiers, the printer prints as many characters on a line as possible. This
combination of qualifiers is useful for some types of graphics output.

Example
$ DEFINE/FORM /MARGIN=(TOP=6,LEFT=10) CENTER 3

The DEFINE/FORM command in this example defines the form CENTER to have a top margin of 6
and a left margin of 10. The defaults remain in effect for both bottom margin (6) and right margin (0).
The form is assigned the number 3.

DEFINE/KEY
DEFINE/KEY — Associates an equivalence string and a set of attributes with a key on the terminal
keyboard.

Format
DEFINE/KEY key-name equivalence-string

Parameters
key-name

143

DCL Commands

Specifies the name of the key that you are defining. All definable keys on VT52 terminals are located
on the numeric keypad. On VT100-series terminals, you can define the left and right arrow keys as
well as all the keys on the numeric keypad. On terminals with LK201 keyboards, the following three
types of keys can be defined:

• Keys on the numeric keypad

• Keys on the editing keypad (except the up and down arrow keys)

• Keys on the function key row across the top of the keyboard (except keys F1 to F5)

The following table lists the key names in column one. The remaining three columns indicate the key
designations on the keyboards of the three different types of terminals that allow key definitions.

Key Name LK201 VT100-Series VT52
PF1 PF1 PF1 [blue]
PF2 PF2 PF2 [red]
PF3 PF3 PF3 [gray]
PF4 PF4 PF4 - -
KP0, KP1, ..., KP9 0, 1, ..., 9 0, 1, ..., 9 0, 1, ..., 9
Period . . .
Comma , , n/a
Minus - - n/a
Enter Enter ENTER ENTER
Left ← ← ←
Right → → →
Find (E1) Find --- ---
Insert Here (E2) Insert Here --- ---
Remove (E3) Remove --- ---
Select (E4) Select --- ---
Prev Screen (E5) Prev Screen --- ---
Next Screen (E6) Next Screen --- ---
Help Help --- ---
Do Do --- ---
F6, F7, ..., F20 F6, F7, ..., F20 --- ---

Some definable keys are enabled for definition all the time. Others, including KP0 to KP9, Period,
Comma, and Minus, must be enabled for definition purposes. You must enter either the SET
TERMINAL/APPLICATION or the SET TERMINAL/NONUMERIC command before using these
keys.

On LK201 keyboards, you cannot define the up and down arrow keys or function keys F1 to F5. The
left and right arrow keys and the F6 to F14 keys are reserved for command line editing. You must
enter the SET TERMINAL/NOLINE_EDITING command before defining these keys. You can also
press Ctrl/V to enable keys F7 to F14. Note that Ctrl/V will not enable the F6 key.

equivalence-string

144

DCL Commands

Specifies the character string to be processed when you press the key. Enclose the string in quotation
marks (“ ”) to preserve spaces and lowercase characters.

Description
The DEFINE/KEY command enables you to assign definitions to the peripheral keys on certain
terminals. The terminals include VT52s, the VT100 series, and terminals with LK201 keyboards.

To define keys on the numeric keypads of these terminals, you must first enter the SET TERMINAL/
APPLICATION or SET TERMINAL/NONUMERIC command. When your terminal has this
setting, the system interprets the keystrokes from keypad keys differently. For example, with SET
TERMINAL/NONUMERIC in effect, pressing the 1 key on the keypad does not send the character
“1” to the system.

The equivalence string definition can contain different types of information. Definitions often consist
of DCL commands. For example, you can assign SHOW TIME to the zero key. When you press 0, the
system displays the current date and time. Other definitions can consist of text strings to be appended
to command lines. When you define a key to insert a text string, use the /NOTERMINATE qualifier
so that you can continue typing more data after the string has been inserted.

In most instances you will want to use the echo feature. The default setting is /ECHO. With /ECHO
set, the key definition is displayed on the screen each time you press the key.

You can use the /STATE qualifier to increase the number of key definitions available on your terminal.
The same key can be assigned any number of definitions, as long as each definition is associated with
a different state. State names can contain any alphanumeric characters, dollar signs, and underscores.
Be sure to create a state name that is easy to remember and type and, if possible, one that might
remind you of the types of definitions you created for that state. For example, you can create a
state called SETSHOW. The key definitions for this state might all refer to various DCL SET and
SHOW commands. If you are used to the EDT Editor, you might define a state as GOLD. Then, using
the /IF_STATE qualifier, you can assign different definitions to keys used in combination with a key
defined as GOLD.

The SET KEY command changes the keypad state. Use the SHOW KEY command to display key
definitions and states.

Qualifiers
/ECHO (default)
/NOECHO

Displays the equivalence string on your screen after the key has been pressed. You cannot use
the /NOECHO qualifier with the /NOTERMINATE qualifier.

/ERASE
/NOERASE (default)

Determines whether the current line is erased before the key translation is inserted.

/IF_STATE=(state-name,...)
/NOIF_STATE

Specifies a list of one or more states, one of which must be in effect for the key definition to work.
The /NOIF_STATE qualifier has the same meaning as /IF_STATE=current_state. The state name

145

DCL Commands

is an alphanumeric string. States are established with the /SET_STATE qualifier or the SET KEY
command. If you specify only one state name, you can omit the parentheses. By including several
state names, you can define a key to have the same function in all the specified states.

/LOCK_STATE
/NOLOCK_STATE (default)

Specifies that the state set by the /SET_STATE qualifier remain in effect until explicitly changed.
(By default, the /SET_STATE qualifier is in effect only for the next definable key you press
or the next read-terminating character that you type.) This qualifier can be specified only with
the /SET_STATE qualifier.

/LOG (default)
/NOLOG

Displays a message indicating that the key definition has been successfully created.

/SET_STATE=state-name
/NOSET_STATE (default)

Causes the specified state-name to be set when the key is pressed. (By default, the current locked
state is reset when the key is pressed.) If you have not included this qualifier with a key definition,
you can use the SET KEY command to change the current state. The state name can be any
alphanumeric string; specify the state as a character string enclosed in quotation marks.

/TERMINATE
/NOTERMINATE (default)

Specifies whether the current equivalence string is to be processed immediately when the key is
pressed (equivalent to entering the string and pressing Return). By default, you can press other
keys before the definition is processed. This allows you to create key definitions that insert text
into command lines, after prompts, or into other text that you are entering.

Examples
1. $ DEFINE/KEY PF3 "SHOW TIME" /TERMINATE

%DCL-I-DEFKEY, DEFAULT key PF3 has been defined
$ PF3
$ SHOW TIME
 14-DEC-2001 14:43:59

In this example, the DEFINE/KEY command defines the PF3 key on the keypad to perform the
SHOW TIME command. DEFAULT refers to the default state.

2. $ DEFINE/KEY PF1 "SHOW " /SET_STATE=GOLD/NOTERMINATE/ECHO
%DCL-I-DEFKEY, DEFAULT key PF1 has been defined
$ DEFINE/KEY PF1 " DEFAULT" /TERMINATE/IF_STATE=GOLD/ECHO
%DCL-I-DEFKEY, GOLD key PF1 has been defined
$ PF1
$ PF1
$ SHOW DEFAULT
DISK1:[JOHN.TEST]

In this example, the first DEFINE/KEY command defines the PF1 key to be the string SHOW.
The state is set to GOLD for the subsequent key. The /NOTERMINATE qualifier instructs the

146

DCL Commands

system not to process the string when the key is pressed. The second DEFINE/KEY command
defines the use of the PF1 key when the keypad is in the GOLD state. When the keypad is in the
GOLD state, pressing PF1 causes the current read to be terminated.

If you press the PF1 key twice, the system displays and processes the SHOW DEFAULT
command.

The word DEFAULT in the second line of the example indicates that the PF1 key has been defined
in the default state. Note the space before the word DEFAULT in the second DEFINE/KEY
command. If the space is omitted, the system fails to recognize DEFAULT as the keyword for the
SHOW command.

3. $ SET KEY/STATE=ONE
%DCL-I-SETKEY, keypad state has been set to ONE
$ DEFINE/KEY PF1 "ONE"
%DCL-I-DEFKEY, ONE key PF1 has been defined
$ DEFINE/KEY/IF_STATE=ONE PF1 "ONE"
%DCL-I-DEFKEY, ONE key PF1 has been defined

This example shows two ways to define the PF1 key to be “ONE” for state ONE.

The second DEFINE/KEY command shows the preferred method for defining keys. This method
eliminates the possibility of error by specifying the state in the same command as the key
definition.

DELETE
DELETE — Deletes one or more files from a mass storage disk volume.

Format
DELETE filespec[,...]

Parameter
filespec[,...]

Specifies the names of one or more files to be deleted from a mass storage disk volume. The first file
specification must contain an explicit or default directory specification plus an explicit file name,
file type, and version number. Subsequent file specifications need contain only a version number;
the defaults will come from the preceding specification. The asterisk (*) and the percent sign (%)
wildcard characters can be used in any of the file specification fields.

If you omit the directory specification or device name, the current default device and directory are
assumed.

If the file specification contains a null version number (a semicolon (;) followed by no file version
number), a version number of 0, or one or more spaces in the version number, the latest version of the
file is deleted.

If an input-file specification parameter is a symbolic link, the symbolic link itself is deleted.

To delete more than one file, separate the file specifications with either commas (,) or plus signs (+).

147

DCL Commands

Description
The DELETE command deletes one or more files from a mass storage disk volume. This command
requires delete (D) access to the file and write (W) access to the parent directory.

Qualifiers
/BACKUP

Modifies the time value specified with the /BEFORE or the /SINCE qualifier. The/BACKUP
qualifier selects files according to the dates of their most recent backups. This qualifier is
incompatible with the /CREATED, /EXPIRED, and /MODIFIED qualifiers, which also allow you
to select files according to time attributes. If you specify none of these four time qualifiers, the
default is the /CREATED qualifier.

Note

Using this qualifier with DELETE/TREE command results in an error.

/BEFORE[=time]

Selects only those files dated prior to the specified time. You can specify time as absolute time,
as a combination of absolute and delta times, or as one of the following keywords: BOOT,
LOGIN, TODAY (default), TOMORROW, or YESTERDAY. Specify one of the following
qualifiers with the /BEFORE qualifier to indicate the time attribute to be used as the basis for
selection: /BACKUP, /CREATED (default), /EXPIRED, or /MODIFIED.

For complete information on specifying time values, see the VSI OpenVMS User's Manual or the
online help topic Date.

Note

Using this qualifier with DELETE/TREE command results in an error.

/BY_OWNER[=uic]

Selects only those files whose owner user identification code (UIC) matches the specified owner
UIC. The default UIC is that of the current process.

Specify the UIC by using standard UIC format as described in the VSI OpenVMS Guide to System
Security.

Note

Using this qualifier with DELETE/TREE command results in an error.

/CONFIRM
/NOCONFIRM (default)

Controls whether a request is issued before each delete operation to confirm that the operation
should be performed on that file. The following responses are valid:

YES NO QUIT

148

DCL Commands

TRUE FALSE Ctrl/Z
1 0 ALL

Return

You can use any combination of uppercase and lowercase letters for word responses. Word
responses can be abbreviated to one or more letters (for example, T, TR, or TRU for TRUE),
but these abbreviations must be unique. Affirmative answers are YES, TRUE, and 1. Negative
answers include: NO, FALSE, 0, and pressing Return. Entering QUIT or pressing Ctrl/Z indicates
that you want to stop processing the command at that point. When you respond by entering ALL,
the command continues to process, but no further prompts are given. If you type a response other
than one of those in the list, DCL issues an error message and redisplays the prompt.

Note

Using this qualifier with DELETE/TREE command results in an error.

/CREATED (default)

Modifies the time value specified with the /BEFORE or the /SINCE qualifier. The /CREATED
qualifier selects files based on their dates of creation. This qualifier is incompatible with
the /BACKUP, /EXPIRED, and /MODIFIED qualifiers, which also allow you to select files
according to time attributes. If you specify none of these four time qualifiers, the default is
the /CREATED qualifier.

Note

Using this qualifier with DELETE/TREE command results in an error.

/ERASE
/NOERASE (default)

When you delete a file, the area in which the file was stored is returned to the system for future
use. The data that was stored in that location still exists in the system until new data is written
over it. When you specify the /ERASE qualifier, the storage location is overwritten with a system
specified pattern so that the data no longer exists.

/EXCLUDE=(filespec[,...])

Excludes the specified files from the delete operation. You can include a directory but not a device
in the file specification. The asterisk (*) and the percent sign (%) wildcard characters are allowed
in the file specification. However, you cannot use relative version numbers to exclude a specific
version. If you specify only one file, you can omit the parentheses.

Note

Using this qualifier with DELETE/TREE command results in an error.

/EXPIRED

Modifies the time value specified with the /BEFORE or the /SINCE qualifier. The /EXPIRED
qualifier selects files according to their expiration dates. (The expiration date is set with the
SET FILE/EXPIRATION_DATE command.) The /EXPIRED qualifier is incompatible with
the /BACKUP, /CREATED, and /MODIFIED qualifiers, which also allow you to select files

149

DCL Commands

according to time attributes. If you specify none of these four time qualifiers, the default is
the /CREATED qualifier.

Note

Using this qualifier with DELETE/TREE command results in an error.

/GRAND_TOTAL (Alpha/Integrity servers only)

Displays the total number of files and blocks or bytes deleted. The display is shown as blocks
or bytes depending on the current default setting. You can use SHOW PROCESS/UNITS to
display the current default. To change the default, execute the DCL command SETPROCESS/
UNITS=BYTES or SET PROCESS/UNITS=BLOCKS.

/IGNORE=INTERLOCK (Alpha/Integrity servers only)

Allows you to mark a write-accessed file for deletion. This removes the file name entry, and the
file is deleted when it is closed by the final user.

/LOG
/NOLOG (default)

Controls whether the DELETE command displays the file specification of each file after its
deletion.

/MODIFIED

Modifies the time value specified with the /BEFORE or the /SINCE qualifier. The /MODIFIED
qualifier selects files according to the dates on which they were last modified. This qualifier is
incompatible with the /BACKUP, /CREATED, and /EXPIRED qualifiers, which also allow you
to select files according to time attributes. If you specify none of these four time modifiers, the
default is the /CREATED qualifier.

Note

Using this qualifier with DELETE/TREE command results in an error.

/SINCE[=time]

Selects only those files dated on or after the specified time. You can specify time as absolute
time, as a combination of absolute and delta times, or as one of the following keywords: BOOT,
JOB_LOGIN, LOGIN, TODAY (default), TOMORROW, or YESTERDAY. Specify one of the
following qualifiers with the /SINCE qualifier to indicate the time attribute to be used as the basis
for selection: /BACKUP, /CREATED (default), /EXPIRED, or /MODIFIED.

For complete information about specifying time values, see the VSI OpenVMS User's Manual or
the online help topic Date.

Note

Using this qualifier with DELETE/TREE command results in an error.

/STYLE=keyword

Specifies the file name format for display purposes while deleting files.

150

DCL Commands

The valid keywords for this qualifier are CONDENSED and EXPANDED. Descriptions are as
follows:

Keyword Explanation
CONDENSED (default) Displays the file name representation of what is generated to fit into

a 255-length character string. This file name may contain a DID or a
FID in the file specification.

EXPANDED Displays the file name representation of what is stored on disk. This
file name does not contain any DID or FID abbreviations.

The keywords CONDENSED and EXPANDED are mutually exclusive. This qualifier specifies
which file name format is displayed in the output message, along with the confirmation if
requested.

File errors are displayed with the CONDENSED file specification unless the EXPANDED
keyword is specified.

See the VSI OpenVMS User's Manual for more information.

/SYMLINK=keyword

The valid keywords for this qualifier are [NO]WILDCARD and [NO]ELLIPSIS. Descriptions are
as follows:

Keyword Explanation
WILDCARD Indicates that symlinks are enabled during wildcard searches.
NOWILDCARD Indicates that symlinks are disabled during directory wildcard searches.
ELLIPSIS Equivalent to WILDCARD (included for command symmetry).
NOELLIPSIS Indicates that symlinks are matched for all wildcard fields except for

ellipsis.

If the file named in the DELETE command is a symlink, the command operates on the symlink
itself.

Note

Using this qualifier with DELETE/TREE command results in an error.

/TREE

Recursively deletes all files and sub directories excluding the parent directory.

You can specify only the following qualifiers with the /TREE qualifier:

/ERASE /GRAND_TOTAL /IGNORE /LOG
/STYLE

Examples
1. $ DELETE COMMON.SUM;2

151

DCL Commands

The DELETE command deletes the file COMMON.SUM;2 from the current default disk and
directory.

2. $ DELETE *.OLD;*

The DELETE command deletes all versions of files with file type .OLD from the default disk
directory.

3. $ DELETE ALPHA.TXT;*, BETA;*, GAMMA;*

The DELETE command deletes all versions of the files ALPHA.TXT, BETA.TXT, and
GAMMA.TXT. The command uses the file type of the first input file as a temporary default. Note,
however, that some form of version number (here specified as the asterisk (*) wildcards) must be
included in each file specification.

4. $ DELETE /BEFORE=15-APR/LOG *.DAT;*
%DELETE-I-FILDEL, DISK2:[MAIN]ASSIGN.DAT;1 deleted (5 block)
%DELETE-I-FILDEL, DISK2:[MAIN]BATCHAVE.DAT;3 deleted (4 blocks)
%DELETE-I-FILDEL, DISK2:[MAIN]BATCHAVE.DAT;2 deleted (4 blocks)
%DELETE-I-FILDEL, DISK2:[MAIN]BATCHAVE.DAT;1 deleted (4 blocks)
%DELETE-I-FILDEL, DISK2:[MAIN]CANCEL.DAT;1 deleted (2 blocks)
%DELETE-I-FILDEL, DISK2:[MAIN]DEFINE.DAT;1 deleted (3 blocks)
%DELETE-I-FILDEL, DISK2:[MAIN]EXIT.DAT;1 deleted (1 block)
%DELETE-I-TOTAL, 7 files deleted (23 blocks)

The DELETE command deletes all versions of all files with file type .DAT that were either
created or updated before April 15 of this year. The /LOG qualifier not only displays the name of
each file deleted, but also the total number of files deleted.

5. $ DELETE A.B;

The DELETE command deletes the file A.B with the highest version number.

6. $ DELETE/CONFIRM/SINCE=TODAY [MEIER.TESTFILES]*.OBJ;*
DISK0:[MEIER.TESTFILES]AVERAG.OBJ;1, delete? [N]:Y
DISK0:[MEIER.TESTFILES]SCANLINE.OBJ;4, delete? [N]:N
DISK0:[MEIER.TESTFILES]SCANLINE.OBJ;3, delete? [N]:N
DISK0:[MEIER.TESTFILES]SCANLINE.OBJ;2, delete? [N]:N
DISK0:[MEIER.TESTFILES]WEATHER.OBJ;3, delete? [N]:Y

The DELETE command examines all versions of files with file type .OBJ in the subdirectory
[MEIER.TESTFILES], and locates those that were created or modified today. Before deleting
each file, it requests confirmation that the file should be deleted. The default response – N – is
given in brackets.

7. $ DIRECTORY [.SUBTEST]
%DIRECT-W-NOFILES, no files found
$ SET SECURITY/PROTECTION=(OWNER:DELETE) SUBTEST.DIR
$ DELETE SUBTEST.DIR;1

Before the directory file SUBTEST.DIR is deleted, the DIRECTORY command is used to verify
that there are no files cataloged in the directory. The SET SECURITY/PROTECTION command
redefines the protection for the directory file so that it can be deleted; then the DELETE command
deletes it.

8. $ DELETE DALLAS"THOMAS SECRET"::DISK0:[000,000]DECODE.LIS;1

152

DCL Commands

This DELETE command deletes the file DECODE.LIS;1 from the directory [000,000] on device
DISK0 at remote node DALLAS. The user name and password follow the remote node name.

9. $ DELETE NODE12::"DISK1:DEAL.BIG"
$ DELETE NODE12::DISK1:DEAL.BIG;

Either of these DELETE commands can be used to delete the file DEAL.BIG on device ZZZ1
at remote node NODE12. Note that the DELETE command requires an explicit version number
in a file specification, but the file to be deleted is on a remote node whose file syntax does not
recognize version numbers. (NODE12 is an RT-11 node.) Therefore, the file specification must
either be enclosed in quotation marks (“ ”) or entered with a null version number (that is, a trailing
semicolon [;]).

10. $ DELETE/GRAND_TOTAL *.txt;*
%DELETE-I-TOTAL, 61 files deleted (274KB)

The output display in this example shows that 61 files were deleted for a total of 274KB. The
process is currently set to display file sizes in bytes. To change future displays to show blocks, use
the SET PROCESS/UNITS=BLOCKS command.

11. $ DELETE/TREE 5DKA100:[HOOPS...]*.*;*/LOG
%DELETE-I-FILDEL, 5DKA100:[HOOPS]SMG_HP.EXE;2 deleted (32 blocks)
%DELETE-I-FILDEL, 5DKA100:[HOOPS]TESTMSG.exe;4 deleted (32 blocks)
%DELETE-I-FILDEL, 5DKA100:[HOOPS.DTM.EXAMPLES]TERMTABLE.TXT;1 -
 deleted - (16 blocks)
%DELETE-I-FILDEL, 5DKA100:[HOOPS.DTM]EXAMPLES.DIR;1 deleted -
 (16 blocks)
%DELETE-I-FILDEL, 5DKA100:[HOOPS]DTM.DIR;1 deleted (16 blocks)
%DELETE-I-TOTAL, 5 files deleted (112 blocks)
$

The DELETE/TREE command deletes all the files and sub directories recursively excluding the
parent directory.

DELETE/BITMAP (Alpha/Integrity servers
Only)
DELETE/BITMAP (Alpha/Integrity servers Only) — Enables the system manager to delete one
or more active bitmaps to make memory resources available. If a minicopy bitmap is deleted, then
former virtual unit members can be added only with a full copy operation. For more information about
bitmaps, see the VSI Volume Shadowing for OpenVMS.

Format
DELETE/BITMAP n[,n,...]

Parameter
n[,n,...]

Specifies the bitmap ID for one or more bitmaps to delete.

153

DCL Commands

Qualifier
/LOG
/NOLOG (default)

Specifies whether to list each bitmap when it is deleted.

Description

Note

Requires ownership of the device or VOLPRO (volume protection) privilege.

Example
$ SHOW DEVICE /BITMAP DSA12

Device BitMap Size Percent Type of Master Active
 Name ID (Bytes) Populated Bitmap Node
DSA12: 00020007 8364 0% Minimerge NODE1 Yes
 00040008 8364 0% Minimerge NODE2 Yes

$ DELETE/BITMAP 00020007

In this example, the SHOW DEVICE command output lists two bitmaps. The DELETE command
deletes the bitmap with an ID of 00020007.

DELETE/CHARACTERISTIC
DELETE/CHARACTERISTIC — Deletes the definition of a queue characteristic previously
established with the DEFINE/CHARACTERISTIC command. The /CHARACTERISTIC qualifier is
required.

Format
DELETE/CHARACTERISTIC characteristic-name

Parameter
characteristic-name

Specifies the name of the characteristic to be deleted.

Description
The DELETE/CHARACTERISTIC command deletes a characteristic from the system characteristic
table.

Note

Requires OPER (operator) privilege.

154

DCL Commands

To modify a characteristic's name or number, you must delete and redefine the characteristic.

Qualifier
/LOG
/NOLOG (default)

Controls whether the DELETE/CHARACTERISTIC command displays the name of each
characteristic after its deletion.

Example
$ DEFINE/CHARACTERISTIC BLUE 7
 .
 .
 .
$ DELETE/CHARACTERISTIC BLUE
$ DEFINE/CHARACTERISTIC BLUE_INK 7

The DEFINE/CHARACTERISTIC command in this example establishes the characteristic BLUE,
with number 7, to mean blue ink ribbons for printers. To change the name of the characteristic, enter
the DELETE/CHARACTERISTIC command. Then enter another DEFINE/CHARACTERISTIC
command to rename the characteristic to BLUE_INK, using the characteristic number 7.

DELETE/ENTRY
DELETE/ENTRY — Deletes one or more print or batch jobs. The jobs can be in progress or waiting
in the queue. The /ENTRY qualifier is required.

Format
DELETE/ENTRY=(entry-number[,...]) [queue-name[:]]

Parameters
entry-number[,...]

Specifies the entry number (or a list of entry numbers) of jobs to be deleted. If you specify only one
entry number, you can omit the parentheses. If you do not specify a queue name, you can delete
entries from multiple queues.

The system assigns a unique entry number to each queued print or batch job in the system. By default,
the PRINT and SUBMIT commands display the entry number when they successfully queue a job
for processing. These commands also create or update the local symbol $ENTRY to reflect the entry
number of the most recently queued job. To find a job's entry number, enter the SHOW ENTRY or
SHOW QUEUE command.

queue-name[:]

Specifies the name of the queue where the jobs are located. The queue name can refer either to the
queue to which the job was submitted or to the queue where the job is executing. The queue-name
parameter is optional syntax; however, when you specify a queue name, the operating system uses it
to verify an entry in the specific queue before deleting the entry.

155

DCL Commands

Description
The DELETE/ENTRY command deletes one or more jobs from a queue.

Note

Requires manage (M) access to the queue, or delete (D) access to the specified jobs.

If you specify a queue name and more than one entry number with a DELETE/ENTRY command, all
the jobs must be located in the same queue.

You can delete jobs that are currently executing, as well as jobs that are in other states. For example,
DELETE/ENTRY can delete a job that is currently in a holding or a pending state.

Qualifier
/LOG
/NOLOG (default)

Controls whether the DELETE/ENTRY command displays the entry number of each batch or
print job that it deletes.

Examples
1. $ PRINT/HOLD ALPHA.TXT

Job ALPHA (queue SYS$PRINT, entry 110) holding
 .
 .
 .
$ DELETE/ENTRY=110 SYS$PRINT

The PRINT command in this example queues a copy of the file ALPHA.TXT in a HOLD status,
to defer its printing until a SET ENTRY/RELEASE command is entered. The system displays
the job name, the entry number, the name of the queue in which the job was entered, and the
status. Later, the DELETE/ENTRY command requests that the entry be deleted from the queue
SYS$PRINT.

2. $ SUBMIT/AFTER=18:00 WEATHER
Job WEATHER (queue SYS$BATCH, entry 203) holding until 14-DEC-2001
18:00
$ SUBMIT/HOLD/PARAMETERS=SCANLINE DOFOR
Job DOFOR (queue SYS$BATCH, entry 210) holding
 .
 .
 .
$ DELETE/ENTRY=(203,210)/LOG
%DELETE-W-SEARCHFAIL, error searching for 203
-JBC-E-NOSUCHENT, no such entry
%DELETE-I-DELETED, entry 210 aborting or deleted

The SUBMIT commands in this example queue the command procedures WEATHER.COM
and DOFOR.COM for processing as batch jobs. WEATHER.COM is queued for execution after
6:00 P.M. DOFOR.COM is queued in a HOLD status and cannot execute until you enter a SET

156

DCL Commands

ENTRY/RELEASE command. Later, the DELETE/ENTRY/LOG command requests that the
system delete both these entries from the queue and display a message indicating that the entries
have been deleted.

The job WEATHER (entry 203) has completed by the time the DELETE/ENTRY/LOG command
is entered; therefore, entry 203 no longer exists. Note that a message indicates that there is no
entry 203 in the queue. The job DOFOR (entry 210) is in a HOLD status when the DELETE/
ENTRY/LOG command is entered. Thus, the system deletes entry 210 from the queue and
displays a message to that effect.

3. $ PRINT CHAPTER8.MEM
Job CHAPTER8 (queue SYS$PRINT, entry 25) pending on queue SYS$PRINT
 .
 .
 .
$ SHOW QUEUE SYS$PRINT
Printer queue SYS$PRINT, on PARROT::PARROT$LPA0, mounted form DEFAULT

Entry Jobname Username Status
----- ------- -------- ------
 24 CHAPTER7 SMITH Pending
 25 CHAPTER8 SMITH Pending
$ DELETE/ENTRY=25 SYS$PRINT

The PRINT command in this example submits the file CHAPTER8.MEM to the printer queue
SYS$PRINT. Later, user SMITH needs to edit the file again before printing it. Using the SHOW
QUEUE command, SMITH verifies that the job is still pending and that the entry number for the
job is 25. SMITH then enters the DELETE/ENTRY command to delete the job from the queue.

DELETE/FORM
DELETE/FORM — Deletes a form (for printer or terminal queues) previously established with the
DEFINE/FORM command. The /FORM qualifier is required.

Format
DELETE/FORM form-name

Parameter
form-name

Specifies the name of the form to be deleted.

Description
The DELETE/FORM command deletes a form definition from the system forms table.

Note

Requires OPER (operator) privilege.

157

DCL Commands

When you delete a form, there can be no outstanding references to the form either in queues that have
been mounted with the form or by jobs requesting that form. To locate all references to the form, use
the SHOW QUEUE/FULL command.

To modify a form's name or number, you must delete and redefine the form. Values for any
DEFINE/FORM qualifier can be modified by reentering the DEFINE/FORM command with different
values, as long as the form name and number remain the same.

Qualifier
/LOG
/NOLOG (default)

Controls whether the DELETE/FORM command displays the name of each form after its
deletion.

Examples
1. $ DELETE/FORM CENTER

The DELETE/FORM command in this example deletes the form named CENTER.

2. $ DEFINE/FORM -
_$ /DESCRIPTION="letter size continuous form paper" CFLET 7
 .
 .
 .
$ DELETE/FORM CFLET
$ DEFINE/FORM -
_$ /DESCRIPTION="letter size continuous form paper" LETTER_CONT 7

The DEFINE/FORM command in this example establishes the form CFLET with number 7 to
mean continuous-form paper 8.5 inches by 11 inches. To change the name of the form, delete the
form named CFLET and define a new one named LETTER_CONT.

DELETE/INTRUSION_RECORD
DELETE/INTRUSION_RECORD — Removes an entry from the break-in database.

Format
DELETE/INTRUSION_RECORD source

Parameter
source

Specifies the name of the device or the remote system where the user is attempting to log in. The
source name can be presented in the syntax of another operating system domain, for example, one
that is case sensitive or conflicts with DCL syntax rules. In such cases, you must enclose the source
parameter in quotation marks.

158

DCL Commands

Description
Use the DELETE/INTRUSION_RECORD command to remove an entry from the break-in database.

Note

Requires CMKRNL (change mode to kernel) and SECURITY privileges.

For example, if the user Hammer repeatedly attempted to log in to terminal TTA24 with an expired
password, the SHOW INTRUSION command would display the following entry:

Intrusion Type Count Expiration Source

TERM_USER INTRUDER 9 10:29:39.16 TTA24:HAMMER

The terminal is locked out of the system because the login failure limit has been reached. When
Hammer approaches you and you identify the problem as an expired password, you can then use the
DELETE/INTRUSION command to remove the record from the break-in database.

Qualifiers
/NODE=(node-name[,...])

Deletes the node information relating to the specified nodes. If the specified nodes are the only
nodes in the node information list, the intrusion record is also deleted.

Examples
1. $ DELETE/INTRUSION_RECORD TTC2:

In this example, the DELETE/INTRUSION_RECORD command removes all intrusion records
generated by break-in attempts on TTC2. No user name is specified because none of the login
failures occurred for valid users.

2. $ DELETE/INTRUSION_RECORD "AV34C2/LC-2-10":FORGETFUL

In this example, the source of the break-in is a local terminal that is connected to a terminal server.
To delete the record from the break-in database, you must enclose the terminal port name within
quotation marks so that the operating system interprets the slash as a foreign character and not as a
qualifier.

3. $ DELETE/INTRUSION_RECORD NODE1::HAMMER

This command removes all intrusion entries generated from node NODE1 for user HAMMER.

4. $ DELETE/INTRUSION_RECORD/NODE=(CAPPY,INDI)
$ SHOW INTRUSION
NETWORK SUSPECT 2 26-JUL-2001 08:51:25.66 BARNEY::HAMMER
 Node: TSAVO Count: 2

This command removes intrusion entries for the nodes CAPPY and INDI.

5. $ DELETE/INTRUSION_RECORD/NODE=FOOBAR
$ SHOW INTRUSION
NETWORK SUSPECT 2 26-JUL-2001 08:51:25.66 BARNEY::HAMMER

159

DCL Commands

 Node: TSAVO Count: 2

This command removes intrusion entries for the node FOOBAR.

6. $ DELETE/INTRUSION_RECORD/NODE=TSAVO
$ SHOW INTRUSION
%SHOW-F-NOINTRUDERS, no intrusion records match specification

This command attempts to remove intrusion entries for node TSAVO, however there were no
intrusion records for this node.

DELETE/KEY
DELETE/KEY — Deletes key definitions that have been established by the DEFINE/KEY command.
The /KEY qualifier is required.

Format
DELETE/KEY [key-name]

Parameter
key-name

Specifies the name of the key to be deleted. This parameter is incompatible with the /ALL qualifier.

Qualifiers
/ALL

Deletes all key definitions in the specified state; the default is the current state. If you use
the /ALL qualifier, do not specify a key name. Use the /STATE qualifier to specify one or more
states.

/LOG (default)
/NOLOG

Controls whether messages are displayed indicating that the specified key definitions have been
deleted.

/STATE=(state-name[,...])
/NOSTATE (default)

Specifies the name of the state for which the specified key definition is to be deleted. The default
state is the current state. If you specify only one state name, you can omit the parentheses. State
names can be any alphanumeric string.

Examples
1. $ DELETE/KEY/ALL

%DCL-I-DELKEY, DEFAULT key PF1 has been deleted
%DCL-I-DELKEY, DEFAULT key PF2 has been deleted
%DCL-I-DELKEY, DEFAULT key PF3 has been deleted

160

DCL Commands

%DCL-I-DELKEY, DEFAULT key PF4 has been deleted
$

In this example, the user has defined keys PF1 to PF4 in the default state. The DELETE/KEY
command deletes all key definitions in the current state, which is the default state.

2. $ DEFINE/KEY PF3 "SHOW TIME" /TERMINATE
%DCL-I-DEFKEY, DEFAULT key PF3 has been defined
$ PF3
$ SHOW TIME
 14-DEC-2001 14:43:59
 .
 .
 .
$ DELETE/KEY PF3
%DCL-I-DELKEY, DEFAULT key PF3 has been deleted
$ PF3
$

In this example, the DEFINE/KEY command defines the PF3 key on the keypad as SHOW TIME.
To delete the definition for the PF3 key, use the DELETE/KEY command. When the user presses
PF3, only the system prompt is displayed.

DELETE/MAILBOX (Alpha/Integrity servers
Only)
DELETE/MAILBOX (Alpha/Integrity servers Only) — Deletes the specified mailbox.

Format
DELETE/MAILBOX name

Parameter
name

Specifies the name of the mailbox device (MBA n) or the logical name pointing to the mailbox to be
deleted.

Description

Note

The command requires PRMMBX (permanent mailbox) privilege.

Qualifier
/LOG
/NOLOG (default)

Displays a notice when the mailbox is marked for deletion.

161

DCL Commands

Example
$ SHOW LOGICAL MY_MBX
 "MY_MBX" = "MBA37:" (LNM$SYSTEM_TABLE)
$ SHOW DEVICE MBA37

Device Device Error
 Name Status Count
MBA37: Online 0
$ DELETE/MAILBOX/LOG MBA37
%DELETE-I-MBXDEL, Mailbox MBA37 has been marked for deletion
$ SHOW DEV MBA37
%SYSTEM-W-NOSUCHDEV, no such device available

This example shows the status of mailbox MBA37, which is pointed to by logical name MY_MBX,
before and after it is deleted.

DELETE/QUEUE
DELETE/QUEUE — Deletes a print or batch queue created by the INITIALIZE/QUEUE command,
and deletes all the jobs in the queue. The /QUEUE qualifier is required.

Format
DELETE/QUEUE queue-name[:]

Parameter
queue-name[:]

Specifies the name of the queue to be deleted.

Description
To delete a queue, use the following procedure:

Note

Requires manage (M) access to the queue.

1. Stop the specified queue by using the STOP/QUEUE/NEXT command.

The STOP/QUEUE/NEXT command stops the specified queue after all executing jobs have
completed processing. Wait for any executing jobs to complete processing.

2. Make sure that there are no outstanding references to the specified queue.

If a generic queue refers to the specified queue as a target execution queue, you must remove the
specified queue from the list of target execution queues.

If a logical queue refers to the specified queue, you must deassign the logical queue.

162

DCL Commands

If the specified queue is a generic queue, jobs that were entered initially on the generic queue and
still exist on any of its target queues count as references to the specified queue. Before you can
delete the specified queue, you must delete any jobs that were submitted originally to the specified
queue and are executing on its target queues, or you must wait until these jobs have completed
processing.

3. To move jobs from the specified queue to another queue, use the SET ENTRY/REQUEUE or
ASSIGN/MERGE commands. Any jobs that remain in the specified queue are deleted when the
queue is deleted.

4. Enter the DELETE/QUEUE command.

Qualifier
/LOG
/NOLOG (default)

Controls whether the DELETE/QUEUE command displays the name of each queue after it is
deleted.

Example
$ INITIALIZE/QUEUE/DEFAULT=FLAG/START/ON=LPA0 LPA0_QUEUE
 .
 .
 .
$ STOP/QUEUE/NEXT LPA0_QUEUE
$ DELETE/QUEUE LPA0_QUEUE

In this example, the first command initializes and starts the printer queue LPA0_QUEUE. The
STOP/QUEUE/NEXT command stops the queue. The DELETE/QUEUE command deletes the queue.

DELETE/QUEUE/MANAGER
DELETE/QUEUE/MANAGER — Deletes a queue manager on a node or OpenVMS Cluster system.
All queues and jobs managed by the specified queue manager are also deleted. You must first stop the
queue manager. The /NAME_OF_MANAGER qualifier is required.

Format
DELETE/QUEUE/MANAGER/NAME_OF_MANAGER=name

Parameter
None.

Description
To delete a queue manager, use the following procedure:

163

DCL Commands

Note

Requires OPER (operator) and SYSNAM (system logical name) privileges.

1. Stop the specified queue manager by using the STOP/QUEUE/MANAGER/CLUSTER/
NAME_OF_MANAGER=name command.

2. Enter the DELETE/QUEUE/MANAGER/NAME_OF_MANAGER command, specifying the
queue manager name.

Qualifier
/NAME_OF_MANAGER=string

Identifies the name of the queue manager to be deleted. The /NAME_OF_MANAGER qualifier is
required. The required name value can be up to 31 characters long and can be a logical name.

Example
$ DELETE/QUEUE/MANAGER/NAME_OF_MANAGER=BATCH_MANAGER

The DELETE/QUEUE/MANAGER/NAME_OF_MANAGER command in this example deletes the
queue manager named BATCH_MANAGER. The command removes all references to the specified
queue manager from the shared master file of the queue database and deletes the queue and journal
files associated with the BATCH_MANAGER's database.

DELETE/SYMBOL
DELETE/SYMBOL — Deletes one or all symbol definitions from a local or global symbol table.
The /SYMBOL qualifier is required.

Format
DELETE/SYMBOL [symbol-name]

Parameter
symbol-name

Specifies the name of the symbol to be deleted. A name is required unless the /ALL qualifier is
specified. The symbol-name parameter is incompatible with the /ALL qualifier. Symbol names can
have from 1 to 255 characters. By default, the DELETE/SYMBOL command assumes that the symbol
is in the local symbol table for the current command procedure.

Description
The DELETE/SYMBOL command deletes a symbol definition from a symbol table. If you do not
specify either the global or local symbol table, the symbol is deleted from the local table. If you
specify both the /GLOBAL and /LOCAL qualifiers, only the last specified qualifier is accepted.
The /SYMBOL qualifier must always immediately follow the DELETE command name.

164

DCL Commands

Qualifiers
/ALL

Deletes all symbols from the specified table. If you do not specify either the /LOCAL or
the /GLOBAL qualifier, all symbols defined at the current command level are deleted. The /ALL
qualifier is incompatible with the symbol-name parameter.

/GLOBAL

Deletes the symbol from the global symbol table of the current process.

/LOCAL (default)

Deletes the symbol from the local symbol table of the current process.

/LOG
/NOLOG (default)

Controls whether an informational message listing each symbol being deleted is displayed.

Examples
1. $ DELETE/SYMBOL/ALL

In this example, the DELETE/SYMBOL command deletes all symbol definitions at the current
command level.

2. $ DELETE/SYMBOL/LOG KUDOS
%DCL-I-DELSYM, LOCAL symbol KUDOS has been deleted

In this example, the DELETE/SYMBOL command deletes the symbol KUDOS from the local
symbol table for the current process. In addition, the /LOG qualifier causes an informational
message, listing the symbol being deleted, to be displayed.

3. $ DELETE/SYMBOL/GLOBAL PDEL

In this example, the DELETE/SYMBOL command deletes the symbol named PDEL from the
global symbol table for the current process.

DEPOSIT
DEPOSIT — Replaces the contents of the specified locations in virtual memory and displays the new
contents.

Format
DEPOSIT location=data[,...]

Parameters
location

Specifies the starting virtual address or range of virtual addresses (where the second address is larger
than the first) whose contents are to be changed. A location can be any valid integer expression

165

DCL Commands

containing an integer value, a symbol name, a lexical function, or a combination of these entities.
Radix qualifiers determine the radix in which the address is interpreted; hexadecimal is the initial
default radix. Symbol names are always interpreted in the radix in which they were defined. The radix
operators %X, %D, or %O can precede the location. A hexadecimal value must begin with a number
(or be preceded by %X).

The specified location must be within the virtual address space of the image currently running in the
process.

The DEPOSIT and EXAMINE commands maintain a pointer to a current memory location. The
DEPOSIT command sets this pointer to the byte following the last byte modified; you can refer to this
pointer by using a period (.) in subsequent EXAMINE and DEPOSIT commands. If the DEPOSIT
command cannot deposit the specified data, the pointer does not change. The EXAMINE command
does not change the value of the pointer.

data[,...]

Specifies the data to be deposited into the specified locations. By default, the data is assumed to be in
hexadecimal format; it is then converted to binary format and is written into the specified location.

If you specify more than one item, separate the items with commas (,). The DEPOSIT command
writes the data in consecutive locations, beginning with the address specified.

When non-ASCII data is deposited, you can specify each item of data using any valid integer
expression.

When ASCII data is deposited, only one item of data is allowed. All characters to the right of the
equal sign are considered to be part of a single string. The characters are converted to uppercase, and
all spaces are compressed.

Description
The DEPOSIT command, together with the EXAMINE command, aids in debugging programs
interactively. The DCL command DEPOSIT is similar to the DEPOSIT command of the OpenVMS
Debugger.

Note

Requires user-mode read (R) and write (W) access to the virtual memory location whose contents you
wish to change.

When the DEPOSIT command completes, it displays both the virtual memory address into which data
is deposited and the new contents of the location, as follows:

address: contents

If the specified address can be read from but not written to by the current access mode, the DEPOSIT
command displays the original contents of the location. If the specified address can be neither read
from nor written to, the DEPOSIT command displays asterisks (*) in the data field. The DEPOSIT
command maintains a pointer at that location (at the byte following the last byte modified).

If you specify a list of numeric values, some but not all of the values may be successfully deposited
before an access violation occurs. If an access violation occurs while ASCII data is being deposited,
nothing is deposited.

166

DCL Commands

Radix Qualifiers: The radix default for a DEPOSIT or EXAMINE command determines how the
command interpreter interprets numeric literals. The initial default radix is hexadecimal; all numeric
literals in the command line are assumed to be hexadecimal values. If a radix qualifier modifies the
command, that radix becomes the default for subsequent EXAMINE and DEPOSIT commands, until
another qualifier overrides it. For example:

$ DEPOSIT/DECIMAL 900=256
00000384: 256

The DEPOSIT command interprets both the location 900 and the value 256 as decimal. All
subsequent DEPOSIT and EXAMINE commands assume that numbers you enter for addresses
and data are decimal. Note that the DEPOSIT command always displays the address location in
hexadecimal.

Symbol values defined by = (assignment statement) commands are always interpreted in the radix in
which they were defined.

Note that hexadecimal values entered as deposit locations or as data to be deposited must begin with
a numeric character (0 to 9); otherwise, the command interpreter assumes that you have entered a
symbol name and attempts symbol substitution.

You can use the radix operators %X, %D, or %O to override the current default when you enter the
DEPOSIT command. For example:

$ DEPOSIT/DECIMAL %X900=10

This command deposits the decimal value 10 in the location specified as hexadecimal 900.

Length Qualifiers: The initial default length unit for the DEPOSIT command is a longword. If a list
of data values is specified, the data is deposited into consecutive longwords beginning at the specified
location. If a length qualifier modifies the command, that length becomes the default for subsequent
EXAMINE and DEPOSIT commands, until another qualifier overrides it. If you specify data values
that are longer than the specified length, an error occurs.

Length qualifiers are ignored when ASCII values are deposited.

Restriction on Placement of Qualifiers: The DEPOSIT command analyzes expressions
arithmetically. Therefore, qualifiers, which must be preceded by a slash (/), must appear immediately
after the command name to be interpreted correctly.

Qualifiers
/ASCII

Indicates that the specified data is ASCII.

Only one data item is allowed; all characters to the right of the equal sign (=) are considered to
be part of a single string. Unless they are enclosed within quotation marks (“ ”), characters are
converted to uppercase and multiple spaces are compressed to a single space before the data is
written in memory.

The DEPOSIT command converts the data to its binary equivalent before placing it in virtual
memory. When you specify /ASCII, or when ASCII mode is the default, the location you specify
is assumed to be hexadecimal.

167

DCL Commands

/BYTE

Requests that data be deposited 1 byte at a time.

/DECIMAL

Indicates that the data is decimal. The DEPOSIT command converts the data to its binary
equivalent before placing it in virtual memory.

/HEXADECIMAL

Indicates that the data is hexadecimal. The DEPOSIT command converts the data to its binary
equivalent before placing it in virtual memory.

/LONGWORD

Requests that data be deposited a longword at a time.

/OCTAL

Indicates that the data is octal. The DEPOSIT command converts the data to its binary equivalent
before placing it in virtual memory.

/WORD

Requests that the data be deposited one word at a time.

Examples
1. $ RUN MYPROG

 .
 .
 .
Ctrl/Y
$ EXAMINE %D2145876444
7FE779DC: 0000000000
$ DEPOSIT .=17
7FE779DC: 0000000017
$ CONTINUE

The RUN command executes the image MYPROG.EXE; subsequently, Ctrl/Y interrupts the
program. Assuming that the initial defaults of the /HEXADECIMAL and /LONGWORD
qualifiers are in effect, the DEPOSIT command places a longword value 17 (23 decimal) in virtual
memory location 2145876444.

Because the EXAMINE command sets up a pointer to the current memory location, which in this
case is virtual address 2145876444, you can refer to this location with a period (.) in the DEPOSIT
command.

The CONTINUE command resumes execution of the image.

2. $ DEPOSIT/ASCII 2C00=FILE: NAME: TYPE:
00002C00: FILE: NAME: TYPE:...

In this example, the DEPOSIT command deposits character data at hexadecimal location 2C00
and displays the contents of the location after modifying it. Because the current default length

168

DCL Commands

is a longword, the response from the DEPOSIT command displays full longwords. The ellipsis
(…) indicates that the remainder of the last longword of data contains information that was not
modified by the DEPOSIT command.

3. $ EXAMINE 9C0 ! Look at Hex location 9C0
000009C0: 8C037DB3
$ DEPOSIT .=0 ! Deposit longword of 0
000009C0: 00000000
$ DEPOSIT/BYTE .=1 ! Put 1 byte at next location
000009C4: 01
$ DEPOSIT .+2=55 ! Deposit 55 next
000009C7: 55
$ DEPOSIT/LONG .=0C,0D,0E ! Deposit longwords
000009C8: 0000000C 0000000D 0000000E

The sequence of DEPOSIT commands in the above example illustrates how the DEPOSIT
command changes the current position pointer. Note that after you specify the /BYTE qualifier,
all data is deposited and displayed in bytes, until the /LONGWORD qualifier restores the system
default.

4. $ BASE=%X200 ! Define a base address
$ LIST=BASE+%X40 ! Define offset from base
$ DEPOSIT/DECIMAL LIST=1,22,333,4444
00000240: 00000001 00000022 00000333 00004444
$ EXAMINE/HEX LIST:LIST+0C ! Display results in hex
00000240: 00000001 00000016 0000014D 0000115C

The assignment statements define a base address in hexadecimal and a label at a hexadecimal
offset from the base address. The DEPOSIT command reads the list of values and deposits each
value into a longword, beginning at the specified location. The EXAMINE command requests a
hexadecimal display of these values.

DIFFERENCES
DIFFERENCES — Compares the contents of two disk files and displays a listing of the records that
do not match.

Format
DIFFERENCES input1-filespec [input2-filespec]

Parameters
input1-filespec

Specifies the first file to be compared. The file specification must include a file name and a file type.
The asterisk (*) and the percent sign (%) wildcard characters are not allowed.

input2-filespec

Specifies the second file to be compared. Unspecified fields default to the corresponding fields in
the input1-filespec parameter. The asterisk (*) and the percent sign (%) wildcard characters are not
allowed.

169

DCL Commands

If you do not specify a secondary input file, the DIFFERENCES command uses the next lower
version of the primary input file.

Description
Use the DIFFERENCES command to determine whether two files are identical and, if not, how they
differ. The DIFFERENCES command compares the two specified files on a record-by-record basis
and produces an output file that lists the DIFFERENCES, if any.

The qualifiers for the DIFFERENCES command can be categorized according to their functions, as
follows:

• Qualifiers that request the DIFFERENCES command to ignore data in each record:

/COMMENT_DELIMITERS
/IGNORE

These qualifiers allow you to define characters that denote comments or to designate characters
or classes of characters to ignore when comparing files. For example, you can have the
DIFFERENCES command ignore extra blank lines or extra spaces within lines.

By default, the DIFFERENCES command compares every character in each record.

• Qualifiers that control the format of the information contained in the list of differences:

/CHANGE_BAR
/IGNORE
/MERGED
/MODE
/PARALLEL
/SEPARATED
/SLP
/WIDTH

By default, the DIFFERENCES command merges the differences it finds in the files being
compared. It lists each record in the file that has no match in the other input file and then lists the
next record that it finds that does have a match.

By default, the DIFFERENCES command also supplies a line number with each listed record, and
it lists the records with all designated ignore characters deleted.

You can specify combinations of qualifiers to request an output listing that includes the
comparison in more than one format. Note that SLP output is incompatible with all other types of
output; parallel output can be generated only in ASCII mode.

• Qualifiers that control the extent of the comparison:

/MATCH
/MAXIMUM_DIFFERENCES
/WINDOW

By default, the DIFFERENCES command reads every record in the master input file and looks
for a matching record in the revision input file. A search for a match between the two input files
continues until either a match is found or the ends of the two files are reached. Sections of the two
files are considered a match only if three sequential records are found to be identical in each file.

170

DCL Commands

By default, DIFFERENCES command output is written to the current SYS$OUTPUT device. Use
the /OUTPUT qualifier to request that the DIFFERENCES command write the output to an alternate
file or device.

The DIFFERENCES command terminates with an exit status. The following severity levels indicate
the result of the comparison:

SUCCESS Files are identical.
INFORMATIONAL Files are different.
WARNING User-specified maximum number of DIFFERENCES has been exceeded.
ERROR Insufficient virtual memory to complete comparison.

All severity levels other than SUCCESS indicate that the two input files are different.

Qualifiers
/CHANGE_BAR[=([change-char][,[NO]NUMBER])]

arks differences using the specified character. The /CHANGE_BAR qualifier displays output
that depends on where the qualifier is placed. The following examples describe the result
of /CHANGE_BAR qualifier placement.

The following placement displays the latest version of input.file with the pound sign (#) preceding
any lines that differ from the preceding version of input.file:

$ DIFFERENCES input.file/CHANGE_BAR=#

The following placement displays input.file;2 with the pound sign (#) preceding any lines that
differ from input.file;1:

$ DIFFERENCES input.file;1 input.file;2 /CHANGE_BAR=#

The following placement displays input.file;1 with the pound sign (#) preceding any lines that
differ from input.file;2:

$ DIFFERENCES input.file;1/CHANGE_BAR=# input.file;2

The following placement displays input.file;1 with the percent sign (%) preceding any lines that
differ from input.file;2, and also displays input.file;2 with the pound sign (#) preceding any lines
that differ from input.file;1:

$ DIFFERENCES input.file;1/CHANGE_BAR=% input.file;2/CHANGE_BAR=#

• If you do not specify a change bar character, the default is an exclamation point (!) for ASCII
output.

• If you specify hexadecimal or octal output (see the description of the /MODE qualifier), the
change bar character is ignored and differences are marked by a “***CHANGE***” string in
the record header. The keyword NONUMBER suppresses line numbers in the listing.

• If neither the NUMBER nor the NONUMBER keyword is specified, the default is controlled
by the /[NO]NUMBER command qualifier.

• If you specify only one option, you can omit the parentheses.

171

DCL Commands

• If you use an exclamation point (!) as the specified character, you must enclose it in quotation
marks (“ ”); for example, /CHANGE_BAR=(“!”,NUMBER).

/COMMENT_DELIMITER[= (character[,...])]

Ignores characters on a line to the right of (and including) a specified comment character.

If you specify just one character, you can omit the parentheses. Lowercase characters
are automatically converted to uppercase unless they are enclosed in quotation marks.
Nonalphanumeric characters (such as ! and ,) must be enclosed in quotation marks. Multicharacter
comment characters are not allowed. You can specify up to 32 comment characters by typing the
character itself or one of the following keywords. (Keywords can be abbreviated provided that
the resultant keyword is not ambiguous and has at least 2 characters; single letters are treated as
delimiters.)

Keyword Character
COLON Colon (:)
COMMA Comma (,)
EXCLAMATION Exclamation point (!)
FORM_FEED Form feed
LEFT Left bracket ([)
RIGHT Right bracket (])
SEMI_COLON Semicolon (;)
SLASH Slash (/)
SPACE Space
TAB Tab

If you specify the /COMMENT_DELIMITER qualifier, the /IGNORE=COMMENTS qualifier is
implicitly also included.

If both the uppercase and lowercase forms of a letter are to be used as comment characters, the
letter must be specified twice, once in uppercase and once in lowercase. If you do not include
either a comment character or a keyword with the /COMMENT_DELIMITER qualifier, the
DIFFERENCES command assumes a default comment character based on the file type. For some
file types (.COB and .FOR), the default comment characters are considered valid delimiters only
if they appear in the first column of a line.

The following characters are the default comment delimiters for files with the specified file types:

File Type Default Comment Character
.B2S, .B32, .BAS, .BLI !
.CBL, .CMD ! and ;
.COB * or / in the first column
.COM, .COR !
.FOR ! anywhere and C, D, c, d in the first column
.HLP !
.MAC, .MAR ;
.R32, .REQ !

172

DCL Commands

/EXACT

Use with the /PAGE=SAVE and /SEARCH qualifiers to specify a search string that must match
the search string exactly and must be enclosed with quotation marks (“ ”).

If you specify the /EXACT qualifier without the /SEARCH qualifier, exact search mode is
enabled when you set the search string with the Find (E1) key.

/HIGHLIGHT[=keyword]

Use with the /PAGE=SAVE and /SEARCH qualifiers to specify the type of highlighting you want
when a search string is found. When a string is found, the entire line is highlighted. You can use
the following keywords: BOLD, BLINK, REVERSE, and UNDERLINE. BOLD is the default
highlighting.

/IGNORE=(keyword[,...])

Inhibits the comparison of the specified characters, strings, or records; also controls whether the
comparison records are output to the listing file as edited records or exactly as they appeared
in the input file. If you specify only one keyword, you can omit the parentheses. The keyword
parameter refers to either a character or a keyword. The first set of keywords determines what, if
anything, is ignored during file comparison; the second set of keywords determines whether or
not ignored characters are included in the output. The following keywords are valid options for
the /IGNORE qualifier:

Keyword Item Ignored
BLANK_LINES Blank lines between data lines.
CASE Case of the text being compared.
COMMENTS Data following a comment character. (Use

the /COMMENT_DELIMITER qualifier to designate one or more
nondefault comment delimiters.)

FORM_FEEDS Form feed character.
HEADER[=n] Defines n records of the file as header records, beginning with a

record whose first character is a form feed. The first record is not
ignored if the only character it contains is a form feed. (n indicates the
header size and defaults to 2. A record containing only a single form
feed is not counted in n.)

SPACING Extra spaces or tabs within data lines.
TRAILING_SPACES Space and tab characters at the end of a data line.
WHITE_SPACE All spaces and tab characters.
Keyword Status of Ignored Items in Output
EDITED Omits ignored characters from the output records.
EXACT Includes ignored characters in the output records.
PRETTY Formats output records.

Each data line is checked for COMMENTS, FORM_FEEDS, HEADER, and SPACING before
it is tested for TRAILING_SPACES and then BLANK_LINES. Therefore, if you direct the
DIFFERENCES command to ignore COMMENTS, TRAILING_SPACES, and BLANK_LINES,
it ignores a record that contains several spaces or blank lines followed by a comment.

173

DCL Commands

By default, the DIFFERENCES command compares every character in each file and reports all
differences. Also, by default, the DIFFERENCES command lists records in the output file with all
ignored characters deleted.

If you specify the /PARALLEL qualifier, output records are always formatted. The following
table shows the corresponding output for the various characters that are being translated:

Character
Formatted Output

Tab (Ctrl/I) 1--8 spaces
Return (Ctrl/M) <CR>

Line feed (Ctrl/J) <LF>

Vertical tab (Ctrl/K) <VT>

Form feed (Ctrl/L) <FF>

Other nonprinting characters . (period)

/MATCH=size

Specifies the number of records that should indicate matching data after a difference is found. By
default, after the DIFFERENCES command finds unmatched records, it assumes that the files
once again match after it finds three sequential records that match. Use the /MATCH qualifier to
override the default match size of 3.

You can increase the /MATCH qualifier value if you feel that the DIFFERENCES command
is incorrectly matching sections of the master and revision input files after it has detected a
difference.

/MAXIMUM_DIFFERENCES=n

Terminates the DIFFERENCES command after the specified number of unmatched records
(specified with the n parameter) is found.

The number of unmatched records is determined by finding the maximum number of difference
records for each difference section and adding them together.

If the DIFFERENCES command reaches the maximum number of differences that you specify, it
will output only those records that were detected before the maximum was reached. Also, it will
output, at most, one listing format and return a warning message.

By default, there is no maximum number of differences. All records in the specified input files are
compared.

/MERGED[=n]

Specifies that the output file contain a merged list of differences with the specified number of
matched records listed after each group of unmatched records. The value of the parameter n
must be less than or equal to the number specified in the /MATCH qualifier. By default, the
DIFFERENCES command produces a merged listing with one matched record listed after
each set of unmatched records (that is, /MERGED=1). If the /MERGED, /SEPARATED,
or /PARALLEL qualifier is not specified, the resulting output is merged, with one matched record
following each unmatched record.

Use the /MERGED qualifier to override the default value of the parameter n, or to include a
merged listing with other types of output.

174

DCL Commands

/MODE=(radix[,...])

Specifies the format of the output. You can request that the output be formatted in one or more
radix modes by specifying the following keywords, which may be abbreviated: ASCII (default),
HEXADECIMAL, or OCTAL. If you specify only one radix, you can omit the parentheses.

By default, the DIFFERENCES command writes the output file in ASCII. If you specify more
than one radix, the output listing contains the file comparison in each specified radix. When you
specify two or more radix modes, separate them with commas.

If you specify the /PARALLEL or the /SLP qualifier, the /MODE qualifier is ignored for that
listing form.

/NUMBER (default)
/NONUMBER

Includes line numbers in the listing of DIFFERENCES.

/OUTPUT[=filespec]

Specifies an output file to receive the list of differences. By default, the output is written to the
current SYS$OUTPUT device. If the filespec parameter is not specified, the output is directed
to the first input file with a file type .DIF. The asterisk (*) and the percent sign (%) wildcard
characters are not allowed.

When you specify the /OUTPUT qualifier, you can control the defaults applied to the output
file specification as described in the VSI OpenVMS User's Manual. The default output file type
is .DIF.

/PAGE[=keyword]
/NOPAGE (default)

Controls the display of difference information on the screen.

You can use the following keywords with the /PAGE qualifier:

CLEAR_SCREEN Clears the screen before each page is displayed.
SCROLL Displays information one line at a time.
SAVE[=n] Enables screen navigation of information, where n is the number of

pages to store.

The /PAGE=SAVE qualifier allows you to navigate through screens of information.
The /PAGE=SAVE qualifier stores up to 5 screens of up to 255 columns of information. When
you use the /PAGE=SAVE qualifier, you can use the following keys to navigate through the
information:

Key Sequence
Description

Up arrow key, Ctrl/B Scroll up one line.
Down arrow key Scroll down one line.
Left arrow key Scroll left one column.
Right arrow key Scroll right one column.
Find (E1) Specify a string to find when the information is displayed.

175

DCL Commands

Key Sequence
Description

Insert Here (E2) Scroll right one half screen.
Remove (E3) Scroll left one half screen.
Select (E4) Toggle 80/132 column mode.
Prev Screen (E5) Get the previous page of information.
Next Screen (E6), Return,
Enter, Space

Get the next page of information.

F10, Ctrl/Z Exit. (Some utilities define these differently.)
Help (F15) Display utility help text.
Do (F16) Toggle the display to oldest/newest page.
Ctrl/W Refresh the display.

The /PAGE qualifier is not compatible with the /OUTPUT qualifier.

/PARALLEL[=n]

Lists the records with differences side by side. The value of the parameter n specifies the number
of matched records to merge after each unmatched record; it must be a non-negative decimal
number less than or equal to the number specified in the /MATCH qualifier.

By default, the DIFFERENCES command does not list records after each list of unmatched
records. Also by default, the DIFFERENCES command creates only a list of merged differences.

/SEARCH="string"

Use with the /PAGE=SAVE qualifier to specify a string that you want to find in the information
being displayed. Quotation marks are required for the /SEARCH qualifier, if you include spaces
in the text string.

You can also dynamically change the search string by pressing the Find key (E1) while the
information is being displayed. Quotation marks are not required for a dynamic search.

/SEPARATED[=MASTER, REVISION]

Lists sequentially only the records from the specified file that contain differences. Use the
MASTER keyword to list the differences in the first input file specified; use the REVISION
keyword to list the differences in the second input file specified.

By default, the DIFFERENCES command creates only a merged list of differences.

/SLP

Requests that the DIFFERENCES command produce an output file suitable for input to the
SLP editor. If you use the /SLP qualifier, you cannot specify any of the following output file
qualifiers: /MERGED, /PARALLEL, /SEPARATED, or /CHANGE_BAR.

Use the output file produced by the SLP qualifier as input to SLP to update the master input file,
that is, to make the master input file match the revision input file.

When you specify the /SLP qualifier and you do not specify the /OUTPUT qualifier, the
DIFFERENCES command writes the output file to a file with the same file name as the master
input file with the file type DIF.

176

DCL Commands

/WIDTH=n

Specifies the width of the lines in the output file. The default is 132 characters. If output is written
to the terminal, the /WIDTH qualifier is ignored and the terminal line width is used.

Use the SET TERMINAL command to change the terminal line width.

/WINDOW=size

Searches the number of records specified by the size parameter, before a record is declared as
unmatched. By default, the DIFFERENCES command searches to the ends of both input files
before listing a record as unmatched.

The window size is the minimum size of a differences section that will cause the DIFFERENCES
command to lose synchronization between the two input files.

/WRAP
/NOWRAP (default)

Use with the /PAGE=SAVE qualifier to limit the number of columns to the width of the screen
and to wrap lines that extend beyond the width of the screen to the next line.

The /NOWRAP qualifier extends lines beyond the width of the screen and can be seen when you
use the scrolling (left and right) features provided by the /PAGE=SAVE qualifier.

Examples
1. $ DIFFERENCES EXAMPLE.TXT

File DISK1:[CHRIS.TEXT]EXAMPLE.TXT;2
 1 DEMONSTRATION
 2 OF V7.3 DIFFERENCES
 3 UTILITY

File DISK1:[CHRIS.TEXT]EXAMPLE.TXT;1
 1 DEMONSTRETION
 2 OF VMS DIFFERENCES
 3 UTILITY

Number of difference sections found: 1
Number of difference records found: 2
DIFFERENCES/ IGNORE=()/MERGED=1-
 DISK1:[CHRIS.TEXT]EXAMPLE.TXT;2-
 DISK1:[CHRIS.TEXT]EXAMPLE.TXT;1

In this example, the DIFFERENCES command compares the contents of the two most recent
versions of the file EXAMPLE.TXT in the current default directory. The DIFFERENCES
command compares every character in every record and displays the results at the terminal.

2. $ DIFFERENCES/PARALLEL/WIDTH=80/COMMENT_DELIMITER="V" EXAMPLE.TXT

File DISK1:[CHRIS.TEXT]EXAMPLE.TXT;2 | File DISK1:
[CHRIS.TEXT]EXAMPLE.TXT;1
------------------- 1 ------------------------------------- 1

DEMONSTRATION | DEMONSTRETION

177

DCL Commands

Number of difference sections found: 1
Number of difference records found: 1
DIFFERENCES/IGNORE=(COMMENTS)/COMMENT_DELIMITER=("V")/WIDTH=80/PARALLEL-
 DISK1:[CHRIS.TEXT]EXAMPLE.TXT;2-
 DISK1:[CHRIS.TEXT]EXAMPLE.TXT;1

The DIFFERENCES command compares the same files as in Example 1, but ignores all
characters following the first “V” on any line. The command also specifies that an 80-column
parallel list of differences be displayed.

3. $ DIFFERENCES/WIDTH=80/MODE=(HEX,ASCII) EXAMPLE.TXT/CHANGE_BAR

File DISK1:[CHRIS.TEXT]EXAMPLE.TXT;2
 1 ! DEMONSTRATION
 2 ! OF V7.3 DIFFERENCES
 3 UTILITY

File DISK1:[CHRIS.TEXT]EXAMPLE.TXT;2
RECORD NUMBER 1 (00000001) LENGTH 14 (0000000E) ***CHANGE***
 204E 4F495441 5254534E 4F4D4544 DEMONSTRATION .. 000000
RECORD NUMBER 2 (00000002) LENGTH 19 (00000013) ***CHANGE***
 4E455245 46464944 20302E33 5620464F OF V7.3 DIFFEREN 000000
 534543 CES............. 000010
RECORD NUMBER 3 (00000003) LENGTH 7 (00000007)
 595449 4C495455 UTILITY......... 000000

Number of difference sections found: 1
Number of difference records found: 2
DIFFERENCES /WIDTH=80/MODE=(HEX,ASCII)
 DISK1:[CHRIS.TEXT]EXAMPLE.TXT;2/CHANGE_BAR-
 DISK1:[CHRIS.TEXT]EXAMPLE.TXT;1

The DIFFERENCES command compares the same files as in Example 1, but lists the differences
in both hexadecimal and ASCII formats. The command also specifies that default change
bars be used in the output. The default change bar notation for the hexadecimal output is
CHANGE. For the ASCII output, the default change bar character is the exclamation point.

4. $ DIFFERENCES/OUTPUT BOSTON::DISK2:TEST.DAT OMAHA::DISK1:[PGM]TEST.DAT

The DIFFERENCES command compares two remote files and displays any differences
found. The first file is TEST.DAT on remote node BOSTON. The second file is also named
TEST.DAT on remote node OMAHA. The DIFFERENCES output is located in the file DISK1:
[PGM]TEST.DIF.

DIRECTORY
DIRECTORY — Provides a list of files or information about a file or group of files.

Format
DIRECTORY [filespec[,...]]

DIRECTORY/FTP directory-spec

178

DCL Commands

Parameter
filespec[,...]

Specifies one or more files to be listed. The syntax of a file specification determines which files will
be listed, as follows:

• If you do not enter a file specification, the DIRECTORY command lists all versions of the files in
the current default directory.

• If you specify only a device name, the DIRECTORY command uses your default directory
specification.

• Whenever the file specification does not include a file name, a file type, and a version number, all
versions of all files in the specified directory are listed.

• If a file specification contains a file name or a file type, or both, and no version number, the
DIRECTORY command lists all versions.

• If a file specification contains only a file name, the DIRECTORY command lists all files in the
current default directory with that file name, regardless of file type and version number.

• If a file specification contains only a file type, the DIRECTORY command lists all files in the
current default directory with that file type, regardless of file name and version number.

The asterisk (*) and the percent sign (%) wildcard characters can be used in the directory
specification, file name, file type, or version number fields of a file specification to list all files that
satisfy the components you specify. If you specify more than one file, separate the file specifications
with either commas (,) or plus signs (+).

directory-spec

Specifies the standard DECnet remote file specification. Use a quoted file string to preserve the case
(for case sensitive systems such as UNIX) and to identify a foreign device/directory specification. See
the /FTP qualifier for more information.

Description
The DIRECTORY command lists the files contained in a directory.

Note

Requires execute (E) access to look up files you know the names of, read (R) access to read or list a
file or to use a file name with the asterisk (*) and the percent sign (%) wildcard characters to look up
files.

When you use certain qualifiers with the command, additional information is displayed, along with
the names of the files.

The output of the DIRECTORY command depends on certain formatting qualifiers and their defaults.
These qualifiers are as follows: /COLUMNS, /DATE, /FULL, /OWNER, /PROTECTION, and /SIZE.
However, the files are always listed in alphabetical order, with the highest numbered versions listed
first.

179

DCL Commands

In studying the qualifiers and the capabilities they offer, watch for qualifiers that work together
and for qualifiers that override other qualifiers. For example, if you specify the /FULL qualifier,
the system cannot display all the information in more than one column. Thus, if you specify both
the /COLUMNS and /FULL qualifiers, the number of columns you request is ignored.

You can also select other languages and formats that have been defined on your systems with
international date and time formatting routines available in the run-time library. See the VSI OpenVMS
RTL Library (LIB$) Manual.

Qualifiers
/ACL

Controls whether the access control list (ACL) is displayed for each file. By default, the
DIRECTORY command does not display the ACL for each file. Access control entries (ACEs)
that were created with the hidden option are displayed only if the SECURITY privilege is turned
on. The /ACL qualifier overrides the /COLUMNS qualifier.

For further information, see the VSI OpenVMS Guide to System Security.

/BACKUP

Modifies the time value specified with the /BEFORE or the /SINCE qualifier. The /BACKUP
qualifier selects files according to the dates of their most recent backups. This qualifier is
incompatible with the /CREATED, /EXPIRED, and /MODIFIED qualifiers, which also allow you
to select files according to time attributes. If you specify none of these four time qualifiers, the
default is the /CREATED qualifier.

/BEFORE[=time]

Selects only those files dated prior to the specified time. You can specify time as an absolute
time, as a combination of absolute and delta times, or as one of the following keywords: BOOT,
LOGIN, TODAY (default), TOMORROW, or YESTERDAY. Specify one of the following
qualifiers with the/BEFORE qualifier to indicate the time attribute to be used as the basis for
selection: /BACKUP, /CREATED (default), /EXPIRED, or /MODIFIED.

For complete information on specifying time values, see the VSI OpenVMS User's Manual or the
online help topic Date.

/BRIEF (default)

Displays only a file's name, type, and version number. The brief format lists the files in
alphabetical order from left to right on each line, in descending version number order. You can use
the /ACL, /DATE, /FILE_ID, /FULL, /NOHEADING, /OWNER, /PROTECTION, /SECURITY,
and /SIZE qualifiers to expand a brief display.

/BY_OWNER[=uic]

Selects only those files whose owner user identification code (UIC) matches the specified owner
UIC. The default UIC is that of the current process.

Specify the UIC by using standard UIC format as described in the VSI OpenVMS User's Manual.

For further information, see the VSI OpenVMS Guide to System Security.

180

DCL Commands

/CACHING_ATTRIBUTE

Displays the caching attributes of the selected files.

/COLUMNS=n

Specifies the number of columns in a brief display. The default is four;however, you can request
as many columns as you like, restricted by the value of the /WIDTH qualifier. The /COLUMNS
qualifier is incompatible with the /ACL, /FULL, and /SECURITY qualifiers.

The number of columns actually displayed depends on the amount of information requested for
each column and the display value of the /WIDTH qualifier. The system displays only as many
columns as can fit within the default or specified display width, regardless of how many columns
you specify with the /COLUMNS qualifier.

The DIRECTORY command truncates long file names only when you specify more than
one column and you have asked for additional information to be included in each column.
The default file name size is 19 characters. Use the /WIDTH qualifier to change the default.
When a file name is truncated, the system displays one less character than the file name
field size and inserts a vertical bar in the last position. For example, if the file name is
SHOW_QUEUE_CHARACTERISTICS, and if you requested DIRECTORY to display both file
name and size in each column, the display for that file would be SHOW_QUEUE_CHARACT |
120.

/CREATED (default)

Modifies the time value specified with the /BEFORE or the /SINCE qualifier. The /CREATED
qualifier selects files based on their dates of creation. This qualifier is incompatible with
the /BACKUP, /EXPIRED, and /MODIFIED qualifiers, which also allow you to select files
according to time attributes. If you specify none of these four time qualifiers, the default is
the /CREATED qualifier.

/DATE[=option]
/NODATE (default)

Includes the creation, last modification, expiration, backup, effective, or recording date for each
specified file; the default is the /NODATE qualifier. If you use the /DATE qualifier without an
option, the creation date is provided. Possible options are as follows:

Option Description
ACCESSED Specifies the last access date.

See the Guide to OpenVMS File Applications for additional information.
ALL Specifies all optional dates in the following order: creation, last

modification, expiration, backup, effective, and recording.
ATTRIBUTES Specifies the last attribute modification date.

See the Guide to OpenVMS File Applications for additional information.
BACKUP Specifies the last backup date.
CREATED Specifies the creation date.
DATA_MODIFIED Specifies the last data modification date.

See the Guide to OpenVMS File Applications for additional information.

181

DCL Commands

Option Description
EFFECTIVE Specifies the effective date the contents are valid (ISO9660).
EXPIRED Specifies the expiration date.
MODIFIED Specifies the last modification date.
RECORDING Specifies the recording date on the media (ISO 9660).

/EXACT

Use with the /PAGE=SAVE and /SEARCH qualifiers to specify a search string that must match
the search string exactly and must be enclosed with quotation marks (“ ”).

If you specify the /EXACT qualifier without the /SEARCH qualifier, exact search mode is
enabled when you set the search string with the Find (E1) key.

/EXCLUDE=(filespec[,...])

Excludes the specified files from the DIRECTORY command. You can include a directory but not
a device in the file specification.

The asterisk (*) and the percent sign (%) wildcard characters are allowed in the file specification;
however, you cannot use relative version numbers to exclude a specific version.

If you specify only one file, you can omit the parentheses.

/EXPIRED

Modifies the time value specified with the /BEFORE or the /SINCE qualifier. The /EXPIRED
qualifier selects files according to their expiration dates. (The expiration date is set with the SET
FILE/EXPIRATION_DATE command.)

The /EXPIRED qualifier is incompatible with the /BACKUP, /CREATED, and /MODIFIED
qualifiers, which also allow you to select files according to time attributes. If you specify none of
these four time qualifiers, the default is the /CREATED qualifier.

/FILE_ID

Controls whether the file identification (FID) number is displayed. By default, the FID is not
displayed unless the /FULL qualifier is specified.

/FTP

Invokes the directory (dir or ls) operation of the FTP utility. The DIRECTORY/FTP command
writes a listing of the contents of the specified remote directory to the local host over a TCP/IP
connection by invoking the FTP utility.

The format is:

$ DIR/FTP nodename"username password"::directory_pathname

If the directory path name is omitted, the contents of the user's home directory are displayed. If
only the node name is entered, the contents of the ANONYMOUS directory are displayed.

/FULL

Displays the following information for each file:

182

DCL Commands

File name
File type
Version number
File identification number (FID)
Number of blocks used
Number of blocks allocated
File owner's user identification code (UIC)
Date of creation
Date last modified and revision number
Date of expiration
Date of last backup
Date of effective usage
Date of recording on media
File organization
Shelved state
Caching attribute
File attributes
Record format
Record attributes
RMS attributes
Journaling information
File protection
Access control list (ACL)
Client attribute
Value of the stored semantics tag (where applicable)

/GRAND_TOTAL

Displays only the totals for all files and directories that have been specified. Suppresses both the
per-directory total and individual file information. (See the /TRAILING qualifier for information
on displaying directory totals.)

/HEADING
/NOHEADING

Controls whether heading lines consisting of a device description and directory specification are
printed. The default output format provides this heading. When the /NOHEADING qualifier is
specified, the display is in single-column format and the device and directory information appears
with each file name. The /NOHEADING qualifier overrides the /COLUMNS qualifier.

The combination of the /NOHEADING and /NOTRAILING qualifiers is useful in command
procedures where you want to create a list of complete file specifications for later operations.

/HIGHLIGHT[=keyword]

Use with the /PAGE=SAVE and /SEARCH qualifiers to specify the type of highlighting you want
when a search string is found. When a string is found, the entire line is highlighted. You can use
the following keywords: BOLD, BLINK, REVERSE, and UNDERLINE. BOLD is the default
highlighting.

/MODIFIED

Modifies the time value specified with the /BEFORE or the /SINCE qualifier. The /MODIFIED
qualifier selects files according to the dates on which they were last modified.

183

DCL Commands

This qualifier is incompatible with the /BACKUP, /CREATED, and /EXPIRED qualifiers, which
also allow you to select files according to time attributes. If you specify none of these four time
modifiers, the default is the /CREATED qualifier.

/OUTPUT[=filespec]
/NOOUTPUT

Controls where the output of the command is sent. By default, the display is written to the current
SYS$OUTPUT device. The asterisk (*) and the percent sign (%) wildcard characters are not
allowed.

If you enter the /OUTPUT qualifier with a partial file specification (for
example, /OUTPUT=[KIER]), DIRECTORY is the default file name and .LIS the default file
type. If you enter the /NOOUTPUT qualifier, output is suppressed.

If the output will be written to a file in the same directory, the output file name will appear in the
directory listing.

/OWNER
/NOOWNER (default)

Controls whether the file owner's user identification code (UIC) is listed.

The default size of the owner field is 20 characters. If the file owner's UIC exceeds the length
of the owner field, the information will be truncated. The size of this field can be altered by
specifying /WIDTH=OWNER, along with a value for the owner field. For more information, see
the description of the/WIDTH qualifier.

/PAGE[=keyword]
/NOPAGE (default)

Controls the display of directory information on the screen.

You can use the following keywords with the /PAGE qualifier:

CLEAR_SCREEN Clears the screen before each page is displayed.
SCROLL Displays information one line at a time.
SAVE[= n] Enables screen navigation of information, where n is the number of pages

to store.

The /PAGE=SAVE qualifier allows you to navigate through screens of information.
The /PAGE=SAVE qualifier stores up to 5 screens of up to 255 columns of information. When
you use the /PAGE=SAVE qualifier, you can use the following keys to navigate through the
information:

Key Sequence
Description

Up arrow key, Ctrl/B Scroll up one line.
Down arrow key Scroll down one line.
Left arrow key Scroll left one column.
Right arrow key Scroll right one column.
Find (E1) Specify a string to find when the information is displayed.

184

DCL Commands

Key Sequence
Description

Insert Here (E2) Scroll right one half screen.
Remove (E3) Scroll left one half screen.
Select (E4) Toggle 80/132 column mode.
Prev Screen (E5) Get the previous page of information.
Next Screen (E6), Return,
Enter, Space

Get the next page of information.

F10, Ctrl/Z Exit. (Some utilities define these differently.)
Help (F15) Display utility help text.
Do (F16) Toggle the display to oldest/newest page.
Ctrl/W Refresh the display.

The /PAGE qualifier is not compatible with the /OUTPUT qualifier.

/PRINTER

Puts the display in a file and queues the file to SYS$PRINT for printing under the name given
by the /OUTPUT qualifier. If you do not specify the /OUTPUT qualifier, output is directed to a
temporary file named DIRECTORY.LIS, which is queued for printing and then is deleted.

/PROTECTION
/NOPROTECTION (default)

Controls whether the file protection for each file is listed.

/SEARCH="string"

Use with the /PAGE=SAVE qualifier to specify a string that you want to find in the information
being displayed. Quotation marks are required for the /SEARCH qualifier, if you include spaces
in the text string.

You can also dynamically change the search string by pressing the Find key (E1) while the
information is being displayed. Quotation marks are not required for a dynamic search.

/SECURITY

Controls whether information about file security is displayed; using the /SECURITY qualifier is
equivalent to using the /ACL, /OWNER, and /PROTECTION qualifiers together. ACEs that were
created with the hidden option are displayed only if the SECURITY privilege is turned on.

For further information, See the VSI OpenVMS Guide to System Security.

/SELECT=(keyword[,...])

Allows you to select files for display. Choose one of the following keywords:

ACL
NOACL

Displays files that have an associated ACL or files that do not
(NOACL keyword).

CACHING_ATTRIBUTE
=(option[,...])

Displays files that have the specified caching attribute. Possible
options are:

185

DCL Commands

NO_CACHING
WRITETHROUGH

FILE=(option[,...]) Displays portions of the file specification. The /SELECT=FILE
qualifier is used to turn off specific portions by explicit or
implicit specification of the options. Possible options are:

[NO]NODE
[NO]DEVICE
[NO]DIRECTORY
[NO]NAME
[NO]TYPE
[NO]VERSION

/SELECT=FILE qualifier cannot be used with the /FULL
qualifier.

ONLINE
NOONLINE

Displays files that are online or shelved.

PRESHELVED
NOPRESHELVED

Displays files that are preshelved or not preshelved.

SHELVABLE
NOSHELVABLE

Displays files that are shelvable or not shelvable.

Displays files according to their size. Possible options are:
Option Description
MAXIMUM= n Displays files that have fewer blocks

than the value of n, which defaults to
1,073,741,823. Use with MINIMUM=n
to specify a size range for files to be
displayed.

MINIMUM= n Displays files that have blocks equal to
or greater than the value of n. Use with
MAXIMUM=n to specify a size range
for files to be displayed.

(MINIMUM= n,
MAXIMUM= n)

Displays files whose block size falls
within the specified MINIMUM and
MAXIMUM range.

SIZE=(option[,...])

UNUSED[=n] Displays a file only if the difference
between the used portion of a file and
the allocated size of a file exceeds
the disk's cluster size. If a value is
specified, any file with unused space
exceeding that value is displayed.

VERSION=(option[,option])
(Alpha/Integrity servers Only)

Displays all files with version numbers that fall within the range
specified by one or both of the following options:

MINIMUM=number
MAXIMUM=number

/SHELVED_STATE

Displays whether the file is shelved, preshelved, or online.

186

DCL Commands

/SINCE[=time]

Selects only those files dated on or after the specified time. You can specify time as an absolute
time, as a combination of absolute and delta times, or as one of the following keywords: BOOT,
JOB_LOGIN, LOGIN, TODAY (default), TOMORROW, or YESTERDAY. Specify one of the
following qualifiers with the/SINCE qualifier to indicate the time attribute to be used as the basis
for selection: /BACKUP, /CREATED (default), /EXPIRED, or /MODIFIED.

For complete information on specifying time values, See the VSI OpenVMS User's Manual or the
online help topic Date.

/SIZE[=option]
/NOSIZE (default)

Displays the size in blocks of each file. If you omit the option parameter, the default lists the file
size in blocks used (USED). Specify one of the following options:

ALL Lists the file size both in blocks allocated and blocks used.
ALLOCATION Lists the file size in blocks allocated.
UNITS[=option] Allows you to override the current default specified by

SETPROCESS/UNITS so that you can display file size in your choice of
blocks or bytes.

The following keywords are valid options with the UNITS keyword:
BLOCKS, BYTES.

If you specify UNITS with no option, the default value is not changed.
USED Lists the file size in blocks used.

The size of this field can be altered by supplying the size value of the/WIDTH qualifier.

/STYLE=keyword[,keyword]

Specifies the file name format for display purposes while displaying directory contents.

The valid keywords for this qualifier are CONDENSED and EXPANDED. Descriptions are as
follows:

Keyword Explanation
CONDENSED (default) Displays the file name representation of what is generated to fit into a

255-length character string. This file name may contain a DID or FID
abbreviation in the file specification.

EXPANDED Displays the file name representation of what is stored on disk. This
file name does not contain any DID or FID abbreviations.

If both CONDENSED and EXPANDED keywords are specified, then the file specifications are
displayed in two columns. The column size is dependent on the display width, and the file names
wrap within their respective columns.

File errors are displayed with the CONDENSED file specification unless the EXPANDED
keyword is specified.

See the VSI OpenVMS System Manager's Manual, Volume 1: Essentials for more information.

187

DCL Commands

/SYMLINK=keyword (default)
/NOSYMLINK

If an input-file specification parameter is a symbolic link, the displayed file attributes are those
of the symbolic link itself. If any file attribute is requested, then the contents of the symbolic link
are also displayed, with an arrow appearing between the file name and the contents (for example,
LINK.TXT -> FILE.TXT).

The /NOSYMLINK qualifier indicates that if an input file specification is a symbolic link, then
the file attributes of the file to which the symbolic link refers are displayed; the displayed name is
still the name of the symbolic link itself.

The valid keywords for this qualifier are [NO]WILDCARD, [NO]ELLIPSIS, and [NO]TARGET.
Descriptions are as follows:

Keyword Explanation
WILDCARD Indicates that symlinks are enabled during wildcard searches.
NOWILDCARD Indicates that symlinks are disabled during directory wildcard searches.
ELLIPSIS Equivalent to WILDCARD (included for command symmetry).
NOELLIPSIS Indicates that symlinks are matched for all wildcard fields except for

ellipsis.
TARGET Indicates that if the target file of the file specification is a symlink, then the

target file is followed.
NOTARGET Indicates that the command operates on the target file even if it is a

symlink.

If the file named in the DIRECTORY command is a symlink, the command by default operates on
the symlink itself.

/TIME[=option]
/NOTIME (default)

The same as the /DATE qualifier: includes the backup, creation, expiration, or modification
time for each specified file; the default is the /NOTIME qualifier. If you use the /TIME qualifier
without an option, the creation time is provided. Possible options are as follows:

Option Description
ALL Specifies creation, expiration, backup, and last modification times.
BACKUP Specifies the last backup time.
CREATED Specifies the creation time.
EFFECTIVE Specifies the effective time the contents are valid.
EXPIRED Specifies the expiration time.
MODIFIED Specifies the last modification time.
RECORDING Specifies the recording time on the media.

/TOTAL

Displays only the directory name and total number of files.

188

DCL Commands

By default, the output format is determined by the /BRIEF qualifier, which gives this total but also
lists all the file names, file types, and their version numbers.

/TRAILING
/NOTRAILING

Controls whether trailing lines that provide the following summary information are displayed:

• Number of files listed

• Total number of blocks used per directory

• Total number of blocks allocated

• Total number of directories and total blocks used or allocated in all directories (only if more
than one directory is listed)

By default, the output format includes most of this summary information. The /SIZE and /FULL
qualifiers determine more precisely what summary information is included.

When used alone, the /TRAILING qualifier lists the number of files in the directory. When used
with the /SIZE qualifier, the /TRAILING qualifier lists the number of files and the number of
blocks (displayed according to the option of the /SIZE qualifier, FULL or ALLOCATION). When
used with the /FULL qualifier, the /TRAILING qualifier lists the number of files as well as the
number of blocks used and allocated. If more than one directory is listed, the summary includes
the total number of directories, the total number of blocks used, and the total number of blocks
allocated.

/VERSIONS=n

Specifies the number of versions of a file to be listed. The default is all versions of each file. A
value less than 1 is not allowed.

/WIDTH=(keyword[,...])

Formats the width of the display. If you specify only one keyword, you can omit the parentheses.
Possible keywords are as follows:

DISPLAY= n Specifies the total width of the display as an integer in the range 1 to 256
and defaults to zero (setting the display width to the terminal width). If the
total width of the display exceeds the terminal width, the information will
be truncated.

FILENAME= n Specifies the width of the file name field;defaults to 19 characters. If you
request another piece of information to be displayed along with the file
name in each column, file names that exceed the n parameter cause the line
to wrap after the file name field. (Seethe /COLUMNS qualifier.)

OWNER= n Specifies the width of the owner field; defaults to 20 characters. If the
owner's user identification code (UIC)exceeds the length of the owner field,
the information will be truncated.

SIZE= n Specifies the width of the size field; defaults to 6 characters on systems
prior to OpenVMS Version 6.0; the default is 7 characters on OpenVMS
Version 6.0 systems or higher. If the file size exceeds the length of the size
field, the field is filled with asterisks.

189

DCL Commands

/WRAP
/NOWRAP (default)

Use with the /PAGE=SAVE qualifier to limit the number of columns to the width of the screen
and to wrap lines that extend beyond the width of the screen to the next line.

The /NOWRAP qualifier extends lines beyond the width of the screen and can be seen when you
use the scrolling (left and right) features provided by the /PAGE=SAVE qualifier.

Examples
1. $ DIRECTORY AVERAGE.*

Directory DISK$DOCUMENT:[SOUDER]

AVERAGE.EXE;6 AVERAGE.FOR;6 AVERAGE.LIS;4 AVERAGE.OBJ;12

Total of 4 files.

In this example, the DIRECTORY command lists all files with the file name AVERAGE and any
file type.

2. $ DIRECTORY/SIZE=USED/DATE=CREATED/VERSIONS=1/PROTECTION AVERAGE

Directory DISK$DOCUMENT:[SLOUGH]

AVERAGE.EXE;6 6 19-DEC-2001 15:43:02.10 (RE,RE,RWED,RE)
AVERAGE.FOR;6 2 19-DEC-2001 10:29:53.37 (RE,RE,RWED,RE)
AVERAGE.LIS;4 5 19-DEC-2001 16:27:27.19 (RE,RE,RWED,RE)
AVERAGE.OBJ;6 2 19-DEC-2001 16:27:44.23 (RE,RE,RWED,RE)

Total of 4 files, 15 blocks.

In this example, the DIRECTORY command lists the number of blocks used, the creation date,
and the file protection code for the highest version number of all files named AVERAGE in the
current directory.

3. $ DIRECTORY/FULL DISK$GRIPS_2:[VMS.TV]DEMO.EXE

Directory DISK$GRIPS_2:[VMS.TV]

DEMO.EXE;1 File ID: (36,11,0)
Size: 390/390 Owner: [0,0]
Created: 12-NOV-2001 11:45:19.00
Revised: 14-DEC-2001 15:45:19.00 (34)
Expires:
<None specified>
Backup: 28-NOV-2001 04:00:12.22
Effective:
<None specified>
Recording:
<None specified>
File organization: Sequential
Shelved state: Online
Caching attribute: Writethrough
File attributes: Allocation: 390, Extend: 0, Global buffer count: 0,
 Version limit: 0, Backups disabled, Not shelvable

190

DCL Commands

Record format: Fixed length 512 byte records
Record attributes: None
RMS attributes: None
Journaling enabled: None
File protection: System:RE, Owner:RE, Group:RE, World:RE
Access Cntrl List: None
Client attributes: None

Total of 1 file, 390/390 blocks.

The example illustrates the DIRECTORY/FULL command.

4. $ DIRECTORY/VERSIONS=1/COLUMNS=1 AVERAGE.*

The DIRECTORY command in this example lists only the highest version of each file named
AVERAGE in the current default directory. The format is brief and restricted to one column.
Heading and trailing lines are provided.

5. $ DIRECTORY BLOCK%%%

The DIRECTORY command in this example locates all versions and types of files in the
default device and directory whose names begin with the letters BLOCK and end with any three
additional characters. The default output format is brief, four columns, with heading and trailing
lines.

6. $ DIRECTORY/EXCLUDE=(AVER.DAT;*,AVER.EXE;*) [*...]AVER

The DIRECTORY command in this example lists and totals all versions and types of files named
AVER in all directories and subdirectories on the default disk, except any files named AVER.DAT
and AVER.EXE.

7. $ DIRECTORY/SIZE=ALL FRESNO::DISK1:[TAMBA]*.COM

The DIRECTORY command in this example lists all versions of all files with the file type COM
in the directory TAMBA on node FRESNO and device DISK1. The listing includes the file size
both in blocks used and in blocks allocated for each file.

8. $ DIRECTORY-
_$ /MODIFIED/SINCE=14-DEC-2001:01:30/SIZE=ALL/OWNER-
_$ /PROTECTION/OUTPUT=UPDATE/PRINTER [A*]

The DIRECTORY command in this example locates all files that have been modified since
1:30 a.m. on December 14, 2001, and that reside on the default disk in all directories whose
names begin with the letter A. It formats the output to include all versions, the size used and size
allocated, the date last modified, the owner, and the protection codes. The output is directed to a
file named UPDATE.LIS, which is queued automatically to the default printer queue and then is
deleted.

9. $ DIRECTORY/SHELVED_STATE

Directory MYDISK:[THOMPSON]

MYFILE.TXT;2 Online
NOT_SHELVED.TXT;1 Online
SHELVED.TXT Shelved

Total of 3 files.

191

DCL Commands

The DIRECTORY command in this example lists all the files in a directory and shows whether a
file is shelved, preshelved, online, or remote.

10. $ DIRECTORY *.PS

Directory MYDISK:[TEST]

REPORT.PS;1 1197

Total of 1 file, 1197 blocks.

$ DIRECTORY/SIZE=UNITS=BYTES *.PS

Directory 1DKC600:[TEST]

REPORT.PS;1 598KB

Total of 1 file, 598KB

By default, the first DIRECTORY command displays the file size in blocks. The second
DIRECTORY command specifies that the file size be displayed in bytes.

DISABLE AUTOSTART
DISABLE AUTOSTART — Disables the autostart feature on a node for all autostart queues managed
by the specific queue manager. By default, this command uses the /QUEUES qualifier. For more
information on autostart queues, see the VSI OpenVMS System Manager's Manual.

Format
DISABLE AUTOSTART[/QUEUES]

Description
The DISABLE AUTOSTART/QUEUES command notifies the queue manager to perform the
following tasks on the affected node:

• Mark all of the queue manager's autostart queues as “stop pending” in preparation for a planned
shutdown.

• Prevent any of the queue manager's autostart queues from failing over to the node.

• Upon completion of any jobs currently executing on any of that queue manager's autostart
queues, force the queue to fail over to the next available node in the queue's failover list (if
any) on which autostart is enabled. (For information on failover lists for autostart queues, see
the /AUTOSTART_ON qualifier for the INITIALIZE/QUEUE command.)

Autostart queues on the node that do not have a failover list, or for which no failover node is enabled
for autostart, are stopped upon completion of any current jobs. These stopped queues remain activated
for autostart. The queue manager will restart these stopped autostart queues when the ENABLE
AUTOSTART command is entered for the affected node or a node to which the queue can fail over.

192

DCL Commands

By default the command affects the node on which it is entered. Specify the /ON_NODE qualifier to
disable autostart on a different node.

The DISABLE AUTOSTART/QUEUES command is included in the node shutdown command
procedure SHUTDOWN.COM. If you shutdown a node without using SHUTDOWN.COM, and the
node is running autostart queues, you might want to enter the DISABLE AUTOSTART/QUEUES
command first.

The DISABLE AUTOSTART/QUEUES command only affects autostart queues.

Qualifiers
/NAME_OF_MANAGER= name

Specifies the name of the queue manager controlling the autostart queues you want to disable. The
qualifier allows the autostart feature to be used differently for different sets of queues.

If the /NAME_OF_MANAGER qualifier is omitted, the default queue manager name
SYS$QUEUE_MANAGER is used. For more information on multiple queue managers, see the
VSI OpenVMS System Manager's Manual.

/ON_NODE=nodename

Specifies a node in an OpenVMS Cluster system. Use this qualifier to disable autostart on a node
other than the one from which you enter the command.

/QUEUES

Specifies that autostart is to be disabled for queues. (This qualifier is used by default.)

Examples
1. $ INITIALIZE/QUEUE/BATCH/START/AUTOSTART_ON=SATURN:: BATCH_1

$ ENABLE AUTOSTART/QUEUES
 .
 .
 .
$ DISABLE AUTOSTART/QUEUES

In this example, the INITIALIZE/QUEUE command creates an autostart queue BATCH_1,
capable of executing on node SATURN. The /START qualifier activates the queue for autostart.
The ENABLE AUTOSTART/QUEUES command (executed on node SATURN) enables autostart
on the node, causing the queue (and any other active autostart queues on the node) to begin
executing jobs.

The DISABLE AUTOSTART command (executed on node SATURN) stops autostart queues on
the node, and prevents any queues from failing over to the node.

This command only affects queues managed by the default queue manager SYS
$QUEUE_MANAGER because the /NAME_OF_MANAGER qualifier is not specified.

Because BATCH_1 is set up to run only on one node, the queue cannot fail over to another node
and therefore is stopped; however, the queue remains active for autostart and will be started
when the ENABLE AUTOSTART command is entered for node SATURN. No START/QUEUE
command is needed to restart BATCH_1 unless autostart of the queue is deactivated with the
STOP/QUEUE/NEXT or STOP/QUEUE/RESET command.

193

DCL Commands

2. $ DISABLE AUTOSTART/QUEUES/ON_NODE=JADE

The DISABLE AUTOSTART/QUEUES command in this example disables autostart on the
OpenVMS Cluster node JADE. This command can be entered from any node in the cluster.

DISCONNECT
DISCONNECT — Breaks the connection between a physical terminal and a virtual terminal. After
the physical terminal is disconnected, both the virtual terminal and the process using it remain on the
system.

Format
DISCONNECT

Description
Use the DISCONNECT command to disconnect a physical terminal from a virtual terminal and its
associated process.

Note

Requires that your physical terminal is connected to a virtual terminal.

The virtual terminal and the process remain on the system, so you can use the CONNECT command
to reconnect to the process later. (For more information about virtual terminals and how to connect to
them, see the description of the CONNECT command.) To terminate a process connected to a virtual
terminal, use the LOGOUT command.

After you are disconnected from a virtual terminal, you can use the physical terminal to log in again.

You can use the DISCONNECT command only if your physical terminal is connected to a virtual
terminal.

Qualifier
/CONTINUE
/NOCONTINUE (default)

Controls whether the CONTINUE command is executed in the current process just before
connecting to another process. This procedure permits an interrupted image to continue
processing after the disconnection until the process needs terminal input or attempts to write to the
terminal. At that point, the process waits until the physical terminal is reconnected to the virtual
terminal.

Examples
1. $ DISCONNECT

This command disconnects a physical terminal from a virtual terminal, but does not log the
process out. Now you can use the physical terminal to log in again.

194

DCL Commands

2. $ RUN PAYROLL
Ctrl/Y
$ DISCONNECT/CONTINUE

In this example, the RUN command is entered from a physical terminal that is connected
to a virtual terminal. After the image PAYROLL.EXE is interrupted, the DISCONNECT
command disconnects the physical and the virtual terminals without logging out the process.
The /CONTINUE qualifier allows the image PAYROLL.EXE to continue to execute until the
process needs terminal input or attempts to write to the terminal. At that point, the process
waits until the physical terminal is reconnected to the virtual terminal; however, you can use the
physical terminal to log in again and perform other work.

DISMOUNT
DISMOUNT — Closes a mounted disk or tape volume for further processing and deletes the logical
name associated with the device.

Format
DISMOUNT device-name[:]

Parameter
device-name[:]

Name of the device containing the volume – either a logical name or a physical name. If a physical
name is specified, the controller defaults to A and the unit defaults to 0. If the volume currently
mounted on the device is a member of a disk or tape volume set, all volumes in the set are
dismounted, unless the /UNIT qualifier is specified.

Description
The command requires the GRPNAM (group logical name) and SYSNAM (system logical name)
privileges to dismount group and system volumes.

DUMP
DUMP — Displays the contents of a file, a directory, a disk volume, a magnetic tape volume, or a
CD-ROM volume in decimal, hexadecimal, octal format, ASCII, or formatted data structures. This
command can be used to generate process dumps.

Format
DUMP filespec [,...]

Parameter
filespec [,...]

Specifies the file or name of the device being dumped.

195

DCL Commands

If the specified device is not a disk, a tape, or a network device, or if the device is mounted with
the /FOREIGN qualifier, the file specification must contain only the device name.

If the specified device is a network device, a disk device, or a tape device that is mounted without
the /FOREIGN qualifier, the file specification can contain the asterisk (*) and the percent sign (%)
wildcard characters.

Files-11 C/D format standards have been implemented on mounted and foreign mounted volumes.

Description
By default, the DUMP command formats the output both in ASCII characters and in
hexadecimal longwords. You can specify another format for the dump by using a radix
qualifier (/OCTAL, /DECIMAL, or /HEXADECIMAL) or a length qualifier (/BYTE, /WORD,
or /LONGWORD).

Dumping Files
If the input medium is a network device, a disk device, or a tape device that is mounted without
the /FOREIGN qualifier, the DUMP command operates on files. You can dump files by either records
or blocks. The asterisk (*) and the percent sign (%) wildcard character specifications can be used to
select a group of files for processing.

Dumping Volumes
If the input medium is not a disk or a tape device, or if it is mounted with the /FOREIGN qualifier,
the DUMP command operates on the input device as a non-file-structured (NFS) medium. Disk
devices are dumped by 512-byte logical blocks. Other devices are dumped by physical blocks. No
repositioning of the input medium occurs; therefore, consecutive blocks on a tape can be dumped by a
single DUMP command.

If you have LOG_IO (logical I/O) privilege, you can dump random blocks on a Files-11 volume. For
example, by using the /BLOCKS qualifier, you could dump block 100 on the system disk.

Dumping Processes
If you use the /PROCESS qualifier, the DUMP command attempts to generate a process dump file.

Reading Dumps
The ASCII representation is read left to right. The hexadecimal, decimal, and octal representations are
read right to left.

Specifying Numeric Qualifier Values
The numeric values for the /BLOCKS, /RECORDS, and /NUMBER qualifiers can be specified either
as decimal numbers or with a leading %X, %O, or %D to signify hexadecimal, octal, or decimal
numbers respectively. For example, the following are all valid ways to specify decimal value 24:

24
%X18
%O30
%D24

196

DCL Commands

Qualifiers
/ALLOCATED

Includes in the dump all blocks allocated to the file. (By default, the dump does not include blocks
following the end-of-file [EOF].)

You can specify the /ALLOCATED qualifier if the input is a disk that is mounted without
the /FOREIGN qualifier. The /ALLOCATED and /RECORDS qualifiers are mutually exclusive.

/BLOCKS[=(option[,...])]

Dumps the specified blocks one block at a time, which is the default method for all devices except
network devices.

Block numbers are specified as integers relative to the beginning of the file. Typically, blocks are
numbered beginning with 1. If a disk device is mounted using the /FOREIGN qualifier, blocks are
numbered beginning with zero. Select a range of blocks to be dumped by specifying one of the
following options:

START:n Specifies the number of the first block to be dumped; the default is the first
block.

END:n Specifies the number of the last block to be dumped; the default is the
last block or the end-of-file (EOF) block, depending on whether you have
specified the /ALLOCATED qualifier.

COUNT:n Specifies the number of blocks to be dumped. The COUNT option provides
an alternative to the END option; you cannot specify both.

If you specify only one option, you can omit the parentheses.

The /BLOCKS and /RECORDS qualifiers are mutually exclusive.

Use the /BLOCKS qualifier to dump random blocks from Files-11 volumes. This procedure
requires LOG-IO (logical I/O) privilege.

/BYTE

Formats the dump in bytes. The /BYTE, /LONGWORD, and /WORD qualifiers are mutually
exclusive. The default format is composed of longwords.

/DECIMAL

Dumps the file in decimal radix. The /DECIMAL, /HEXADECIMAL (default), and /OCTAL
qualifiers are mutually exclusive.

/DESCRIPTOR[=(option[,...])]

Dumps the specified ISO 9660 volume descriptors in a formatted manner. If /NOFORMATTED is
specified, block mode format is used.

The descriptor options that you can specify are as follows:

BOOT:n Searches for the nth occurrence of a Boot Record.

197

DCL Commands

PVD:n Searches for the nth occurrence of a Primary Volume Descriptor.
SVD:n Searches for the nth occurrence of a Supplementary Volume Descriptor.
VPD:n Searches for the nth occurrence of a Volume Partition Descriptor.
VDST:n Searches for the nth occurrence of a Volume Descriptor Set Terminator.

If you specify only one option, you can omit the parentheses.

ISO 9660 descriptors are specified by their ordinal position from the start of the volume,
defaulting to 1 if they are not specified. The ISO 9660 volume is sequentially searched from the
beginning of the volume descriptor set sequence to the end to find the specified descriptor and
output it in a formatted manner.

/DIRECTORY

Dumps data blocks of the specified file as formatted on-disk structures for Files-11 On-Disk
Structure Level 1, 2, or 5 directory records, ISO 9660, or High Sierra directory records.

/EXACT

Use with the /PAGE=SAVE and /SEARCH qualifiers to specify a search string that must match
the search string exactly and must be enclosed with quotation marks (“ ”).

If you specify the /EXACT qualifier without the /SEARCH qualifier, exact search mode is
enabled when you set the search string with the Find (E1) key.

/FILE_HEADER

Dumps each data block that is a valid Files-11 header in Files-11 header format rather than in the
selected radix and length formats.

/FORMATTED (default)
/NOFORMATTED

Dumps the file header in Files-11 format; the /NOFORMATTED qualifier dumps the file header
in octal format. This qualifier is useful only when the /HEADER qualifier is specified.

/HEADER

Dumps the file header and access control list (ACL). To dump only the file header, and not the
file contents, also specify /BLOCK=(COUNT:0). The /HEADER qualifier is invalid for devices
mounted using the /FOREIGN qualifier.

Use the /FORMATTED qualifier to control the format of the display.

You can use the /FILE_HEADER qualifier with the /HEADER qualifier to have Files-11 file
headers printed in an interpreted representation.

By default, the file header is not displayed.

/HEXADECIMAL (default)

Dumps the file in hexadecimal radix. The /DECIMAL, /HEXADECIMAL (default), and /OCTAL
qualifiers are mutually exclusive.

198

DCL Commands

/HIGHLIGHT[=keyword]

Use with the /PAGE=SAVE and /SEARCH qualifiers to specify the type of highlighting you want
when a search string is found. When a string is found, the entire line is highlighted. You can use
the following keywords: BOLD, BLINK, REVERSE, and UNDERLINE. BOLD is the default
highlighting.

/IDENTIFIER=file-id

Dumps the file selected by the file identification (FID) number from the specified volume. For
further information, see the /FILE_ID qualifier from the DCL command, DIRECTORY.

/LONGWORD (default)

Formats the dump in longwords. The /BYTE, /LONGWORD, and /WORD qualifiers are mutually
exclusive.

/MEDIA_FORMAT=keyword

Specifies the format in which a data structure is to be dumped. If you specify this qualifier, you
must use one of the following keywords:

CDROM Specifies ISO 9660 media format. This format is the default if you do not
specify the /MEDIA_FORMAT qualifier.

CDROM_HS Specifies High Sierra media format.

/NUMBER[=n]

Specifies how byte offsets are assigned to the lines of output. If you specify the /NUMBER
qualifier, the byte offsets increase continuously through the dump, beginning with n; if you omit
the /NUMBER qualifier, the first byte offset is zero. By default, the byte offset is reset to zero at
the beginning of each block or record.

/OCTAL

Dumps the file in octal radix. The /DECIMAL, /HEXADECIMAL (default), and /OCTAL
qualifiers are mutually exclusive.

/OUTPUT[=filespec]

Specifies the output file for the dump. If you do not specify a file specification, the default is
the file name of the file being dumped and the file type .DMP. If the /OUTPUT qualifier is
not specified, the dump goes to SYS$OUTPUT. The /OUTPUT and /PRINTER qualifiers are
mutually exclusive.

/PAGE[=keyword]
/NOPAGE (default)

Controls the display of dump information on the screen.

You can use the following keywords with the /PAGE qualifier:

CLEAR_SCREEN Clears the screen before each page is displayed.
SCROLL Displays information one line at a time.

199

DCL Commands

SAVE[=n] Enables screen navigation of information, where n is the number of pages
to store.

The /PAGE=SAVE qualifier allows you to navigate through screens of information.
The /PAGE=SAVE qualifier stores up to 5 screens of up to 255 columns of information. When
you use the /PAGE=SAVE qualifier, you can use the following keys to navigate through the
information:

Key Sequence
Description

Up arrow key, Ctrl/B Scroll up one line.
Down arrow key Scroll down one line.
Left arrow key Scroll left one column.
Right arrow key Scroll right one column.
Find (E1) Specify a string to find when the information is displayed.
Insert Here (E2) Scroll right one half screen.
Remove (E3) Scroll left one half screen.
Select (E4) Toggle 80/132 column mode.
Prev Screen (E5) Get the previous page of information.
Next Screen (E6), Return,
Enter, Space

Get the next page of information.

F10, Ctrl/Z Exit. (Some utilities define these differently.)
Help (F15) Display utility help text.
Do (F16) Toggle the display to oldest/newest page.
Ctrl/W Refresh the display.

The /PAGE qualifier is not compatible with the /OUTPUT qualifier.

/PATH_TABLE

Dumps data blocks in ISO 9660 Path Table format.

/PRINTER

Queues the dump to SYS$PRINT in a file named with the file name of the file being dumped and
the file type .DMP. If the /PRINTER qualifier is not specified, the dump goes to SYS$OUTPUT.
The asterisk (*) and the percent sign (%) wildcard characters are not allowed. The /OUTPUT
and /PRINTER qualifiers are mutually exclusive.

/PROCESS

Attempts to generate a process dump.

/RECORDS[=(option[,...])]

Dumps the file a record at a time rather than a block at a time. (By default, input is dumped one
block at a time for all devices except network devices.)

Records are numbered beginning with 1.

200

DCL Commands

Select a range of records to be dumped by specifying one of the following options:

START:n Specifies the number of the first record to be dumped; the default is the first
record.

END:n Specifies the number of the last record to be dumped; the default is the last
record of the file.

COUNT:n Specifies the number of records to be dumped. The COUNT option
provides an alternative to the END option; you cannot specify both.

If you specify only one option, you can omit the parentheses.

If you specify the /RECORDS qualifier, you cannot specify the /ALLOCATED or the /BLOCKS
qualifier.

/SEARCH="string"

Use with the /PAGE=SAVE qualifier to specify a string that you want to find in the information
being displayed. Quotation marks are required for the /SEARCH qualifier, if you include spaces
in the text string.

You can also dynamically change the search string by pressing the Find key (E1) while the
information is being displayed. Quotation marks are not required for a dynamic search.

/STYLE=keyword

Specifies the file name format for display purposes while performing a file dump.

The valid keywords for this qualifier are CONDENSED and EXPANDED. Descriptions are as
follows:

Keyword Explanation
CONDENSED (default) Displays the file name representation of what is generated to fit into a

255-length character string. This file name may contain a DID or FID
abbreviation in the file specification.

EXPANDED Displays the file name representation of what is stored on disk. This file
name does not contain any DID or FID abbreviations.

The keywords CONDENSED and EXPANDED are mutually exclusive. This qualifier specifies
which file name format is displayed in the output header.

File errors are displayed with the CONDENSED file specification unless the EXPANDED
keyword is specified.

See the VSI OpenVMS User's Manual for more information.

/SYMLINK=keyword
/NOSYMLINK (default)

If an input file is a symbolic link, the file referred to by the symbolic link is the file that is
dumped.

The /SYMLINK qualifier indicates that any input symbolic link is dumped.

201

DCL Commands

The valid keywords for this qualifier are [NO]WILDCARD, [NO]ELLIPSIS, and [NO]TARGET.
Descriptions are as follows:

Keyword Explanation
NOWILDCARD Indicates that symlinks are disabled during directory wildcard searches.
WILDCARD Indicates that symlinks are enabled during wildcard searches.
NOELLIPSIS Indicates that symlinks are matched for all wildcard fields except for

ellipsis.
ELLIPSIS Equivalent to WILDCARD (included for command symmetry).
TARGET Indicates that if the target file of the file specification is a symlink, then the

target file is followed.
NOTARGET Indicates that the command operates on the target file even if it is a

symlink.

If the file named in the DUMP command is a symlink, the command by default operates on the
symlink target.

/VALIDATE_HEADER

Verifies /DIRECTORY records for Files-11.

/WIDTH=n

Formats the dump output into 80 or 132 columns by specifying n as either 80 or 132.

/WORD

Formats the dump in words. The /BYTE, /LONGWORD, and /WORD qualifiers are mutually
exclusive.

/WRAP
/NOWRAP (default)

Use with the /PAGE=SAVE qualifier to limit the number of columns to the width of the screen
and to wrap lines that extend beyond the width of the screen to the next line.

The /NOWRAP qualifier extends lines beyond the width of the screen and can be seen when you
use the scrolling (left and right) features provided by the /PAGE=SAVE qualifier.

Examples
1. $ DUMP TEST.DAT

Dump of file DISK0:[MOORE]TEST.DAT;1 on 14-DEC-2001 15:43:26.08
File ID (3134,818,2) End of file block 1 / Allocated 3
Virtual block number 1 (00000001), 512 (0200) bytes
 706D6173 20612073 69207369 68540033 3.This is a samp 000000
 73752065 62206F74 20656C69 6620656C le file to be us 000010
 61786520 504D5544 2061206E 69206465 ed in a DUMP exa 000020
 00000000 00000000 0000002E 656C706D mple............ 000030
 00000000 00000000 00000000 00000000 000040
 00000000 00000000 00000000 00000000 000050
 00000000 00000000 00000000 00000000 000060
 .

202

DCL Commands

 .
 .
 00000000 00000000 00000000 00000000 0001E0
 00000000 00000000 00000000 00000000 0001F0

The DUMP command displays the contents of TEST.DAT both in hexadecimal longword format
and in ASCII beginning with the first block in the file.

2. $ DUMP TEST.DAT/OCTAL/BYTE
Dump of file DISK0:[SCHELL]TEST.DAT;1 on 14-DEC-2001 15:45:33.58
File ID (74931,2,1) End of file block 1 / Allocated 3
Virtual block number 1 (00000001), 512 (0200) bytes
 151 040 163 151 150 124 000 063 3.This i 000000
 160 155 141 163 040 141 040 163 s a samp 000010
 040 145 154 151 146 040 145 154 le file 000020
 163 165 040 145 142 040 157 164 to be us 000030
 040 141 040 156 151 040 144 145 ed in a 000040
 141 170 145 040 120 115 125 104 DUMP exa 000050
 377 377 000 056 145 154 160 155 mple.... 000060
 000 000 000 000 000 000 000 000 000070
 000 000 000 000 000 000 000 000 000100
 000 000 000 000 000 000 000 000 000110
 .
 .
 .
 000 000 000 000 000 000 000 000 000760
 000 000 000 000 000 000 000 000 000770

The DUMP command displays the image of the file TEST.DAT, formatted both in octal bytes and
in ASCII characters beginning with the first block.

3. $ DUMP NODE3::DISK2:[STATISTICS]RUN1.DAT

This command line dumps the file RUN1.DAT that is located at remote node NODE3. The default
DUMP format will be used.

4. $ DUMP/HEADER/BLOCK=COUNT=0 SYS$SYSTEM:DATASHARE.EXE

Dump of file SYS$SYSTEM:DATASHARE.EXE on 12-NOV-2001 16:06:46.75
File ID (16706,59,0) End of file block 410 / Allocated 411

 File Header

Header area
 Identification area offset: 40
 Map area offset: 100
 Access control area offset: 255
 Reserved area offset: 255
 Extension segment number: 0
 Structure level and version: 2, 1
 File identification: (16706,59,0)
 Extension file identification: (0,0,0)
 VAX RMS attributes
 Record type: Fixed
 File organization: Sequential
 Record attributes: <none specified>
 Record size: 512
 Highest block: 411

203

DCL Commands

 End of file block: 410
 End of file byte: 414
 Bucket size: 0
 Fixed control area size: 0
 Maximum record size: 512
 Default extension size: 0
 Global buffer count: 0
 Directory version limit: 0
 File characteristics: Contiguous best try
 Caching attribute: Writethrough
 Map area words in use: 3
 Access mode: 0
 File owner UIC: [1,4]
 File protection: S:RWED, O:RWED, G:RE, W:
 Back link file identification: (7149,80,0)
 Journal control flags: <none specified>
 Active recovery units: None
 Highest block written: 411
 Client attributes: None

Identification area
 File name: DATASHARE.EXE
 Revision number: 1
 Creation date: 12-AUG-2001 14:06:49.84
 Revision date: 12-AUG-2001 14:06:53.20
 Expiration date: <none specified>
 Backup date: <none specified>

Map area
 Retrieval pointers
 Count: 411 LBN: 1297155

Checksum: 30710

In this example, the DUMP command dumps the file header of the specified file. Because this file
is recorded on Files-11 ODS-2 9660 media, the file header is displayed in a Files-11 File Header
format. Imbedded on the Files-11 Header is a VAX RMS attributes block.

5. $ DUMP/HEADER/BLOCK=COUNT=0 DISK$GRIPS_2:[000000]AAREADME.TXT;
Dump of file DISK$GRIPS_2:[000000]AAREADME.TXT;1 on 15-DEC-2001
10:07:29.70

 File ID (4,6,0) End of file block 29 / Allocated 29

 ISO 9660 File Header

 Length of Directory Record: 48
 Extended Attribute Length: 1
 Location of Extent (LSB/MSB): 312/312
 Data Length of File Section (LSB/MSB): 14640/14640
 Recording Date and Time 10-DEC-2001 16:22:30 GMT(0)
 File Flags RECORD, PROTECTION
 Interleave File Unit size: 0
 Interleave Gap size: 0
 Volume Sequence # of extent (LSB/MSB): 1/1
 File Identifier Field Length: 14
 File Identifier: AAREADME.TXT;1
 System Use

204

DCL Commands

5458542E 454D4441 45524141 0E010000 01000018 001E1610 100B5930 39000000
...90Y..............AAREADME.TXT 000000
 00313B
;1.............................. 000020

Extended Attribute record
 Owner Identification (LSB/MSB): 7/7
 Group Identification (LSB/MSB): 246/246
 Access permission for classes of users S:R, O:R, G:RE, W:RE
 File Creation Date/Time: 5-OCT-2001 14:17:49.29 GMT(0)
 File Modification Date/Time: 6-NOV-2001 16:22:30.96 GMT(0)
 File Expiration Date/Time: 00-00-0000 00:00:00.00 GMT(0)
 File Effective Date/Time: 00-00-0000 00:00:00.00 GMT(0)
 Record Format Fixed
 Record Attributes CRLF
 Record Length (LSB/MSB): 80/80
 System Identifier:
 System Use
 Extended Attribute Version: 1
 Escape Sequence record length: 0
 Application Use Length (LSB/MSB): 0/0
 Application Use

 VAX RMS attributes
 Record type: Fixed
 File organization: Sequential
 Record attributes: Implied carriage control
 Record size: 80
 Highest block: 29
 End of file block: 29
 End of file byte: 304
 Bucket size: 0
 Fixed control area size: 0
 Maximum record size: 80
 Default extension size: 0
 Global buffer count: 0
 Directory version limit: 0

The DUMP/HEADER command dumps the file header of the specified file. Because this file is
recorded on ISO 9660 media, the file header is displayed in the format of an ISO 9660 File Header
and, since this file contains an optional ISO 9660 Extended Attribute Record (XAR), it is also
displayed. Finally, as with all DUMP/HEADER requests, VAX RMS attributes are displayed.

EDIT/ACL
EDIT/ACL — Invokes the access control list (ACL) editor, which creates or modifies an access
control list for a specified object. The /ACL qualifier is required. For more information about the ACL
Editor, see the VSI OpenVMS System Management Utilities Reference Manual or the VSI OpenVMS
Guide to System Security or online help.

Format
EDIT/ACL object-spec

205

DCL Commands

EDIT/EDT
EDIT/EDT — Invokes EDT, an interactive text editor. The /EDT qualifier is required. Information
on EDT commands is available from within EDT by pressing Ctrl/Z and typing HELP at the EDT
Command prompt. In addition to command help, you can also press PF2 for keypad help. For
a description of EDT, including information about EDT commands and qualifiers, see the VSI
OpenVMS User's Manual.

Format
EDIT/EDT filespec

Parameter
filespec

Specifies the file to be created or edited using EDT. If the file does not exist, it is created by EDT.

EDT does not provide a default file type when creating files; if you do not include a file type, it is
null. The file must be a disk file on a Files-11 formatted volume.

The asterisk (*) and the percent sign (%) wildcard characters are not allowed in the file specification.

Description
EDT creates or edits text files. You can use EDT to enter or edit text in three modes: keypad, line,
or nokeypad. Keypad editing, which is screen-oriented, is available on VT300-series, VT200-series,
VT100, and VT52 terminals. A screen-oriented editor allows you to see several lines of text at once
and move the cursor throughout the text in any direction. Line editing operates on all terminals. In
fact, if you have a terminal other than a VT300-series, VT200-series, VT100, or VT52, line editing
is the only way you can use EDT. You might prefer line editing if you are accustomed to editing by
numbered lines. Nokeypad mode is a command-oriented screen editor available on VT300-series,
VT200-series, VT100, and VT52 terminals. You can use line mode and nokeypad mode to redefine
keys for use in keypad mode.

When you invoke EDT, you are in line mode by default. If you are editing an existing file, EDT
displays the line number and text for the first line of the file. If you are creating a new file, EDT
displays the following message:

Input file does not exist
[EOB]

In either case, EDT then displays the line mode prompt, which is the asterisk (*).

For complete details on the EDT editor, see the OpenVMS EDT Reference Manual (available on the
Documentation CD-ROM).

Qualifiers
/COMMAND[=filespec]
/NOCOMMAND

Determines whether or not EDT uses a startup command file. The /COMMAND file qualifier
should be followed by an equal sign (=) and the specification of the command file. The default

206

DCL Commands

file type for command files is .EDT. The asterisk (*) and the percent sign (%) wildcard characters
are not allowed in the file specification.

The following command line invokes EDT to edit a file named MEMO.DAT and specifies that
EDT use a startup command file named XEDTINI.EDT:

$ EDIT/COMMAND=XEDTINI.EDT MEMO.DAT

If you do not include the /COMMAND=command file qualifier, EDT looks for the EDTSYS
logical name assignment. If EDTSYS is not defined, EDT processes the systemwide startup
command file SYS$LIBRARY:EDTSYS.EDT. If this file does not exist, EDT looks for the
EDTINI logical name assignment. If EDTINI is not defined, EDT looks for the file named
EDTINI.EDT in your default directory. If none of these files exists, EDT begins your editing
session in the default state.

To prevent EDT from processing either the systemwide startup command file or the EDTINI.EDT
file in your default directory, use the /NOCOMMAND qualifier as follows:

$ EDIT/EDT/NOCOMMAND MEMO.DAT

/CREATE (default)
/NOCREATE

Controls whether EDT creates a new file when the specified input file is not found.

Normally, EDT creates a new file to match the input file specification if it cannot find the
requested file name in the specified directory. When you use the /NOCREATE qualifier in the
EDT command line and type a specification for a file that does not exist, EDT displays an error
message and returns to the DCL command level as follows:

$ EDIT/EDT/NOCREATE NEWFILE.DAT
Input file does not exist
$

/JOURNAL[=journal-file]
/NOJOURNAL

Determines whether EDT keeps a journal during your editing session. A journal contains a record
of the keystrokes you enter during an editing session. The default file name for the journal is the
same as the input file name. The default file type is .JOU. The /JOURNAL qualifier enables you
to use a different file specification for the journal.

The following command line invokes EDT to edit a file named MEMO.DAT and specifies the
name SAVE.JOU for the journal:

$ EDIT/EDT/JOURNAL=SAVE MEMO.DAT

If you are editing a file from another directory and want the journal to be located in that directory,
you must use the /JOURNAL qualifier with a file specification that includes the directory name;
otherwise, EDT creates the journal in the default directory.

The directory that is to contain the journal should not be write-protected.

To prevent EDT from keeping a record of your editing session, use the /NOJOURNAL qualifier
in the EDT command line as follows:

$ EDIT/EDT/NOJOURNAL MEMO.DAT

207

DCL Commands

Once you have created a journal, enter the EDT/RECOVER command to execute the commands
in the journal. The asterisk (*) and the percent sign (%) wildcard characters are not allowed in the
file specification.

/OUTPUT=output-file
/NOOUTPUT

Determines whether EDT creates an output file at the end of your editing session. The default file
specification for both the input file and the output file is the same. Use the /OUTPUT qualifier to
give the output file a different file specification from the input file.

The following command line invokes EDT to edit a file named MEMO.DAT and gives the
resulting output file the name OUTMEM.DAT:

$ EDIT/EDT/OUTPUT=OUTMEM.DAT MEMO.DAT

You can include directory information as part of your output file specification to send output to
another directory as follows:

$ EDIT/EDT/OUTPUT=[BARRETT.MAIL]MEMO.DAT MEMO.DAT

The /NOOUTPUT qualifier suppresses the creation of an output file, but not the creation of a
journal. If you decide that you do not want an output file, you can use the /NOOUTPUT qualifier
as follows:

$ EDIT/EDT/NOOUTPUT MEMO.DAT

A system interruption does not prevent you from recreating your editing session because a journal
is still being maintained. To save your editing session, even when you specify /NOOUTPUT, use
the line mode command WRITE to put the text in an external file before you end the session.

The asterisk (*) and the percent sign (%) wildcard characters are not allowed in the file
specification.

/READ_ONLY
/NOREAD_ONLY (default)

Determines whether EDT keeps a journal and creates an output file. With the /NOREAD_ONLY
qualifier, EDT maintains the journal and creates an output file when it processes the line mode
command EXIT. Using the /READ_ONLY qualifier has the same effect as specifying both
the /NOJOURNAL and /NOOUTPUT qualifiers.

The following command line invokes EDT to edit a file named CALENDAR.DAT, but does not
create a journal or an output file:

$ EDIT/EDT/READ_ONLY CALENDAR.DAT

Use the /READ_ONLY qualifier when you are searching a file and do not intend to make any
changes to it. To modify the file, use the line mode command WRITE to save your changes.
Remember, however, that you have no journal.

/RECOVER
/NORECOVER (default)

Determines whether EDT reads a journal at the start of the editing session.

208

DCL Commands

When you use the /RECOVER qualifier, EDT reads the appropriate journal and processes
whatever commands it contains. The appropriate syntax is as follows:

$ EDIT/EDT/RECOVER MEMO.DAT

If the journal file type is not .JOU or the file name is not the same as the input file name, you must
include both the /JOURNAL qualifier and the /RECOVER qualifier as follows:

$ EDIT/EDT/RECOVER/JOURNAL=SAVE.XXX MEMO.DAT

Because the /NORECOVER qualifier is the default for EDT, you do not need to specify it in a
command line.

Examples
1. $ EDIT/EDT/OUTPUT=NEWFILE.TXT OLDFILE.TXT

 1 This is the first line of the file OLDFILE.TXT.
*

This command invokes EDT to edit the file OLDFILE.TXT. EDT looks for the EDTSYS logical
name assignment. If EDTSYS is not defined, EDT processes the systemwide startup command
file SYS$LIBRARY:EDTSYS.EDT. If this file does not exist, EDT looks for the EDTINI logical
name assignment. If EDTINI is not defined, EDT looks for the file named EDTINI.EDT in your
default directory. If none of these files exists, EDT begins your editing session in the default state.
When the session ends, the edited file has the name NEWFILE.TXT.

2. $ EDIT/EDT/RECOVER OLDFILE.TXT

This command invokes EDT to recover from an abnormal exit during a previous editing session.
EDT opens the file OLDFILE.TXT, and then processes the journal OLDFILE.JOU. Once the
journal has been processed, the user can resume interactive editing.

EDIT/FDL
EDIT/FDL — Invokes the Edit/FDL (File Definition Language) utility, which creates and modifies
FDL files. The /FDL qualifier is required. For more information about the File Definition Language
utility, see the OpenVMS Record Management Utilities Reference Manual or online help.

Format
EDIT/FDL filespec

EDIT/SUM
EDIT/SUM — Invokes the SUMSLP utility, a batch-oriented editor, to update a single input file with
multiple files of edit commands. For more information about the SUMSLP utility, see the OpenVMS
SUMSLP Utility Manual (available on the Documentation CD-ROM) or online help.

Format
EDIT/SUM input-file

209

DCL Commands

EDIT/TECO
EDIT/TECO — Invokes the TECO interactive text editor.

Format
EDIT/TECO [filespec]

EDIT/TECO/EXECUTE=command-file [argument]

Parameter
filespec

Specifies the file to be created or edited using the TECO editor. If the file does not exist, it is created
by TECO, unless you specify the /NOCREATE qualifier. The asterisk (*) and the percent sign
(%) wildcard characters are not allowed in the file specification. If you specify the /MEMORY
qualifier (default) without a file specification, TECO edits the file identified by the logical name
TEC$MEMORY. If TEC$MEMORY has no equivalence string, or if the /NOMEMORY qualifier is
specified, TECO starts in command mode and does not edit an existing file.

If you specify the /MEMORY qualifier and a file specification, the file specification is equated to the
logical name TEC$MEMORY.

argument
See the /EXECUTE qualifier.

Description
The TECO editor creates or edits text files. For detailed information on the use of TECO, see the
Standard TECO Text Editor and Corrector for the VAX, PDP-11, PDP-10, and PDP-8 manual.

Qualifiers
/COMMAND[=filespec]
/NOCOMMAND

Controls whether a startup command file is used. The /COMMAND file qualifier may be
followed by an equal sign (=) and the specification of the command file. The default file type for
command files is .TEC.

The following command line invokes TECO to edit a file named MEMO.DAT and specifies that
TECO use a startup command file named XTECOINI.TEC:

$ EDIT/TECO/COMMAND=XTECOINI.TEC MEMO.DAT

If you do not include the /COMMAND qualifier, or if you enter /COMMAND without specifying
a command file, TECO looks for the TEC$INIT logical name assignment. If TEC$INIT is not
defined, no startup commands are executed.

210

DCL Commands

The logical name TEC$INIT can equate either to a string of TECO commands or to a dollar sign
($) followed by a file specification. If TEC$INIT translates to a string of TECO commands, the
string is executed; if it translates to a dollar sign followed by a file specification, the contents of
the file are executed as a TECO command string. For further information, see the Standard TECO
Text Editor and Corrector for the VAX, PDP-11, PDP-10, and PDP-8 manual.

To prevent TECO from using any startup command file, use the /NOCOMMAND qualifier as
follows:

$ EDIT/TECO/NOCOMMAND MEMO.DAT

The asterisk (*) and the percent sign (%) wildcard characters are not allowed in the file
specification.

/CREATE (default)
/NOCREATE

Creates a new file when the specified input file cannot be found. If the /MEMORY qualifier is
specified and no input file is specified, the file created is the one specified by the logical name
TEC$MEMORY. Normally, TECO creates a new file to match the input file specification if it
cannot find the requested file name in the specified directory. When you use the /NOCREATE
qualifier in the TECO command line and type a specification for a file that does not exist,
TECO displays an error message and returns you to the DCL command level. The /CREATE
and /NOCREATE qualifiers are incompatible with the /EXECUTE qualifier.

/EXECUTE=command-file [argument]

Invokes TECO and executes the TECO macro found in the command file. The argument, if
specified, appears in the text buffer when macro execution starts. Blanks or special characters
must be enclosed in quotation marks (“ ”). For detailed information on the use of TECO macros,
see the Standard TECO Text Editor and Corrector for the VAX, PDP-11, PDP-10, and PDP-8
manual. This archived manual is on the OpenVMS documentation website:

http://www.hp.com/go/openvms/doc

Click on “Archived documents” in the left sidebar to link to this manual.

The /EXECUTE qualifier is incompatible with the /CREATE and /MEMORY qualifiers.

/MEMORY (default)
/NOMEMORY

Specifies that the last file you edited with TECO, identified by the logical name TEC$MEMORY,
will be the file edited if you omit the file specification to the EDIT/TECO command.

/OUTPUT=output-file
/NOOUTPUT (default)

Controls how the output file is named at the end of your editing session. By default, the output
file has the same name as the input file but is given the next higher available version number. Use
the /OUTPUT qualifier to give the output file a file specification different from the input file.

The following command line invokes TECO to edit a file named MEMO.DAT and gives the
resulting output file the name OUTMEM.DAT:

$ EDIT/TECO/OUTPUT=OUTMEM.DAT MEMO.DAT

211

DCL Commands

You can include directory information as part of your output file specification to send output to
another directory as follows:

$ EDIT/TECO/OUTPUT=[BARRRET.MAIL]MEMO.DAT MEMO.DAT

The asterisk (*) and the percent sign (%) wildcard characters are not allowed in the file
specification.

/READ_ONLY
/NOREAD_ONLY (default)

Controls whether an output file is created. By default, an output file is created; the /READ_ONLY
qualifier suppresses the creation of the output file.

Examples
1. $ EDIT/TECO/OUTPUT=NEWFILE.TXT OLDFILE.TXT

This EDIT command invokes the TECO editor to edit the file OLDFILE.TXT. TECO looks for
the TEC$INIT logical name assignment. If TEC$INIT is not defined, TECO begins the editing
session without using a command file. When the session ends, the edited file has the name
NEWFILE.TXT.

2. $ EDIT/TECO/EXECUTE=FIND_DUPS "TEMP, ARGS, BLANK"

In this example, the /EXECUTE qualifier causes the TECO macro contained in the file
FIND_DUPS.TEC to be executed, with the argument string “TEMP, ARGS, BLANK” located in
the text buffer.

EDIT/TPU
EDIT/TPU — Invokes the DEC Text Processing utility (DECTPU). By default, this runs the
Extensible Versatile Editor (EVE). DECTPU provides a structured programming language and other
components for creating text editors and other applications. EVE is a general-purpose text editor that
is the OpenVMS default editor. For more information about editing with EVE, see the VSI OpenVMS
User's Manual or online help.

Format
EDIT[/TPU] [input-file]

ENABLE AUTOSTART
ENABLE AUTOSTART — Enables the autostart feature on a node for all autostart queues managed
by the specified queue manager. By default, this command uses the /QUEUES qualifier. For more
information on autostart queues, see the chapter on batch and print queues in the VSI OpenVMS
System Manager's Manual.

212

DCL Commands

Format
ENABLE AUTOSTART[/QUEUES]

Description

Note

The command requires OPER (operator) privileges.

Enabling autostart for queues notifies the queue manager to automatically start all of its stopped active
autostart queues on a node. It also notifies the queue manager to automatically start any of its autostart
queues that fail over to the node. By default, the ENABLE AUTOSTART command affects the node
from which it is entered. Specify the /ON_NODE qualifier to enable autostart on a different node.

By default, the command affects autostart queues managed by the default queue manager,
SYS$QUEUE_MANAGER. Specify the /NAME_OF_MANAGER qualifier to disable autostart of a
different queue manager's autostart queues on the node.

An autostart queue is active if it has been activated by the /START qualifier with the
INITIALIZE/QUEUE command or by the START/QUEUE command and has not been stopped by the
STOP/QUEUE/NEXT or STOP/QUEUE/RESET command.

When a node boots, autostart is disabled until you enter the ENABLE AUTOSTART command.
Typically, you would add this command to your site-specific startup command procedure or your
queue startup command procedure to start a node's autostart queues each time the node boots.

Qualifiers
/NAME_OF_MANAGER= name

Specifies the name of the queue manager controlling the autostart queues you want to enable. The
qualifier allows the autostart feature to be used differently for different sets of queues.

If the /NAME_OF_MANAGER qualifier is omitted, the default queue manager name
SYS$QUEUE_MANAGER is used.

For more information on multiple queue managers, see the chapter on the queue manager in the
VSI OpenVMS System Manager's Manual.

/ON_NODE=nodename

Specifies a node in an OpenVMS Cluster system. Use this qualifier to enable autostart on a node
other than the one from which you enter the command.

/QUEUES

Specifies that autostart is to be enabled for queues. (This qualifier is used by default.)

Examples
1. $ INITIALIZE/QUEUE/BATCH/START-

_$ /AUTOSTART_ON=SATURN:: BATCH_1

213

DCL Commands

$ ENABLE AUTOSTART/QUEUES
 .
 .
 .
$ DISABLE AUTOSTART/QUEUES

In this example, the INITIALIZE/QUEUE command creates an autostart queue BATCH_1,
capable of running on node SATURN. The /START qualifier activates the queue for autostart. The
ENABLE/AUTOSTART/QUEUES command (executed on node SATURN) enables autostart on
the node, causing the queue (and any other active autostart queues on the node) to begin executing
jobs.

The DISABLE AUTOSTART command (executed on node SATURN) stops autostart queues on
the node and prevents any queues from failing over to the node.

These commands only affect queues managed by the default queue manager SYS
$QUEUE_MANAGER because the /NAME_OF_MANAGER qualifier is not specified.

Because BATCH_1 is set up to run only on one node, the queue cannot fail over to another node
and therefore is stopped; however, the queue remains active for autostart and will be started
when the ENABLE AUTOSTART command is entered for node SATURN. No START/QUEUE
command is needed to restart BATCH_1 unless autostart of the queue is deactivated with the
STOP/QUEUE/NEXT or STOP/QUEUE/RESET command.

2. $ INITIALIZE/QUEUE/BATCH/START-
_$ /AUTOSTART_ON=(NEPTUN::,SATURN::) BATCH_1
$ ENABLE AUTOSTART/QUEUES/ON_NODE=NEPTUN
$ ENABLE AUTOSTART/QUEUES/ON_NODE=SATURN
 .
 .
 .
$ STOP/QUEUES/ON_NODE=NEPTUN

In this example, the INITIALIZE/QUEUE command creates an autostart queue BATCH_1.
The /START qualifier activates the queue for autostart.

The first ENABLE AUTOSTART/QUEUES command causes the queue to begin executing on
node NEPTUN. The second ENABLE AUTOSTART/QUEUES command enables autostart on
node SATURN to start all stopped active autostart queues on that node and to start any autostart
queues that might fail over to that node.

Later, suppose node NEPTUN must be removed from the OpenVMS Cluster system. The STOP/
QUEUES/ON_NODE command stops all queues on node NEPTUN, and causes the autostart
queue BATCH_1 to fail over to node SATURN. Because the queue is active for autostart, and
because autostart has been enabled on node SATURN, the queue is automatically started on that
node.

This command only affects queues managed by the default queue manager
SYS$QUEUE_MANAGER because the /NAME_OF_MANAGER qualifier is not specified.

ENCRYPT
ENCRYPT — Encrypts files by default with the Data Encryption Standard (DES) algorithm in
Cipher Block Chaining (CBC) mode unless otherwise specified with the /KEY_ALGORITHM

214

DCL Commands

and /DATA ALGORITHM qualifiers. Before you enter this command, create a key with the
ENCRYPT /CREATE_KEY command. The key specified must match the algorithm (DES or AES).

Format
ENCRYPT input-file key-name [qualifiers]

Parameters
input-file

File names of the files to encrypt. If you use wildcard characters, do not include directory files or files
with bad blocks.

key-name

Key name previously stored in the key storage table with the ENCRYPT /CREATE_KEY command.

Qualifiers
/BACKUP[=time]

Selects files according to the dates of their most recent backup.

This qualifier is relevant only when used with the /BEFORE or the /SINCE qualifier. In addition,
do not use /BACKUP with /EXPIRED or /MODIFIED.

If you omit time, TODAY is used. For more information on time specifications, see the VSI
OpenVMS User's Manual.

/BEFORE[=time]

Selects files that have a creation time before the time you specify.

If you omit time, TODAY is used. For more information on time specifications, see the VSI
OpenVMS User's Manual.

/BY_OWNER[=uic]
/NOBY_OWNER

Selects files with the owner UIC you specify.

If you omit uic, the UIC of the current process is used. For more information on specifying UIC
format, see the VSI OpenVMS User's Manual.

/COMPRESS
/NOCOMPRESS

Optional. Default: /NOCOMPRESS.

Controls whether or not data compression occurs before a file is encrypted.

/CONFIRM
/NOCONFIRM

Controls whether or not a confirmation request is displayed before each encryption, as follows:

215

DCL Commands

Response Meaning
YES Encrypts the file
NO or Return Does not encrypt the file (default)
QUIT or Ctrl/Z Does not encrypt the file or any subsequent files
ALL Encrypts the file plus all subsequent files

/DATA_ALGORITHM=

1. DESCBC (default)

2. AESmmmkkk

Where mmm is the mode CBC, ECB, CFB, or OFB; and kkk is 128, 192, or 256 bits. Cipher Block
Chaining (CBC) and Electronic Code Book (ECB) are 16-byte block modes, meaning blocks are
padded to 16 bytes if necessary during encryption. The padding is removed during decryption.
Cipher Feedback (CFB) and Output Feedback (OFB) are 8-bit character stream mode emulation,
useful in data communications and where no padding is required.

Note that /DATA_ALGORITM=AES is a shortcut for specifying AESCBC128.

The data algorithm is used with the randomly generated key to perform encryption of the file's
data. When specifying an AES algorithm, specify both /KEY and /DATA=AESmmmkkk qualifiers
and use an AES created key.

/DELETE
/NODELETE

Controls whether or not the input files are deleted after the encryption operation is complete and
the output file is written and closed. By default, the input file is not deleted.

/ERASE
/NOERASE

Controls whether or not the input files are erased with the data security pattern before being
deleted. By default, the location in which the data was stored is not overwritten with the data
security pattern. The /ERASE qualifier must be used with /DELETE.

/EXCLUDE=file-spec
/NOEXCLUDE

Excludes the specified files from the encryption operation. You can use wildcard characters. You
do not need to enter an entire file specification. Any field that you omit defaults to the input file
specification.

Because directory files are never encrypted, you need not specify them.

/EXPIRED[=time]

Selects files according to the dates on which they expire.

This qualifier is relevant only when used with the /BEFORE or the /SINCE qualifier. In addition,
do not use /EXPIRED with /BACKUP or /MODIFIED.

If you omit time, TODAY is used. For more information on time specifications, see the VSI
OpenVMS User's Manual.

216

DCL Commands

/KEY_ALGORITHM=

1. DESCBC (default)

2. AESmmmkkk

Where mmm is the mode CBC, ECB, CFB, or OFB; and kkk is 128, 192, or 256 bits. Note
that /KEY_ALGORITHM=AES is a shortcut for specifying AESCBC128.

The command uses this key algorithm with the key you supply to encrypt the randomly generated
data encryption key and the initialization vector stored within the file.

When specifying an AES algorithm, specify both /KEY and /DATA qualifiers and use an AES
created key.

/MODIFIED[=time]

Selects files according to the dates on which they were last modified.

This qualifier is relevant only when used with the /BEFORE or the /SINCE qualifier. In addition,
do not use /MODIFIED with /BACKUP or /EXPIRED.

If you omit time, TODAY is used. For more information on time specifications, see the VSI
OpenVMS User's Manual.

/OUTPUT=file-spec

Alternate output file name for the encryption operation. By default, each input file encrypted is
written to a separate output file that is one version higher than the highest version of the input file.
When using the /OUTPUT qualifier, specify the parts of the file specification different from the
defaults. You do not need to provide an entire file specification. Any field that you omit defaults
to the input file specification.

/SHOW=keyword-list

Controls whether or not the following information about the encryption operation is displayed on
SYS$COMMAND:

Keyword Meaning
FILES Displays input and output file names on SYS$COMMAND
STATISTICS Displays the encryption stream statistics:

• Bytes processed

• Internal records processed

• CPU time consumed within the encryption algorithm

/SINCE[=time]

Selects files that have a creation date before the time you specify.

If you omit time, TODAY is used. For more information on time specifications, see the VSI
OpenVMS User's Manual.

217

DCL Commands

/STATISTICS

Similar to /SHOW, except that /STATISTICS lists both files and statistics, whereas /SHOW can
be customized to list only one or the other.

/VERSION

Displays the version number of the Encryption for OpenVMS software running on your system.

Examples
1. $ ENCRYPT TROY MYKEY

Encrypts the file TROY using the key MYKEY.

2. $ ENCRYPT NEWFILE.TXT MONET/KEY_ALGORITHM=AESCBC128/
DATA_ALGORITHM=AESCBC128

Encrypts the file NEWFILE.TXT with the AES key, MONET, using the algorithm AESCBC128.
A new version, NEWFILE.TXT;n+1, of the original file (now encrypted) is created. Use
the /OUTPUT=filename qualifier to preserve the original file name, renaming the encrypted
output file.

ENCRYPT /AUTHENTICATE
ENCRYPT /AUTHENTICATE — Associates a DES algorithm Message Authenticate Code (MAC)
value with one or more files and checks for any modification of either plain text or cipher text
files. Use the additional /UPDATE qualifier to store each file's MAC in the databases. Use only
the /AUTHENTICATE qualifier to subsequently test the integrity of the file's data and security
attributes. You must create a DES key prior to updating or checking an existing MAC. The AES
algorithm is not supported for file MAC operations.

Format
ENCRYPT /AUTHENTICATE file-spec key-name [qualifiers]

Parameters
file-spec

File names of the files to authenticate. Behavior can be modified with the /MULTIPLE_FILES
qualifier.

key-name

Key name previously stored in the key storage table with the ENCRYPT /CREATE_KEY command.

Qualifiers
/BACKUP[=time]

Selects files according to the dates of their most recent backup.

218

DCL Commands

This qualifier is relevant only when used with the /BEFORE or the /SINCE qualifier. In addition,
do not use /BACKUP with /EXPIRED or /MODIFIED.

If you omit time, TODAY is used. For more information on time specifications, see the VSI
OpenVMS User's Manual.

/BEFORE=time

Selects files that have a creation time before the time you specify.

If you omit time, TODAY is used. For more information on time specifications, see the VSI
OpenVMS User's Manual.

/BY_OWNER[=uic]
/NOBY_OWNER

Selects files with the owner UIC you specify.

If you omit uic, the UIC of the current process is used. For more information on specifying UIC
format, see the VSI OpenVMS User's Manual.

/CONFIRM
/NOCONFIRM

Controls whether or not a confirmation request is displayed before each authentication, as
follows:

Response Meaning
YES Authenticates the file
NO or Return Does not authenticate the file (default)
QUIT or Ctrl/Z Does not authenticate the file or any subsequent files
ALL Encrypts the file plus all subsequent files

/DATABASE=file-spec
/NODATABASE

File name of the file in which to store binary MAC values.

Generates a MAC using the file contents. If you do not specify a file name, the file name
SYS$LOGIN:ENCRYPT$MAC.DAT is used.

/EXCLUDE=file-spec
/NOEXCLUDE

Excludes the specified files from the authentication operation. You can use wildcard characters.
You do not need to enter an entire file specification. Any field that you omit defaults to the input
file specification.

Because directory files are never encrypted, you need not specify them.

/EXPIRED[=time]

Selects files according to the dates on which they expire.

219

DCL Commands

This qualifier is relevant only when used with the /BEFORE or the /SINCE qualifier. In addition,
do not use /EXPIRED with /BACKUP or /MODIFIED.

If you omit a time value, TODAY is used. For more information on time specifications, see the
VSI OpenVMS User's Manual.

/LOG

Displays the results of the authentication operation.

/MODIFIED[=time]

Selects files according to the dates on which they were last modified.

This qualifier is relevant only when used with the /BEFORE or the /SINCE qualifier. In addition,
do not use /MODIFIED with /BACKUP or /EXPIRED.

If you omit a time value, TODAY is used. For more information on time specifications, see the
VSI OpenVMS User's Manual.

/MULTIPLE_FILES

Indicates that the file-spec parameter contains a list of file names to be checked. The file-spec file
is opened and each record is read and treated as a file-spec.

/OUTPUT=file-spec
/NOOUTPUT

File name of the file in which to store readable MAC values. These MAC values represent both
the file contents as well as the security settings. If you do not specify a file name, the default file
name SYS$LOGIN:ENCRYPT$MAC.LIS is used.

/SECURITY=file-spec
/NOSECURITY

File name of the file in which to store binary MAC values. If you do not specify a file name, the
default file name ENCRYPT$SEC.DAT is used.

Generates a MAC using the file's security settings: owner, protection settings, and optional ACL.

/SINCE[=time]

Selects files that have a creation time before the time you specify.

If you omit time, TODAY is used. For more information on time specifications, see the VSI
OpenVMS User's Manual.

/UPDATE
/NOUPDATE

Associates new MAC values with one or more files.

Example
1. $ ENCRYPT /AUTHENTICATE NEWFILE HAMLET/CONFIRM

220

DCL Commands

Associates a MAC with the file NEWFILE using the key HAMLET. This command also displays
a confirmation request before each authentication.

2. $ ENCRYPT/AUTHENTICATE/UPDATE *.* MYKEY
%ENCRYPT-NEWDB, new authentication code database has been created
%ENCRYPT-NEWSECDB, new authentication security settings database has
 been created
%ENCRYPT-I-SUMMARY1, Summary: Files successfully authenticated: 0
%ENCRYPT-I-SUMMARY2, Files failing authentication: 0
%ENCRYPT-I-SUMMARY3, Files not in database: 73
%ENCRYPT-I-SECSUMM1, Summary: Security settings authenticated: 0
%ENCRYPT-I-SECSUMM2, Security settings failing authentication: 0
%ENCRYPT-I-SECSUMM3, Security settings not in database: 73

This example creates a MAC for each file in the current directory using the key named
MYKEY, storing them in the two databases: SYS$LOGIN:ENCRYPT$MAC.DAT and
ENCRYPT$SEC_MAC.DAT.

3. $ ENCRYPT /AUTHENTICATE *.* MYKEY
%ENCRYPT-I-NOUPDATE, database will not be updated with new
 authentication codes
%ENCRYPT-I-SUMMARY1, Summary: Files successfully authenticated: 73
%ENCRYPT-I-SUMMARY2, Files failing authentication: 0
%ENCRYPT-I-SUMMARY3, Files not in database: 0
%ENCRYPT-I-SECSUMM1, Summary: Security settings authenticated: 73
%ENCRYPT-I-SECSUMM2, Security settings failing authentication: 0
%ENCRYPT-I-SECSUMM3, Security settings not in database: 0

This example authenticates the same files as in Example 3 by creating a new MAC and comparing
that with those in each database, testing file data integrity and security attributes as indicated in
the summary.

ENCRYPT /CREATE_KEY
ENCRYPT /CREATE_KEY — Creates a key definition name and value to be used for encrypting and
decrypting files. The key is a string that represents the name under which its value is encrypted and
stored in the key storage table; a logical name table. A DES key is created in the PROCESS logical
name table by default unless the /AES qualifier is specified. Note that AES requires longer key-length
values than the 8-byte DES keys. AES requires a minimum of 16, 24, or 32 bytes depending on the
algorithm/key size specified for encryption or decryption.

Format
ENCRYPT /CREATE_KEY key-name key-value [qualifiers]

Parameters
key-name

Name under which the encryption key will be stored in the key storage table. Specify a character
string according to the following conventions:

• 1 to 243 alphanumeric characters

221

DCL Commands

• Dollar signs and underscores are valid.

• Not case sensitive

Use a name that has meaning to you, to help you remember it.

Note

Key names beginning with ENCRYPT$ are reserved to OpenVMS.

key-value

String representing the value of the encryption key. Specify either ASCII text or a hexadecimal
constant, as follows:

• ASCII text string (default)

• Minimum length: 8 (DES) 16, 24, or 32 (AES -- 128, 192, and 256 bits respectively).

• Maximum length: approximately 240 characters.

• The string is not case sensitive for DES keys.

• If you use characters other than alphanumeric characters, for example, blank spaces, enclose
the string in quotation marks (" ").

• Hexadecimal constant

• Use the /HEXADECIMAL qualifier.

• Valid characters: 0 to 9, A to F (ASCII coded HEX nibbles).

• Minimum length: 16 characters -- DES -- 32, 48, or 64 (AES -- 128, 192, and 256 bits
respectively).

• Do not enclose the value in quotation marks.

Qualifies
/AES

Designates that an AES key is to be created, which is encrypted with the AESCBC128 encryption
routine.

/GROUP

Enters the key definition in the group key storage table.

/HEXADECIMAL
/NOHEXADECIMAL

Specifies that the value for the key is a hexadecimal number. Default: key values are interpreted
as ASCII text characters (see the description of the key-value parameter).

/JOB

Enters the key definition in the job key storage table.

222

DCL Commands

/LOG

Verifies successful creation of the key.

/PROCESS

Enters the key definition in the process key storage table.

/SYSTEM

Enters the key definition in the system key storage table.

Examples
1. $ ENCRYPT /CREATE_KEY HAMLET

_ Key value: "And you yourself shall keep the key of it"

This example defines a DES key named HAMLET with the character string value

"And you yourself shall keep the key of it"

2. $ ENCRYPT /CREATE_KEY /HEXADECIMAL ARCANE 2F4A98F46BBC11DC

This example defines a DES key named ARCANE with hexadecimal value of
2F4A98F46BBC11DC.)

3. $ ENCRYPT /CREATE_KEY MYKEY "The 16 char. key" /LOG/AES

This example defines an AES key named MYKEY with the minimum 16-character string value
"The 16 char. key" that is required for AESxxx128, logging its successful creation. The key is
encrypted with AES prior to storage in the PROCESS (default) logical name table.

4. $ SHOW LOGICAL ENC* /TABLE=ENCRYPT$KEY_STORE

LNM$PROCESS_TABLE

 "ENCRYPTKEYMYKEY" = ".0S%M.....SB.}0L..Z"
 = "AES"

LNM$JOB_8210B400

LNM$GROUP_000001

ENCRYPT$SYSTEM

This example shows that key names are prepended with ENCRYPTKEY, as in the named key
ENCRYPTKEYMYKEY.

ENCRYPT /REMOVE_KEY
ENCRYPT /REMOVE_KEY — Deletes a key definition from a key storage table. The PROCESS
logical name table is the default unless otherwise specified.

Format
ENCRYPT /REMOVE_KEY key-name [qualifiers]

223

DCL Commands

Parameters
key-name

Key name previously stored in the key storage table with the ENCRYPT /CREATE_KEY command.

Qualifiers
/AES

Designates that an AES key is to be deleted. Specifying a unique key name and table is sufficient
for deletion, making the /AES qualifier unnecessary but included for clarification.

/GROUP

Deletes the key definition from the group key storage table.

/JOB

Deletes the key definition from the job key storage table.

/PROCESS

Deletes the key definition from the process key storage table.

/SYSTEM

Deletes the key definition from the system key storage table.

Example
$ ENCRYPT /REMOVE_KEY MYKey /AES

This command removes or deletes the AES key, MYKEY.

ENDSUBROUTINE
ENDSUBROUTINE — Defines the end of a subroutine in a command procedure. For more
information about the command, see the description of the CALL command or online help.

Format
ENDSUBROUTINE

EOD
EOD — Signals the end of a data stream when a command or program is reading data from an input
device other than an interactive terminal.

Format
$ EOD

224

DCL Commands

Parameters
None.

Description
The EOD (end of deck) command in a command procedure or in a batch job does the following:

• Terminates input data lines that begin with dollar signs ($).The DECK command indicates that the
following lines begin with dollar signs and should be interpreted as data, not as commands; the
EOD command indicates the end of the data lines.

• Terminates an input file if multiple input files are contained in the command stream without
intervening commands. The program or command reading the data receives an end-of-file (EOF)
condition when the EOD command is read.

The EOD command must be preceded by a dollar sign; the dollar sign must be in the first character
position (column 1) of the input record.

Examples
1. $ CREATE WEATHER.COM

$ DECK
$ FORTRAN WEATHER
$ LINK WEATHER
$ RUN WEATHER
$ EOD
$ @WEATHER

In this example, the command procedure creates a command procedure called WEATHER.COM.
The lines delimited by the DECK and EOD commands are written to the file WEATHER.COM.
Then the command procedure executes WEATHER.COM.

2.

225

DCL Commands

The program MYPROG requires two input files; these are read from the logical device
SYS$INPUT. The EOD command signals the end of the first data file and the beginning of the
second. The next line that begins with a dollar sign (a PRINT command in this example) signals
the end of the second data file.

EOJ
EOJ — Marks the end of a batch job submitted through a card reader.

Synopsis
$ EOJ

Parameters
None.

Description
The EOJ (end of job) command marks the end of a batch job submitted through a card reader. An
EOJ card is not required; however, if present, the first nonblank character in the command line must
be a dollar sign ($). If issued in any other context, the EOJ command logs the process out. The EOJ
command cannot be abbreviated.

The EOF card is equivalent to the EOJ card.

Example

The JOB and PASSWORD commands mark the beginning of a batch job submitted through the card
reader; the EOJ command marks the end of the job.

EXAMINE
EXAMINE — Displays the contents of virtual memory.

226

DCL Commands

Synopsis
EXAMINE location[:location]

Parameter
location[:location]

Specifies a virtual address or a range of virtual addresses (where the second address is larger than the
first) whose contents you want to examine. If you specify a range of addresses, separate the beginning
and ending addresses with a colon (:).

A location can be any valid arithmetic expression containing arithmetic or logical operators or
previously assigned symbols. Radix qualifiers determine the radix in which the address is interpreted;
hexadecimal is the initial default radix. Symbol names are always interpreted in the radix in which
they were defined. The radix operators %X, %D, or %O can precede the location. A hexadecimal
value must begin with a number (or be preceded by %X).

The DEPOSIT and EXAMINE commands maintain a pointer to the current memory location. The
EXAMINE command sets this pointer to the last location examined when you specify an EXAMINE
command. You can refer to this location using the period (.) in a subsequent EXAMINE command or
DEPOSIT command.

Description

Note

The command requires user-mode read (R) access to the virtual memory location whose contents you
want to examine.

The EXAMINE command displays the contents of virtual memory. The address is displayed in
hexadecimal format and the contents are displayed in the radix requested, as follows:

address: contents

If the address specified is not accessible to user mode, four asterisks (*) are displayed in the contents
field.

Radix Qualifiers: The radix default for a DEPOSIT command or an EXAMINE command
determines how the command interprets numeric literals. The initial default radix is hexadecimal;
all numeric literals in the command line are assumed to be hexadecimal values. If a radix qualifier
modifies an EXAMINE command, that radix becomes the default for subsequent EXAMINE and
DEPOSIT commands, until another qualifier overrides it. For example:

$ EXAMINE/DECIMAL 900
00000384: 0554389621

The EXAMINE command interprets the location 900 as a decimal number and displays the contents
of that location in decimal. All subsequent DEPOSIT and EXAMINE commands assume that
numbers you enter for addresses and data are decimal. Note that the EXAMINE command always
displays the address location in hexadecimal format.

Symbol names defined by = (assignment statement) commands are always interpreted in the radix in
which they were defined.

227

DCL Commands

Note that hexadecimal values entered as examine locations or as data to be deposited must begin with
a numeric character (0 to 9); otherwise, the command interpreter assumes that you have entered a
symbol name, and attempts symbol substitution.

You can use the radix operators %X, %D, or %O to override the current default when you enter the
EXAMINE command. For example:

$ EXAMINE/DECIMAL %X900
00000900: 321446536

This command requests a decimal display of the data in the location specified as hexadecimal 900.

Length Qualifiers: The initial default length unit for the EXAMINE command is a longword. The
EXAMINE command displays data, one longword at a time, with blanks between longwords. If a
length qualifier modifies the command, that length becomes the default length of a memory location
for subsequent EXAMINE and DEPOSIT commands, until another qualifier overrides it.

Restriction on Placement of Qualifiers: The EXAMINE command analyzes expressions
arithmetically. Therefore, qualifiers are interpreted correctly only when they appear immediately after
the command name.

Qualifiers
/ASCII

Displays the data at the specified location in ASCII format.

Binary values that do not have ASCII equivalents are displayed as periods (.).

When you specify the /ASCII qualifier, or when ASCII mode is the default, hexadecimal is used
as the default radix for numeric literals that are specified on the command line.

/BYTE

Displays data at the specified location, one byte at a time.

/DECIMAL

Displays the contents of the specified location in decimal format.

/HEXADECIMAL

Displays the contents of the specified location in hexadecimal format.

/LONGWORD

Displays data at the specified location, one longword at a time.

/OCTAL

Displays the contents of the specified location in octal format.

/WORD

Displays data at the specified location, one word at a time.

228

DCL Commands

Examples
1. $ RUN MYPROG

Ctrl/Y
$ EXAMINE 2678
0002678: 1F4C5026
$ CONTINUE

In this example, the RUN command begins execution of the image MYPROG.EXE. While
MYPROG is running, pressing Ctrl/Y interrupts its execution, and the EXAMINE command
displays the contents of virtual memory location 2678 (hexadecimal).

2. $ BASE = %X1C00
$ READBUF = BASE + %X50
$ ENDBUF = BASE + %XA0
$ RUN TEST
Ctrl/Y
$ EXAMINE/ASCII READBUF:ENDBUF
00001C50: BEGINNING OF FILE MAPPED TO GLOBAL SECTION
 .
 .
 .

In this example, before executing the program TEST.EXE, symbolic names are defined for the
program's base address and for labels READBUF and ENDBUF; all are expressed in hexadecimal
format using the radix operator %X.READBUF and ENDBUF define offsets from the program
base.

While the program is executing, pressing Ctrl/Y interrupts it, and the EXAMINE command
displays in ASCII format all data between the specified memory locations.

EXCHANGE
EXCHANGE — Invokes the Exchange utility (EXCHANGE), which manipulates mass storage
volumes that are written in formats other than those normally recognized by the operating system. For
more information about EXCHANGE, see the OpenVMS Exchange Utility Manual or online help.

Format
EXCHANGE [subcommand] [filespec] [filespec]

Description
EXCHANGE allows you to perform any of the following tasks:

• Create foreign volumes.

• Transfer files to and from the volume.

• List directories of the volume.

For block-addressable devices, such as RT-11 disks, EXCHANGE performs additional operations
such as renaming and deleting files. EXCHANGE can also manipulate Files-11 files that are images
of foreign volumes; these files are called virtual devices.

229

DCL Commands

EXCHANGE/NETWORK
EXCHANGE/NETWORK — Enables the operating system to transfer files to or from operating
systems that do not support OpenVMS file organizations. The transfer occurs over a DECnet network
communications link that connects OpenVMS systems and non OpenVMS operating system nodes.

Format
EXCHANGE/NETWORK input-filespec[,...] output-filespec

Parameters
input-filespec[,...]

Specifies the name of an existing file to be transferred. The asterisk (*) and the percent sign (%)
wildcard characters are allowed. If you specify more than one file, separate the file specifications with
commas (,).

output-filespec

Specifies the name of the output file into which the input is transferred.

You must specify at least one field in the output file specification. If you omit the device or directory,
your current default device and directory are used. The EXCHANGE/NETWORK command replaces
any other missing fields (file name, file type, and version number) with the corresponding field of the
input file specification.

The EXCHANGE/NETWORK command creates a new output file for every input file that you
specify.

You can use the asterisk (*) wildcard character in place of the file name, the file type, or the version
number. The EXCHANGE/NETWORK command uses the corresponding field in the related input
file to name the output file. You can also use the asterisk (*) wildcard character in the output file
specification to direct EXCHANGE/NETWORK to create more than one output file. For example:

$ EXCHANGE/NETWORK A.A,B.B MYPC::*.C

This EXCHANGE/NETWORK command creates the files A.C and B.C at the non OpenVMS target
node MYPC.

A more complete explanation of the asterisk (*) and the percent sign (%) wildcard characters and
version numbers follows in the Description section.

Description
Using DECnet services, the EXCHANGE/NETWORK command can perform any of the following
tasks:

• Transfer files between an OpenVMS node and a non OpenVMS system node.

• Transfer a group of input files to a group of output files.

• Transfer files between two non OpenVMS nodes, provided those nodes share DECnet connections
with the OpenVMS node that issues the EXCHANGE/NETWORK command.

230

DCL Commands

The EXCHANGE/NETWORK command imposes the following restrictions:

• Transfers of files can occur only between disk devices. (If a disk device is not the desired
permanent residence for the file, you must either move the file to a disk before issuing the
command or retrieve the file from a disk after the command completes.)

• The remote system must have a block size of 512 bytes, where a byte is 8 bits long.

• The nodes transferring files must support the DECnet Data Access Protocol (DAP).

The OpenVMS Record Management Services (RMS) facility provides the operating system access
to records in OpenVMS RMS files. To transfer OpenVMS RMS files between two nodes where
both nodes are OpenVMS nodes, use one of the other DCL commands (such as COPY, APPEND, or
CONVERT), as appropriate. These commands recognize RMS file organizations and are designed to
ensure that RMS record structures are preserved as your files are moved.

Use the EXCHANGE/NETWORK command to transfer files between OpenVMS nodes and non
OpenVMS nodes when the differences in the file organizations would otherwise prevent the transfer
or could lead to undesirable results. While using the COPY command ensures that both the contents
and the attributes of a replicated file are preserved, the EXCHANGE/NETWORK command has
more advantages. The EXCHANGE/NETWORK command offers you explicit control of your
record attributes during file transfers, with the opportunity to make a file usable on several different
operating systems.

The EXCHANGE/NETWORK command transfers files between OpenVMS nodes and non
OpenVMS nodes connected to the same DECnet network. If the non OpenVMS system does not
support OpenVMS file organizations, the EXCHANGE/NETWORK command can modify or discard
file and record attributes during the transfer. However, if the target system is an OpenVMS node,
you have the option of applying new file and record attributes to the output file by supplying a File
Definition Language (FDL) file, as described later in this section. The EXCHANGE/NETWORK
command provides a number of defaults to handle the majority of transfers properly; however, in
some situations you need to know your file or record format requirements at both nodes.

OpenVMS File and Record Attributes
All RMS files in the OpenVMS environment include stored information, known as the file and record
attributes, to describe the file and record characteristics. File attributes consist of items such as file
organization, file protection, and file allocation information. Record attributes consist of items such
as the record format, record size, key definitions for indexed files, and carriage control information.
These attributes define the data format and access methods for the OpenVMS RMS facility.

Non OpenVMS operating systems that do not support OpenVMS file organizations have no
means of storing file and record attributes with their files. Transferring an OpenVMS file to a non
OpenVMS system that is unable to store and handle file and record attributes can result in most of this
information being discarded. Removing these attributes from a file can render it useless if it must be
returned to the OpenVMS system.

Transferring Files to OpenVMS Nodes
When you transfer files to an OpenVMS system from a non OpenVMS system, the files typically
assume default file and record attributes; however, you can specify the attributes that you want the file
to acquire in a File Definition Language (FDL) file. Alternatively, if transferring a CDA document,
enter the following command after the EXCHANGE/NETWORK command:

$ SET FILE/SEMANTICS=[ddif,dtif] document-name.doc

231

DCL Commands

If you specify an FDL file with the /FDL qualifier, the FDL file determines the characteristics of
the output file. This feature is useful in establishing compatible file and record attributes when you
transfer a file from a non OpenVMS system to an OpenVMS system; however, when you use an FDL
file, you also assume responsibility for determining the required characteristics.

For more information on FDL files, see the OpenVMS Record Management Utilities Reference
Manual.

Transferring Files to Non OpenVMS Nodes

The EXCHANGE/NETWORK command discards file and record attributes associated with an
OpenVMS file during a transfer to a non OpenVMS system that does not support OpenVMS file
organizations. Be aware that the loss of file and record attributes in the transfer can render the output
file useless for many applications.

Selecting Transfer Modes

The EXCHANGE/NETWORK command has four transfer mode options: AUTOMATIC, BLOCK,
RECORD, and CONVERT. For most file transfers, AUTOMATIC is sufficient. The AUTOMATIC
transfer mode option allows the EXCHANGE/NETWORK command to transfer files using either
block or record I/O. The selection is based on the input file organization and the operating systems
involved.

Selecting the BLOCK transfer mode option forces the EXCHANGE/NETWORK command to open
both the input and output files for block I/O access. The input file is then transferred to the output
file block by block. Use this transfer mode when you transfer executable images. It is also useful
when you must preserve a file's content exactly, which is a common requirement when you store files
temporarily on another system or when cooperating applications exist on the systems.

Selecting the RECORD transfer mode option forces the EXCHANGE/NETWORK command to open
both the input file and output file for record I/O access. The input file is then transferred to the output
file record by record. This transfer mode is primarily used for transferring text files.

Selecting the CONVERT transfer mode option forces the EXCHANGE/NETWORK command to
open the input file for RECORD access and the output file for BLOCK access. Records are then
read in from the input file, packed into blocks, and are written to the output file. This transfer mode
is primarily used for transferring files with no implied carriage control. For example, to transfer
a file created with DIGITAL Standard Runoff (DSR) to a DECnet DOS system, you must use the
CONVERT transfer mode option. To transfer the resultant output file back to an OpenVMS node, use
the AUTOMATIC transfer mode option.

Wildcard Characters

The asterisk (*) and the percent sign (%) wildcard characters are permitted in the file specifications
and follow the behavior typical of other OpenVMS system commands with respect to the OpenVMS
node.

When more than one input file is specified, but the asterisk (*) or the percent sign (%) wildcard
characters are not specified in the output file specification, the first input file is copied to the output
file, and each subsequent input file is transferred and given a higher version number of the same
output file name. Note that the files are not concatenated into a single output file. Also note that when
you transfer files to foreign systems that do not support version numbers, only one output file results,
and it is the last input file.

232

DCL Commands

To create multiple output files, specify multiple input files and use at least one of the following:

• An asterisk (*) wildcard character in the output file name, file type, or version number field

• Only a node name, a device name, or a directory specification as the output file specification

When you create multiple output files, the EXCHANGE/NETWORK command uses the
corresponding field from each input file in the output file name.

Use the /LOG qualifier when you specify multiple input and output files to verify that the files were
copied as you intended.

Version Numbers
The following guidelines apply when the target node file formats accept version numbers.

If no version numbers are specified for input and output files, the EXCHANGE/NETWORK
command (by default) assigns a version number to the output files that is either of the following:

• The version number of the input file

• A version number one greater than the highest version number of an existing file with the same
file name and file type

When the output file version number is specified by an asterisk (*) wildcard character, the
EXCHANGE/NETWORK command uses the version numbers of the associated input files as the
version numbers of the output files.

If the output file specification has an explicit version number, the EXCHANGE/NETWORK
command normally uses that number for the output file specification. However, if an equal or higher
version of the output file already exists, no warning message is issued, the file is copied, and the
version number is set to a value one greater than the highest version number already existing.

File Protection and Creation/Revision Dates
The EXCHANGE/NETWORK command treats an output file as a new file when any portion of the
output file name is specified explicitly. When the output node is an OpenVMS system, the creation
date for a new file is set to the current time and date. However, if the output file specification consists
only of the asterisk (*) and the percent sign (%) wildcard characters, the output file no longer qualifies
as a new file, and, therefore, the creation date of the input file is used. That is, if the output file
specification is one of the following, the creation date becomes that of the input file: *, *.*, or *.*;*.

The revision date of the output file is always set to the current time and date; the backup date is set to
zero. The output file is assigned a new expiration date. (Expiration dates are set by the file system if
retention is enabled; otherwise, they are set to zero.)

When the target node is an OpenVMS node, the protection and access control list (ACL) of the output
file is determined by the following parameters, in the following order:

1. Protection of previously existing versions of the output file

2. Default protection and ACL of the output directory

3. Process default file protection

For an introduction to ACLs, see the VSI OpenVMS Guide to System Security.

233

DCL Commands

On OpenVMS systems, the owner of the output file usually is the same as the creator of the output
file. However, if a user with extended privileges creates the output file, the owner is either the owner
of the parent directory or the owner of a previous version of the output file, if one exists.

Extended privileges include any of the following:

• SYSPRV (system privilege) or BYPASS

• System user identification code (UIC)

• GRPPRV (group privilege) if the owner of the parent directory (or previous version of the output
file) is in the same group as the creator of the new output file

• An identifier (with the resource attribute) representing the owner of the parent directory (or
previous version of the output file)

Qualifiers
/BACKUP

Modifies the time value specified with the /BEFORE or the /SINCE qualifier. The /BACKUP
qualifier selects files according to the dates of their most recent backups. This qualifier is
incompatible with the /CREATED, /EXPIRED, and /MODIFIED qualifiers, which also allow you
to select files according to time attributes. If you do not specify any of these four time qualifiers,
the default is the /CREATED qualifier.

/BEFORE[=time]

Selects only those files dated prior to the specified time. You can specify time as absolute time,
as a combination of absolute and delta times, or as one of the following keywords: BOOT,
LOGIN, TODAY (default), TOMORROW, or YESTERDAY. Specify one of the following
qualifiers with the /BEFORE qualifier to indicate the time attribute to be used as the basis for
selection: /BACKUP, /CREATED (default), /EXPIRED, or /MODIFIED.

For complete information about specifying time values, see the VSI OpenVMS User's Manual or
the online help topic Date.

/BY_OWNER[=uic]

Selects only those files whose owner user identification code (UIC) matches the specified owner
UIC. The default UIC is that of the current process.

Specify the UIC by using standard UIC format as described in the VSI OpenVMS Guide to System
Security.

/CONFIRM
/NOCONFIRM (default)

Controls whether a request is issued before each file transfer operation to confirm that the
operation should be performed on that file. The following responses are valid:

YES NO QUIT
TRUE FALSE Ctrl/Z
1 0 ALL

234

DCL Commands

Return

You can use any combination of uppercase and lowercase letters for word responses. Word
responses can be abbreviated to one or more letters (for example, T, TR, or TRU for TRUE),
but these abbreviations must be unique. Affirmative answers are YES, TRUE, and 1. Negative
answers include: NO, FALSE, 0, and pressing Return. Entering QUIT or pressing Ctrl/Z indicates
that you want to stop processing the command at that point. When you respond by entering ALL,
the command continues to process, but no further prompts are given. If you type a response other
than one of those in the list, DCL issues an error message and redisplays the prompt.

/CREATED (default)

Modifies the time value specified with the /BEFORE or the /SINCE qualifier. The /CREATED
qualifier selects files based on their dates of creation. This qualifier is incompatible with
the /BACKUP, /EXPIRED, and /MODIFIED qualifiers, which also allow you to select files
according to time attributes. If you do not specify any of these four time qualifiers, the default is
the /CREATED qualifier.

/EXCLUDE=(filespec[,...])

Excludes the specified files from the file transfer operation. You can include a directory but not a
device in the file specification. The asterisk (*) and the percent sign (%) wildcard characters are
allowed in the file specification; however, you cannot use relative version numbers to exclude a
specific version. If you specify only one file, you can omit the parentheses.

/EXPIRED

Modifies the time value specified with the /BEFORE or the /SINCE qualifier. The /EXPIRED
qualifier selects files according to their expiration dates. (The expiration date is set with the
SET FILE/EXPIRATION_DATE command.) The /EXPIRED qualifier is incompatible with
the /BACKUP, /CREATED, and /MODIFIED qualifiers, which also allow you to select files
according to time attributes. If you do not specify any of these four time qualifiers, the default is
the /CREATED qualifier.

/FDL=fdl-filespec

Specifies that the output file characteristics are described in the File Definition Language (FDL)
file. Use this qualifier when you require special output file characteristics. For more information
about FDL files, see the OpenVMS Record Management Utilities Reference Manual.

Use of the /FDL qualifier implies that the transfer mode is block by block; however, the transfer
mode you specify with the /TRANSFER_MODE qualifier prevails.

/LOG
/NOLOG (default)

Controls whether the EXCHANGE/NETWORK command displays the file specifications of each
file copied.

When you use the /LOG qualifier, the EXCHANGE/NETWORK command displays the
following for each copy operation:

• The file specifications of the input and output files

• The number of blocks or the number of records copied (depending on whether the file is
copied on a block-by-block or record-by-record basis)

235

DCL Commands

/MODIFIED

Modifies the time value specified with the /BEFORE or the /SINCE qualifier. The /MODIFIED
qualifier selects files according to the date on which they were last modified. This time qualifier is
incompatible with the /BACKUP, /CREATED, and /EXPIRED qualifiers, which also allow you to
select files according to time attributes. If you do not specify any of these four time qualifiers, the
default is the /CREATED qualifier.

/SINCE[=time]

Selects only those files dated on or after the specified time. You can specify time as absolute
time, as a combination of absolute and delta times, or as one of the following keywords: BOOT,
JOB_LOGIN, LOGIN, TODAY (default), TOMORROW, or YESTERDAY. Specify one of the
following time qualifiers with the /SINCE qualifier to indicate the time attribute to be used as the
basis for selection: /BACKUP, /CREATED (default), /EXPIRED, or /MODIFIED.

For complete information about specifying time values, see the VSI OpenVMS User's Manual or
the online help topic Date.

/STYLE=keyword

Specifies the file name format for display purposes.

The valid keywords for this qualifier are CONDENSED and EXPANDED. Descriptions are as
follows:

Keyword Explanation
CONDENSED (default) Displays the file name representation of what is generated to fit into a

255-length character string. This file name may contain a DID or FID
abbreviation in the file specification.

EXPANDED Displays the file name representation of what is stored on disk. This
file name does not contain any DID or FID abbreviations.

The keywords CONDENSED and EXPANDED are mutually exclusive. This qualifier specifies
which file name format is displayed in the output message, along with the confirmation if
requested.

File errors are displayed with the CONDENSED file specification unless the EXPANDED
keyword is specified.

See the VSI OpenVMS System Manager's Manual, Volume 1: Essentials for more information.

/SYMLINK=keyword

The valid keywords for this qualifier are [NO]WILDCARD and [NO]ELLIPSIS. Descriptions are
as follows:

Keyword Explanation
WILDCARD Indicates that symlinks are enabled during wildcard searches.
NOWILDCARD Indicates that symlinks are disabled during directory wildcard searches.
ELLIPSIS Equivalent to WILDCARD (included for command symmetry).
NOELLIPSIS Indicates that symlinks are matched for all wildcard fields except for

ellipsis.

236

DCL Commands

If the file named in the EXCHANGE/NETWORK command is a symlink, the command operates
on the symlink target.

/TRANSFER_MODE=option

Specifies the I/O method to be used in the transfer. This qualifier is useful for all file formats. You
can specify any one of the following options:

Option Function
AUTOMATIC Allows the EXCHANGE/NETWORK command to determine

the appropriate transfer mode. This is the default transfer mode.
BLOCK Opens both the input and output files for block I/O and transfers

the files block by block.
CONVERT[=option[,...]] Reads records from the input file, packs them into blocks, and

writes them to the output file in block mode. The options listed
in the following table determine what additional information is
inserted during the transfer.

RECORD Opens both the input and output files for record I/O and transfers
the files record by record. The target system must support record
operations, and the input file must be record oriented.

The following four options are available with the CONVERT transfer mode to control the
insertion of special characters in the records:

Option Function
CARRIAGE_CONTROL Any carriage control information in the input file is interpreted,

expanded into actual characters, and included with each record.
COUNTED The length of each record, in bytes, is included at the beginning

of the record. The length includes all FIXED_CONTROL,
CARRIAGE_CONTROL, and RECORD_SEPARATOR
information in each record.

FIXED_CONTROL All variable length with fixed control record (VFC) information
is written to the output file as part of the data. This information
follows the record length information, if the COUNTED option
was specified.

RECORD_SEPARATOR=
separator

A 1- or 2-byte record separator is inserted between each record.
Record separator characters are the last characters in the record.
The three choices for separator characters are as follows:

• CR: Specifies carriage return only.

• LF: Specifies line feed only.

• CRLF: Specifies carriage return and line feed.

Examples
1. $ EXCHANGE/NETWORK VMS_FILE.DAT KUDOS::FOREIGN_SYS.DAT

In this example, the EXCHANGE/NETWORK command transfers the file VMS_FILE.DAT
located in the current default device and directory to the file FOREIGN_SYS.DAT on the

237

DCL Commands

non OpenVMS node KUDOS. Because the /TRANSFER_MODE qualifier was not explicitly
specified, the EXCHANGE/NETWORK command automatically determines whether the transfer
method should be block or record I/O.

2. $ EXCHANGE/NETWORK/TRANSFER_MODE=BLOCK -
_$ KUDOS::FOREIGN_SYS.DAT VMS_FILE.DAT

In this example, the EXCHANGE/NETWORK command transfers the file FOREIGN_SYS.DAT
from the non OpenVMS node KUDOS to the file VMS_FILE.DAT in the current default device
and directory. Block I/O is specified for the transfer mode.

3. $ EXCHANGE/NETWORK/FDL=VMS_FILE_DEFINITION.FDL -
_$ KUDOS::REMOTE_FILE.TXT VMS_FILE.DAT

In this example, the EXCHANGE/NETWORK command transfers the file REMOTE_FILE.TXT
on node KUDOS to the file VMS_FILE.DAT. The file attributes for the output file
VMS_FILE.DAT are obtained from the File Definition Language (FDL) source
file VMS_FILE_DEFINITION.FDL. Because the qualifier /FDL is specified and
the /TRANSFER_MODE qualifier is omitted, the transfer mode uses block I/O, by default.

For more information about creating FDL files, see the OpenVMS Record Management Utilities
Reference Manual.

4. $ EXCHANGE/NETWORK -
_$ /TRANSFER_MODE=CONVERT=(CARRIAGE_CONTROL,COUNTED, -
_$ RECORD_SEPARATOR=CRLF,FIXED_CONTROL) -
_$ PRINT_FILE.TXT KUDOS::*

In this example, the EXCHANGE/NETWORK command transfers the file PRINT_FILE.TXT
from the current default device and directory to the file PRINT_FILE.TXT on the non OpenVMS
node KUDOS. The use of the CONVERT option with the /TRANSFER_MODE qualifier forces
the input file to be read in record by record, modified as specified by the CONVERT options that
follow, and written to the output file block by block. As many records as will fit are packed into
the output blocks.

The CONVERT option CARRIAGE_CONTROL specifies that carriage control information is
converted to ASCII characters and inserted before the data or appended to the record, depending
on whether prefix control or postfix control, or both, are used.

The CONVERT option FIXED_CONTROL specifies that any fixed control information be
translated to ASCII characters and inserted at the beginning of the record.

The CONVERT option RECORD_SEPARATOR=CRLF appends the two specified characters,
carriage return and line feed, to the end of the record.

The CONVERT option COUNTED specifies that the total length of the record must be counted
(once the impact of all the previous convert options have been added), and the result is to be
inserted at the beginning of the record, in the first 2 bytes.

EXIT
EXIT — Terminates processing of a command procedure or subroutine and returns control to the
calling command level – either an invoking command procedure or interactive DCL. The EXIT

238

DCL Commands

command also terminates an image normally after a user enters Ctrl/Y (executing another image has
the same effect).

Format
EXIT [status-code]

Parameter
status-code

Defines a numeric value for the reserved global symbol $STATUS. You can specify the status-code
parameter as an integer or an expression equivalent to an integer value. The value can be tested by the
next outer command level. The low-order 3 bits of the value determine the value of the global symbol
$SEVERITY.

If you specify a status code, DCL interprets the code as a condition code. Note that even numeric
values produce warning, error, and fatal error messages, and that odd numeric values produce either
no message or a success or informational message.

If you do not specify a status code, the current value of $STATUS is saved. When control returns to
the outer command level, $STATUS contains the status of the most recently executed command or
program.

Description
The EXIT and STOP commands both provide a way to terminate the execution of a procedure. The
EXIT command terminates execution of the current command procedure and returns control to the
calling command level. If you enter the EXIT command from a non-interactive process (such as a
batch job), at command level 0, then the process terminates.

The STOP command returns control to command level 0, regardless of the current command level. If
you execute the STOP command from a command procedure or from a non-interactive process (such
as a batch job), the process terminates.

When a DCL command, user program, or command procedure completes execution, the command
interpreter saves the condition code value in the global symbol$STATUS. If an EXIT command does
not explicitly set a value for $STATUS, the command interpreter uses the current value of $STATUS
to determine the error status.

The low-order 3 bits of the status value contained in $STATUS represent the severity of the condition.
The reserved global symbol $SEVERITY contains this portion of the condition code. Severity values
range from 0 to 4, as follows:

Value Severity
0 Warning
1 Success
2 Error
3 Information
4 Severe (fatal) error

239

DCL Commands

Note that the success and information codes have odd numeric values, and that warning and error
codes have even numeric values.

When any command procedure exits and returns control to another level, the command interpreter
tests the current value of $STATUS. If $STATUS contains an even numeric value and if its high-order
bit is 0, the command interpreter displays the system message associated with that status code, if one
exists. (If no message exists, the message NOMSG will be displayed.) If the high-order bit is 1, the
message is not displayed.

When a command procedure exits following a warning or error condition that has already been
displayed by a DCL command, the command interpreter sets the high-order bit of $STATUS to 1,
leaving the remainder of the value intact. This ensures that error messages are not displayed by both
the command that caused the error, and by the command procedure.

The EXIT command, when used after you interrupt an image with Ctrl/Y, causes a normal termination
of the image that is currently executing. If the image declared any exit-handling routines, they are
given control. This is in contrast to the STOP command, which does not execute exit-handling
routines. For this reason, the EXIT command is generally preferable to the STOP command.

Examples
1. $ EXIT 1

The EXIT command in this example exits to the next higher command level, giving $STATUS and
$SEVERITY a value of 1.

2. $ ON WARNING THEN EXIT
$ FORTRAN ’P1’
$ LINK ’P1’
$ RUN ’P1’

The EXIT command in this example is used as the target of an ON command; this statement
ensures that the command procedure terminates whenever any warnings or errors are issued by
any command in the procedure.

The procedure exits with the status value of the command or program that caused the termination.

3. $ START:
$ IF (P1 .EQS. "TAPE") .OR. (P1 .EQS. "DISK") THEN GOTO ’P1’
$ INQUIRE P1 "Enter device (TAPE or DISK)"
$ GOTO START
$ TAPE: ! Process tape files
 .
 .
 .
$ EXIT
$ DISK: ! Process disk files
 .
 .
 .
$ EXIT

The command procedure in this example shows how to use the EXIT command to terminate
different command paths within the procedure. To execute the procedure, you must enter either
TAPE or DISK as a parameter. The IF command uses a logical OR to test whether either of these

240

DCL Commands

strings was entered. If the result is true, the GOTO command branches to the corresponding label.
If P1 was neither TAPE nor DISK, the INQUIRE command prompts for a correct parameter.

The commands following each of the labels TAPE and DISK provide different paths through the
procedure. The EXIT command before the label DISK ensures that the commands after the label
DISK are executed only if the procedure explicitly branches to DISK.

Note that the EXIT command at the end of the procedure is not required because the end of
the procedure causes an implicit EXIT command. Use of the EXIT command, however, is
recommended.

4. $ IF P1. EQS. "" THEN -
INQUIRE P1 "Enter filespec (null to exit)"
$ IF P1 .EQS. "" THEN EXIT
$ PRINT ’P1’/AFTER=20:00/COPIES=50/FORMS=6

The command procedure in this example tests whether a parameter was passed to it; if the
parameter was not passed, the procedure prompts for the required parameter. Then it retests the
parameter P1. If a null string, indicated by a carriage return for a line with no data, is entered, the
procedure exits;otherwise, it executes the PRINT command with the current value of P1 as the
input parameter.

5. $ IF P1 .EQS. "" THEN INQUIRE P1 "Code"
$ CODE = %X’P1’
$ EXIT CODE

The command procedure in this example, E.COM, illustrates how to determine the system
message, if any, associated with a hexadecimal system status code. The procedure requires a
parameter and prompts if none is entered. Then it prefixes the value with the radix operator
%X and assigns this string to the symbol CODE. Finally, it issues the EXIT command with the
hexadecimal value. The following example uses the procedure E.COM:

$ @E 1C
%SYSTEM-F-EXQUOTA, exceeded quota

When the procedure exits, the value of $STATUS is %X1C, which equates to the EXQUOTA
message. Note that you can also use the F$MESSAGE lexical function to determine the message
that corresponds to a status code.

6. $ RUN MYPROG
Ctrl/Y
$ EXIT

In this interactive example, the RUN command initiates execution of the image MYPROG.EXE.
Then pressing Ctrl/Y interrupts the execution. The EXIT command that follows calls any exit
handlers declared by the image before terminating MYPROG.EXE.

FONT
FONT — Converts an ASCII bitmap distribution format (BDF) into binary portable compiled format
(PCF) on Alpha systems. The DECwindows server uses a PCF or SNF file to display a font. In
addition to converting the BDF file to binary form, the font compiler provides statistical information
about the font and the compilation process. For more information about using the font compiler, see
the OpenVMS DECwindows programming documentation or online help.

241

DCL Commands

Format
FONT filespec

GOSUB
GOSUB — Transfers control to a labeled subroutine in a command procedure without creating a new
procedure level.

Format
GOSUB label

Parameter
label

Specifies a label of 1 to 255 alphanumeric characters that appears as the first item on a command line.
A label may not contain embedded blanks. When the GOSUB command is executed, control passes to
the command following the specified label.

The label can precede or follow the GOSUB statement in the current command procedure. When you
use a label in a command procedure, it must be terminated with a colon (:). If you use duplicate labels,
control is always given to the label most recently read by DCL.

Description
Use the GOSUB command in command procedures to transfer control to a subroutine specified by the
label. If the command stream is not being read from a random-access device (that is, a disk device),
the GOSUB command performs no operation.

The RETURN command terminates the GOSUB subroutine procedure, returning control to the
command following the calling GOSUB statement. The RETURN command accepts an optional
status value.

The GOSUB command does not cause the creation of a new procedure level. Therefore, it is referred
to as a “local” subroutine call. Any labels and local symbols defined in the current command
procedure level are available to a subroutine invoked with a GOSUB command. The GOSUB
command can be nested up to a maximum of 16 levels per procedure level.

When the command interpreter encounters a label, it enters the label in a label table. This table is
allocated from space available in the local symbol table. If the command interpreter encounters a
label that already exists in the table, the new definition replaces the existing one. Therefore, if you use
duplicate labels, control is always given to the label most recently read by DCL. The following rules
apply:

• If duplicate labels precede and follow the GOSUB command, control is given to the label
preceding the command.

• If duplicate labels all precede the GOSUB command, control is given to the most recent label, that
is, the one nearest the GOSUB command.

242

DCL Commands

• If duplicate labels all follow the GOSUB command, control is given to the one nearest the
GOSUB command.

If a label does not exist in the current command procedure, the procedure cannot continue and is
forced to exit.

Note that the amount of space available for labels is limited. If a command procedure uses many
symbols and contains many labels, the command interpreter may run out of table space and issue an
error message.

Example
$!
$! GOSUB.COM
$!
$ SHOW TIME
$ GOSUB TEST1
$ WRITE SYS$OUTPUT "success completion"
$ EXIT
$!
$! TEST1 GOSUB definition
$!
$ TEST1:
$ WRITE SYS$OUTPUT "This is GOSUB level 1."
$ GOSUB TEST2
$ RETURN %X1
$!
$! TEST2 GOSUB definition
$!
$ TEST2:
$ WRITE SYS$OUTPUT "This is GOSUB level 2."
$ GOSUB TEST3
$ RETURN
$!
$! TEST3 GOSUB definition
$!
$ TEST3:
$ WRITE SYS$OUTPUT "This is GOSUB level 3."
$ RETURN

This sample command procedure shows how to use the GOSUB command to transfer control to
labeled subroutines. The GOSUB command transfers control to the subroutine labeled TEST1.
The procedure executes the commands in subroutine TEST1, branching to the subroutine labeled
TEST2. The procedure then executes the commands in subroutine TEST2, branching to the subroutine
labeled TEST3. Each subroutine is terminated by the RETURN command. After TEST3 is executed,
the RETURN command returns control back to the command line following each calling GOSUB
statement. At this point, the procedure has been successfully executed.

GOTO
GOTO — Transfers control to a labeled statement in a command procedure.

Format
GOTO label

243

DCL Commands

Parameter
label

Specifies a label of 1 to 255 alphanumeric characters that appears as the first item on a command line.
A label cannot contain embedded blanks. When the GOTO command is executed, control passes to
the command following the specified label.

When you use a label in a command procedure, it must be terminated with a colon (:). If you use
duplicate labels, control is always given to the label most recently read by DCL.

Description
Use the GOTO command in command procedures to transfer control to a line that is not the next
line in the procedure. The label can precede or follow the GOTO statement in the current command
procedure. If the command stream is not being read from a random-access device (that is, a disk
device), the GOTO command performs no operation.

If the target label of a GOTO command is inside a separate IF-THEN-ELSE construct, an error
message (DCL-W-USGOTO) is returned.

When the command interpreter encounters a label, it enters the label in a label table. This table is
allocated from space available in the local symbol table. If the command interpreter encounters a
label that already exists in the table, the new definition replaces the existing one. Therefore, if you use
duplicate labels, control is always given to the label most recently read by DCL. In general:

• If duplicate labels precede and follow the GOTO command, control is given to the label preceding
the command.

• If duplicate labels all precede the GOTO command, control is given to the most recent label, that
is, the one nearest the GOTO command.

• If duplicate labels all follow the GOTO command, control is given to the one nearest the GOTO
command.

If a label does not exist in the current command procedure, the procedure cannot continue and is
forced to exit.

Note that the amount of space available for labels is limited. If a command procedure uses many
symbols and contains many labels, the command interpreter may run out of table space and issue an
error message.

Examples
1. $ IF P1 .EQS. "HELP" THEN GOTO TELL

$ IF P1 .EQS. "" THEN GOTO TELL
 .
 .
 .
$ EXIT
$ TELL:
$ TYPE SYS$INPUT
To use this procedure, you must enter a value for P1.
 .

244

DCL Commands

 .
 .
$ EXIT

In this example, the IF command checks the first parameter passed to the command procedure;
if this parameter is the string HELP or if the parameter is not specified, the GOTO command
is executed and control is passed to the line labeled TELL; otherwise, the procedure continues
executing until the EXIT command is encountered. At the label TELL, a TYPE command displays
data in the input stream that documents how to use the procedure.

2. $ ON ERROR THEN GOTO CHECK
 .
 .
 .
$ EXIT
$ CHECK: ! Error handling routine
 .
 .
 .
$ END:
$ EXIT

The ON command establishes an error-handling routine. If any command or procedure
subsequently executed in the command procedure returns an error or severe error, the GOTO
command transfers control to the label CHECK.

HELP
HELP — The HELP command invokes the Help facility to display information about use of the
system, including formats and explanations of commands, parameters, qualifiers, and system
messages.

Format
HELP [topic[subtopic...]]

Parameter
topic[subtopic...]

Specifies the topics or topic and subtopics on which you want information from a help library.

Description
In response to the Topic? prompt, you can:

• Type the name of the command or topic for which you need help.

• Type INSTRUCTIONS for more detailed instructions on how to use HELP.

• Type HINTS if you are not sure of the name of the command or topic for which you need help.

• Type /MESSAGE for help with the HELP/MESSAGE utility.

245

DCL Commands

• Type a question mark (?) to redisplay the most recently requested text.

• Press RETURN one or more times to exit from HELP.

You can abbreviate any topic name, although ambiguous abbreviations result in all matches being
displayed.

Information within help libraries is arranged in a hierarchical manner. The levels are as follows:

1. None – If you do not specify a keyword, the Help facility describes the HELP command and lists
the topics that are documented in the root library. Each item in the list is a keyword in the first
level of the hierarchy.

2. Topic-name – If you specify a keyword by naming a topic, the Help facility describes the topic
as it is documented in either the root library or in one of the other enabled default libraries.
Keywords for additional information available on this topic are listed.

3. Topic-name subtopic – If you specify a subtopic following a topic, the Help facility provides a
description of the specified subtopic.

4. @filespec followed by any of the previous levels – If you specify a help library to replace the
current root library, the Help facility searches that library for a description of the topic or subtopic
specified. The file specification must take the same form as the file specification included with
the /LIBRARY command qualifier. However, if the specified library is an enabled user-defined
default library, the file specification can be abbreviated to any unique leading substring of that
default library's logical name translation.

To use the Help facility on OpenVMS in its simplest form, enter the HELP command from your
terminal. The Help facility displays a list of topics at your terminal and the prompt Topic?. To
see information on one of the topics, type the topic name after the prompt. The system displays
information on that topic.

If the topic has subtopics, the HELP command lists the subtopics and displays the Subtopic? prompt.
To get information on one of the subtopics, type the name after the prompt. To see information on
another topic, press Return. You can now ask for information on another topic when the Help facility
displays the Topic? prompt. Press Return to exit the Help facility and return to DCL command level.

If you use an asterisk (*) in place of any keyword, the HELP command displays all information
available at the level that the asterisk replaces. For example, HELP COPY * displays all the subtopics
under the topic COPY.

If you use an ellipsis (…) immediately after any primary keyword, the Help facility displays all
the information on the specified topic and all subtopics of that topic. For example, HELPCOPY …
displays information on the COPY topic as well as information on all the subtopics under COPY. The
ellipsis can only be used from the topic level; it cannot be used from the subtopic level.

The asterisk (*) and the percent sign (%) wildcard characters are allowed in the keyword.

Qualifiers
/EXACT

Use with the /PAGE=SAVE and /SEARCH qualifiers to specify a search string that must match
the search string exactly and must be enclosed with quotation marks (“ ”).

246

DCL Commands

If you specify the /EXACT qualifier without the /SEARCH qualifier, exact search mode is
enabled when you set the search string with the Find (E1) key.

/HIGHLIGHT[=keyword]

Use with the /PAGE=SAVE and /SEARCH qualifiers to specify the type of highlighting you want
when a search string is found. When a string is found, the entire line is highlighted. You can use
the following keywords: BOLD, BLINK, REVERSE, and UNDERLINE. BOLD is the default
highlighting.

/INSTRUCTIONS (default)
/NOINSTRUCTIONS

Displays an explanation of the HELP command along with the list of topics (I no topic is
specified). By default, the HELP command display includes a description of the facility and the
format, along with the list of topics. If you specify the /NOINSTRUCTIONS qualifier, only the
list of topics is displayed.

/LIBLIST (default)
/NOLIBLIST

Displays any auxiliary help libraries.

/LIBRARY=filespec
/NOLIBRARY

Uses an alternate help library instead of the default system library, SYS$HELP:HELPLIB.HLB.
The specified library is used as the main (root) help library, and is searched for Help facility
information before any user-defined default help libraries are checked.

If you omit the device and directory specification, the default is SYS$HELP, the logical name of
the location of the system help libraries. The default file type is .HLB.

The /NOLIBRARY qualifier excludes the default help library from the library search order.

/MESSAGE

Displays descriptions of system messages. See the HELP/MESSAGE command in this manual.

/OUTPUT[=filespec]
/NOOUTPUT

Controls where the output of the command is sent. By default, the output is sent to
SYS$OUTPUT, the current process default output stream or device.

If you enter the /OUTPUT qualifier with a partial file specification (for
example, /OUTPUT=[JONES]), HELP is the default file name and .LIS is the default file type.
The asterisk (*) and the percent sign (%) wildcard characters are not allowed.

If you enter the /NOOUTPUT qualifier, output is suppressed.

/PAGE[=keyword]
/NOPAGE (default)

Controls the display of information on the screen.

247

DCL Commands

You can use the following keywords with the /PAGE qualifier:

CLEAR_SCREEN Clears the screen before each page is displayed.
SCROLL Displays information one line at a time.
SAVE[= n] Enables screen navigation of information, where n is the number of pages

to store.

The /PAGE=SAVE qualifier allows you to navigate through screens of information.
The /PAGE=SAVE qualifier stores up to 5 screens of up to 255 columns of information. When
you use the /PAGE=SAVE qualifier, you can use the following keys to navigate through the
information:

Key Sequence
Description

Up arrow key, Ctrl/B Scroll up one line.
Down arrow key Scroll down one line.
Left arrow key Scroll left one column.
Right arrow key Scroll right one column.
Find (E1) Specify a string to find when the information is displayed.
Insert Here (E2) Scroll right one half screen.
Remove (E3) Scroll left one half screen.
Select (E4) Toggle 80/132 column mode.
Prev Screen (E5) Get the previous page of information.
Next Screen (E6), Return,
Enter, Space

Get the next page of information.

F10, Ctrl/Z Exit. (Some utilities define these differently.)
Help (F15) Display utility help text.
Do (F16) Toggle the display to oldest/newest page.
Ctrl/W Refresh the display.

The /PAGE qualifier is not compatible with the /OUTPUT qualifier.

/PROMPT (default)
/NOPROMPT

Permits you to solicit further information interactively. If you specify the /NOPROMPT qualifier,
the Help facility returns you to DCL command level after it displays the requested information.

If the /PROMPT qualifier is in effect, one of four different prompts is displayed, requesting you
to specify a particular help topic or subtopic. Each prompt represents a different level in the
hierarchy of help information. The four prompt levels are as follows:

1. Topic?---The root library is the main library and you are not currently examining the Help
facility information for a particular topic.

2. [library-spec] Topic?---The root library is a library other than the main library and you are not
currently examining the Help facility information for a particular topic.

248

DCL Commands

3. [keyword] Subtopic?---The root library is the main library and you are currently examining
the Help facility information for a particular topic (or subtopic).

4. A combination of 2 and 3.

When you encounter one of these prompts, you can enter any one of the responses described in
the following table:

Response Current Prompt
Environment

Action

1,2 Searches all enabled libraries for the keyword.keyword[...]
3,4 Searches additional help libraries for the current topic

(orsubtopic) for the keyword.
1,2 Same as above, except that the library specified by

@filespec is now the root library. If the specified library
does not exist, the Help facility treats @filespec as a normal
keyword.

Displays a list of topics available in the root library.

@filespec
keyword[...]

3,4 Same as above; treats @filespec as a normal keyword.

Displays the list of subtopics of the current topic (or
subtopics) for which help exists.

1 Exits from the Help facility.
2 Changes root library to main library.

Return

3,4 Prompts for a topic or subtopic at the next higher level.
Ctrl/Z 1,2,3,4 Exits from the Help facility.

/SEARCH="string"

Use with the /PAGE=SAVE qualifier to specify a string that you want to find in the information
being displayed. Quotation marks are required for the /SEARCH qualifier, if you include spaces
in the text string.

You can also dynamically change the search string by pressing the Find key (E1) while the
information is being displayed. Quotation marks are not required for a dynamic search.

/USERLIBRARY=(level[,...])
/NOUSERLIBRARY

Names the levels of search for information in auxiliary libraries. The levels are as follows:

PROCESS Libraries defined at process level
GROUP Libraries defined at group level
SYSTEM Libraries defined at system level
ALL All libraries (default)
NONE No libraries (same as the /NOUSERLIBRARY qualifier)

Auxiliary help libraries are libraries defined with the logical names HLP$LIBRARY,
HLP$LIBRARY_1, HLP$LIBRARY_2, and so on. Libraries are searched for information in
this order: root (current) library, main library (if not current), libraries defined at process level,

249

DCL Commands

libraries defined at group level, libraries defined at system level, and the root library. If the search
fails, the root library is searched a second time so that the context is returned to the root library
from which the search was initiated. The default is the /USERLIBRARY=ALL qualifier. If you
specify only one level for the Help facility to search, you can omit the parentheses.

/WRAP
/NOWRAP (default)

Use with the /PAGE=SAVE qualifier to limit the number of columns to the width of the screen
and to wrap lines that extend beyond the width of the screen to the next line.

The /NOWRAP qualifier extends lines beyond the width of the screen and can be seen when you
use the scrolling (left and right) features provided by the/PAGE=SAVE qualifier.

Examples
1. $ HELP

HELP
 .
 . (HELP message text and list of topics)
 .
Topic?

In this example, the HELP command is entered without any qualifiers or parameters.
This example produces a display of the help topics available from the root help library,
SYS$HELP:HELPLIB.HLB.

If you enter one of the listed topics in response to the Topic? prompt, the Help facility displays
information about that topic and a list of subtopics (if there are any). If one or more subtopics
exist, the Help facility prompts you for a subtopic, as follows:

Topic? ASSIGN
ASSIGN
 .
 . (HELP message text and subtopics)
 .
ASSIGN Subtopic?

If you type a subtopic name, the Help facility displays information about that subtopic, as follows:

ASSIGN Subtopic? Name
ASSIGN
 Name
 .
 . (HELP message text and subtopics, if any)
 .
ASSIGN Subtopic?

If one or more sub-subtopics exist, the Help facility prompts you for a sub-subtopic; otherwise,
as in the previous example, the facility prompts you for another subtopic of the topic you are
currently inspecting.

Entering a question mark (?) redisplays the Help facility message and options at your current
level. Pressing Return does either of the following:

• Moves you back to the previous help level if you are in a subtopic level.

250

DCL Commands

• Terminates the Help facility if you are at the first level.

Pressing Ctrl/Z terminates the Help facility at any level.

2. $ HELP COPY...

The HELP command in this example displays a description of the COPY command and of the
command's parameters and qualifiers. Note that the ellipsis can be used only from the topic level;
it cannot be used from the subtopic level.

3. $ HELP/NOPROMPT ASSIGN/GROUP
 .
 . (ASSIGN/GROUP HELP message)
 .
$
$ HELP/NOPROMPT/PAGE EDIT *
 .
 . (HELP messages on all first-level EDIT subtopics)
 .
$

The two HELP commands request help on specific topics. In each case, the HELP command
displays the help message you request and then returns you to DCL command level and the dollar
sign prompt ($).

The first command requests help on the /GROUP qualifier of the ASSIGN command. The
asterisk (*) in the second example is a wildcard character. It signals the Help facility to
display information about all EDIT subtopics, which are then displayed in alphabetical order.
The /NOPROMPT qualifier suppresses prompting in both sample commands. The /PAGE
qualifier on the second HELP command causes output to the screen to stop after each screen of
information is displayed.

4. $ HELP FILL
Sorry, no documentation on FILL
Additional information available:
 .
 . (list of first-level topics)
 .
Topic?
@EDTHELP FILL
FILL
 .
 . (FILL HELP message)
 .
@EDTHELP Topic?

When you enter a request for help on a topic that is not in the default help library, you
can instruct the Help facility to search another help library for the topic. In this example,
entering the command @EDTHELP FILL instructs the Help facility to search the help library
SYS$HELP:EDTHELP.HLB for information on FILL, an EDT editor command. The Help facility
displays the message and prompts you for another EDT editor topic.

5. $ SET DEFAULT SYS$HELP
$ DEFINE HLP$LIBRARY EDTHELP
$ DEFINE HLP$LIBRARY_1 MAILHELP
$ DEFINE HLP$LIBRARY_2 BASIC

251

DCL Commands

$ DEFINE HLP$LIBRARY_3 DISK2:[MALCOLM]FLIP
$ HELP REM

You can use logical names to define libraries for the Help facility to search automatically
if it does not find the specified topic in the OpenVMS root help library. This sequence of
commands instructs the Help facility to search libraries in addition to the default root library,
SYS$HELP:HELPLIB.HLB.

The four DEFINE statements create logical names for the four user-defined help libraries that
the Help facility is to search after it has searched the root library. The first three entries are help
libraries in the current default directory. By default, the Help facility searches for user-defined
help libraries in the directory defined by the logical name SYS$HELP. The fourth entry is the help
library FLIP.HLB in the directory DISK2:[MALCOLM]. Note that the logical names that you
use to define these help libraries must be numbered consecutively; that is, you cannot skip any
numbers.

The Help facility first searches the root library for REM. It then searches the libraries
HLP$LIBRARY, HLP$LIBRARY_1, HLP$LIBRARY_2, and so on, until it finds REM or
exhausts the libraries it knows it can search. When it finds REM in the BASIC.HLB library, the
Help facility displays the appropriate help information and prompts you for a subtopic in that
library. If you request information on a topic not in the BASIC.HLB library, the Help facility once
again searches the help libraries you have defined.

HELP/MESSAGE
HELP/MESSAGE — Displays descriptions of system messages.

Format
HELP/MESSAGE [/qualifier [...]] [search-string]

Parameter
search-string

Specifies a message identifier or one or more words from a message's text. By default,
HELP/MESSAGE displays a description of the message produced by the last executed command (that
is, the message corresponding to the value currently stored in the CLI symbol $STATUS).

The Help Message utility (MSGHLP) operates on the search string using the following conventions:

• Words containing fewer than three alphanumeric characters are ignored.

• Words can be specified in any order.

You can minimize search time by specifying the most unusual word first.

• Non-alphanumeric characters are ignored in the search. Exceptions are the percent sign (%) and
hyphen (-) when they prefix a message; therefore, you can paste a full message into the search
string, provided you include these special characters and delete any variables (such as file names)
that were inserted into the message.

252

DCL Commands

If Help Message fails to find a pasted message in the database, submit the command again and
omit the leading special character, facility, and severity. Some common messages are documented
as "shared" messages rather than facility-specific messages.

• Help Message matches all words that begin with the characters specified in the search string.
Use /WORD_MATCH=WHOLE_WORD to specify that only whole words be matched.

Description
The Help Message utility accesses message descriptions in a text file. This text file is derived from the
latest OpenVMS system messages documentation and, optionally, from other source files, including
user-supplied message documentation. By default, Help Message provides information on how the
last executed command completed.

You can extract all messages produced by one or more specified facilities. By directing this output to a
file, you can create and print your own customized message documentation.

For full details about adding comments or messages to the Help Message database, see the OpenVMS
System Messages: Companion Guide for Help Message Users.

Qualifiers
/BRIEF

Outputs the message text only.

/DELETE=filename.MSGHLP

Deletes all messages contained in the specified .MSGHLP file from whichever of the following
files is found first:

• A .MSGHLP$DATA file specified with the /LIBRARY qualifier

• The first .MSGHLP$DATA file in a search path specified by the /LIBRARY qualifier

• The first .MSGHLP$DATA file in the default search path (defined by logical name
MSGHLP$LIBRARY)

• SYS$HELP:MSGHLP$LIBRARY.MSGHLP$DATA (the default .MSGHLP$DATA file)

You must have write access to .MSGHLP$DATA files supplied by VSI to delete messages from
the database.

Note

If you create a .MSGHLP file by specifying a search string, check the output .MSGHLP file to be sure
the search did not pick up any unexpected messages that you do not want to delete from the database.
Edit any such messages out of the .MSGHLP file before you perform the delete operation.

/EXTRACT=filename.MSGHLP

Extracts messages from the database and generates a .MSGHLP file that can be edited, if desired,
and used as input for /INSERT and /DELETE operations. /EXTRACT retrieves data from a

253

DCL Commands

.MSGHLP$DATA file or logical search path specified by /LIBRARY or, by default, from files
in the search path defined by logical name MSGHLP$LIBRARY. When /EXTRACT is not
specified, Help Message produces output in standard text format by default (see /OUTPUT).

/FACILITY=?
/FACILITY=(facility-name [,...])
/FACILITY=ALL

Specifies which facilities in the database are to be searched for a match.

Enter /FACILITY=? to output a list of all facilities in the default database or in a database
specified by /LIBRARY.

To narrow your search, specify one or more facility names with /FACILITY. (Multiple facilities
must be enclosed in parentheses and be separated by commas.) Help Message then outputs only
matching messages produced by the specified facility or facilities.

Specify /FACILITY=ALL to output messages for all facilities in the database. /FACILITY=ALL
is the default unless another facility is implied; for example, specifying /STATUS or defaulting
to the value of the CLI symbol $STATUS automatically identifies a specific facility. Similarly,
cutting and pasting a message that includes a facility name invalidates use of the /FACILITY
qualifier.

See the OpenVMS System Messages: Companion Guide for Help Message Users for more details
about using the /FACILITY qualifier.

/FULL (default)

Outputs the complete message description, including message text, facility name, explanation,
user action, and user-supplied comment, if any.

/INSERT=filename.MSGHLP
/INSERT=TT:

Updates the first of the following files to be found with new or changed information from the
specified .MSGHLP file, or, if TT: is specified, with the data entered immediately at the terminal:

• A .MSGHLP$DATA file specified with the /LIBRARY qualifier

• The first .MSGHLP$DATA file in a search path specified by the /LIBRARY qualifier

• The first .MSGHLP$DATA file in the default search path (defined by logical logical name
MSGHLP$LIBRARY)

• SYS$HELP:MSGHLP$LIBRARY.MSGHLP$DATA (the default .MSGHLP$DATA file)

You must have write access for the .MSGHLP$DATA files supplied by VSI to insert data into
these files. User-supplied data is identified by change bars in Help Message output.

/LIBRARY=disk:[directory]filename.MSGHLP$DATA
/LIBRARY=disk:[directory]
/LIBRARY=logical-name

Defines the messages database for the current command to be a particular .MSGHLP$DATA file,
all the .MSGHLP$DATA files in a specified directory, or all the files in a search path defined by a
logical name.

254

DCL Commands

For most operations, the default database is either
SYS$HELP:MSGHLP$LIBRARY.MSGHLP$DATA or a search path of .MSGHLP$DATA files
defined by the logical name MSGHLP$LIBRARY.

For /DELETE and /INSERT operations, the default database is either
SYS$HELP:MSGHLP$LIBRARY.MSGHLP$DATA or the first file in a search path defined by
the logical name MSGHLP$LIBRARY.

/OUTPUT=filespec

Writes output to the specified file. By default, Help Message writes output to SYS$OUTPUT,
which is normally the terminal. (Use of /OUTPUT=filespec is incompatible with /PAGE.)

/PAGE (default for screen display)
/NOPAGE

Displays terminal output one screen at a time. The page length is automatically set to one
line less than the value specified by SET TERMINAL/PAGE. (Use of /PAGE is incompatible
with /OUTPUT=filespec.)

/SECTION_FILE=*
/SECTION_FILE=file-spec

Identifies the specified message section file to the system so that Help Message can
interpret the $STATUS values for the messages in that file. The default file specification is
SYS$MESSAGE:.EXE. Specifying /SECTION_FILE=* automatically includes all message
section files supplied by OpenVMS. For more information, see the OpenVMS System Messages:
Companion Guide for Help Message Users.

Note

The results of using this qualifier are entirely independent from those created by the SET MESSAGE
command. The Help Message utility and Message utility do not interact. You must separately code
each utility to obtain the results you want.

/SORT
/NOSORT (default)

Sorts output in alphabetical order. If a sort fails, retry the operation using the /WORK_FILES
qualifier.

/STATUS=status-code
/STATUS='symbol'
/STATUS='$STATUS' (default)

Outputs the message corresponding to the specified status code. You can specify the status code
with a decimal or hexadecimal number or a symbol enclosed in apostrophes. You can omit leading
zeros, but you must prefix any hexadecimal number with "%X".

If a HELP/MESSAGE command does not include a search string, Help Message by default
outputs the message corresponding to the CLI symbol $STATUS; that is, Help Message displays
information on how the last executed command completed.

You cannot specify a search string or /FACILITY with /STATUS. /FACILITY is also illegal if you
omit the search string and default to /STATUS='$STATUS'.

255

DCL Commands

/WORD_MATCH= INITIAL_SUBSTRING (default)
/WORD_MATCH= WHOLE_WORD

/WORD_MATCH=INITIAL_SUBSTRING matches all words that begin with a word specified in
the search string. The search string can contain multiple words to be matched. Only messages that
match every word in the search string (in any order) are output.

/WORD_MATCH=WHOLE_WORD matches whole words only and refines your search to
the exact words specified. For example, an exact search on ACC screens out dozens of other
messages containing words that begin with the letters ACC.

/WORK_FILES=nn
/WORK_FILES=0 (default if qualifier is omitted)
/WORK_FILES=2 (default if qualifier is entered with no value)

Specifies that work files are to be used if the /SORT qualifier is specified. You can specify a value
from 0 to 10 for nn. This qualifier has no effect if /SORT is not specified.

Examples
1. $ SHOW DEVICE KUDOS

%SYSTEM-W-NOSUCHDEV, no such device available
$ HELP/MESSAGE

The first command creates an error. The default HELP/MESSAGE command (with no qualifiers)
displays a description of the SYSTEM facility message NOSUCHDEV.

2. $ HELP/MESSAGE ACCVIO
$ HELP/MESSAGE/BRIEF ACCVIO
$ HELP/MESSAGE/FACILITY=SYSTEM ACCVIO
$ HELP/MESSAGE VIRTUAL ACCESS
$ HELP/MESSAGE/STATUS=12
$ HELP/MESSAGE/STATUS=%XC

These commands demonstrate how you can use various qualifiers to access and display the
ACCVIO message (sometimes several!) in different formats.

3. $ HELP/MESSAGE/BRIEF ACC
$ HELP/MESSAGE/BRIEF/WORD_MATCH=WHOLE_WORD ACC

In the first command, Help Message by default matches dozens of words beginning with the string
“ACC.” The /WORD_MATCH=WHOLE_WORD qualifier dramatically refines the search to
match the exact word only.

4. $ HELP/MESSAGE/FACILITY=(BACKUP,SHARED)/SORT/OUTPUT=MESSAGES.TXT

This command selects all messages issued by the BACKUP facility and those messages
documented as “Shared by several facilities,” alphabetizes them, and outputs them to a printable
file called MESSAGES.TXT.

By selecting the messages you want and directing them to a file, you can create and print your
own customized messages documentation.

5. $ HELP/MESSAGE/EXTRACT=BADMESSAGE.MSGHLP BADMESSAGE
$ HELP/MESSAGE/DELETE=BADMESSAGE.MSGHLP-
_$ /LIBRARY=SYS$LOGIN:MYMESSAGES.MSGHLP$DATA

256

DCL Commands

$ CONVERT SYS$LOGIN:MYMESSAGES.MSGHLP$DATA-
_$ SYS$LOGIN:MYMESSAGES.MSGHLP$DATA
$ PURGE SYS$LOGIN:MYMESSAGES.MSGHLP$DATA
$ HELP/MESSAGE/INSERT=BADMESSAGE.MSGHLP

The first command in this sequence extracts the hypothetical message BADMESSAGE from the
default database and outputs it to file BADMESSAGE.MSGHLP.

The second command uses the BADMESSAGE.MSGHLP file to delete the BADMESSAGE
description from the MYMESSAGES.MSGHLP$DATA file specified by the /LIBRARY qualifier.

The next two commands compress the MYMESSAGES.MSGHLP$DATA file to save disk space
after the deletion.

The last command uses the BADMESSAGE.MSGHLP file (possibly an edited version at a later
time) to insert the BADMESSAGE message into the default .MSGHLP$DATA file.

6. $ HELP/MESSAGE/EXTRACT=NOSNO.MSGHLP NOSNO
$ EDIT/EDT NOSNO.MSGHLP
1NOSNO, can't ski; no snow
2XCSKI, XCSKI Program
3Your attempt to ski failed because there is no snow.
4Wait until there is snow and attempt the operation again.
5If you don't want to wait, go to a location where there is
5snow and ski there.
5
5Or, try ice skating instead!
[EXIT]
$ HELP/MESSAGE/INSERT=NOSNO.MSGHLP

This command sequence shows how users with write access to .MSGHLP$DATA files supplied
by VSI can add a comment to a message.

The first command extracts hypothetical message NOSNO to file NOSNO.MSGHLP. The second
command edits the .MSGHLP file to add a comment at the end of the message. Each comment
line, even blank lines, includes a “5” prefix. The next command updates the database by using
NOSNO.MSGHLP to insert the updated message into the default .MSGHLP$DATA file.

IF
IF — Tests the value of an expression and, depending on the syntax specified, executes given
commands.

Format
$ IF expression THEN [$] command

or

$ IF expression

$ THEN [command]

command

257

DCL Commands

⁝

$ [ELSE] [command]

command

⁝

$ ENDIF

Parameters
expression

Defines the test to be performed. The expression can consist of one or more numeric constants, string
literals, symbolic names, or lexical functions separated by logical, arithmetic, or string operators.

Expressions in IF commands are automatically evaluated during the execution of the command.
Character strings beginning with alphabetic characters that are not enclosed in quotation marks
(“ ”) are assumed to be symbol names or lexical functions. The command language interpreter
(CLI)replaces these strings with their current values.

Symbol substitution in expressions in IF commands is not iterative; that is, each symbol is replaced
only once. However, if you want iterative substitution, precede a symbol name with an apostrophe (')
or (&) ampersand .

The command interpreter does not execute an IF command when it contains an undefined symbol.
Instead, the command interpreter issues a warning message and executes the next command in the
procedure.

For a summary of operators and details on how to specify expressions, see the VSI OpenVMS User's
Manual.

command

Specifies the DCL command or commands to be executed, depending on the syntax specified, when
the result of the expression is true or false.

Description

Note

VSI advises against assigning a symbolic name that is already a DCL command name. VSI especially
discourages the assignment of symbols such as IF, THEN, ELSE, and GOTO, which can affect the
interpretation of command procedures.

The IF command tests the value of an expression and if the expression is true, executes the following:

• One command following the THEN keyword if the expression is true

• Multiple commands following the $THEN command if the expression is true

• One or more commands following the $ELSE command if the expression is false

258

DCL Commands

The expression is true if the result has an odd integer value, a character string value that begins with
the letters Y, y, T, or t, or an odd numeric string value.

The expression is false if the result has an even integer value, a character string value that begins with
any letter except Y, y, T, or t, or an even numeric string value.

Examples
1. $ COUNT = 0

$ LOOP:
$ COUNT = COUNT + 1
 .
 .
 .
$ IF COUNT .LE. 10 THEN GOTO LOOP
$ EXIT

This example shows how to establish a loop in a command procedure, using a symbol named
COUNT and an IF statement. The IF statement checks the value of COUNT and performs an
EXIT command when the value of COUNT is greater than 10.

2. $ IF P1 .EQS. "" THEN GOTO DEFAULT
$ IF (P1 .EQS. "A") .OR. (P1 .EQS. "B") THEN GOTO 'P1'
$ WRITE SYS$OUTPUT "Unrecognized parameter option ''P1' "
$ EXIT
$ A: ! Process option a
 .
 .
 .
$ EXIT
$ B: ! Process option b
 .
 .
 .
$ EXIT$ DEFAULT: ! Default processing
 .
 .
 .
$ EXIT

This example shows a command procedure that tests whether a parameter was passed. The GOTO
command passes control to the label specified as the parameter.

If the procedure is executed with a parameter, the procedure uses that parameter to determine the
label to branch to. For example:

@TESTCOM A

When the procedure executes, it determines that P1 is not null, and branches to the label A. Note
that the EXIT command causes an exit from the procedure before the label B.

3. $ SET NOON
 .
 .
 .
$ LINK CYGNUS,DRACO,SERVICE/LIBRARY
$ IF $STATUS

259

DCL Commands

$ THEN
$ RUN CYGNUS
$ ELSE
$ WRITE SYS$OUTPUT "LINK FAILED"
$ ENDIF
$ EXIT

This command procedure uses the SET NOON command to disable error checking by the
command procedure. After the LINK command, the IF command tests the value of the reserved
global symbol $STATUS. If the value of $STATUS indicates that the LINK command succeeded,
then the program CYGNUS is run. If the LINK command returns an error status value, the
command procedure issues a message and exits.

4. $ if 1 .eq. 1
$ then
$ if 2 .eq. 2
$ then
$ write sys$output "Hello!"
$ endif
$ endif

This example shows how to use a nested IF structure.

INITIALIZE
INITIALIZE — Formats a disk or magnetic tape volume, writes a label on the volume, and leaves the
disk empty except for the system files containing the structure information. All former contents of the
disk are lost.

Format
INITIALIZE device-name[:] volume-label

Parameters
device-name[:]

Specifies the name of the device on which the volume to be initialized is physically mounted.

The device does not have to be allocated currently; however, allocating the device before initializing it
is the recommended practice.

volume-label

Specifies the identification to be encoded on the volume. For a disk volume, you can specify a
maximum of 12 ANSI characters; for a magnetic tape volume, you can specify a maximum of 6
alphanumeric characters. Letters are automatically changed to uppercase. VSI strongly recommends
that a disk volume label should only consist of alphanumeric characters, dollar signs ($), underscores
(_), and hyphens (-).

To use ANSI “a” characters on the volume label on magnetic tape, you must enclose the volume
name in quotation marks (“ ”). For an explanation of ANSI “a” characters, see the description of
the /LABEL qualifier.

260

DCL Commands

Description

Note

Requires VOLPRO (volume protection) privilege for most INITIALIZE command operations.

The default format for disk volumes in the OpenVMS operating system is called the Files-11 On-Disk
Structure Level 2. The default for magnetic tape volumes is based on Level 3 of the ANSI standard
for magnetic tape labels and file structure for informational interchange (ANSI X3.27-1978).

The INITIALIZE command can also initialize disk volumes in the Files-11 On-Disk Structure Level 1
format.

You must have VOLPRO privilege to initialize a volume, except in the following cases:

• A blank disk or magnetic tape volume; that is, a volume that has never been written

• A disk volume that is owned by your current user identification code (UIC)or by the UIC [0,0]

• A magnetic tape volume that allows write (W) access to your current UIC that was not protected
when it was initialized

After the volume is initialized and mounted, the SET SECURITY command maybe used to modify
the security profile. When you initialize a disk volume, the caching attribute of its root directory
(000000.DIR;1) is set to write-through. This means that by default, all the files and directories that
you create in the volume will inherit a caching attribute of write-through. To change the caching
attribute, use the SETFILE command with the /CACHING_ATTRIBUTE qualifier.

When the INITIALIZE command initializes a magnetic tape volume, it always attempts to read the
volume. A blank magnetic tape can sometimes cause unrecoverable errors, such as the following:

• An invalid volume number error message:

%INIT-F-VOLINV, volume is invalid

• A runaway magnetic tape (this frequently occurs with new magnetic tapes that have never been
written or that have been run through verifying machines).You can stop a runaway magnetic tape
only by setting the magnetic tape drive off line and by then putting it back on line.

If this type of unrecoverable error occurs, you can initialize a magnetic tape successfully by repeating
the INITIALIZE command from an account that has VOLPRO (volume protection) privilege and by
specifying the following qualifier in the command:

/OVERRIDE=(ACCESSIBILITY,EXPIRATION)

This qualifier ensures that the INITIALIZE command does not attempt to verify any labels on the
magnetic tape.

If you have VOLPRO privilege, the INITIALIZE command initializes a disk without reading the
ownership information. If you do not have VOLPRO privilege, the INITIALIZE command checks the
ownership of the volume before initializing the disk. A blank disk or a disk with an incorrect format
can sometimes cause a fatal drive error. If a blank disk or a disk with an incorrect format causes this
type of error, you can initialize a disk successfully by repeating the INITIALIZE command with
the /DENSITY qualifier from an account that has VOLPRO privilege.

261

DCL Commands

Many of the INITIALIZE command qualifiers allow you to specify parameters that can maximize
input/output (I/O) efficiency.

Qualifiers
/ACCESSED=number-of-directories

Affects Files-11 On-Disk Structure Level 1 (ODS-1) disks only.

Specifies that, for disk volumes, the number of directories allowed in system space must be a
value from 0 to 255. The default value is 3.

/BADBLOCKS=(area[,...])

Specifies, for disk volumes, faulty areas on the volume. The INITIALIZE command marks the
areas as allocated so that no data is written in them.

Possible formats for area are as follows:

lbn[:count] Logical block number (LBN) of the first block and optionally a block count
beginning with the first block, to be marked as allocated

sec.trk.cyl[:cnt] Sector, track, and cylinder of the first block, and optionally a block count
beginning with the first block, to be marked as allocated

All media supplied by VSI and supported on the OpenVMS operating system, except diskettes
and TU58 cartridges, are factory formatted and contain bad block data. The Bad Block Locator
utility (BAD) or the diagnostic formatter EVRAC can be used to refresh the bad block data or to
construct it for the media exceptions above. The /BADBLOCKS qualifier is necessary only to
enter bad blocks that are not identified in the volume's bad block data.

DIGITAL Storage Architecture (DSA) disks (for example, disks attached to UDA-50 and HSC50
controllers) have bad blocks handled by the controller, and appear logically perfect to the file
system.

For information on how to run BAD, see the OpenVMS Bad Block Locator Utility Manual
(available on the Documentation CD-ROM).

/CLUSTER_SIZE=number-of-blocks

Defines, for disk volumes, the minimum allocation unit in blocks. The maximum size you can
specify for a volume is 16380 blocks, or 1/50th the volume size, whichever is smaller.

For Files-11 On-Disk Structure Level 5 (ODS-5) disks, the default cluster size is 16. In this case
the minimum value allowed by the following equation is applied:

(disk size in number of blocks)/(65535 * 4096)

Any fractional values must be rounded up to the nearest integer and, by default, are rounded up to
the next multiple of 16.

For Files-11 On-Disk Structure Level 2 (ODS-2) disks, the default cluster size depends on the
disk capacity; disks with less than 50,000 have a default of 1. Disks that are larger than 50,000
have a default of either 16 or the result of the following formula, whichever is greater:

(disk size in number of blocks)/(255 * 4096)

262

DCL Commands

Any fractional values must be rounded up to the nearest integer and, by default, are rounded up to
the next multiple of 16.

Note

For Version 7.2 and later, you can specify a cluster size for ODS-2 volumes smaller than allowed by
the ODS-2 formula; however, if you try to mount this volume on a system running a version prior to
7.2, the mount fails with the following error:

%MOUNT-F-FILESTRUCT, unsupported file structure level

If you choose the default during the initialization of an ODS-2 disk, your disk can be mounted on
prior versions of OpenVMS.

For ODS-1 disks, the cluster size must always be 1.

Note

If you specify /LIMIT and do not specify a value for /CLUSTER_SIZE, a value
of /CLUSTER_SIZE=16 is used.

/DATA_CHECK[=(option[,...])]

Checks all read and write operations on the disk. By default, no data checks are made. Specify
one or both of the following options:

READ Checks all read operations.
WRITE Checks all write operations; default if only the /DATA_CHECK qualifier is

specified.

To override the checking you specify at initialization for disks, enter a MOUNT command to
mount the volume.

/DENSITY=density-value

Allows you to specify the format density value for certain tapes and disks.

For magnetic tape volumes, specifies the density in bits per inch (bpi) at which the magnetic tape
is to be written. The density value specified can be 800 bpi, 1600 bpi, or 6250 bpi, as long as the
density is supported by the magnetic tape drive.

If you do not specify a density value for a blank magnetic tape, the system uses a default density
of the highest value allowed by the tape drive. If the drive allows 6250-, 1600-, and 800-bpi
operation, the default density is 6250 bpi.

If you do not specify a density value for a magnetic tape that has been previously written, the
system uses the density of the first record on the volume. If the record is unusually short, the
density value will not default.

The /DENSITY qualifier does not apply to any TF tape device.

Valid tape density values are:

Keyword Meaning
DEFAULT Default density

263

DCL Commands

Keyword Meaning
800 NRZI 800 bits per inch (BPI)
1600 PE 1600 BPI
6250 GRC 6250 BPI
3480 IBM 3480 HPC 39872 BPI
3490E IBM 3480 compressed
833 DLT TK50: 833 BPI
TK50 DLT TK50: 833 BPI
TK70 DLT TK70: 1250 BPI
6250 RV80 6250 BPI EQUIVALENT
NOTE: Only the keywords above are understood by TMSCP/TUDRIVER code prior to OpenVMS
Version 7.2. The remaining keywords in this table are supported only on Alpha systems.
TK85 DLT Tx85: 10625 BPI - Cmpt III - Alpha/Integrity servers only
TK86 DLT Tx86: 10626 BPI - Cmpt III - Alpha/Integrity servers only
TK87 DLT Tx87: 62500 BPI - Cmpt III - Alpha/Integrity servers only
TK88 DLT Tx88: (Quantum 4000) - Cmpt IV - Alpha/Integrity servers only
TK89 DLT Tx89: (Quantum 7000) - Cmpt IV - Alpha/Integrity servers only
QIC All QIC drives are drive-settable only - Alpha/Integrity servers only
8200 Exa-Byte 8200 - Alpha/Integrity servers only
8500 Exa-Byte 8500 - Alpha/Integrity servers only
DDS1 Digital Data Storage 1 - 2G - Alpha/Integrity servers only
DDS2 Digital Data Storage 2 - 4G - Alpha/Integrity servers only
DDS3 Digital Data Storage 3 - 8-10G - Alpha/Integrity servers only
DDS4 Digital Data Storage 4 - Alpha/Integrity servers only
AIT1 Sony Advanced Intelligent Tape 1 - Alpha/Integrity servers only
AIT2 Sony Advanced Intelligent Tape 2 - Alpha/Integrity servers only
AIT3 Sony Advanced Intelligent Tape 3 - Alpha/Integrity servers only
AIT4 Sony Advanced Intelligent Tape 4 - Alpha/Integrity servers only
DLT8000 DLT 8000 - Alpha/Integrity servers only
8900 Exabyte 8900 - Alpha/Integrity servers only
SDLT SuperDLT1 - Alpha/Integrity servers only
SDLT320 SuperDLT320 - Alpha/Integrity servers only

Note that tape density keywords cannot be abbreviated.

To format a diskette on RXnn diskette drives, use the INITIALIZE/DENSITY command. Specify
the density at which the diskette is to be formatted as follows:

Keyword Meaning
single RX01 - 8 inch
double RX02 - 8 inch

264

DCL Commands

Keyword Meaning
dd double density: 720K - 3 1/2 inch
hd high density: 1.44MB - 3 1/2 inch
ed extended density: 2.88MB - 3 1/2 inch

If you do not specify a density value for a diskette being initialized on a drive, the system leaves
the volume at the density to which the volume was last formatted.

Note

RX33 diskettes cannot be read from or written to by RX50 disk drives. RX50 diskettes can be read
from and written to by RX33 disk drives; they cannot be formatted by RX33 disk drives.

/DIRECTORIES=number-of-entries

The effect of this qualifier depends on the disk structure:

• For ODS-1, /DIRECTORIES allows space for the specified number of directory entries to be
reserved in 000000.DIR (the MFD).

• For ODS-2 and ODS-5, /DIRECTORIES allows the initial size of the MFD to be set. The
specified number is divided by 16, to produce the number of blocks to preallocate. This
number is then rounded up to a whole number of clusters.

The number-of-entries value must be an integer between 16 and 16000. The default value is 16.

/ERASE[=keyword]
/NOERASE (default)

Specifies whether to perform a data security erase (DSE) and, on disk volumes only, whether to
set the volume characteristic to ERASE_ON_DELETE.

The /ERASE qualifier applies to Files-11 On-Disk Structure Level 2 (ODS-2) and Level 5
(ODS-5) disks and ANSI magnetic tape volumes, and is valid for magnetic tape devices that
support the hardware erase function, such as TU78 and MSCP magnetic tapes.

For tape volumes, /ERASE physically destroys deleted data by writing over it.

For disk volumes, when /ERASE is specified with no keywords, this command does the
following:

• Performs a data security erase (DSE) by writing the system-specified erase pattern into every
block on the volume before initializing it. The amount of time taken by the DSE operation
depends on the volume size.

• Sets the volume characteristic to ERASE_ON_DELETE so that each file on the volume will
be erased by a DSE when it is deleted.

For disk volumes, two optional keywords allow you to independently specify just one of the
actions noted above.

• /ERASE=INIT

Performs a data security erase (DSE) operation on the volume before initializing it, but
does not set the volume characteristic to ERASE_ON_DELETE. This operation takes

265

DCL Commands

longer than specifying /ERASE=DELETE and is equivalent to performing SET VOLUME/
NOERASE_ON_DELETE.

• /ERASE=DELETE

Sets the ERASE_ON_DELETE volume characteristic, but does not perform a DSE operation
on the disk.

If neither (or both) keywords are specified, both actions are performed. That is, /ERASE is
equivalent to /ERASE=(INIT,DELETE).

/EXTENSION=number-of-blocks

Specifies, for disk volumes, the number of blocks to use as a default extension size for all files
on the volume. The extension default is used when a file increases to a size greater than its initial
default allocation during an update. For Files-11 On-Disk Structure Level 2 and Level 5 disks, the
value for the number-of-blocks parameter can range from 0 to 65,535. The default value is 5. For
Files-11 On-Disk Structure Level 1 disks, the value can range from 0 to 255.

The OpenVMS operating system uses the default volume extension only if no different extension
has been set for the file and no default extension has been set for the process by using the SET
RMS_DEFAULT command.

/FILE_PROTECTION=code

Affects Files-11 On-Disk Structure Level 1 (ODS-1) disks only.

Defines for disk volumes the default protection to be applied to all files on the volume.

Specify the code according to the standard syntax rules described in the VSI OpenVMS Guide to
System Security. Any attributes not specified are taken from the current default protection.

Note that this attribute is not used when the volume is being used on an OpenVMS system, but
is provided to control the process's use of the volume on RSX-11M systems. OpenVMS systems
always use the default file protection. Use the SET PROTECTION/DEFAULT command to
change the default file protection.

/GPT (default for Integrity servers)
/NOGPT (default for Alpha)

Applies to Files-11 On-Disk Structure Level 2 (ODS-2) and Level 5 (ODS-5) disks only.

Note

If you specify /GPT, the disk might not mount on some systems running older versions of OpenVMS.

When /GPT is specified, the system file [000000]GPT.SYS is created. GPT.SYS contains
partition/boot information needed by the IA64 console software. (GPT is an abbreviation for
GUID Partition Table, where GUID stands for Global Unique Identifier.)

The BACKUP utility recognizes GPT.SYS and maintains its contents in a save/restore operation.

If /NOGPT is specified, the pre-Version 8.2 VBN layout of [000000]INDEXF.SYS is used. The
VBN layout is described in the Guide to OpenVMS File Applications and in VMS File System
Internals by Kirby McCoy (ISBN 1-55558-056-4, 1990).

266

DCL Commands

/GROUP

Used in conjunction with the /NOSHARE qualifier to create a group volume. The group
volume allows access by system (S), owner (O), and group (G) accessors. The protection is
(S:RWCD,O:RWCD,G:RWCD,W).

The owner user identification code (UIC) of the volume defaults to your group number and a
member number of 0.

/HEADERS=number-of-headers

Specifies, for disk volumes, the number of file headers to be allocated for the index file. The
minimum and default value is 16. The maximum is the value set with the /MAXIMUM_FILES
qualifier. However, if /LIMIT is specified and no value is specified for /HEADERS
or /MAXIMUM_FILES, the following defaults apply:

• /MAXIMUM_FILES: 16711679 files

• /HEADERS: 0.5 percent of the size of the current device MAXBLOCK (an F$GETDVI item
code)

For example, for a 33GB disk, the default number of preallocated header blocks would be
approximately 355000.

/HEADERS is useful when you want to create a number of files and want to streamline the
process of allocating space for that number of file headers. If you do not specify this qualifier, the
file system dynamically allocates space as it is needed for new headers on the volume.

Note

The default value for the /HEADERS qualifier is generally insufficient for ODS-2 and ODS-5 disks.
To improve performance and avoid SYSTEM-F-HEADERFULL errors, VSI recommends that you set
this value to be approximately the number of files that you anticipate having on your disk; however,
grossly overestimating this value will result in wasted disk space.

The /HEADERS qualifier controls how much space is initially allocated to INDEXF.SYS for
headers. Each file on a disk requires at least one file header and each header occupies one block
within INDEXF.SYS. Files that have many Access Control Entries (ACE) or are very fragmented
may use more than one header.

The default value of 16 leaves room for less than 10 files to be created before INDEXF.SYS must
extend; therefore, try to estimate the total number of files that will be created on the disk and
specify it here. This will improve disk access performance. Overestimating the value may lead to
wasted disks pace. This value cannot be changed without reinitializing the volume.

INDEXF.SYS is limited as to how many times it may extend. When the map area in its header
(where the retrieval pointers are stored) becomes full, file creation fails with the message
"SYSTEM-W-HEADERFULL."

/HIGHWATER (default)
/NOHIGHWATER

Applies to Files-11 On-Disk Structure Level 2 (ODS-2) and Level 5 (ODS-5) disks only.

267

DCL Commands

Sets the file high-water mark (FHM) volume attribute, which guarantees that users cannot read
data that they have not written. You cannot specify the /NOHIGHWATER qualifier for magnetic
tape.

The /NOHIGHWATER qualifier disables FHM for a disk volume.

/HOMEBLOCKS=option

Applies to Files-11 On-Disk Structure Level 2 (ODS-2) and Level 5 (ODS-5) disks only.

Specifies where the volume's home block and spare copy of the home block are placed on disk.
The value of option can be one of the following:

• GEOMETRY

Causes the home blocks to be placed at separate locations on disk, to protect against failure of
a disk block. Placement depends on the reported geometry of the disk.

• FIXED (default)

Causes the home blocks to be placed at separate fixed locations on the disk. Placement is
independent of the reported geometry of the disk. This caters to disks that report different
geometries according to which type of controller they are attached to.

• CONTIGUOUS

Causes the home blocks to be placed contiguously at the start of the disk. When used with
the /INDEX=BEGINNING qualifier, this setting allows container file systems to maximize
the amount of contiguous space on the disk, for example, to hold one large file, such as a
database.

/INDEX=position

Specifies the location of the index file for the volume's directory structure. Possible positions are
as follows:

BEGINNING Beginning of the volume
MIDDLE Middle of the volume (default)
END End of the volume
BLOCK: n Beginning of the logical block specified by n

/INTERCHANGE

Specifies that the magnetic tape will be used for interchange in a heterogeneous vendor
environment. The /INTERCHANGE qualifier omits the ANSIVOL2 labels. Under OpenVMS, the
ANSI VOL2 labels contain OpenVMS specific security attributes.

For more information on the /INTERCHANGE qualifier and on magnetic tape labeling and tape
interchange, see the VSI OpenVMS System Manager's Manual, Volume 1: Essentials.

/LABEL=option

Defines characteristics for the magnetic tape volume label, as directed by the included option. The
available options are as follows:

268

DCL Commands

• OWNER_IDENTIFIER: “(14 ANSI characters)”

Allows you to specify the Owner Identifier field in the volume label. The field specified can
accept up to 14 ANSI characters.

• VOLUME_ACCESSIBILITY: “character”

Specifies the character to be written in the volume accessibility field of the OpenVMS ANSI
volume label VOL1 on an ANSI magnetic tape. The character maybe any valid ANSI “a”
character. This set of characters includes numeric characters, uppercase letters, and any one of
the following non-alphanumeric characters:

! " % ' () * + , - . / : ; < = > ?

By default, the OpenVMS operating system provides a routine that checks this field in the
following manner:

• If the magnetic tape was created on a version of the OpenVMS operating system that
conforms to Version 3 of ANSI, then this option must be used to override any character
other than an ASCII space.

• If a protection is specified and the magnetic tape conforms to an ANSI standard that is
later than Version 3, then this option must be used to override any character other than an
ASCII 1.

If you specify any character other than the default, you must specify
the /OVERRIDE=ACCESSIBILITY qualifier on the INITIALIZE and MOUNT commands in
order to access the magnetic tape.

/LIMIT[=n]

Applies to Files-11 On-Disk Structure Level 2 (ODS-2) and Level 5 (ODS-5) disks only.

Specifies that the volume should be initialized with volume expansion. n defines the maximum
growth potential of the volume in blocks. If no value is specified, the maximum expansion
potential is set up.

The maximum value depends on the value specified for /CLUSTER_SIZE:

/CLUSTER_SIZE >= 8 1TB of expansion is set up.
/CLUSTER_SIZE < 8 Expansion limit is set to 65535*4096*Cluster_value because the maximum

size of the bitmap is 65535 blocks.

For more information about volume expansion, see the VSI Volume Shadowing for OpenVMS
manual.

The minimum allowed value is the largest of the following values:

• The value supplied with /LIMIT

• The physical disk size

• The size resulting from a 256-block BITMAP.SYS file (that is, 256 * 4096 bits/block * Disk
Cluster Value)

269

DCL Commands

If a value less than the minimum is supplied, the value is increased to the minimum. This value is
displayed (in blocks) as the "Expansion Size Limit" in the output from a SHOW DEVICE/FULL
command.

Note

If you specify /LIMIT and do not explicitly set a value for the following parameters, the defaults for
these parameters are set as follows:

• /CLUSTER_SIZE: 16

• /MAXIMUM_FILES: 16711679 files

• /HEADERS: 0.5 percent of the size of the current device MAXBLOCK (an F$GETDVI item
code)

For example, for a 33GB disk, the default number of preallocated header blocks would be
approximately 355000.

/MAXIMUM_FILES=n

Restricts the maximum number of files that the volume can contain. The /MAXIMUM_FILES
qualifier overrides the default value, which is calculated as follows:

(volume size in blocks)/((cluster factor + 1) * 2)

Note

If /LIMIT is specified and no value is set for /MAXIMUM_FILES, the default is 16711679 files.

The maximum size you can specify for any volume is as follows:

(volume size in blocks)/(cluster factor + 1)

The minimum value is 0. Note that the maximum can be increased only by reinitializing the
volume.

Note

The /MAXIMUM_FILES qualifier does not reserve or create space for new file headers on a volume.
The file system dynamically allocates space as it is needed for new headers.

/MEDIA_FORMAT= [NO]COMPACTION

Controls whether data records are automatically compacted and blocked together on any device
that supports data compaction. Data compaction and record blocking increase the amount of data
that can be stored on a single tape cartridge.

Note that once data compaction or non-compaction has been selected for a given cartridge, that
same status applies to the entire cartridge.

/OVERRIDE=(option[,...])

Requests the INITIALIZE command to ignore data on a magnetic tape volume that protects it
from being overwritten. You can specify one or more of the following options:

270

DCL Commands

ACCESSIBILITY (For magnetic tapes only.) If the installation allows, this option
overrides any character in the Accessibility field of the volume. The
necessity of this option is defined by the installation. That is, each
installation has the option of specifying a routine that the magnetic
tape file system will use to process this field. By default, OpenVMS
provides a routine that checks this field in the following manner.
If the magnetic tape was created on a version of OpenVMS that
conforms to Version 3 of ANSI, this option must be used to override
any character other than an ASCII space. If a protection is specified
and the magnetic tape conforms to an ANSI standard that is higher
than Version 3, this option must be used to override any character
other than an ASCII 1. To use the ACCESSIBILITY option, you must
have the user privilege VOLPRO or be the owner of the volume.

EXPIRATION (For magnetic tapes only.) Allows you to write to a tape that has
not yet reached its expiration date. You must have the user privilege
VOLPRO to override volume protection, or your UIC must match the
UIC written on the volume.

OWNER_IDENTIFIER Allows you to override the processing of the Owner Identifier field of
the volume label.

If you specify only one option, you can omit the parentheses.

To initialize a volume that was initialized previously with the /PROTECTION qualifier, your UIC
must match the UIC written on the volume or you must have VOLPRO privilege.

You can initialize a volume previously initialized with /PROTECTION if you have control access.

/OWNER_UIC=uic

Specifies an owner user identification code (UIC) for the volume. The default is your default UIC.
Specify the UIC using standard UIC format as described in the VSI OpenVMS Guide to System
Security.

For magnetic tapes, no UIC is written unless protection on the magnetic tape is specified. If
protection is specified, but no owner UIC is specified, your current UIC is assigned ownership of
the volume.

/PROTECTION= (ownership[:access][,...])

Applies the specified protection to the volume:

• Specify the ownership parameter as system (S), owner (O), group (G), or world (W).

• Specify the access parameter as read (R), write (W), create (C), or delete (D).

The default is your default protection. Note that the /GROUP, /SHARE, and /SYSTEM qualifiers
can also be used to define protection for disk volumes.

For magnetic tape, the protection code is written to an OpenVMS specific volume label. The
system applies only read (R) and write (W) access restrictions; create and delete (D) access are
meaningless. Moreover, the system and the owner are always given both read (R) and write (W)
access to magnetic tapes, regardless of the protection code you specify.

For more information on specifying protection code, see the VSI OpenVMS Guide to System
Security. Any attributes not specified are taken from the current default protection.

271

DCL Commands

When you specify a protection code for an entire disk volume, the access type E (execute)
indicates create access.

/SHADOW=(device_name_1, device_name_2, device_name_3) label (Alpha/Integrity servers only)

Initializes multiple members of a future shadow set. Initializing multiple members in this way
eliminates the requirement of a full copy when you later create a shadow set.

When both the /SHADOW and /ERASE qualifiers are specified, the INITIALIZE command
performs the following operations:

• Formats up to six devices with one command, so that any three can be subsequently mounted
together as members of a new host-based shadow set

• Writes a label on each volume

• Deletes all information from the devices except for the system files and leaves each device
with identical file structure information. All former contents of the disks are lost.

VSI strongly recommends that you use the /ERASE qualifier. When /ERASE is specified, a merge
operation is substantially reduced. However, using /ERASE has two side effects that are important
considerations for volume shadowing: the setting of the ERASE volume attribute and the time it
takes to initialize a volume using /ERASE.

If /ERASE is specified with /SHADOW, the disks are erased sequentially, which effectively
doubles or triples the time it takes for the command to complete. If the disks are large, consider
performing multiple, simultaneous INITIALIZE/ERASE commands (without /SHADOW) to
erase the disks. Once all of those commands have completed, then execute an INITIALIZE/
SHADOW command (without /ERASE).

Once you have initialized your devices using /ERASE and /SHADOW, you can then mount up to
three of these devices as members of a new host-based shadow set.

Note that the INITIALIZE/SHADOW command should not be used to initialize a disk to be
added to an existing shadow set, as no benefit is gained.

For more information about volume shadowing, see the VSI Volume Shadowing for OpenVMS
manual.

/SHARE (default)
/NOSHARE

Permits all categories of access by all categories of ownership. The /NOSHARE qualifier denies
access to group (unless the /GROUP qualifier is also specified) and world processes.

/SIZE=n

When /SIZE= n is specified for a magnetic disk, n specifies the size (in blocks) of the logical
volume (the space available for the file system). This allows you to INITIALIZE a disk with a file
system size that is less than the physical volume size, which can be useful if you plan to create a
shadow set using this disk and a smaller physical disk. The value of n is displayed (in blocks) as
"Logical Volume Size" in the output from a SHOW DEVICE/FULL command.

For DECram disks, /SIZE specifies the size (in blocks) of the disk (device type
DT$_RAM_DISK) to be allocated from available memory. The size of the device is created at
disk initialization time.

272

DCL Commands

To deallocate space, specify /SIZE=0. All resources specifically allocated to the DECram disk are
returned to the system.

Note that n cannot exceed 524,280 blocks on versions of DECram prior to Version 2.3. DECram
Version 2.3 running on an Alpha system supports up to 67,108,864 blocks, equivalent to 32GB.

/STRUCTURE=level

Specifies whether the volume should be formatted in Files-11 On-Disk Structure Level 1, 2 (the
default), or 5.

Structure Level 1 is incompatible with the /DATA_CHECK and/CLUSTER_SIZE qualifiers. The
default protection for a Structure Level 1 disk is full access to system, owner, and group, and read
(R)access to all other users.

Note that Alpha does not support ODS-1 disks, and specifying 1 on Alpha results in an error.

See the VSI OpenVMS System Manager's Manual, Volume 1: Essentials for more information
about ODS-5 disks.

/SYSTEM

Requires a system UIC or SYSPRV (system privilege) privilege.

Defines a system volume. The owner UIC defaults to [1,1]. Protection defaults to complete access
by all ownership categories, except that only system processes can create top-level directories.

/USER_NAME=name

Specifies a user name to be associated with the volume. The name must be 1 to12 alphanumeric
characters. The default is your user name.

/VERIFIED
/NOVERIFIED

Indicates whether the disk has bad block data on it. Use the /NOVERIFIED qualifier to ignore bad
block data on the disk. The default is the /VERIFIED qualifier for disks with 4096 blocks or more
and the /NOVERIFIED qualifier for disks with less than 4096 blocks.

/VOLUME_CHARACTERISTICS =([[NO]HARDLINKS,] [[NO]ACCESS_DATES[=delta-time]],
[NO]SPECIAL_FILES)

Applies to Files-11 On-Disk Structure Level 5 (ODS-5) disks only.

Enables or disables hard links and automatic updates of access dates on ODS-5 volumes.

The default value for delta-time is 1 second, chosen to comply with the "seconds since EPOCH"
time interface required by POSIX

st_atime

A site can choose a larger delta time to reduce overhead if 1-second granularity is not required.

Note that the NOACCESS_DATES option affects only the node on which the command is issued.
Other nodes are not affected by the change until the next time the volume is mounted.

273

DCL Commands

See the Guide to OpenVMS File Applications for additional information.

The volume characteristic [SPECIAL_FILES] allows you to disable symlinks. This eliminates file
access failure audits that may occur due to symlinks being enabled for all processes in the current
implementation.

/WINDOWS=n

Specifies the number of mapping pointers (used to access data in the file) to be allocated for file
windows. The value can be an integer in the range of 7 to 80. The default is 7.

Examples
1. $ INITIALIZE/USER_NAME=CPA $FLOPPY1 ACCOUNTS

Initializes the volume on $FLOPPY1, labels the volume ACCOUNTS, and gives the volume a
user name of CPA.

2. $ ALLOCATE DMA2: TEMP
 _DMA2: ALLOCATED
$ INITIALIZE TEMP: BACK_UP_FILE
$ MOUNT TEMP: BACK_UP_FILE
%MOUNT-I-MOUNTED, BACK_UP_FILE mounted on _DMA2:
$ CREATE/DIRECTORY TEMP:[GOLDSTEIN]

This sequence of commands shows how to initialize an RK06/RK07 volume. First, the device is
allocated, to ensure that no one else can access it. Then, when the volume is physically mounted
on the device, the INITIALIZE command initializes it. When the volume is initialized, the
MOUNT command makes the file structure available. Before you can place any files on the
volume, you must create a directory, as shown by the CREATE/DIRECTORY command.

3. $ ALLOCATE MT:
 _MTB1: ALLOCATED
$ INITIALIZE MTB1: SOURCE
$ MOUNT MTB1: SOURCE
%MOUNT-I-MOUNTED, SOURCE mounted on _MTB1:
$ COPY *.FOR MTB1:
$ DIRECTORY MTB1:
 .
 .
 .
$ DISMOUNT MTB1:

These commands show the procedure necessary to initialize a magnetic tape. After allocating
a drive, the magnetic tape is loaded on the device, and the INITIALIZE command writes the
label SOURCE on it. Then, the MOUNT command mounts the magnetic tape so that files can be
written on it.

4. $ BACKUP filespec MUA0: ... /MEDIA_FORMAT=NOCOMPACTION-
_$ /REWIND

This example creates a BACKUP tape with compaction and record blocking disabled.

5. $ INITIALIZE/ERASE/SHADOW=(4DKA1300, 4DKA1301) NONVOLATILE
$MOUN/SYS DSA42 /SHAD=(4DKA1300 , 4DKA1301) NONVOLATILE
%MOUNT-I-MOUNTED, NONVOLATILE MOUNTED ON _DSA42:

274

DCL Commands

%MOUNT-I-SHDWMEMSUCC, _4DKA1300: (WILD3) IS NOW A VALID MEMBER OF THE
 SHADOW SET
%MOUNT-I-SHDWMEMSUCC, _4DKA1301: (WILD4) IS NOW A VALID MEMBER OF THE
 SHADOW SET
$SHO DEV DSA42:

DEVICE DEVICE ERROR VOLUME FREE TRANS
 MNT
 NAME STATUS COUNT LABEL BLOCKS COUNT
 CNT
DSA42: MOUNTED 0 NONVOLATILE 5799600 1
 1
4DKA1300: (WILD3) SHADOWSETMEMBER 0 (MEMBER OF DSA42:)
4DKA1301: (WILD4) SHADOWSETMEMBER 0 (MEMBER OF DSA42:)

This example shows correct use of the INITIALIZE/ERASE/SHADOW command. Note that the
command specifies multiple devices on the same line.

INITIALIZE/QUEUE
INITIALIZE/QUEUE — Creates or initializes queues. You use this command to create queues and to
assign them names and options. The /BATCH qualifier is required to create a batch queue.

Format
INITIALIZE/QUEUE queue-name[:]

Parameter
queue-name[:]

Specifies the name of an execution queue or a generic queue. The queue name maybe a string of 1 to
31 characters. The character string can include any uppercase and lowercase letters, digits, the dollar
sign ($), and the underscore (_), and must include at least one alphabetic character.

Description
Use the INITIALIZE/QUEUE command to create a queue or to change the options of an existing
queue that is stopped.

Note

Requires OPER (operator) privilege to create queues and manage(M) access to modify queues.

Normally you create output and batch queues by entering the necessary INITIALIZE/
QUEUE commands when you set up your system or OpenVMS Cluster. Later, you can use the
INITIALIZE/QUEUE command to create additional queues as they are needed. When you create a
queue with the INITIALIZE/QUEUE command, information about the queue is stored in the queue
database.

To create and start the queue at the same time, you can use the INITIALIZE/QUEUE/START
command. If you want to create the queue only and start it at another time, you can enter only the

275

DCL Commands

INITIALIZE/QUEUE command. Later you can enter the START/QUEUE command to begin queue
operations.

You can use the INITIALIZE/QUEUE, START/QUEUE, and SET QUEUE commands to change
queue options; as you change queue options, information about the queue in the queue database is
updated.

You can use the INITIALIZE and START commands only on stopped queues. To change options on a
running queue, use the SET QUEUE command. To change queue options that cannot be altered with
the SET QUEUE command, use the following procedure:

1. Stop the queue with the STOP/QUEUE/NEXT command.

2. Restart the queue with the START/QUEUE or the INITIALIZE/QUEUE/START command,
specifying the appropriate qualifiers for the options you desire.

Any qualifiers that you do not specify remain as they were when the queue was previously
initialized, started, or set.

Note that initializing an existing queue does not delete any current jobs in that queue. Any new queue
settings established by the new INITIALIZE/QUEUE command affect all jobs waiting in the queue or
subsequently entering the queue. Any jobs that are executing in the queue when it is stopped complete
their execution under the old settings.

The following qualifiers apply to generic and execution queues:

/OWNER_UIC
/PROTECTION
/[NO]RETAIN
/[NO]START
/NAME_OF_MANAGER

The following qualifiers apply to all types of execution queues:

/AUTOSTART_ON
/BASE_PRIORITY
/[NO]CHARACTERISTICS
/[NO]ENABLE_GENERIC
/[NO]NO_INITIAL_FF
/ON
/WSDEFAULT
/WSEXTENT
/WSQUOTA

The following qualifiers apply only to batch execution queues:

/CPUDEFAULT
/CPUMAXIMUM
/[NO]DISABLE_SWAPPING
/JOB_LIMIT

The following qualifiers apply only to printer, terminal, or server execution queues:

/[NO]BLOCK_LIMIT
/[NO]DEFAULT

276

DCL Commands

/FORM_MOUNTED
/[NO]LIBRARY
/[NO]PROCESSOR
/[NO]RECORD_BLOCKING
/[NO]SEPARATE

Types of Queues
There are several different types of queues. In general, queues can be divided into two major classes:
generic and execution. When a job is sent to an execution queue, it is executed in that queue. No
processing takes place in generic queues. Generic queues hold jobs that will execute on an execution
queue.

Generic Queues
The following are several types of generic queues:

• Generic batch queue – Holds batch jobs for execution on batch execution queues.

• Generic output queue – Holds jobs for execution on output queues. There are three types of
generic output queues:

• Generic printer queue – Holds print jobs for printing on output execution queues.

• Generic server queue – Holds jobs for processing on output execution queues.

• Generic terminal queue – Holds print jobs for printing on output execution queues.

The /GENERIC qualifier designates a queue as a generic queue. You specify the execution queues to
which a generic queue feeds jobs in one of two ways:

• You can explicitly name execution queues assigned to the generic queue by including a list of
queues with the /GENERIC qualifier.

• You can specify the execution queues that may receive jobs from any generic queue that does not
specify an explicit target list by specifying the/ENABLE=GENERIC qualifier when you create the
execution queue.

Generic queues, unlike execution queues, are not automatically stopped when the system is shut down
or the queue manager is stopped; therefore, generic queues do not normally need to be restarted each
time the system reboots.

Logical Queues
Another type of queue is the logical queue. A logical queue is a special type of generic queue that
can place work only into the execution queue specified in the ASSIGN/QUEUE command. The
logical queue's relation to an execution queue remains in effect until you enter a DEASSIGN/QUEUE
command to negate the assignment.

Execution Queues
The following are several types of execution queues:

• Batch execution queue – Executes batch jobs.

277

DCL Commands

• Output execution queue – Processes print output jobs. There are three types of output execution
queues:

• Printer execution queue – Invokes a symbiont to process print jobs for a printer.

• Server execution queue – Invokes a customer-written symbiont to process jobs.

• Terminal execution queue – Invokes a symbiont to process print jobs for a terminal printer.

Batch execution queues execute batch jobs. Batch jobs request the execution of one or more command
procedures in a batch process.

Output execution queues process print jobs. A print job requests the processing of one or more files
by a symbiont executing in a symbiont process. The default system symbiont is designed to print files
on hard copy devices(printers or terminals). Customer-written symbionts can be designed for this or
any other file processing activity. Server queues process jobs using the server symbiont specified with
the /PROCESSOR qualifier. Server queue symbionts are written by the customer.

Either the /AUTOSTART_ON qualifier or the /ON qualifier designates a queue as an execution queue,
and specifies where the queue is to run.

By using the /ON qualifier, you can specify one node (for batch queues) or node and device (for
output queues) on which the queue can be started. A queue initialized with the /ON qualifier needs to
be started by a command explicitly naming the queue.

You can specify one or more nodes (or nodes and devices) on which the queue can be started by
using the /AUTOSTART_ON qualifier. A queue initialized with the /AUTOSTART_ON qualifier
is automatically started by the queue manager when any of the queue's nodes have been enabled for
autostart by that queue manager.

Autostart Queues
An execution queue (either batch or output) can be designated as an autostart queue. Because all of a
queue manager's autostart queues on a node can be started with a single command, autostart queues
eliminate the need for lengthy queue startup procedures.

In an OpenVMS Cluster, autostart queues can be set up to run on one of several nodes. If a queue is
set up this way, and the node on which the queue is running leaves the cluster, the queue can fail over
to another node and remain available to the cluster.

The /AUTOSTART_ON qualifier designates an execution queue as an autostart queue.

Qualifiers
/AUTOSTART_ON=(node::[device][,...])

Designates the queue as an autostart execution queue and specifies the node, or node and device,
on which the queue can be located. For batch queues, only node is applicable.

In a cluster, you can specify more than one node (or node and device) on which a queue can run,
in the preferred order in which nodes should claim the queue. This allows the queue to fail over to
another node if the node on which the queue is running leaves the cluster.

When you enter the INITIALIZE/QUEUE command with the /AUTOSTART_ON qualifier, you
must initially activate the queue for autostart, either by specifying the /START qualifier with the

278

DCL Commands

INITIALIZE/QUEUE command or by entering a START/QUEUE command. However, the queue
will not begin processing jobs until the ENABLE AUTOSTART/QUEUES command is entered
for a node on which the queue can run.

This qualifier cannot be used in conjunction with the /ON or /GENERIC qualifier. However, if
you are reinitializing an existing queue, you can specify the /AUTOSTART_ON qualifier for a
queue previously created or started with the /ON qualifier. Doing so overrides the /ON qualifier
and makes the queue an autostart queue.

For more information about autostart queues, see the VSI OpenVMS System Manager's Manual,
Volume 1: Essentials.

/BASE_PRIORITY=n

Specifies the base process priority at which jobs are initiated from a batch execution queue.
By default, if you omit the qualifier, jobs are initiated at the same priority as the base priority
established by DEFPRI at system generation (usually 4). The base priority specifier can be any
decimal value from 0 to 15.

You also can specify this qualifier for an output execution queue. In this context
the /BASE_PRIORITY qualifier establishes the base priority of the symbiont process when the
symbiont process is created.

/BATCH
/NOBATCH (default)

Specifies that you are initializing a batch queue. If you are reinitializing an existing queue, you
can use the /BATCH qualifier only if the queue was created as a batch queue.

A batch queue is classified as either an execution queue or a generic queue. By default,
the /BATCH qualifier initializes an execution queue. To specify a generic batch queue, use
the /GENERIC qualifier together with the /BATCH qualifier.

The /BATCH and /DEVICE qualifiers are mutually exclusive; the /NOBATCH and /NODEVICE
qualifiers cannot be used together.

/BLOCK_LIMIT= ([lowlim,]uplim)
/NOBLOCK_LIMIT (default)

Limits the size of print jobs that can be processed on an output execution queue.
The /BLOCK_LIMIT qualifier allows you to reserve certain printers for certain size jobs. You
must specify at least one of the parameters.

The lowlim parameter is a decimal number referring to the minimum number of blocks accepted
by the queue for a print job. If a print job is submitted that contains fewer blocks than the lowlim
value, the job remains pending until the block limit for the queue is changed. After the block limit
for the queue is decreased sufficiently, the job is processed.

The uplim parameter is a decimal number referring to the maximum number of blocks that the
queue accepts for a print job. If a print job is submitted that exceeds this value, the job remains
pending until the block limit for the queue is changed. After the block limit for the queue is
increased sufficiently, the job is processed.

If you specify only an upper limit for jobs, you can omit the parentheses. For
example, /BLOCK_LIMIT=1000 means that only jobs with 1000 blocks or less are processed

279

DCL Commands

in the queue. To specify only a lower job limit, you must use a null string ("") to indicate
the upper specifier. For example, /BLOCK_LIMIT=(500,"") means any job with 500 or
more blocks is processed in the queue. You can specify both a lower and upper limit. For
example, /BLOCK_LIMIT=(200,2000) means that jobs with less than 200 blocks or more than
2000 blocks are not processed in the queue.

The /NOBLOCK_LIMIT qualifier cancels the previous setting established by
the /BLOCK_LIMIT qualifier for that queue.

/CHARACTERISTICS= (characteristic[,...])
/NOCHARACTERISTICS (default)

Specifies one or more characteristics for processing jobs on an execution queue. If you
specify only one characteristic, you can omit the parentheses. If a queue does not have all the
characteristics that have been specified for a job, the job remains pending. Each time you specify
the /CHARACTERISTICS qualifier, all previously set characteristics are cancelled. Only the
characteristics specified with the qualifier are established for the queue.

Queue characteristics are installation specific. The characteristic parameter can be either a value
from 0 to 127 or a characteristic name that has been defined by the DEFINE/CHARACTERISTIC
command.

The /NOCHARACTERISTICS qualifier cancels any settings previously established by
the /CHARACTERISTICS qualifier for that queue.

/CLOSE

Prevents jobs from being entered in the queue through PRINT or SUBMIT commands or as
a result of requeue operations. To allow jobs to be entered, use the/OPEN qualifier. Whether
a queue accepts or rejects new job entries is independent of the queue's state (such as paused,
stopped, or stalled). When a queue is marked closed, jobs executing continue to execute. Jobs
pending in the queue continue to be candidates for execution.

/CPUDEFAULT=time

Defines the default CPU time limit for all jobs in this batch execution queue. You can specify time
as delta time, 0, INFINITE, or NONE (default). You can specify up to 497 days of delta time.

If the queue does not have a specified CPUMAXIMUM time limit and the value established
in the user authorization file (UAF) has a specified CPU time limit of NONE, either the value
0 or the keyword INFINITE allows unlimited CPU time .If you specify NONE, the CPU time
value defaults to the value specified either in the UAF or by the SUBMIT command (if included).
CPU time values must be greater than or equal to the number specified by the system parameter
PQL_MCPULM. The time cannot exceed the CPU time limit set by the /CPUMAXIMUM
qualifier. For information on specifying delta time, see the VSI OpenVMS User's Manual or the
online help topic Date. For more information on specifying CPU time limits, see Table 1.

/CPUMAXIMUM=time

Defines the maximum CPU time limit for all jobs in a batch execution queue. You can specify
time as delta time, 0, INFINITE, or NONE (default). You can specify up to 497 days of delta time.

The /CPUMAXIMUM qualifier overrides the time limit specified in the user authorization file
(UAF) for any user submitting a job to the queue. Either the value 0 or the keyword INFINITE

280

DCL Commands

allows unlimited CPU time. If you specify NONE, the CPU time value defaults to the value
specified either in the UAF o by the SUBMIT command (if included). CPU time values must be
greater than or equal to the number specified by the system parameter PQL_MCPULM.

For information on specifying delta times, see the VSI OpenVMS User's Manual or the online help
topic Date. For more information on specifying CPU time limits, see Table 1.

A CPU time limit for processes is specified by each user record in the system UAF. You also can
specify the following: a default CPU time limit or a maximum CPU time limit for all jobs in a
given queue, or a default CPU time limit for individual jobs in the queue. Table 1 shows the action
taken for each value specified and possible combinations of specifications.

Table 1. CPU Time Limit Specifications and Actions

CPU Time Limit
Specified by
the SUBMIT
Command?

Default CPU
Time Limit
Specified for the
Queue?

Maximum CPU
Time Limit
Specified for the
Queue?

Action Taken

No No No Use the UAF value.
Yes No No Use the smaller of SUBMIT command

and UAF values.
Yes Yes No Use the smaller of SUBMIT command

and UAF values.
Yes No Yes Use the smaller of SUBMIT command

and queue's maximum values.
Yes Yes Yes Use the smaller of SUBMIT command

and queue's maximum values.
No Yes Yes Use the smaller of queue's default and

maximum values.
No No Yes Use the maximum value.
No Yes No Use the smaller of UAF and queue's

default values.

/DEFAULT=(option[,...])
/NODEFAULT

Establishes defaults for certain options of the PRINT command. Defaults are specified by the list
of options. If you specify only one option, you can omit the parentheses. After you set an option
for the queue with the /DEFAULT qualifier, you do not have to specify that option in your PRINT
command. If you do specify these options in your PRINT command, the values specified with the
PRINT command override the values established for the queue with the /DEFAULT qualifier.

You cannot use the /DEFAULT qualifier with the /GENERIC qualifier.

Possible options are as follows:

[NO]BURST[=keyword] Controls whether two file flag pages with a burst bar between them
are printed preceding output. If you specify the value ALL (default),
these flag pages are printed before each file in the job. If you specify
the value ONE, these flag pages are printed once before the first file in
the job.

281

DCL Commands

[NO]FEED Controls whether a form feed is inserted automatically at the end of a
page.

[NO]FLAG[=keyword] Controls whether a file flag page is printed preceding output. If you
specify the value ALL (default), a file flag page is printed before each
file in the job. If you specify the value ONE, a file flag page is printed
once before the first file in the job.

FORM=type Specifies the default form for an output execution queue. If a job is
submitted without an explicit form definition, this form is used to
process the job. If no form type is explicitly specified with the FORM
keyword, the system assigns the form DEFAULT to the queue. See
also the description of the /FORM_MOUNTED=type qualifier.

[NO]TRAILER[=keyword] Controls whether a file trailer page is printed following output. If you
specify the value ALL (default), a file trailer page is printed after each
file in the job. If you specify the value ONE, a trailer page is printed
once after the last file in the job.

When you specify the BURST option for a file, the [NO]FLAG option does not add or subtract a
flag page from the two flag pages that are printed preceding the file.

For information on establishing mandatory queue options, see the description of the /SEPARATE
qualifier. For more information on specifying default queue options, see the VSI OpenVMS System
Manager's Manual.

/DESCRIPTION=string
/NODESCRIPTION (default)

Specifies a string of up to 255 characters used to provide operator-supplied information about the
queue.

Enclose strings containing lowercase letters, blanks, or other non-alphanumeric characters
(including spaces) in quotation marks (“ ”).

The /NODESCRIPTION qualifier removes any descriptive text that may be associated with the
queue.

/DEVICE[=option]
/NODEVICE

Specifies that you are initializing an output queue of a particular type. If you are reinitializing
an existing queue, you can use the /DEVICE qualifier only if the queue was created as an output
queue. Possible options are as follows:

PRINTER Indicates a printer queue.
SERVER Indicates a server queue. A server queue is controlled by the user-modified or

user-written symbiont specified with the /PROCESSOR qualifier.
TERMINAL Indicates a terminal queue.

If you specify the /DEVICE qualifier without a queue type, the /DEVICE=PRINTER qualifier is
used by default.

An output queue is classified as either an execution or generic queue. By default, the /DEVICE
qualifier initializes an execution queue of the designated type. To specify a generic printer, server,
or terminal queue, use the /GENERIC qualifier with the /DEVICE qualifier.

282

DCL Commands

You specify the queue type with the /DEVICE qualifier for informational purposes. When an
output execution queue is started, the symbiont associated with the queue determines the actual
queue type. The standard symbiont examines device characteristics to establish whether the queue
should be marked as printer or terminal. By convention, user-modified and user-written symbionts
mark the queue as a server queue. The device type of a generic queue need not match the device
type of its execution queues.

The /DEVICE and /BATCH qualifiers are mutually exclusive; the /NODEVICE and /NOBATCH
qualifiers cannot be used together.

/DISABLE_SWAPPING
/NODISABLE_SWAPPING (default)

Controls whether batch jobs executed from a queue can be swapped in and out of memory.

/ENABLE_GENERIC (default)
/NOENABLE_GENERIC

Specifies whether files queued to a generic queue that does not specify explicit queue names
with the /GENERIC qualifier can be placed in this execution queue for processing. For more
information, see the description of the /GENERIC qualifier.

/FORM_MOUNTED=type

Specifies the mounted form for an output execution queue.

If no form type is explicitly specified, the system assigns the form DEFAULT to the queue.

If the stock of the mounted form does not match the stock of the default form, as indicated
by the /DEFAULT=FORM qualifier, all jobs submitted to this queue without an explicit form
definition enter a pending state and remains pending until the stock of the mounted form of the
queue is identical to the stock of the form associated with the job.

If a job is submitted with an explicit form and the stock of the explicit form is not identical to the
stock of the mounted form, the job enters a pending state and remains pending until the stock of
the mounted form of the queue is identical to the stock of the form associated with the job.

To specify the form type, use either a numeric value or a form name that has been defined
by the DEFINE/FORM command. Form types are installation-specific. You cannot use
the /FORM_MOUNTED qualifier with the /GENERIC qualifier.

/GENERIC[=(queue-name[,...])]
/NOGENERIC (default)

Specifies a generic queue. Also specifies that jobs placed in this queue can be moved for
processing to compatible execution queues. The /GENERIC qualifier optionally accepts a list of
target execution queues that have been previously defined. For a generic batch queue, these target
queues must be batch execution queues. For a generic output queue, these target queues must
be output execution queues, but can be of any type (printer, server, or terminal). For example, a
generic printer queue can feed a mixture of printer and terminal execution queues.

If you do not specify any target execution queues with the /GENERIC qualifier, jobs can be
moved to any execution queue that (1) is initialized with the /ENABLE_GENERIC qualifier, and
(2) is the same type (batch or output) as the generic queue.

283

DCL Commands

To define the queue as a generic batch or output queue, you use the /GENERIC qualifier with
either the /BATCH or the /DEVICE qualifier. If you specify neither /BATCH nor /DEVICE on
creation of a generic queue, the queue becomes a generic printer queue by default.

You cannot use the /SEPARATE qualifier with the /GENERIC qualifier.

/JOB_LIMIT=n

Indicates the number of batch jobs that can be executed concurrently from the queue. Specify a
number in the range 1 to 65535. The job limit default value for n is 1.

/LIBRARY=filename
/NOLIBRARY

Specifies the file name for the device control library. When you initialize an output execution
queue, you can use the /LIBRARY qualifier to specify an alternate device control library. The
default library is SYS$LIBRARY:SYSDEVCTL.TLB. You can use only a file name as the
parameter of the /LIBRARY qualifier. The system always assumes that the file is located in
SYS$LIBRARY and that the file type is .TLB.

/NAME_OF_MANAGER=name

Identifies the name of the queue manager to control the queue. Once the queue is created, the
queue manager assignment may not be altered.

If the /NAME_OF_MANAGER qualifier is omitted, then the default name
SYS$QUEUE_MANAGER is used.

If the INITIALIZE/QUEUE command is used to modify a queue, and that queue is not
controlled by the default queue manager, then the name of the controlling queue manager
should be specified with the /NAME_OF_MANAGER qualifier. Alternately, the logical name
SYS$QUEUE_MANAGER can be defined to be the correct queue manager, making that queue
manager the default for the current process.

/NO_INITIAL_FF
/NONO_INITIAL_FF (default)

Allows user to specify whether a form feed should be sent to a printer device when a queue starts.
To suppress the initial form feed, use the /NO_INITIAL_FF qualifier.

The /NONO_INITIAL_FF qualifier sends a form feed to the output device to ensure the paper is
at the top of a page before printing begins.

/ON=[node::]device[:] (printer, terminal, server queue)
/ON=node:: (batch queue)

Specifies the node or device, or both, on which this execution queue is located. For batch
execution queues, you can specify only the node name. For output execution queues, you can
include both the node name and the device name. By default, a queue executes on the same node
from which you start the queue. The default device parameter is the same as the queue name.

You can specify an IP address and port number, in quotation marks, for the device. For more
information about specifying IP addresses, see the TCP/IP Services for OpenVMS documentation.

The node name is used in OpenVMS Cluster systems; it must match the node name specified by
the system parameter SCSNODE for the OpenVMS computer on which the queue executes.

284

DCL Commands

You cannot use the /ON qualifier with the /AUTOSTART_ON or /GENERIC qualifier;
however, if you are reinitializing an existing queue, you can specify the /ON qualifier for a
queue previously created or started with the /AUTOSTART_ON qualifier. Doing so overrides
the /AUTOSTART_ON option and makes the queue a nonautostart queue.

/OPEN (default)

Allows jobs to be entered in the queue through PRINT or SUBMIT commands or as the result of
requeue operations. To prevent jobs from being entered in the queue, use the /CLOSE qualifier.
Whether a queue accepts or rejects new job entries is independent of the queue's state (such as
paused, stopped, or stalled).

/OWNER_UIC=uic

Enables you to change the user identification code (UIC) of the queue. Specify the UIC by using
standard UIC format as described in the VSI OpenVMS Guide to System Security. The default UIC
is [1,4].

/PROCESSOR=filename
/NOPROCESSOR

Allows you to specify your own print symbiont for an output execution queue. You can use any
valid file name as a parameter of the /PROCESSOR qualifier. The system supplies the device
and directory name SYS$SYSTEM and the file type .EXE. If you use this qualifier for an output
queue, it specifies that the symbiont image to be executed is SYS$SYSTEM:file name.EXE.

By default, SYS$SYSTEM:PRTSMB.EXE is the symbiont image associated with an output
execution queue.

The /NOPROCESSOR qualifier cancels any previous setting established with the /PROCESSOR
qualifier and causes SYS$SYSTEM:PRTSMB.EXE to be used.

/PROTECTION= (ownership[:access],...)

Specifies the protection of the queue:

• Specify the ownership parameter as system (S), owner (O), group (G), or world (W).

• Specify the access parameter as read (R), submit (S), manage (M), or delete (D).

A null access specification means no access. The default protection is (SYSTEM:M, OWNER:D,
GROUP:R, WORLD:S). If you include only one protection code, you can omit the parentheses.
For more information on specifying protection codes, see the VSI OpenVMS Guide to System
Security. For more information on controlling queue operations through UIC-based protection, see
the VSI OpenVMS System Manager's Manual.

/RAD=n

Specifies the RAD number on which to run batch jobs assigned to the queue. The RAD value
is validated as a positive integer between 0 and the value returned by the $GETSYI item code,
SYI$_RAD_MAX_RADS.

RAD is supported on AlphaServer GS series systems and starting from OpenVMS Version 8.4,
support is extended to NUMA capable Integrity servers.

285

DCL Commands

/RECORD_BLOCKING (default)
/NORECORD_BLOCKING

Determines whether the symbiont can concatenate (or block together)output records for
transmission to the output device. If you specify the /NORECORD_BLOCKING qualifier,
the symbiont sends each formatted record in a separate I/O request to the output device. For
the standard OpenVMS print symbiont, record blocking can have a significant performance
advantage over single-record mode.

/RETAIN[=option]
/NORETAIN (default)

Holds jobs in the queue in a retained state after they have executed. The /NORETAIN qualifier
enables you to reset the queue to the default. Possible options are as follows:

ALL (default) Holds all jobs in the queue after execution.
ERROR Holds in the queue only jobs that complete unsuccessfully.

A user can request a job retention option for a job by specifying the /RETAIN qualifier with the
PRINT, SUBMIT, or SET ENTRY command; however, the job retention option you specify for a
queue overrides any job retention option requested by a user for a job in that queue.

/SCHEDULE=SIZE (default)
/SCHEDULE=NOSIZE

Specifies whether pending jobs in an output execution queue are scheduled for printing based on
the size of the job. When the default qualifier /SCHEDULE=SIZE is in effect, shorter jobs print
before longer ones.

When the /SCHEDULE=NOSIZE qualifier is in effect, jobs are not scheduled according to size.

If you enter this command while there are pending jobs in any queue, its effect on future jobs is
unpredictable.

/SEPARATE=(option[,...])
/NOSEPARATE (default)

Specifies the mandatory queue options, or job separation options, for an output execution queue.
Job separation options cannot be overridden by the PRINT command.

You cannot use the /SEPARATE qualifier with the /GENERIC qualifier.

The job separation options are as follows:

[NO]BURST Specifies whether two job flag pages with a burst bar between them
are printed at the beginning of each job.

[NO]FLAG Specifies whether a job flag page is printed at the beginning of each
job.

[NO]TRAILER Specifies whether a job trailer page is printed at the end of each job.
[NO]RESET=(module[,...]) Specifies one or more device control library modules that

contain the job reset sequence for the queue. The specified
modules from the queue's device control library (by default
SYS$LIBRARY:SYSDEVCTL) are used to reset the device at the
end of each job. The RESET sequence occurs after any file trailer and

286

DCL Commands

before any job trailer. Thus, all job separation pages are printed when
the device is in its RESET state.

When you specify the /SEPARATE=BURST qualifier, the [NO]FLAG separation option does not
add or subtract a flag page from the two flag pages that are printed preceding the job.

For information on establishing queue options that can be overridden, seethe description of
the /DEFAULT qualifier.

For more information on specifying mandatory queue options, see VSI OpenVMS System
Manager's Manual.

/START
/NOSTART (default)

Starts the queue being initialized by the current INITIALIZE/QUEUE command.

For autostart queues, this qualifier activates the queue for autostart. The queue begins processing
jobs when autostart is enabled with the ENABLEAUTOSTART/QUEUES command on any node
on which the queue can run.

/WSDEFAULT=n

Defines for a batch job a working set default, the default number of physical pages that the job
can use.

The value set by this qualifier overrides the value defined in the user authorization file (UAF) of
any user submitting a job to the queue.

Specify the value of n as a number of 512-byte pagelets on Alpha systems. Note that OpenVMS
rounds this value up to the nearest CPU-specific page so that the actual amount of physical
memory allowed may be larger than the specified amount on Alpha. For further information, see
the VSI OpenVMS System Manager's Manual.

If you specify 0 or NONE, the working set default value defaults to the value specified in the
UAF or by the SUBMIT command (if it includes a WSDEFAULT value).

You also can specify this qualifier for an output execution queue. Used in this context,
the /WSDEFAULT qualifier establishes the working set default of the symbiont process for an
output execution queue when the symbiont process is created.

For more information about the way a working set default affects batch jobs, see Table 2.

/WSEXTENT=n

Defines for the batch job a working set extent, the maximum amount of physical memory that
the job can use. The job only uses the maximum amount of physical memory when the system
has excess free pages. The value set by this qualifier overrides the value defined in the user
authorization file (UAF) of any user submitting a job to the queue.

Specify the value of n as a number of 512-byte pagelets on Alpha. Note that OpenVMS rounds
this value up to the nearest CPU-specific page so that the actual amount of physical memory
allowed may be larger than the specified amount on Alpha.

If you specify 0 or NONE, the working set extent value defaults to the value specified in the UAF
or by the SUBMIT command (if it includes a WSEXTENT value).

287

DCL Commands

You also can specify this qualifier for an output execution queue. Used in his context,
the /WSEXTENT qualifier establishes the working set extent of the symbiont process for an
output execution queue when the symbiont process is created.

For more information about the way a working set extent affects batch jobs, see Table 2.

/WSQUOTA=n

Defines for a batch job a working set quota, the amount of physical memory that is guaranteed to
the job.

The value set by this qualifier overrides the value defined in the user authorization file (UAF) of
any user submitting a job to the queue.

Specify the value of n as a number of 512-byte pagelets on OpenVMS Alpha. OpenVMS rounds
this value up to the nearest CPU-specific page so that the actual amount of physical memory
allowed may be larger than the specified amount on OpenVMS Alpha. For further information,
see the VSI OpenVMS System Manager's Manual.

If you specify 0 or NONE, the working set quota value defaults to the value specified in the UAF
or by the SUBMIT command (if it includes a WSQUOTA value).

You also can specify this qualifier for an output execution queue. Used in this context,
the /WSQUOTA qualifier establishes the working set quota of the symbiont process for an output
execution queue when the symbiont process is created.

Working set default, working set quota, and working set extent values are included in each user
record in the system UAF. You can specify working set values for individual jobs or for all jobs in
a given queue. The decision table (Table 2) shows the action taken for different combinations of
specifications that involve working set values.

Table 2. Working Set Default, Extent, and Quota Decision

Is the SUBMIT
command value
specified?

Is the queue value
specified?

Action taken

No No Use the UAF value.
No Yes Use value for the queue.
Yes Yes Use smaller of the two values.
Yes No Compare specified value with UAF value; use the

smaller.

Examples
1. $ INITIALIZE/QUEUE/PROCESSOR=TELNETSYM -

_$ /ON="192.168.1.101:9100" SYS$PRINT

This example initializes the SYS$PRINT print queue, specifying the TELNETSYM print
symbiont, for the printer with the IP address 192.168.1.101 at TCP port 9100. For more
information about TELNETSYM, see the TCP/IP Services for OpenVMS Management Guide.

2. $ INITIALIZE/QUEUE/BATCH/START -
_$ /AUTOSTART_ON=(DATA::, WARF::, DEANNA::) BATCH_1

288

DCL Commands

The INITIALIZE/QUEUE command in this example creates the batch queue BATCH_1, and
designates it as an autostart queue capable of executing on node DATA, WARF, or DEANNA.
The /START qualifier activates the queue for autostart. The queue will begin executing on the first
node (in the list of nodes specified) for which the ENABLE AUTOSTART/QUEUES command is
entered.

If the node on which BATCH_1 is executing is taken out of the OpenVMS Cluster, the queue
will be stopped on that node and will fail over to the first available node in the node list on which
autostart is enabled for a queue manager SYS$QUEUE_MANAGER.

As long as autostart is enabled on one of the nodes in the list, this queue will be started and
available to execute batch jobs. If all three nodes in the example are shut down or if autostart
is disabled, the queue will remain stopped until one of the three nodes in the node list joins the
cluster and executes the ENABLE AUTOSTART/QUEUES command.

The ENABLE AUTOSTART/QUEUES and INITIALIZE/QUEUE commands affect only
the queues managed by the default queue manager SYS$QUEUE_MANAGER because
the /NAME_OF_MANAGER qualifier is not specified.

3. $ INITIALIZE/QUEUE/START/BATCH/JOB_LIMIT=3 SYS$BATCH
$ INITIALIZE/QUEUE/START/BATCH/JOB_LIMIT=1/WSEXTENT=2000 BIG_BATCH

In this example, the first INITIALIZE/QUEUE command creates a batch queue called
SYS$BATCH that can be used for any batch job. The /JOB_LIMIT qualifier allows three jobs to
execute concurrently. The second INITIALIZE/QUEUE command creates a second batch queue
called

BIG_BATCH

that is designed for large jobs. Only one job can execute at a time. The working set extent can be
as high as 125 pages on OpenVMS Alpha (on a system with 8KB pages).

4. $ INITIALIZE/QUEUE/START/DEFAULT=(FLAG,TRAILER=ONE)-
_$ /ON=LPA0: LPA0_PRINT
$ INITIALIZE/QUEUE/START/DEFAULT=(FLAG,TRAILER=ONE)-
_$ /BLOCK_LIMIT=(1000,"")/ON=LPB0: LPB0_PRINT
$ INITIALIZE/QUEUE/START/GENERIC=(LPA0_PRINT,LPB0_PRINT) SYS$PRINT
$ INITIALIZE/QUEUE/START/FORM_MOUNTED=LETTER-
_$ /BLOCK_LIMIT=50/ON=TXA5: LQP

In this example, the first three INITIALIZE/QUEUE commands set up printer queues. Both queue
LPA0_PRINT and LPB0_PRINT are set up to put a flag page before each file within a job and a
trailer page after only the last page in a job. In addition, LPB0_PRINT has a minimum block size
of 1000; therefore, only print jobs larger than 1000 blocks can execute on that queue. SYS$PRINT
is established as a generic queue that can direct jobs to either LPA0_PRINT or LPB0_PRINT. Jobs
that are too small to run on LPB0_PRINT will be queued from SYS$PRINT to LPA0_PRINT.

The last INITIALIZE/QUEUE command sets up a terminal queue on TXA5. A job queued with
a form that has a stock type other than the stock type of form LETTER remains pending in the
queue until a form with the same stock type is mounted on the queue, or until the entry is deleted
from the queue or moved to another queue. LETTER has been established at this site to indicate
special letterhead paper. The block size limit is 50, indicating that this queue is reserved for jobs
smaller than 51 blocks.

5. $ INITIALIZE/QUEUE/ON=QUEBID::/BATCH/RAD=0 BATCHQ1

289

DCL Commands

$ SHOW QUEUE/FULL BATCHQ1
Batch queue BATCHQ1, stopped, QUEBID::
 /BASE_PRIORITY=4 /JOB_LIMIT=1 /OWNER=[SYSTEM]
 /PROTECTION=(S:M,O:D,G:R,W:S) /RAD=0

This example creates or reinitializes the batch queue BATCHQ1 to run on node QUEBID. All jobs
assigned to this queue will run on RAD 0.

INQUIRE
INQUIRE — Reads a value from SYS$COMMAND (usually the terminal in interactive mode or the
next line in the main command procedure) and assigns it to a symbol.

Format
INQUIRE symbol-name [prompt-string]

Parameters
symbol-name

Specifies a symbol consisting of 1 to 255 alphanumeric characters.

prompt-string

Specifies the prompt to be displayed at the terminal when the INQUIRE command is executed. String
values are automatically converted to uppercase. Also, any leading and trailing spaces and tabs are
removed, and multiple spaces and tabs between characters are compressed to a single space.

Enclose the prompt in quotation marks (“ ”) if it contains lowercase characters, punctuation, multiple
blanks or tabs, or an at sign (@). To denote an actual quotation mark in a prompt-string, enclose the
entire string in quotation marks and use quotation marks (“ ”) within the string.

When the system displays the prompt string at the terminal, it generally places a colon (:) and a space
at the end of the string. (See the /PUNCTUATION qualifier.)

If you do not specify a prompt string, the command interpreter uses the symbol name to prompt for a
value.

Description
The INQUIRE command displays the prompting message to and reads the response from the input
stream established when your process was created. This means that when the INQUIRE command is
executed in a command procedure executed interactively, the prompting message is always displayed
on the terminal, regardless of the level of nesting of command procedures. Note that input to the
INQUIRE command in command procedures will be placed in the RECALL buffer.

When you enter a response to the prompt string, the value is assigned as a character string to the
specified symbol. Lowercase characters are automatically converted to uppercase, leading and trailing
spaces and tabs are removed, and multiple spaces and tabs between characters are compressed to a
single space. To prohibit conversion to uppercase and retain space and tab characters, place quotation
marks around the string.

290

DCL Commands

To use symbols or lexical functions when you enter a response to the prompt string, use single
quotation marks (' ') to request symbol substitution.

Note that you can also use the READ command to obtain data interactively from the terminal. The
READ command accepts data exactly as the user types it;characters are not automatically converted
to uppercase and spaces are not compressed. However, symbols and lexical functions will not be
translated even if you use apostrophes to request symbol substitution.

When an INQUIRE command is entered in a batch job, the command reads the response from the
next line in the command procedure; if procedures are nested, it reads the response from the first level
command procedure. If the next line in the batch job command procedure begins with a dollar sign
($), the line is interpreted as a command, not as a response to the INQUIRE command. The INQUIRE
command then assigns a null string to the specified symbol, and the batch job continues processing
with the command on the line following the INQUIRE command.

Qualifiers
/GLOBAL

Specifies that the symbol be placed in the global symbol table. If you do not specify
the /GLOBAL qualifier, the symbol is placed in the local symbol table.

/LOCAL (default)

Specifies that the symbol be placed in the local symbol table for the current command procedure.

/PUNCTUATION (default)
/NOPUNCTUATION

Inserts a colon and a space after the prompt when it is displayed on the terminal. To suppress the
colon and space, specify the /NOPUNCTUATION qualifier.

Examples
1. $ INQUIRE CHECK "Enter Y[ES] to continue"

$ IF .NOT. CHECK THEN EXIT

The INQUIRE command displays the following prompting message at the terminal:

Enter Y[ES] to continue:

The INQUIRE command prompts for a value, which is assigned to the symbol CHECK. The IF
command tests the value assigned to the symbol CHECK. If the value assigned to CHECK is true
(that is, an odd numeric value, a character string that begins with a T, t, Y, or y, or an odd numeric
character string), the procedure continues executing.

If the value assigned to CHECK is false (that is, an even numeric value, a character string that
begins with any letter except T, t, Y, or y, or an even numeric character string), the procedure exits.

2. $ INQUIRE COUNT
$ IF COUNT .GT. 10 THEN GOTO SKIP
 .
 .
 .
$ SKIP:

291

DCL Commands

The INQUIRE command prompts for a count with the following message:

COUNT:

Then the command procedure uses the value of the symbol COUNT to determine whether to
execute the next sequence of commands or to transfer control to the line labeled SKIP.

3. $ IF P1 .EQS. "" THEN INQUIRE P1 "FILE NAME"
$ FORTRAN 'P1'

The IF command checks whether a parameter was passed to the command procedure by checking
if the symbol P1 is null; if it is, it means that no parameter was specified, and the INQUIRE
command is issued to prompt for the parameter. If P1 was specified, the INQUIRE command is
not executed, and the Fortran command compiles the name of the file specified as a parameter.

INSTALL
INSTALL — Invokes the Install utility, which enhances the performance of selected executable and
shareable images by making them “known” to the system and assigning them appropriate attributes.
For more information about the Install utility, see the VSI OpenVMS System Management Utilities
Reference Manual or online help.

Format
INSTALL [subcommand] [filespec]

JAVA
JAVA — The JAVA command launches a Java™ application. It executes Java class files created by a
Java compiler such as JAVAC.

Description
The JAVA command is available only if the Java Software Development Kit (SDK) or Run-Time
Environment (RTE) is installed on your OpenVMS system.

You can find the Java SDK installation kit on the OpenVMS e-Business Infrastructure CD-ROM in
the OpenVMS media kit or you can download it from the web:

http://www.hp.com/software/java/alpha

Once the Java SDK or RTE is installed, you can access online help by entering this command:

$ JAVA -help

If the SDK documentation is installed on your OpenVMS system, you can use your browser to view
documentation for the SDK tools (commands) and other reference material. For example, for the Java
SDK v 1.4.0, point your browser to the following location:

SYS$COMMON:[JAVA$140.DOCS]INDEX.HTML

292

DCL Commands

JOB
JOB — Identifies the beginning of a batch job submitted through a card reader. Each batch job
submitted through the system card reader must be preceded by a JOB card.

Format
JOB user-name

Parameter
user-name

Identifies the user name under which the job is to be run. Specify the user name as you would during
the login procedure.

Description

Note

JOB cannot be abbreviated.

The JOB card identifies the user submitting the job and is followed by a PASSWORD card giving the
password. (Although the PASSWORD card is required, you do not have to use a password on the card
if the account has a null password.)

The user name and password are validated by the system authorization file in the same manner as they
are validated in the login procedure. The process that executes the batch job is assigned the disk and
directory defaults and privileges associated with the user account. If a LOGIN.COM file exists for the
specified user name, it is executed at the start of the job.

The end of a batch job is signaled by the EOJ command, by an EOF card (12-11-0-1-6-7-8-9 over
punch), or by another JOB card.

Qualifiers
/AFTER=time

Holds the job until the specified time. If the specified time has already passed, the job is queued
for immediate processing.

The time can be specified as either absolute time or a combination of absolute and delta times.
For complete information on specifying time values, see the VSI OpenVMS User's Manual or the
online help topic Date.

/CHARACTERISTICS= (characteristic[,...])

Specifies one or more characteristics required for processing the job. If you specify only one
characteristic, you can omit the parentheses. Codes for characteristics are installation-defined. Use

293

DCL Commands

the SHOW QUEUE/CHARACTERISTICS command to see which characteristics are available
on your system.

All the characteristics specified for the job must also be specified for the queue that will execute
the job. If not, the job remains pending in the queue until the queue characteristics are changed
or the entry is deleted with the DELETE/ENTRY command. Users need not specify every
characteristic of a queue with the JOB command as long as the ones they specify are a subset of
the characteristics set for that queue. The job also runs if no characteristics are specified.

/CLI=filename

Specifies a different command language interpreter (CLI) with which to process the job. The
filename parameter specifies that the CLI be SYS$SYSTEM:filename.EXE. The default CLI is
that defined in the user authorization file (UAF).

/CPUTIME=n

Specifies a CPU time limit for the batch job. Time can be specified as delta time, 0, NONE, or
INFINITE. (For information on specifying time values, see the VSI OpenVMS User's Manual or
the online help topic Date.

When you need less CPU time than authorized, use the /CPUTIME qualifier to override the base
queue value established by the system manager or the value authorized in your UAF. Specify 0 or
INFINITE to request an infinite amount of time. Specify NONE when you want the CPU time to
default to your UAF value or the limit specified on the queue. Note that you cannot request more
time than permitted by the base queue limits or your UAF.

/DELETE (default)
/NODELETE

Controls whether the batch input file is deleted after the job is processed. If you specify
the /NODELETE qualifier, the file is saved in the user's default directory under the default name
INPBATCH.COM. If you specify the /NAME qualifier, the file name of the batch input file is the
same as the job name you supply with the /NAME qualifier.

/HOLD
/NOHOLD (default)

Controls whether or not the job is to be made available for immediate processing.

If you specify the /HOLD qualifier, the job is not released for processing until you specifically
release it with the /NOHOLD or the /RELEASE qualifier of the SET QUEUE/ENTRY command.

/KEEP
/NOKEEP (default)

Controls whether the log file is deleted after it is printed. The /NOKEEP qualifier is the default
unless you specify the /NOPRINTER qualifier.

/LOG_FILE=filespec
/NOLOG_FILE

Controls whether a log file with the specified name is created for the job or whether a log file is
created.

294

DCL Commands

When you use the /LOG_FILE qualifier, the system writes the log file to the file you specify.
If you use the /NOLOG_FILE qualifier, no log file is created. If you specify neither form of
the qualifier, the log file is written to a file in your default directory that has the same file name
as the first command file in the job and a file type of .LOG. Using neither the /LOG_FILE nor
the /NOLOG_FILE qualifier is the default.

You can use the /LOG_FILE qualifier to specify that the log file be written to a different device.
Logical names that occur in the file specification are translated at the time the job is submitted.
The process executing the batch job must have access to the device on which the log file will
reside.

If you omit the /LOG_FILE qualifier and specify the /NAME qualifier, the log file is written to a
file having the same file name as that specified by the /NAME qualifier and the file type .LOG.

/NAME=job-name

Specifies a string to be used as the job name and as the file name for both the batch job log file
and the command file. The job name must be 1 to 39 alphanumeric characters and must be a
valid file name. The default log file name is INPBATCH.LOG; the default command file name is
INPBATCH.COM.

/NOTIFY
/NONOTIFY (default)

Controls whether a message is broadcast to any terminal at which you are logged in, notifying you
when your job completes or aborts.

/PARAMETERS=(parameter[,...])

Specifies 1 to 8 optional parameters that can be passed to the command procedure. The
parameters define values to be equated to the symbols P1 to P8 in the batch job. The symbols are
local to the specified command procedure.

If you specify only one parameter, you can omit the parentheses.

The commas (,) delimit individual parameters. If the parameter contains any spaces, special
characters or delimiters, or lowercase characters, enclose it in quotation marks (“ ”). Individual
parameters cannot exceed 255 characters.

/PRINTER=queue-name
/NOPRINTER

Controls whether the job log file is queued to the specified queue for printing when the job is
complete. The default print queue for the log file is SYS$PRINT.

If you specify the /NOPRINTER qualifier, the /KEEP qualifier is assumed.

/PRIORITY=n

Requires OPER (operator) or ALTPRI (alter priority) privilege to raise the priority above the
value of the system parameter MAXQUEPRI.

Specifies the job scheduling priority for the specified job. The value of n is an integer from 0 to
255, where 0 is the lowest priority and 255 is the highest.

295

DCL Commands

The default value for the /PRIORITY qualifier is the value of the system parameter DEFQUEPRI.
No privilege is needed to set the priority lower than the MAXQUEPRI value.

The /PRIORITY qualifier has no effect on the process priority. The queue establishes the process
priority.

/QUEUE=queue-name[:]

Specifies the name of the batch queue in which the job is to be entered. If you do not specify
the /QUEUE qualifier, the job is placed in the default system batch job queue, SYS$BATCH.

/RESTART
/NORESTART (default)

Specifies whether the job restarts after a system failure or a STOP/QUEUE/REQUEUE
command.

/TRAILING_BLANKS (default)
/NOTRAILING_BLANKS

Controls whether input cards in the card deck are read in card image form or input records are
truncated at the last non blank character. By default, the system does not remove trailing blanks
from records read through the card reader. Use the /NOTRAILING_BLANKS qualifier to request
that input records be truncated.

/WSDEFAULT=n

Defines a working set default for the batch job; the /WSDEFAULT qualifier overrides the
working set size specified in the user authorization file (UAF).

Specify the value of n as a number of 512-byte pagelets on Alpha. Note that OpenVMS rounds
this value up to the nearest CPU-specific page so that the actual amount of physical memory
allowed may be larger than the specified amount on Alpha. The value n can be any integer from
1 to 65,535, 0, or the keyword NONE. For further information, see the VSI OpenVMS System
Manager's Manual.

Use this qualifier to impose a value lower than the base queue value established by the system
manager or lower than the value authorized in your UAF. A value of 0 or the keyword NONE sets
the default value to the value specified either in your UAF or by the working set quota established
for the queue. You cannot request a value higher than your default.

/WSEXTENT=n

Defines a working set extent for the batch job; the /WSEXTENT qualifier overrides the working
set extent in the UAF.

Specify the value of n as a number of 512-byte pagelets on Alpha. Note that OpenVMS rounds
this value up to the nearest CPU-specific page so that the actual amount of physical memory
allowed may be larger than the specified amount on Alpha. The value n can be any integer from
1 to 65,535, 0, or the keyword NONE. For further information, see the VSI OpenVMS System
Manager's Manual.

To impose a lower value, use this qualifier to override the base queue value established by the
system manager rather than the value authorized in your UAF. A value of 0 or the keyword

296

DCL Commands

NONE sets the default value either to the value specified in the UAF or working set extent
established for the queue. You cannot request a value higher than your default.

/WSQUOTA=n

Defines the maximum working set size (working set quota) for the batch job; the /WSQUOTA
qualifier overrides the value in the UAF.

Specify the value of n as a number of 512-byte pagelets on Alpha. Note that OpenVMS rounds
this value up to the nearest CPU-specific page so that the actual amount of physical memory
allowed may be larger than the specified amount on Alpha. The value n can be any integer from
1 to 65,535, 0, or the keyword NONE. For further information, see the VSI OpenVMS System
Manager's Manual.

Use this qualifier to impose a value lower than the base queue value established by the system
manager or lower than the value authorized in your UAF. Specify 0 or NONE if you want the
working set quota defaulted to either your UAF value or the working set quota specified on the
queue. You cannot request a value higher than your default.

Examples
1.

The JOB and PASSWORD cards identify and authorize the user HIGGINS to enter batch
jobs. The command stream consists of a Fortran command and Fortran source statements to
be compiled. The file name AVERAGE following the device name SYS$INPUT provides the
compiler with a file name for the object and listing files. The output files are cataloged in user
HIGGINS's default directory.

If the compilation is successful, the LINK command creates an executable image and the RUN
command executes it. Input for the program follows the RUN command in the command stream.
The last command in the job prints the program listing. The last card in the deck contains the EOJ
(end of job) command.

297

DCL Commands

2.

The /NAME qualifier on the JOB card specifies a name for the batch job. When the job completes,
the printed log file is identified as BATCH1.LOG. The JOB command is continued onto a second
card with the continuation character (-). The /PARAMETERS qualifier defines P1 as A and P2 as
TEST. The last card in the deck contains the EOJ (end of job) command.

LIBRARY
LIBRARY — Invokes the Librarian utility, which creates, modifies, or describes an object, macro,
help, text, or shareable image library. For more information about the Librarian utility, see the VSI
OpenVMS Command Definition, Librarian, and Message Utilities Manual or online help.

Format
LIBRARY library-filespec [input-filespec[,...]]

LICENSE
LICENSE — Invokes the License Management utility, which manages software licenses on the
OpenVMS operating system. For more information about the License Management utility, see the VSI
OpenVMS License Management Utility Manual or online help.

Format
LICENSE subcommand parameter

LINK
LINK — Invokes the OpenVMS Linker, which links one or more object modules into a program
image and defines execution characteristics of the image. For more information about the linker,
including more information about the LINK command, see the VSI OpenVMS Linker Utility Manual
or online help.

298

DCL Commands

Format
LINK filespec[,...]

LOGIN Procedure
LOGIN Procedure — Initiates an interactive terminal session.

Format
Ctrl/C

Ctrl/Y

Return

Description
There is no LOGIN command. You signal your intention to access the system by pressing Return,
Ctrl/C, or Ctrl/Y, on a terminal not currently in use. The system prompts for your user name and your
password (and your secondary password, if you have one) and then validates them.

Specify the optional qualifiers immediately after you type your user name; then press Return to get the
password prompts.

The login procedure performs the following functions:

• Validates your right to access the system by checking your user name and passwords against the
entries in the system's user authorization file (UAF)

• Establishes the default characteristics of your terminal session based on your user name entry in
the UAF

• Executes the command procedure file SYS$SYLOGIN.COM if one exists

• Executes either the command procedure file named LOGIN.COM if one exists in your default
directory, or the command file defined in the UAF, if any

Some systems are set up with a retry facility for users who are accessing the system from remote or
dialup locations. With these systems, when you make a mistake typing your user name or password,
the system allows you to reenter the information. To reenter your login information, press Return. The
system displays the user name prompt again. Now retype your user name and press Return to send
the information to the system. The system displays the password prompt. (There is both a limit to the
number of times you can retry to enter your login information and a time limit between tries.)

Qualifiers
/CLI=command-language-interpreter

Specifies the name of an alternate command language interpreter (CLI) to override the default
CLI listed in the UAF. The CLI you specify must be located in SYS$SYSTEM and have the file
type .EXE.

299

DCL Commands

If you do not specify a command interpreter by using the /CLI qualifier and you do not have a
default CLI listed in the UAF, the system supplies the qualifier /CLI=DCL by default.

/COMMAND[=filespec] (default)
/NOCOMMAND

Controls whether to execute your default login command procedure when you login. Use
the /COMMAND qualifier to specify the name of an alternate login command procedure. If
you specify a file name without a file type, the default file type .COM is used. If you specify
the /COMMAND qualifier and omit the file specification, your default login command procedure
is executed.

Use the /NOCOMMAND qualifier if you do not want your default login command procedure to
be executed.

/CONNECT (default)
/NOCONNECT

Specifies whether or not to reconnect to a virtual terminal.

/DISK=device-name[:]

Specifies the name of a disk device to be associated with the logical device SYS$DISK for the
terminal session. This specification overrides the default SYS$DISK device established in the
UAF.

/LOCAL_PASSWORD

Requests OpenVMS authentication using the user name and password information that is stored
in the SYSUAF.DAT file. This qualifier is used to override external authentication if external
authentication is unavailable.

/NEW_PASSWORD

Requires that you change the account password before logging in (as if the password had
expired). Use this qualifier as a shortcut if you had intended to change your password after login,
or if you suspect that your password has been detected.

/TABLES=(command-table[,...])
/TABLES=DCLTABLES (default)

Specifies the name of an alternate CLI table to override the default listed in the UAF. This table
name is considered a file specification. The default device and directory is SYS$SHARE and the
default file type is .EXE.

If a logical name is used, the table name specification must be defined in the system logical name
table.

If the /CLI qualifier is set to DCL, the /TABLES qualifier defaults to the correct value. If
the /TABLES qualifier is specified without the /CLI qualifier, the CLI specified in the user's UAF
will be used.

Examples
1. Ctrl/Y

Username: HOFFMAN

300

DCL Commands

Password: <PASSWORD>

In this example, pressing Ctrl/Y allows you to access the operating system, which immediately
prompts for a user name. After validating the user name, the system prompts for the password but
does not echo it.

2. Return
Username: HIGGINS/DISK=USER$
Password: <PASSWORD>
Welcome to OpenVMS Alpha (TM) Operating System, Version 7.3 on node LSR
 Last interactive login on Tuesday, 18-DEC-2001 08:41
 Last non-interactive login on Monday, 19-DEC-2001 15:43
$ SHOW DEFAULT
USER$:[HIGGINS]

In this Alpha example, the /DISK qualifier requests that the default disk for the terminal session
be USER$. The SHOW DEFAULT command shows that USER$ is the default disk.

3. Return
Username: JONES
Password: <PASSWORD>
User authorization failure
Return
Username: JONES
Password: <PASSWORD>
Welcome to OpenVMS Alpha (TM) Operating System, Version 7.3 on node LSR
 Last interactive login on Tuesday, 15-DEC-2001 09:16:47.08
 Last non-interactive login on Monday, 14-DEC-2001 17:32:34.27
 1 failure since last successful login.
$

This example shows the “User authorization failure” message, which indicates that the password
has been entered incorrectly. After you successfully log in, a message is displayed showing the
number of login failures since your last successful login. This message is displayed only if login
failures have occurred.

4. Return
Username: JOYCE
Password: <PASSWORD>
Welcome to OpenVMS Alpha (TM) Operating System, Version 7.3 on node LSR
 Last interactive login on Tuesday, 15-DEC-2001 09:16:47.08
 Last non-interactive login on Monday, 14-DEC-2001 17:32:34.27
 WARNING - Primary password has expired; update immediately.
$

This example shows the WARNING message, which indicates that your primary password has
expired. You must use the SET PASSWORD command to change your password before logging
out, or you will be unable to log in again.

For more information on changing your password, see the description of the SET PASSWORD
command in this manual.

LOGOUT
LOGOUT — Terminates an interactive terminal session.

301

DCL Commands

Format
LOGOUT

Description
You must use the LOGOUT command to end a terminal session. Undermost circumstances, if you
turn the power off at your terminal or hang up your telephone connection without using the LOGOUT
command, you remain logged in.

When you use the SET HOST command to log in to a remote processor, you generally need to use the
LOGOUT command to end the remote session.

Qualifiers
/BRIEF

Prints a brief logout message (process name, date, and time) or a full logout message (a brief
message plus accounting statistics).

/FULL

Requests the long form of the logout message. When you specify the /FULL qualifier, the
command interpreter displays a summary of accounting information for the terminal session. The
default qualifier for a batch job is /FULL.

/HANGUP
/NOHANGUP

Determines, for dial up terminals, whether the phone hangs up whenever you log out. By default,
the setting of the /HANGUP qualifier for your terminal port determines whether the line is
disconnected. Your system manager determines whether you are permitted to use this qualifier.

Examples
1. $ LOGOUT

 GILLINGS logged out at 05-JUN-2001 17:48:56.73

In this example, the LOGOUT command uses the default brief message form. No accounting
information is displayed.

2. $ LOGOUT/FULL
 GUZMAN logged out at 05-JUN-2001 14:23:45.30
Accounting information:
Buffered I/O count: 22 Peak working set size: 90
Direct I/O count: 10 Peak virtual size: 69
Page faults: 68 Mounted volumes: 0
Charged CPU time: 0 00:01:30.50 Elapsed time: 0 04:59:02.63
Charged vector CPU time: 0 00:00:21.62

In this example, the LOGOUT command with the /FULL qualifier displays a summary of
accounting statistics for the terminal session.

302

DCL Commands

MACRO
MACRO — By default on OpenVMS Alpha and OpenVMS Integrity servers, invokes the MACRO
compiler for OpenVMS Systems to compile VAX assembly language source files into native
OpenVMS Alpha or OpenVMS Integrity servers object code.

Format
MACRO filespec[,...]

Description
The /ALPHA qualifier causes the MACRO command to invoke the MACRO-64 assembler if it is
installed on Alpha.

The /MIGRATION qualifier is the default on Alpha and Integrity servers On those platforms,
specifying MACRO is the same as specifying MACRO/MIGRATION.

For a complete description of the MACRO compiler for OpenVMS Systems, see the VSI OpenVMS
MACRO Compiler Porting and User's Guide.

MAIL
MAIL — Invokes the Mail utility, which is used to send messages to other users of the system. For
more information about the Mail utility, see the VSI OpenVMS User's Manual or online help.

Format
MAIL [filespec] [recipient-name]

MERGE
MERGE — Invokes the Sort/Merge utility, which combines 2 to 10 similarly sorted input files and
creates a single output file. Note that input files to be merged must be in sorted order. For more
information about the Sort/Merge utility, see the VSI OpenVMS User's Manual or online help.

Format
MERGE input-filespec1,input-filespec2[,...] output-filespec

MESSAGE
MESSAGE — Invokes the Message utility, which compiles one or more files of message definitions.
For more information about the Message utility, see the VSI OpenVMS Command Definition,
Librarian, and Message Utilities Manual or online help.

303

DCL Commands

Format
MESSAGE filespec[,...]

MONITOR
MONITOR — Invokes the Monitor utility, which monitors classes of systemwide performance data
at a specified interval. For more information about the Monitor utility, see the VSI OpenVMS System
Management Utilities Reference Manual or online help.

Format
MONITOR [/qualifier[,...]] classname[,...] [/qualifier[,...]]

MOUNT
MOUNT — The Mount command (MOUNT) is used to make a disk or magnetic tape available for
processing.

Format
MOUNT device-name[:][,...] [volume-label[,...]] [logical-name[:]]

Parameters
device-name[:][,...]

Specifies the physical device name or logical name of the device on which the volume is to be
mounted. On a system where volumes are not connected to HSCs (hierarchical storage controllers),
use the following format:

ddcu:

The dd describes the device type of the physical devices used. For example, an RA60 disk drive is
device type DJ, and an RA80 or RA81 disk drive is device type DU. The c identifies the controller,
and the u identifies the unit number of the device.

On a system with HSCs, use one of the following formats:

node$ddcu:
allocation-class$ddcu:

If your devices are dual ported to HSCs, use the allocation-class format. For example, 125DUA23
represents an RA80 or RA81 disk with unit number 23. The disk's allocation class is 125. The c
part of the format is always A for HSC disks. TROLL$DJA12 represents an RA60 disk with unit
number 12. The device is connected to an HSC named TROLL. See the VSI OpenVMS Cluster
Systems for more information about naming conventions.

304

DCL Commands

Device names can be generic so that if no controller or unit number is specified, the system attempts
to mount the first available device that satisfies those specified components of the device names. If
no volume is physically mounted on the specified device, MOUNT displays a message requesting
that you place the volume in the device; after you place the volume in the named drive, MOUNT then
completes the operation.

If you specify more than one device name for a disk or magnetic tape volume set, separate the device
names with either commas or plus signs. For a magnetic tape volume set, you can specify more
volume labels than device names or more device names than volumes.

volume-label[,...]

Specifies the label on the volume.

The number of characters allowed in a label depends on the type of device, as follows:

Device Type Number of Characters in Label
Magnetic tape 0-6
Files-11 disk 1-12
ISO 9660 disk 1-32

OpenVMS requires disk volume labels to be unique in the first 12 characters within a given
domain. For example, disks mounted by different members of the same group using the /GROUP
qualifier must be unique. However, disks mounted in different domains, such as one mounted using
the /GROUP qualifier and one mounted privately, can use the same volume label.

If you mount an ISO 9660 volume using the /SYSTEM or /CLUSTER qualifier, and he volume
label is not unique within the first 12 characters, you must supply an alternate volume label using
the qualifier /OVERRIDE=IDENTIFICATION. If you choose this option, then Mount verification is
disabled for the device.

In addition, if a volume is part of a volume set and the first 12 characters of the volume-set name are
the same as the first 12 characters of the volume label, a lock manager deadlock will occur. To avoid
this problem, you must override either the volume label (by using the /OVERRIDE qualifier) or the
volume-set name (by using the /BIND qualifier).

If you specify more than one volume label, separate the labels with either commas or plus signs. The
volumes must be in the same volume set and the labels must be specified in ascending order according
to relative volume number.

When you mount a magnetic tape volume set, the number of volume labels need not equal the number
of device names specified. When a magnetic tape reaches the end-of-tape (EOT) mark, the system
requests the operator to mount the next volume on one of the devices. The user is not informed of this
request; only the operator is informed.

When you mount a disk volume set, each volume label specified in the list must correspond to a
device name in the same position in the device name list.

The volume-label parameter is not required when you mount a volume with the /FOREIGN
or /NOLABEL qualifier or when you specify /OVERRIDE=IDENTIFICATION. To specify a logical
name when you enter either of these qualifiers, type any alphanumeric characters in the volume-label
parameter position.

logical-name[:]

305

DCL Commands

Defines a 1- to 255-alphanumeric character string logical name to be associated with the volume.

If you do not specify a logical name, the MOUNT command assigns the default logical
name DISK$volume-label to individual disk drives; it assigns the default logical name
DISK$volume-set-name to the device on which the root volume of a disk volume set is mounted.
Note that if you specify a logical name in the mount request that is different from DISK$volume-label
or DISK$volume-set-name, then two logical names are associated with the device.

If you do not specify a logical name for a magnetic tape drive, the MOUNT command assigns only
one logical name, TAPE$volume-label, to the first magnetic tape device in the list. No default logical
volume-set name is assigned in this case.

The MOUNT command places the name in the process logical name table, unless you
specify /GROUP or /SYSTEM. In the latter cases, it places the logical names in the group or system
logical name table.

If you specify the /CLUSTER qualifier, the logical name is established on each node in the cluster.

Note

Avoid assigning a logical name that matches the file name of an executable image in SYS$SYSTEM.
Such an assignment prohibits you from invoking that image.

Do not use the logical name assigned to a volume as a distributed file system (DFS) access point. If
you attempt to add a DFS access point using the same name as the logical name, DFS fails as in the
following example:

$ SHOW LOG DISK$*
(LNM$SYSTEM_TABLE)
 "DISK$TIVOLI_SYS" = "TIVOLI$DUA0:"
$ RUN SYS$SYSTEM:DFS$CONTROL
DFS> ADD ACCESS DISK$TIVOLI_SYS TIVOLI$DUA0:[000000]
%DNS-W-NONSNAME, Unknown namespace name specified

If the logical name of a volume is in a process-private table, then the name is not deleted when the
volume is dismounted.

Description
The Mount command (MOUNT) is used to make a disk or magnetic tape available for processing.
MOUNT allows you to ensure that the device has not been allocated to another user, that a volume
is physically loaded on the device specified, and that the label on the volume matches the label
specified. For magnetic tape volumes, MOUNT also checks the volume accessibility field of the
VOL1 label.

Normally, MOUNT allocates the device to the user who enters the command. However, mounting
volumes with the /SHARE, /GROUP, or /SYSTEM qualifier deallocates the device, because the
purpose of these qualifiers is to make the volume shareable.

Note

To mount a volume on a device, you must have read (R) or control (C) access to that device.

Any subprocess in the process tree can mount or dismount a volume for the job. When a subprocess
mounts a volume (for the job) as private, the master process of the job becomes the owner of this

306

DCL Commands

device. This provision is necessary because the subprocess may be deleted and the volume should
remain privately mounted for this job. However, when a subprocess explicitly allocates a device
and then mounts a private volume on this device, the subprocess retains device ownership. In this
situation, only subprocesses with SHARE privilege have access to the device.

Upon successful completion of the operation, MOUNT notifies you with a message sent to
SYS$OUTPUT. If the operation fails for any reason, MOUNT notifies you with an error message.

Certain file utilities such as MOUNT allocate virtual memory to hold copies of the index file and
storage bitmaps. Beginning with larger bitmaps in OpenVMS Version 7.2, the virtual memory
requirements of these utilities increase correspondingly. To use MOUNT on volumes with large
bitmaps, you might need to increase your page file quota. The virtual memory size is shown as Alpha
512-byte pagelets per block of bitmap. Note that the size of the index file bitmap in blocks is the
maximum number of files divided by 4096. The virtual memory requirements for MOUNT is equal to
the sum of the sizes of all index file bitmaps and storage bitmaps on the volume set. This requirement
applies to MOUNT only if you rebuild a volume.

If you have a disk volume that you do not want the file system to cache, such as a database volume,
use the /NOCACHE qualifier. This disables caching for the volume:

• It stops the following metadata caches from caching any metadata for the volume on the local
node:

The Extent Cache
The File Identifier Cache
The Quota Cache

• It stops the local Extended File Cache or Virtual I/O Cache from caching any files in the volume.

MOUNT Usage Summary
The Mount command (MOUNT) makes a disk or magnetic tape volume available for processing.

To invoke MOUNT, enter the DCL command MOUNT, followed by the device name,volume
label, and logical name. You must include a device name and a volume label (unless you
specify /OVERRIDE=IDENTIFICATION or use the /FOREIGN or /NOLABEL qualifier); the logical
name is optional.

MOUNT returns you to the DCL level after it either successfully completes the operation or fails,
generating an error message. If you press Ctrl/Y or Ctrl/C, MOUNT aborts the operation and returns
you to the DCL prompt.

You can direct output from MOUNT operations with the /COMMENT and /MESSAGE qualifiers.
When the mount operation requires operator assistance, use /COMMENT to specify additional
information to be included with the operator request. The /COMMENT text string is sent to the
operator log file and to SYS$OUTPUT. The string must contain no more than 78 characters.

Use the /MESSAGE qualifier (this is the default) to send mount request messages to your current
SYS$OUTPUT device. If you specify /NOMESSAGE during an operator-assisted mount, messages
are not sent to SYS$OUTPUT; the operator sees them, however, if an operator terminal is enabled to
receive messages.

Many MOUNT qualifiers require special privileges. Some qualifiers require different privileges
according to which qualifier keyword you specify. See the individual qualifiers for details. The
following table lists MOUNT qualifiers that require special privileges:

307

DCL Commands

Qualifier Keywords Required Privilege
/ACCESSED OPER

[NO]DATA[=n] OPER
[NO]EXTENT[=n] OPER
[NO]FILE_ID[=n] OPER

/CACHE=

[NO]QUOTA[=n] OPER
/FOREIGN VOLPRO1

/GROUP GRPNAM
/MULTI_VOLUME VOLPRO

ACCESSIBILITY VOLPRO1

EXPIRATION VOLPRO1

LOCK VOLPRO1

/OVERRIDE=

SHADOW VOLPRO1

/OWNER_UIC= uic VOLPRO1

UNIQUE OPER
SAME:device OPER

/PROCESSOR=

file-spec OPER and CMKRNL
/PROTECTION= code VOLPRO1

/QUOTA VOLPRO1

/SYSTEM SYSNAM
/WINDOWS= n OPER

1Or your UIC must match the volume UIC.

Qualifiers
/ACCESSED=n

Specifies, for ODS-1 disk volumes, the approximate number of directories that will be in use
concurrently on the volume. (The /ACCESSED qualifier is meaningless for ODS-2 volumes.)

Specify a value from 0 to 255 to override the default that was specified when the volume was
initialized.

You need the user privilege OPER to use /ACCESSED.

Example

The following command requests the volume labeled WORK to be mounted on DKA1, specifying
150 as the number of active directories on the volume:

$ MOUNT/ACCESSED=150 DKA1 WORK

/ASSIST (default)
/NOASSIST

Directs the mount operation to allow operator or user intervention if the mount request fails.

308

DCL Commands

When you specify the /ASSIST qualifier, MOUNT notifies the user and certain classes of operator
if a failure occurs during the mount operation. If a failure occurs, the operator or user can either
abort the operation or correct the error condition to allow the operation to continue.

The operator-assist messages are sent to all operator terminals that are enabled to receive
messages; magnetic tape mount requests go to TAPE and DEVICE operators, and disk mount
requests go to DISK and DEVICE operators. Thus, if you need operator assistance while
mounting a disk device, a message is sent to DISK operators. See the description of the REPLY
command for more information about enabling and disabling operator terminals.

Any operator reply to a mount request is written to SYS$OUTPUT to be displayed on the user's
terminal or written in a batch job log.

If no operator terminal is enabled to receive and respond to a mount assist request, a message
is displayed informing the user of the situation. If a volume is placed in the requested drive, no
additional operator response is necessary. If the mount request originates from a batch job and no
operator terminal is enabled to receive messages, the mount is aborted. Seethe OpenVMS System
Messages: Companion Guide for Help Message Users for a description of the error messages and
their suggested user actions.

The default is /ASSIST and can be overridden by /NOASSIST.

Example
The following command mounts an HSG80 Fibre Channel disk volume labeled DOC and
assigns the logical name WORK. The /NOASSIST qualifier signals MOUNT that no operator
intervention is necessary.

$ MOUNT/NOASSIST 1DGA0: DOC WORK
%MOUNT-I-MOUNTED, DOC mounted on _1DGA0: (NODE)

/AUTOMATIC (default)
/NOAUTOMATIC

Determines whether MOUNT enables or disables automatic volume switching and labeling for
magnetic tape or ISO 9660 CD-ROM.

Magnetic Tape
If you have multiple magnetic tape drives allocated to a volume set, the magnetic tape ancillary
control process (MTACP) performs the volume switch by sequentially selecting the next available
drive allocated to the volume set. The MTACP expects the next reel of the volume set to be
loaded on that drive.

If the MTACP is writing to the volume set, it creates a label and initializes the magnetic tape
with that label and the protections established for the first magnetic tape of the volume set. If it
is reading from the volume set, the MTACP generates the label and attempts to mount the next
magnetic tape with that label. If the drive has the wrong magnetic tape (or no magnetic tape)
loaded, the MTACP sends a message to the operator's console to prompt for the correct magnetic
tape.

The label generated by the MTACP fills the 6-character volume identifier field. The first four
characters of the field contain the first four characters of the label specified in the MOUNT
command, padded with underscores when the label is not at least four characters. The fifth and
sixth characters contain the relative volume number for this reel in the volume set.

309

DCL Commands

If you specify /NOAUTOMATIC, the MTACP requires operator intervention to switch to the next
drive during end-of-tape processing, and requires that the operator specify a label for each new
reel added to a volume set.

ISO 9660 CD-ROM

Under ISO 9660, not all volume-set members must be mounted to perform I/O operations against
that volume set. By default, if I/O operations attempt to access an unmounted volume-set member,
an operator message is sent to all DISK CLASS operators for system-mounted volume sets, or
the owning process for privately mounted volume sets. The message specifies the volume-set
member to mount to complete the I/O operation requested. If /NOAUTOMATIC is specified,
then an I/O operation to a non mounted volume set member completes with an error message
SS$_DEVNOTMOUNT.

Example

The following command instructs MOUNT not to generate its own label for the second volume,
but to use the ones supplied with the MOUNT command instead. If the second volume is not
already labeled, then the operator must use REPLY/INIT and supply the second label.

$ MOUNT/NOAUTOMATIC MTA0: ABCD,EFGH

/BIND=volume-set-name

Creates a volume set of one or more disk volumes or adds one or more volumes to an existing
volume set.

The parameter, volume-set-name, specifies a 1- to 12-alphanumeric-character name
identifying the volume set.

An ISO 9660 volume-set name can be from 1 to 128 characters in length.

OpenVMS requires volume-set names to be unique in the first 12 characters. In addition, if the
first 12 characters of volume-set name are the same as the first 12 characters of any volume label,
a lock manager deadlock will occur. To avoid this problem, you must override either the volume
label (by using the /OVERRIDE qualifier) or the volume-set name (by using the /BIND qualifier).

You must specify the /BIND qualifier when you first create the volume set or each time you
add a volume to the set. To dismount an individual volume of the volume set, you must use the
DISMOUNT qualifier /UNIT;otherwise, dismounting an individual volume dismounts the entire
volume set.

When you create a volume set, the volumes specified in the volume-label list are assigned relative
volume numbers based on their positions in the label list. The first volume specified becomes the
root volume of the set.

When you add a volume or volumes to a volume set, the first volume label specified must be that
of the root volume, or the root volume must already be on line.

Note that if you attempt to create a volume set from two or more volumes that already contain
files and data, the file system does not issue an error message when you issue the MOUNT/BIND
command. However, the volumes are unusable as a volume set because the directory structures
are not properly bound.

310

DCL Commands

If you mount an ISO 9660 volume using the /SYSTEM or /CLUSTER qualifier, and the volume
label is not unique within the first 12 characters, you must supply an alternate 12-character
volume label using the qualifier /BIND=volume-set-name. If you choose this option, then Mount
verification is disabled for the device.

Note

Once a volume is bound into a volume set, it cannot easily be unbound. To unbind a bound volume set
(BVS):

1. Do an image backup of the BVS.

2. Initialize all volumes of the BVS.

3. Do an image restore to a single volume with the /NOINITIALIZE qualifier, or do a non image
restore to a single volume.

Examples
The following command creates a volume set named LIBRARY. This volume set consists of
the volumes labeled BOOK1, BOOK2, and BOOK3, which are mounted physically on devices
DMA0, DMA1, and DMA2, respectively.

$ MOUNT/BIND=LIBRARY DMA0:,DMA1:,DMA2: BOOK1,BOOK2,BOOK3

The following command creates a volume set with the logical name TEST3. The volume set
TEST3 is not shadowed, however each element of the volume set (TEST3011 and TEST3012) is a
shadow set, providing redundancy for the volume set as a whole.

$ MOUNT/BIND=TEST3 DSA3011/SHADOW=(1DUA402:,1DUA403:),
DSA3012/SHADOW=(1DUA404:,1DUA405:) TEST3011,TEST3012 TEST3

/BLOCKSIZE=n

Specifies the default block size for magnetic tape volumes.

The parameter, n, specifies the default block size value for magnetic tape volumes. Valid values
are in the range 20 to 65,532 for OpenVMS RMS operations, and 18 to 65,534 for non OpenVMS
RMS operations. By default, records are written to magnetic tape volumes in 2048-byte blocks.
For foreign or unlabeled magnetic tapes, the default is 512 bytes.

You must specify /BLOCKSIZE in two situations:

• When mounting magnetic tapes that do not have HDR2 labels. For these magnetic tapes, you
must specify the block size. For example, you must specify /BLOCKSIZE=512 to mount an
RT-11 magnetic tape.

• When mounting magnetic tapes that contain blocks whose sizes exceed the default block size
(2048 bytes). In this case, specify the size of the largest block for the block size.

Example
In the following example, the /BLOCKSIZE qualifier specifies a block size of 1000 bytes; the
default for a magnetic tape mounted with the /FOREIGN qualifier is 512.

311

DCL Commands

$ MOUNT/FOREIGN/BLOCKSIZE=1000 MTA1:

/CACHE=(keyword[,...])
/NOCACHE

For disks, controls whether caching limits established at system generation time are disabled or
overridden. With the TAPE_DATA option, enables write caching for the tape controller specified
(if the tape controller supports write caching).

The following table lists the keywords for this qualifier:

Keyword Description
DATA and NODATA Enable or disable Extended File Caching (XFC). To enable XFC

caching, you must specify the DATA (this is the default value
for /CACHE qualifier).To disable XFC, specify NODATA. Note
that /NOCACHE is equivalent to /CACHE=NODATA.

EXTENT[=n] and
NOEXTENT

Enable or disable extent caching. To enable extent caching, you must
have the operator user privilege (OPER) and you must specify n,
the number of entries in the extent cache. Note that NOEXTENT is
equivalent to EXTENT=0; both disable extent caching.

FILE_ID[=n] and
NOFILE_ID

Enable or disable file identification caching. To enable file
identification caching, you must have the operator user privilege
(OPER) and you must specify n, the number of entries, as a value
greater than 1. Note that NOFILE_ID is equivalent to FILE_ID=1;
both disable file identification caching.

LIMIT=n Specifies the maximum amount of free space in the extent cache in
one-thousandths of the currently available free space on the disk.

QUOTA[=n] and
NOQUOTA

Enable or disable quota caching. To enable quota caching, you must
have the operator user privilege (OPER) and you must specify n,
the number of entries in the quota cache. Normally n is set to the
maximum number of active users expected for a disk with quotas
enabled. Both NOQUOTA and QUOTA=0 disable quota file caching.

TAPE_DATA Enables write caching for a magnetic tape device if the tape controller
supports write caching. The /CACHE qualifier is the default for
mounting tape devices. You must specify TAPE_DATA to enable
write caching. If the tape controller does not support write caching,
the keyword is ignored.

The write buffer stays enabled even after you dismount the magnetic
tape. To disable the write buffer, mount a tape with the /NOCACHE
qualifier.

If a tape supports compaction, then the default is compaction, and
caching is enabled. For tape storage devices that support compaction,
the following command is valid:

$ MOUNT TAPE_DATA/FOREIGN/MEDIA=NOCOMPACTION/
NOCACHE

WRITETHROUGH Disables the deferred write feature for file headers. By default, this
feature is enabled, which improves the performance of applications,
such as PATHWORKS, that use it. The deferred write feature is not
available on Files-11 ODS-1 volumes.

312

DCL Commands

Note

In a mixed-version OpenVMS cluster, an attempt to mount a volume with /CLUSTER
and /CACHE=[NO]DATA from a V8.4 system fails on the pre-V8.4 systems (%MOUNT-W-
RMTMNTFAIL) with MOUNT-F-BADPARAM.

For more information on the restriction, see Enabling or Disabling XFC While Mounting a Volume in
the OpenVMS Version 8.4 New Features and Documentation Overview manual.

Used with the disk options, the /CACHE qualifier overrides one or more of the present disk
caching limits established at system generation time. Used with the TAPE_DATA option,
the /CACHE qualifier enables write caching for the tape controller specified.

If you do not specify the /CACHE qualifier and it is not implied by the use of the
qualifier /MEDIA_FORMAT=COMPACTION, caching is enabled by default.

If you specify more than one option, separate them by commas and enclose the list in parentheses.
The options [NO]EXTENT, [NO]FILE_ID, LIMIT, and [NO]QUOTA apply only to a disk device.
The option TAPE_DATA applies only to a tape device.

The /NOCACHE qualifier is effective only if compaction is not enabled. If compaction is enabled
(with the /MEDIA_FORMAT=COMPACTION), caching is enabled by default.

If you specify /NOCACHE for a disk device, all caching is disabled for this volume. Note that
the /NOCACHE qualifier is equivalent to /CACHE=(NOEXTENT, NOFILE_ID, NOQUOTA,
WRITETHROUGH, NODATA).

In the following command, NODATA is taken as default when you supply the following qualifiers
NOEXTENT, NOFILE_ID, NOQUOTA, WRITETHROUGH (that is, XFC is disabled):

$ MOUNT/CACHE=(NOEXTENT, NOFILE_ID, NOQUOTA, WRITETHROUGH)
_$ 1DGA0: FILES WORK
%MOUNT-I-MOUNTED, FILES mounted on 1DGA0: (NODE)

In the following command, DATA is take as default (that is, XFC is enabled):

$ MOUNT/CACHE=(FILE_ID=10)
_$ 1DGA0: FILES WORK
%MOUNT-I-MOUNTED, FILES mounted on 1DGA0: (NODE)

If you specify /NOCACHE for a magnetic tape device, the tape controller's write cache is disabled
for this volume.

Examples
The following command mounts an HSG80 Fibre Channel disk device labeled FILES and assigns
the logical name WORK. The /CACHE qualifier enables an extent cache of 60 entries, a file
identification cache of 60 entries, and a quota cache of 20; it disables write back caching of file
headers.

$ MOUNT/CACHE=(EXTENT=60,FILE_ID=60,QUOTA=20,WRITETHROUGH) -
_$ 1DGA0: FILES WORK
%MOUNT-I-MOUNTED, FILES mounted on _1DGA0: (NODE)

The following command mounts the volume TAPE on device MUA0 and instructs MOUNT to
enable the tape controller's write cache for MUA0:

313

DCL Commands

$ MOUNT/CACHE=TAPE_DATA MUA0: TAPE
%MOUNT-I-MOUNTED, TAPE mounted on _NODE$MUA0:

The following command enables data cache (XFC) on a disk. The /CACHE=DATA qualifier is
the default value for a basic MOUNT command:

$ MOUNT/CACHE=(DATA)
_$ 1DGA0: FILES WORK
%MOUNT-I-MOUNTED, FILES mounted on 1DGA0: (NODE)

The following command disables data cache (XFC) on a disk. /NOCACHE qualifier is equivalent
to /CACHE=(NODATA):

$ MOUNT/CACHE=(NODATA)
_$ 1DGA0: FILES WORK
%MOUNT-I-MOUNTED, FILES mounted on 1DGA0: (NODE)

The following command disables data cache that is, XFC and metadata cache that is,
XQP. /NOCACHE qualifier is equivalent to /CACHE=(NODATA):

$ MOUNT/NOCACHE
_$ 1DGA0: FILES WORK
%MOUNT-I-MOUNTED, FILES mounted on 1DGA0: (NODE)

/CLUSTER

Specifies that after the volume is successfully mounted on the local node, or if it is already
mounted /SYSTEM on the local node, it is to be mounted on every other node in the existing
OpenVMS Cluster (that is, the volume is mounted clusterwide).

Only system or group volumes can be mounted clusterwide. If you specify the /CLUSTER
qualifier with neither the /SYSTEM nor the /GROUP qualifier, the default is /SYSTEM. Note that
you must use a cluster device-naming convention. Use either node$device-name or allocation-
class$device-name as required by your configuration.

You need the user privileges GRPNAM and SYSNAM, respectively, to mount group and system
volumes clusterwide.

If the system is not a member of an OpenVMS Cluster, the /CLUSTER qualifier has no effect.

Example
The following MOUNT/CLUSTER command mounts the volume SNOWWHITE on
DOPEY$DMA1, then proceeds to mount the volume clusterwide. The SHOWDEVICE/FULL
command displays information about the volume, including the other nodes on which it is
mounted.

$ MOUNT/CLUSTER DOPEY$DMA1: SNOWWHITE DWARFDISK
%MOUNT-I-MOUNTED, SNOWWHITE mounted on _DOPEY$DMA1:
$ SHOW DEVICE/FULL DWARFDISK:

Disk 2DMA1: (DOPEY), device type RK07, is online, mounted,
 file-oriented device, shareable, served to cluster via MSCP
 Server, error logging is enabled.

 Error count 0 Operations completed
 159
 Owner process "" Owner UIC
 [928,49]

314

DCL Commands

 Owner process ID 00000000 Dev Prot
 S:RWED,O:RWED,G:RW,W:R
 Reference count 1 Default buffer size
 512
 Total blocks 53790 Sectors per track
 22
 Total cylinders 815 Tracks per cylinder
 3
 Allocation class 2

 Volume label "SNOWWHITE" Relative volume number
 0
 Cluster size 3 Transaction count
 1
 Free blocks 51720 Maximum files allowed
 6723
 Extend quantity 5 Mount count
 7
 Mount status System Cache name "_
255DWARF1:XQPCACHE"
 Extent cache size 64 Maximum blocks in extent cache
 5172
 File ID cache size 64 Blocks currently in extent cache
 0
 Quota cache size 25 Maximum buffers in FCP cache
 349

 Volume status: ODS-2, subject to mount verification,
 file high-water marking, write-through XQP caching enabled,
 write-through XFC caching enabled.
 Volume is also mounted on DOC, HAPPY, GRUMPY, SLEEPY, SNEEZY, BASHFUL.

/COMMENT=string

Specifies additional information to be included with the operator request when the mount
operation requires operator assistance.

The parameter, string, specifies a text string that is output to the operator log file and the
current SYS$OUTPUT device. The string must contain no more than 78 characters.

Examples
The following command requests the operator to mount the disk volume TESTSYS on the device
DYA1. Notice that the /COMMENT qualifier is used to inform the operator of the location of the
volume. After the operator places the volume in DYA1, MOUNT retries the operation. After the
operation completes, the operator request is canceled.

$ MOUNT DYA1: TESTSYS/COMMENT="Volume in cabinet 6."
%MOUNT-I-OPRQST, Please mount volume TESTSYS in device _DYA1:
Volume in cabinet 6.
%MOUNT-I-MOUNTED TESTSYS mounted on _DYA1:
%MOUNT-I-OPRQSTDON, operator request canceled - mount
completed successfully

The following command is the same as in the previous example. However, in this example,
because the requested device is in use, the operator aborts the mount.

$ MOUNT DYA1: TESTSYS/COMMENT="Volume in cabinet 6."

315

DCL Commands

%MOUNT-I-OPRQST, Please mount volume TESTSYS in device _DYA1:
Volume in cabinet 6.
%MOUNT-I-OPREPLY, This is a '/pending' response from the operator.
31-DEC-1990 10:27:38.15, request 2 pending by operator TTB6
%MOUNT-I-OPREPLY, This is a '/abort' response from the operator.
31-DEC-1990 10:29:59.34, request 2 aborted by operator TTB6
%MOUNT-F-OPRABORT, mount aborted by operator

The following command requests the operator to mount the volume TESTSYS on the device
DYA0. In this example, the operator notices that the requested device is in use and redirects the
mount to device DYA1.

$ MOUNT DYA0: TESTSYS/COMMENT="Volume in cabinet 6, once again with
 feeling."
%MOUNT-I-OPRQST, Please mount volume TESTSYS in device _DYA0:
Volume in cabinet 6, once again with feeling.
%MOUNT-I-OPREPLY, Substitute DYA1:
31-DEC-1990 10:43:42.30, request 3 completed by operator TTB6
%MOUNT-I-MOUNTED, TESTSYS mounted on _DYA1:

/CONFIRM virtual-unit-name[:] /SHADOW=(physical-dev-name[:][,...])
/NOCONFIRM virtual-unit-name[:] /SHADOW=(physical-dev-name[:][,...])

Causes MOUNT to pause and request confirmation before performing a copy operation on the
specified disk device. This qualifier is applicable only if you have the volume shadowing option.
See the VSI Volume Shadowing for OpenVMS for additional information.

This qualifier controls whether MOUNT issues a request to confirm a full copy operation when
mounting a shadow set. The /SHADOW qualifier must be used with the /CONFIRM qualifier.
Use /CONFIRM to display the volume label and volume owner for any specified physical device
that is a target for a copy operation. MOUNT stops before any copy operations occur and issues
the following prompt:

Allow FULL shadow copy on the above member(s)? [N]:

If you respond Y or YES, the mount operation continues automatically with copy operations
allowed. If you respond N, NO, RETURN, or Ctrl/Z, the command quits without mounting any
of the specified volumes (including volumes that did not require copy operations). If you type a
response other than those listed above, MOUNT reissues the prompt.

The /CONFIRM qualifier is similar to /NOCOPY. Use /CONFIRM to mount shadow
sets interactively; use /NOCOPY in the site-specific startup command procedure
SYS$MANAGER:SYSTARTUP_VMS.COM.

Example
The following example shows how to use the /CONFIRM qualifier to check the status of potential
shadow set members before any data is erased. The command instructs MOUNT to build a
shadow set with the specified devices, and prompts for permission to perform a copy operation.
The response of YES instructs MOUNT to mount the shadow set.

$ MOUNT/CONFIRM DSA0:/SHADOW=(200DKA200:,200DKA300:,200DKA400:)
 X5OZCOPY

%MOUNT-F-SHDWCOPYREQ, shadow copy required
Virtual Unit - DSA0 Volume Label - X5OZCOPY
 Member Volume Label Owner UIC
 200DKA200: (VIPER1) X5OZCOPY [SYSTEM]

316

DCL Commands

 200DKA400: (VIPER1) X5OZCOPY [SYSTEM]
Allow FULL shadow copy on the above member(s)? [N]:)
Y

%MOUNT-I-MOUNTED, X5OZCOPY mounted on _DSA0:
%MOUNT-I-SHDWMEMSUCC, _200DKA300: (VIPER1) is now a valid member of
the shadow set
%MOUNT-I-SHDWMEMCOPY, _200DKA200: (VIPER1) added to the shadow set
with a copy operation
%MOUNT-I-SHDWMEMCOPY, _200DKA400: (VIPER1) added to the shadow set
with a copy operation

/COPY virtual-unit-name[:] /SHADOW=(physical-dev-name[:][,...]) (default)
/NOCOPY virtual-unit-name[:] /SHADOW=(physical-dev-name[:][,...])

Enables or disables copy operations on physical devices specified when you mount a shadow set.
This qualifier is applicable only if you have the volume shadowing option. See the VSI Volume
Shadowing for OpenVMS for additional information.

The /COPY qualifier instructs MOUNT to perform copy operations on shadow set members.
You can mount shadow sets with /NOCOPY to test if proposed shadow set members are targets
of copy operations. If any of the specified volumes is a target of a copy operation, the command
quits without mounting any of the specified volumes (including those that did not require a copy
operation).

The /NOCOPY qualifier is similar to /CONFIRM. Use /NOCOPY to mount shadow sets in
the site-specific startup command procedure SYS$MANAGER:SYSTARTUP_VMS.COM;
use /CONFIRM for interactive mounting.

Example
The following example shows how to use the /NOCOPY qualifier to check the status of potential
shadow set members before any data is erased. The command instructs MOUNT to build a
shadow set with the specified devices only if a copy operation is not required. Because the device
DUA7 required a copy operation to become a member of the shadow set, the mount failed.
You could reissue the command specifying /COPY to instruct MOUNT to build the shadow set
providing the necessary copy operation.

$ MOUNT/NOCOPY DSA2: /SHADOW=(1DUA4:,1DUA6:,1DUA7:) -
_$ SHADOWVOL DISK$SHADOWVOL
%MOUNT-F-SHDWCOPYREQ, shadow copy required
%MOUNT-I-SHDWMEMFAIL, DUA7: failed as a member of the shadow set
%MOUNT-F-SHDWCOPYREQ, shadow copy required

/DATA_CHECK[=(keyword[,...])]

Overrides the read-check or write-check option (or both) specified for a volume when it was
initialized.

The keyword, READ, performs checks following all read operations, and the keyword, WRITE,
performs checks following all write operations.

You can specify either or both of the keywords. If you specify more than one keyword, separate
them by commas and enclose the list in parentheses.

If you specify the /DATA_CHECK qualifier without specifying a keyword, MOUNT defaults
to /DATA_CHECK=WRITE.

317

DCL Commands

Example
The following command mounts a volume labeled SAM on CLEMENS$DKA2 and assigns the
logical name BOOK. The /DATA_CHECK=READ qualifier overrides a previous INITIALIZE/
DATA_CHECK=WRITE specification, so that subsequent read operations on BOOK are subject
to data-checking operations.

$ MOUNT/DATA_CHECK=READ CLEMENS$DKA2: SAM BOOK

/DENSITY=keyword

Specifies the density at which a magnetic tape is to be written. This qualifier is valid only if you
mount a tape specifying the /FOREIGN qualifier. If you change the density on a tape, the first
operation on the tape must be a write operation.

The densities supported for tapes are shown in the following table:

Table 3. Keywords for Tapes

Keyword Meaning
DEFAULT Default density
800 NRZI 800 bits per inch (BPI)
1600 PE 1600 BPI
6250 GRC 6250 BPI
3480 IBM 3480 HPC 39872 BPI
3490E IBM 3480 compressed
833 DLT TK50: 833 BPI
TK50 DLT TK50: 833 BPI
TK70 DLT TK70: 1250 BPI
6250 RV80 6250 BPI EQUIVALENT
NOTE: Only the symbols listed above are understood by TMSCP/TUDRIVER code prior to
OpenVMS Version 7.2. The remaining symbols in this table are supported only on OpenVMS Alpha
and Integrity server systems.
TK85 DLT Tx85: 10625 BPI -- Cmpt III - Alpha/Integrity servers only
TK86 DLT Tx86: 10626 BPI -- Cmpt III - Alpha/Integrity servers only
TK87 DLT Tx87: 62500 BPI -- Cmpt III - Alpha/Integrity servers only
TK88 DLT Tx88: (Quantum 4000) -- Cmpt IV - Alpha/Integrity servers only
TK89 DLT Tx89: (Quantum 7000) -- Cmpt IV - Alpha/Integrity servers only
QIC All QIC drives are drive-settable only - Alpha/Integrity servers only
TK85 DLT Tx85: 10625 BPI -- Cmpt III - Alpha/Integrity servers only
TK86 DLT Tx86: 10626 BPI -- Cmpt III - Alpha/Integrity servers only
TK87 DLT Tx87: 62500 BPI -- Cmpt III - Alpha/Integrity servers only
TK88 DLT Tx88: (Quantum 4000) -- Cmpt IV - Alpha/Integrity servers only
TK89 DLT Tx89: (Quantum 7000) -- Cmpt IV - Alpha/Integrity servers only
QIC All QIC drives are drive-settable only - Alpha/Integrity servers only
8200 Exa-Byte 8200 - Alpha/Integrity servers only

318

DCL Commands

Keyword Meaning
8500 Exa-Byte 8500 - Alpha/Integrity servers only
DDS1 Digital Data Storage 1 -- 2G - Alpha/Integrity servers only
DDS2 Digital Data Storage 2 -- 4G - Alpha/Integrity servers only
DDS3 Digital Data Storage 3 -- 8-10G - Alpha/Integrity servers only
DDS4 Digital Data Storage 4 - Alpha/Integrity servers only
AIT1 Sony Advanced Intelligent Tape 1 - Alpha/Integrity servers only
AIT2 Sony Advanced Intelligent Tape 2 - Alpha/Integrity servers only
AIT3 Sony Advanced Intelligent Tape 3 - Alpha/Integrity servers only
AIT4 Sony Advanced Intelligent Tape 4 - Alpha/Integrity servers only
DLT8000 DLT 8000 - Alpha/Integrity servers only
8900 Exabyte 8900 - Alpha/Integrity servers only
SDLT SuperDLT1 - Alpha/Integrity servers only
SDLT320 SuperDLT320 - Alpha/Integrity servers only

Note that tape density keywords cannot be abbreviated.

When you initialize a tape with the INITIALIZE command and do not specify a density, the tape
is initialized at the default density for the media and drive you are using (usually the highest
density available).

The density of a tape can only be changed if the tape is at beginning-of-tape (BOT). To change the
density of a tape that has previously been recorded, the first operation must be a write operation.
If the first operation on the tape is a read operation, the magnetic tape is set to the density at which
the first record on the tape was recorded, no matter what density is specified with the /DENSITY
qualifier.

Example
The following command mounts a tape on the MFA0: drive /FOREIGN and assigns it the logical
name TAPE. The /DENSITY qualifier specifies that the tape is to be written at TK87.

$ MOUNT/FOREIGN/DENSITY=TK87 MFA0: TAPE

/EXTENSION=n

Specifies the number of blocks by which disk files are to be extended on the volume unless
otherwise specified by an individual command or program request.

The parameter, n, specifies a value from 0 to 65,535 to override the value specified when the
volume was initialized.

Example
The following command mounts a volume labeled DOC on DKA0, assigns the logical name
WORK, and specifies a default block extent of 64 for the files on WORK:

$ MOUNT/EXTENSION=64 DKA0: DOC WORK

/FOREIGN

Indicates that the volume is not in the standard format used by the OpenVMS operating system.

319

DCL Commands

Use the /FOREIGN qualifier when a magnetic tape volume is not in the standard ANSI format, or
when a disk volume is not in Files-11 format.

If you mount a volume with the /FOREIGN qualifier, the program you use to read the volume
must be able to process the labels on the volume, if any. The OpenVMS operating system does not
provide an ancillary control process (ACP) to process the volume.

You must mount DOS-1 and RT-11 volumes with the /FOREIGN qualifier and process them with
the Exchange utility (EXCHANGE). See the OpenVMS Exchange Utility Manual (available on
the Documentation CD-ROM).

The default protection applied to foreign volumes is RWLP (Read, Write, Logical I/O,
Physical I/O) for the system and owner and no access for the group and world. If you also
specify /GROUP, group members are also given RWLP access. If you specify /SYSTEM
or /SHARE, the group and world are both given RWLP access. Note that the /GROUP, /SYSTEM,
and /SHARE qualifiers do not alter the default protection.

If you mount a volume currently in Files-11 format with the /FOREIGN qualifier, you must have
the user privilege VOLPRO, or your UIC must match the UIC on the volume.

The /FOREIGN qualifier is incompatible with the following qualifiers:
/ACCESSED, /AUTOMATIC, /BIND, /CACHE, /[NO]CONFIRM, /[NO]COPY,
/EXTENSION, /HDR3, /INITIALIZE, /LABEL, /PROCESSOR, /QUOTA, /REBUILD,
/SHADOW, /OVERRIDE=EXPIRATION, and /WINDOWS.

Examples
The following command mounts a foreign magnetic tape on drive MTA1:

$ MOUNT/FOREIGN MTA1: ABCD TAPE

The following command mounts an RK07 device as a foreign volume on DMA2 and assigns the
default logical name as DISK$SAVEDISK. As a volume that is not file structured, SAVEDISK
can be used for sequential-disk BACKUP save operations.

$ MOUNT/FOREIGN DMA2: SAVEDISK

/GROUP

Makes the volume available to other users with the same group number in their UICs as the user
entering the MOUNT command.

The logical name for the volume is placed in the group logical name table. You must have the user
privilege GRPNAM to use the /GROUP qualifier.

Note that if the volume is owned by a group other than yours, access may be denied because of
the volume protection.

The /GROUP qualifier is not valid for ISO 9660 volume sets.

The /GROUP qualifier is incompatible with the /OVERRIDE=IDENTIFICATION, /SHARE,
and /SYSTEM qualifiers.

Examples
The following command mounts and makes available on a group basis the volume set consisting
of volumes labeled PAYVOL1, PAYVOL2, and PAYVOL3. The logical name PAY is assigned to
the set; anyone wanting to access files on these volumes can refer to the set as PAY.

320

DCL Commands

$ MOUNT/GROUP DB1:, DB2:, DB3: PAYVOL1,PAYVOL2,PAYVOL3 PAY

The following command adds the volume labeled PAYVOL4 to the existing volume set
MASTER_PAY. The root volume for the volume set must be on line when you enter this
command.

$ MOUNT/GROUP/BIND=MASTER_PAY DB4: PAYVOL4

/HDR3 (default)
/NOHDR3

Controls whether ANSI standard header label 3 is written on a magnetic tape volume.

By default, header label 3 is written. You can specify the /NOHDR3 qualifier to write magnetic
tapes that are to be used on other systems that do not process HDR3 labels correctly.

Example
In the following example, the INITIALIZE and MOUNT commands prepare an ANSI-formatted
magnetic tape for processing. The /NOHDR3 qualifier specifies that no HDR3 labels are to be
written, thus creating a magnetic tape that can be transported to systems that do not process
implementation-dependent labels correctly.

$ INITIALIZE MTA0: ABCD
$ MOUNT/NOHDR3 MTA0: ABCD

/INCLUDE virtual-unit-name[:] /SHADOW=(physical-device-name[:][,...])
/NOINCLUDE virtual-unit-name[:] /SHADOW=(physical-device-name[:][,...]) (default)

Automatically reconstructs a former shadow set to the way it was before the shadow set was
dissolved. This qualifier is applicable only if you have the volume shadowing option. See the VSI
Volume Shadowing for OpenVMS for additional information.

The /INCLUDE qualifier automatically mounts and restores a shadow set to the way it was before
a system failure. Supply the exact virtual-unit name that was used when the shadow set was
originally mounted. Use the virtual-unit naming format DSAnnnn:

You must also include the /SHADOW qualifier and specify at least one of the disk devices from
the original shadow set. Use the standard device-naming format $allocation-class$ddcu[:]. Omit
the parentheses if you name only one device.

The /INCLUDE qualifier is position independent; it can appear anywhere on the command line.

The default qualifier is /NOINCLUDE.

Example
The following example shows how to create a shadow set wherein the software determines
automatically the shadow set members that should be mounted. The /SHADOW qualifier ensures
the correct copy operation for the two shadow set members. In this case, 1DUA10 is the more
current volume and becomes the source of the copy operation to 1DUA11.

If the shadow set was properly dismounted and no write I/O requests remain outstanding, the
shadow set devices are consistent and are added back without the need for a copy or merge
operation. Otherwise, Volume Shadowing for OpenVMS automatically performs a copy or merge
operation.

$ MOUNT/INCLUDE DSA0: /SHADOW=1DUA10: SHADOWVOL

321

DCL Commands

%MOUNT-I-MOUNTED, SHADOWVOL mounted on DSA0:
%MOUNT-I-SHDWMEMSUCC, _1DUA10: (MEMBER1) is now a valid member ofthe
 shadow set
%MOUNT-I-SHDWMEMCOPY, _1DUA11: (MEMBER2) added to the shadow setwith a
 copy operation

/INITIALIZE=CONTINUATION

Specifies that any volume added to the magnetic tape volume set is initialized before you can
write to the volume.

Example
The /INITIALIZE=CONTINUATION qualifier instructs the MOUNT command to assign its
own continuation label. In this case, the operator can enter the command REPLY/BLANK=n, and
the system assigns a label derived from the original. It uses the label specified in the MOUNT
command and adds the appropriate number (ABCD02, ABCD03, and so forth).

$ MOUNT/INITIALIZE=CONTINUATION MTA0: ABCD

/LABEL (default)
/NOLABEL

Indicates that the volume is in the standard format used by the OpenVMS operating system; that
is, a magnetic tape volume is in the standard ANSI format, or a disk volume is in Files-11 format.

The default is /LABEL.

Note that /NOLABEL is equivalent to /FOREIGN; they both set the FOREIGN flag.

Example
The following command mounts an ANSI-labeled magnetic tape on MFA1 and assigns the default
logical name as TAPE$TAPE.

$ MOUNT/LABEL MFA1: TAPE

/MEDIA_FORMAT=CDROM

Mounts a volume assuming the media to be ISO 9660 (or High Sierra) formatted.

The /MEDIA_FORMAT=CDROM qualifier instructs the mount subsystem to attempt to mount a
volume assuming the media to be ISO 9660 (or High Sierra) formatted.

Note

This qualifier specifies a CD-ROM mount (ISO 9660 or High Sierra). Specify this qualifier when a
volume is known to be in either ISO 9660 or High Sierra CD-ROM format.

The Mount command attempts to read a CD-ROM in Files-11 ODS-2 format by default. This qualifier
prevents the Mount command from attempting a Files-11 ODS-2 mount sequence.

Because it is possible to record parts of a CD-ROM in Files-11 ODS-2 and other parts in ISO 9660
format, this qualifier can be used to specify a CD-ROM mount (ISO 9660 or High Sierra).

/MEDIA_FORMAT= [NO]COMPACTION

Enables and controls data compaction and data record blocking on tape drives that support data
compaction.

322

DCL Commands

The /MEDIA_FORMAT qualifier allows you to mount a tape and enable data compaction and
record blocking on a tape drive that supports data compaction. Data compaction and record
blocking increase the amount of data that can be stored on a single tape.

Records can either be compacted and blocked, or they can be recorded in the same way that they
would be recorded on a non compacting tape drive. Note that for compacting tape drives, once
data compaction or non compaction has been selected for a given tape, that status applies to the
entire tape.

The /MEDIA_FORMAT=[NO]COMPACTION qualifier is incompatible with the /DENSITY
qualifier.

For Files-11 tapes, when you enable data compaction, caching is automatically enabled.

Note

The /MEDIA_FORMAT=[NO]COMPACTION qualifier is meaningful only for foreignmounts.

The /MEDIA_FORMAT=[NO]COMPACTION qualifier has no effect on a Files-11 tape.The
compaction state of a Files-11 tape is determined by the state established when the tape is initialized.

Examples
The following command performs a foreign mount of a tape with data compaction and record
blocking enabled and assigns the logical name BOOKS to the tape:

$ MOUNT/FOREIGN/MEDIA_FORMAT=COMPACTION MUA0: BOOKS

The following MOUNT command attempts a Files-11 mount of a tape labeled BOOKS with
data compaction and record blocking enabled. Because the tape was initialized with compaction
disabled, the MOUNT qualifier/MEDIA_FORMAT=COMPACTION has no effect.

$ INIT/MEDIA_FORMAT=NOCOMPACTION MUA0: BOOKS
$ MOUNT/MEDIA_FORMAT=COMPACTION MUA0: BOOKS

/MESSAGE (default)
/NOMESSAGE

Causes mount request messages to be sent to your current SYS$OUTPUT device.

If you specify /NOMESSAGE during an operator-assisted mount, messages are not output to
SYS$OUTPUT; the operator sees them, however, provided an operator terminal is enabled.

Example
In this example, an RL02 device labeled SLIP is mounted on drive DLA0 and is assigned the
logical name DISC. The /NOMESSAGE qualifier disables the broadcast of mount request
messages to the user terminal.

$ MOUNT/NOMESSAGE DLA0: SLIP DISC

/MOUNT_VERIFICATION (default)
/NOMOUNT_VERIFICATION

Specifies that the device is a candidate for mount verification.

The /MOUNT_VERIFICATION qualifier affects the following media:

323

DCL Commands

• Files-11 Structure Level 2 or 5 disks (mount verification is not supported for foreign-mounted
disks)

• ISO 9660 and High Sierra CD-ROMs

• Foreign and ANSI-labeled magnetic tape volumes

Example
The following command mounts an HSG80 Fibre Channel disk device labeled FILES and assigns
the logical name WORK. The /CACHE qualifier disables extent caching, file identification
caching, quota caching, data caching, and write back caching; the /NOMOUNT_VERIFICATION
qualifier disables mount verification.

$ MOUNT/CACHE=(NOEXTENT,NOFILE_ID,NOQUOTA,WRITETHROUGH) -
_$ /NOMOUNT_VERIFICATION 1DGA0: FILES WORK
%MOUNT-I-MOUNTED, FILES mounted on _1DGA0: (NODE)

/MULTI_VOLUME
/NOMULTI_VOLUME (default)

For foreign or unlabeled magnetic tape volumes, determines whether you override MOUNT
volume-access checks.

Use /MULTI_VOLUME to override access checks on volumes that do not contain labels that
MOUNT can interpret. If you have software produced before OpenVMS Version 5.0 that
processes multiple-volume, foreign-mounted tape volumes without specifically mounting and
dismounting each reel, you may now need to mount the first volume with the /MULTI_VOLUME
qualifier.

Use this qualifier when a utility that supports multiple-volume, foreign-mounted magnetic tape
sets needs to process subsequent volumes, and these volumes do not contain labels that the
OpenVMS Mount command can interpret.

By default, all tape volumes are subject to the complete access checks of the OpenVMS Mount
command (MOUNT). Some user-written and vendor-supplied utilities used prior to OpenVMS
Version 5.0 may mount only the first tape in a foreign tape set. To make these utilities compatible
with more recent versions of OpenVMS, alter them to perform explicit calls to the $MOUNT
and$DISMOU system services for each reel in the set. As an alternative, you can now mount the
magnetic tape sets to be used by these utilities with the /MULTI_VOLUME qualifier.

You must specify the /FOREIGN qualifier with the /MULTI_VOLUME qualifier and you must
have the user privilege VOLPRO. The default is /NOMULTI_VOLUME.

Note

The OpenVMS Backup utility (BACKUP) explicitly calls the $MOUNT and $DISMOU system
services on each reel of a foreign-mounted magnetic tape set. For additional information, see the
section on multivolume save sets and BACKUP in the VSI OpenVMS System Management Utilities
Reference Manual: A—L.

Example
The following command mounts a tape volume set. MOUNT performs an access check on the
first volume in the set and proceeds without checks to subsequent reels as they are needed for
processing.

324

DCL Commands

$ MOUNT/FOREIGN/MULTI_VOLUME MUA0:

/OVERRIDE=(keyword[,...])

Inhibits one or more protection checks that the MOUNT command performs.

You need the user privileges OPER and VOLPRO to specify /OVERRIDE=(ACCESSIBILITY,
EXPIRATION) along with the /FOREIGN qualifier; otherwise, the magnetic tape is not read.

If you specify more than one keyword, separate them with commas and enclose the list in
parentheses.

The following table lists the keywords for this qualifier:

Keyword Description
ACCESSIBILITY For magnetic tapes only. If the installation allows, this keyword

overrides any character in the Accessibility Field of the volume.
The necessity of this keyword is defined by the installation. That
is, each installation has the option of specifying a routine that
the magnetic tape file system will use to process this field. By
default, the OpenVMS operating system provides a routine that
checks this field in the following manner:

• If the magnetic tape was created on a version of OpenVMS
that conforms to Version 3 of ANSI, then you must use this
keyword to override any character other than an ASCII space.

• If an OpenVMS protection is specified and the magnetic tape
conforms to an ANSI standard that is higher than Version
3, then you must use this keyword to override any character
other than an ASCII 1.

To use the ACCESSIBILITY keyword, you must have the user
privilege VOLPRO or own the volume.

EXPIRATION For magnetic tapes only. Allows you to override the expiration
dates of a volume and its files. Use this keyword when the
expiration date in the first file header label of any file that you
want to overwrite has not been reached. You must have the user
privilege VOLPRO or your UIC must match the UIC written on
the volume.

IDENTIFICATION Overrides processing of the volume identifier in the volume
label. Use this keyword to mount a volume for which you do
not know the label, or for an ISO 9660 volume whose label is
not unique in the first 12 characters. Only the volume identifier
field is overridden. Volume protection, if any, is preserved. The
volume must be mounted /NOSHARE (either explicitly or by
default).

The /OVERRIDE=IDENTIFICATION qualifier is incompatible
with the /GROUP and /SYSTEM qualifiers.

LIMITED_SEARCH Allows the Mount command to search an entire device for
a home block, if a home block is not found at the expected

325

DCL Commands

Keyword Description
location. By default, the search or a home block is limited to
avoid excessive search times if no valid home block is present.

LOCK Directs MOUNT not to write-lock the volume as a consequence
of certain errors encountered while mounting it. Use this
keyword when you are mounting a damaged volume to be
repaired using the ANALYZE/DISK_STRUCTURE command.
You must have VOLPRO privilege or own the volume to use the
LOCK keyword.

NO_FORCED_ERROR Directs the Mount command to proceed with shadowing, even
though the device or controller does not support forced error
handling. Using unsupported SCSI disks can cause members
to be removed from a shadow set if certain error conditions
arise that cannot be corrected, because some SCSI disks do not
implement READL and WRITEL commands that support disk
bad block repair.

OWNER_IDENTIFIER For magnetic tapes only. Overrides the processing of the owner
identifier field. Use this keyword to interchange protected
magnetic tapes between OpenVMS and other operating systems.

SECURITY Allows you to continue mounting a volume if an error is returned
because the volume has an invalid SECURITY.SYS file. You
must have the user privilege VOLPRO or own the volume to use
this keyword.

SETID For magnetic tapes only. Prevents MOUNT from checking the
file-set identifier in the first file header label of the first file on a
continuation volume. Use this keyword only for ANSI-labeled
volumes on which the file-set identifier of the first file on a
continuation volume differs from the file-set identifier of the first
file of the first volume that was mounted.

SHADOW_MEMBERSHIP Allows you to override the write protection of former shadow
set members. Applicable only if you have the volume shadowing
option. See the VSI Volume Shadowing for OpenVMS.

When you mount a volume with this qualifier, the volume
shadowing generation number is erased. If you attempt to
remount the volume in a shadow set, the volume is considered
an unrelated volume and receives a full copy operation from a
current shadow set member.

The following command overrides the volume identification field, thus mounting a magnetic tape
on MFA0 without a label specification:

$ MOUNT/OVERRIDE=IDENTIFICATION MFA0:

/OWNER_UIC=uic

Requests that the specified UIC be assigned ownership of the volume while it is mounted,
overriding the ownership recorded on the volume. If you are mounting a volume using
the /FOREIGN qualifier, requests an owner UIC other than your current UIC.

The parameter, uic, specifies the user identification code (UIC) in the following format:

326

DCL Commands

[group,member]

You must use brackets in the UIC specification. The group number is an octal number in the range
0 to 37776;the member number is an octal number in the range 0 to 177776.

To use the /OWNER_UIC qualifier for a Files-11 volume, you must have the user privilege
VOLPRO, or your UIC must match the UIC written on the volume.

Example
The following command mounts a disk device labeled WORK on DRA3 and assigns an owner
UIC of [016,360]:

$ MOUNT/OWNER_UIC=[016,360] DRA3: WORK

/POLICY=[NO]MINICOPY[= (OPTIONAL)], REQUIRE_MEMBERS, [NO]VERIFY_LABEL

Controls the setup and use of shadow sets. For more information about volume shadowing, see the
VSI Volume Shadowing for OpenVMS. The following table lists the keywords for this qualifier:

Keyword Description
[NO]MINICOPY
[=OPTIONAL]
(Alpha/Integrity servers
only)

Controls the setup and use of the shadowing minicopy function.

Requires LOG_IO (logical I/O) privilege to create bitmaps.

The meaning of the keyword [NO]MINICOPY[=OPTIONAL] for the
MOUNT/POLICY qualifier depends on the status of the shadow set,
as follows:

1. If the shadow set is not mounted, either on a standalone system
or on any cluster member, and MINICOPY=OPTIONAL is
specified, the shadow set is mounted and a write bitmap is created.
The write bitmap enables a shadowing minicopy operation. You
must specify/MOUNT/POLICY=MINICOPY[=OPTIONAL] on
the initial mount of a shadow set, either on a standalone system or
in a cluster, to enable the shadowing minicopy operation.

The OPTIONAL keyword allows the mount to continue, even if
the system was unable to start the write bitmap. Likely reasons
for the bitmap to fail to start properly include an improperly
dismounted shadow set, a shadow set that requires a merge
operation, and various resource problems. If the OPTIONAL
keyword is omitted and the system is unable to start the write
bitmap, the shadow set will not be mounted.

If you specify the /POLICY=MINICOPY=OPTIONAL qualifier
and the shadow set was already mounted on another node in the
cluster without the/POLICY=MINICOPY[=OPTIONAL], the
MOUNT command succeeds but a write bitmap is not created.

If NOMINICOPY is specified, the shadow set is mounted but a
write bitmap is not created.

2. If a former member of the shadow set is returned to the shadow
set, which has minicopy enabled, then a minicopy is started

327

DCL Commands

Keyword Description
instead of a full copy. This is the default behavior and will occur
even if you omit /POLICY=MINICOPY[=OPTIONAL]. If a
minicopy is successfully started and then fails for some reasons, a
full copy is performed.

If a minicopy cannot be started and the keyword OPTIONAL was
omitted, the mount will fail.

If NOMINICOPY is specified, then no minicopy is performed,
even if one is possible.

REQUIRE_MEMBERS Controls whether every physical device specified with the /SHADOW
qualifier must be accessible when the MOUNT command is issued
in order for the MOUNT command to take effect. The proposed
members are either specified in the command line or found on the disk
by means of the /INCLUDE qualifier.

The behavior, without this qualifier, is that if one or more members is
not accessible for any reason (such as a connectivity failure), then the
virtual unit will be created with the members that are accessible.

This option is especially useful in the recovery of disaster-tolerant
clusters because it ensures that the correct membership is selected
after an event.

[NO]VERIFY_LABEL Require that any member that is going to be added to the shadow set
must have a volume label of 'SCRATCH_DISK'.

This will help insure that the wrong disk is not added to a shadow set
by mistake. If VERIFY_LABEL is going to be used, then the disk that
is going to be added to the set must be either initialized with the label
'SCRATCH_DISK' or a SET VOLUME/LABEL must be performed.

The default behavior is NOVERIFY_LABEL, which indicates that the
volume label of the copy targets will not be checked.

/PROCESSOR=keyword

For magnetic tapes and Files-11 Structure Level 1 disks, requests that the MOUNT command
associate an ancillary control process (ACP) to process the volume. The /PROCESSOR qualifier
causes MOUNT to override the default manner in which ACPs are associated with devices.

For Files-11 Structure Levels 2 and 5 disks, controls block cache allocation.

The following table lists the keywords for this qualifier:

Keyword Description
UNIQUE Creates a new process to execute the default ancillary control process

(ACP) image supporting the magnetic tape, Files-11 ODS-1, ISO 9660, or
High Sierra formatted media being mounted.

For Files-11 Structure Levels 2 and 5 disks, allocates a separate block
cache.

328

DCL Commands

Keyword Description
SAME:device Uses an existing process that is executing the same ACP image supporting

the magnetic tape, Files-11 ODS-1, ISO 9660, or High Sierra formatted
media being mounted.

For Files-11 Structure Levels 2 and 5 disks, takes the block cache
allocation from the specified device.

file-spec Creates a new process to execute the ACP image specified by the file
specification (for example, a modified or a user-written ACP). You
cannot use wildcard characters, or node and directory names in the file
specification.

To use this keyword, you need CMKRNL and OPER privileges.

You must have the operator user privilege OPER to use the /PROCESSOR
qualifier.

Example
The following command directs MOUNT to mount a magnetic tape on MFA0 using the same
ACP process currently associated with MTA1:

$ MOUNT/PROCESSOR=SAME:MTA1: MFA0:

/PROTECTION=keyword

Specifies the protection code to be assigned to the volume.

The following table describes the keywords for this qualifier:

Keyword Description
protection code Specifies the protection code according to the standard syntax rules for

specifying user protection (that is, system/owner/group/world). If you omit a
protection category, that category of user is denied all access.

If you do not specify a protection code, the default is the protection that was
assigned to the volume when it was initialized.

XAR Enables enforcement of the extended record attribute (XAR)access controls.
For more information about XAR, see the VSI OpenVMS Record Management
Services Reference Manual.

DSI Enables XAR permissions Owner and Group for XARs containing Digital
System Identifiers (DSI). For more information, see the VSI OpenVMS Record
Management Services Reference Manual.

If you specify the /PROTECTION qualifier when you mount a volume with the /SYSTEM
or /GROUP qualifier, the specified protection code overrides any access rights implied by the
other qualifiers.

If you specify the /FOREIGN qualifier, the execute (E) or create (C) and delete (D) access codes
are synonyms for logical I/O (L) and physical I/O(P). You can, however, specify the access codes
physical I/O (P) or logical I/O (L), or both, to restrict the nature of input/output operations that
different user categories can perform.

329

DCL Commands

To use the /PROTECTION qualifier on a Files-11 volume, you must have the user privilege
VOLPRO or your UIC must match the UIC written on the volume.

Example
The following command mounts a device labeled WORKDISK on DKA1 and assigns a protection
code. Access to the volume will be read, write, and create for system users; read, write, create,
and delete for owner; read and create for group users; and read-only for users in the world
category.

$ MOUNT/PROTECTION=(SYSTEM:RWE,O:RWED,G:RE,W:R) DKA1: WORKDISK

/QUOTA (default)
/NOQUOTA

Controls whether quotas are to be enforced on the specified disk volume.

The default is /QUOTA, which enforces the quotas for each user. The /NOQUOTA qualifier
inhibits this checking. To specify the /QUOTA qualifier, you must have the user privilege
VOLPRO or your UIC must match the UIC written on the volume.

Example
The following command specifies that the disk volume labeled WORK on DRA3 has an owner
UIC of [016,360] and no quotas enforced:

$ MOUNT/OWNER_UIC=[016,360]/NOQUOTA DRA3: WORK

/REBUILD (default)
/NOREBUILD

Controls whether or not MOUNT performs a rebuild operation on a disk volume.

If a disk volume is improperly dismounted (such as during a system failure), you must rebuild
it to recover any caching limits that were enabled on the volume at the time of the dismount. By
default, MOUNT attempts the rebuild. For a successful rebuild operation that includes reclaiming
all of the available free space, you must mount all of the volume set members.

The rebuild may consume a considerable amount of time, depending on the number of files on the
volume and, if quotas are in use, on the number of different file owners.

The following caches may have been in effect on the volume before it was dismounted:

• Preallocated free space (EXTENT cache)

• Preallocated file numbers (FILE_ID cache)

• Disk quota usage caching (QUOTA cache)

If caching was in effect for preallocated free space or file numbers, the rebuild time is directly
proportional to the greatest number of files that ever existed on the volume at one time. If disk
quota caching was in effect, you can expect additional time that is proportional to the square of
the number of entries in the disk quota file.

If none of these items were in effect, the rebuild is not necessary and does not occur.

330

DCL Commands

If you use the /NOREBUILD qualifier, devices can be returned to active use immediately. You
can then perform the rebuild later with the DCL command SET VOLUME/REBUILD.

For information about how to rebuild the system disk, see the VSI OpenVMS System Manager's
Manual.

Examples
In this example, the volume WORKDISK is mounted on NODE$DKA2. Because the volume is
found to have been improperly dismounted and the /REBUILD qualifier is in effect, MOUNT
displays a message and proceeds to rebuild the volume.

$ MOUNT/REBUILD NODE$DKA2: WORKDISK
%MOUNT-I-MOUNTED, WORKDISK mounted on _NODE$DKA2:
%MOUNT-I-REBUILD, volume was improperly dismounted; rebuild in progress

In this example, the volume WORKDISK is found to have been improperly dismounted, but
because the /NOREBUILD qualifier is specified, a rebuild is not performed. Instead, MOUNT
displays a message to inform you that the rebuild is needed, and proceeds to make WORKDISK
available for use as is. You can rebuild the volume later with the DCL command SET VOLUME/
REBUILD.

$ MOUNT/NOREBUILD NODE$DKA2: WORKDISK
%MOUNT-I-MOUNTED, WORKDISK mounted on _NODE$DKA2:
%MOUNT-I-REBLDREQD, rebuild not performed; some free space unavailable;
 diskquota usage stale

/RECORDSIZE=n

Specifies the number of characters in each record of a magnetic tape volume.

The parameter, n, specifies the block size in the range 20 to 65,532 bytes if you are using
OpenVMS RMS, or 18 to 65,534 bytes if you are not using OpenVMS RMS.

You typically use this qualifier with the /FOREIGN and /BLOCKSIZE qualifiers to read or write
fixed-length records on a block-structured device. In this case, the record size must be less than or
equal to the block size specified or used by default.

Use the /RECORDSIZE qualifier when mounting magnetic tapes without HDR2 labels (such as
RT-11 magnetic tapes) to provide OpenVMS RMS with default values for the maximum record
size.

Example
In the following example, the magnetic tape is mounted on MTA0 with a default block size and
record size of 512 characters:

$ MOUNT/FOREIGN/BLOCKSIZE=512/RECORDSIZE=512 MTA0:

/SHADOW

Binds up to three physical devices into a shadow set represented by the virtual unit named in the
command. This qualifier is applicable only if you have the volume shadowing option. See the VSI
Volume Shadowing for OpenVMS for additional information.

The format of this qualifier is:

(virtual-unit-name[:] /SHADOW=(physical-device-name[:][,...]))

331

DCL Commands

This qualifier indicates that you are mounting a shadow set including the physical devices and the
virtual unit that represents them to the system. This qualifier instructs MOUNT to expect a virtual
unit name as the device-name parameter. Place the /SHADOW qualifier after the virtual-
unit-name parameter.

Use the virtual unit naming format DSA n, where n is a unique number from 0 to 9999. For the
physical-device-name, use the standard device-naming format $allocation-class$ddcu[:].

Examples
The following example shows how to create a shadow set wherein the software determines
automatically the correct copy operation for the two shadow set members. In this case,
1DUA10 is the more current volume and becomes the source of the copy operation to
1DUA11.

$ MOUNT DSA0: /SHADOW=(1DUA10:,1DUA11:) SHADOWVOL
%MOUNT-I-MOUNTED, SHADOWVOL mounted on DSA0:
%MOUNT-I-SHDWMEMSUCC, _1DUA10: (MEMBER1) is now a valid member ofthe
 shadow set
%MOUNT-I-SHDWMEMCOPY, _1DUA11: (MEMBER2) added to the shadow setwith a
 copy operation

The following command creates a volume set with the logical nameTEST3013. The volume
set TEST3013 is not shadowed. However, each element of the volume set (TEST3011 and
TEST3012) is a shadow set, providing redundancy for the volume set as a whole.

$ MOUNT/BIND=TEST3013 DSA3011/SHADOW=(1DUA402:,1DUA403:),
DSA3012/SHADOW=(1DUA404:,1DUA405:) TEST3011,TEST3012 TEST3013

/SHARE
/NOSHARE

Specifies, for a disk volume, that the volume is shareable.

If another user has already mounted the volume shareable, and you request it to be mounted with
the /SHARE qualifier, any other qualifiers you enter are ignored.

By default, a volume is not shareable, and the MOUNT command allocates the device on which it
is mounted.

If you previously allocated the device and specify the /SHARE qualifier, the MOUNT command
deallocates the device so that other users can access it.

The /SHARE qualifier is incompatible with the /GROUP and /SYSTEM qualifiers.

Example
The following command mounts the device labeled SLIP on DLA0, disables broadcasting of
MOUNT messages, specifies that the volume is shareable, and assigns the logical name DISC:

$ MOUNT/NOMESSAGE/SHARE DLA0: SLIP DISC

/SUBSYSTEM
/NOSUBSYSTEM

Enables protected subsystems and the processing of subsystem ACEs. Requires the SECURITY
privilege.

332

DCL Commands

By default, the disk from which you boot has /SUBSYSTEM enabled but other disks do not. For
further details on subsystems, see the VSI OpenVMS Guide to System Security.

Example
The following command mounts the volume labeled SLIP on DUA1 with mount messages
disabled. Subsystems on the volume are accessible. MOUNT also assigns the logical name
SACH.

$ MOUNT/NOMESSAGE/SUBSYSTEM DUA1: SLIP SACH

/SYSTEM

Makes the volume public; that is, available to all users of the system, as long as the UIC-based
volume protection allows them access.

The logical name for the device is placed in the system logical name table. You must have the user
privilege SYSNAM to use the /SYSTEM qualifier.

When you mount a volume with the /SYSTEM qualifier in a VMS cluster system, you must use a
volume label that is unique clusterwide, even if the specified volume is not mounted clusterwide.

The /SYSTEM qualifier is incompatible with the /GROUP, /OVERRIDE=IDENTIFICATION,
and /SHARE qualifiers.

Examples
The following command mounts the volume labeled SLIP on DUA1 with mount messages
disabled. The volume is made available systemwide. MOUNT also assigns the logical name
SACH.

$ MOUNT/NOMESSAGE/SYSTEM DUA1: SLIP SACH

The following command creates the volume set named MASTER_PAY consisting of the
initialized volumes labeled PAYVOL1, PAYVOL2, and PAYVOL3. These volumes are mounted
physically on the devices named DB1, DB2, and DB3, respectively. The volume PAYVOL1 is the
root volume of the set.

The volumes are mounted as system volumes to make them available to all users.

$ MOUNT/SYSTEM/BIND=MASTER_PAY -
_$ DB1:,DB2:,DB3: PAYVOL1,PAYVOL2,PAYVOL3

/UCS_SEQUENCE= escape_sequence

Supplies the escape sequence to select the coded graphic character set, a requirement when
mounting an ISO 9660 volume for one of the Supplementary Volume Descriptors (SVDs).

The parameter, escape_sequence, is a character sequence defined by the vendor who
mastered the CD-ROM and is unique to the vendor's character set conversion tables.

Use the /UCS_SEQUENCE qualifier when mounting an ISO 9660 CD-ROM that contains non-
ASCII character sets on OpenVMS.

An ISO 9660 volume may contain an SVD that specifies a graphic character set. This graphic
character, when selected at mount time, is used as default character set when displaying a
volume's directories and file names.

333

DCL Commands

The /UCS_SEQUENCE qualifier defines the escape sequence to select the coded graphic
character set.

All ISO 9660 volumes contain a Primary Volume Descriptor (PVD) that uses ASCII (ISO 646-
IRV) as the character set. Both ISO 9660 and OpenVMS file naming conventions use the same
subset of ASCII characters when displaying a volume's directories and file names.

/UNDEFINED_FAT=record-format:[record-attributes:][record-size]

Establishes default file attributes to be used for records on ISO 9660 media for which no record
format has been specified.

The following table describes the parameters:

Parameter Description
record-format Specifies the format for all records in a file: FIXED, VARIABLE,

STREAM, STREAM_LF, STREAM_CR, LSB_VARIABLE, or
MSB_VARIABLE. For a description of these record formats, see the
discussion of the RMS field FAB$B_RFM in the VSI OpenVMS Record
Management Services Reference Manual.

record-attributes Specifies the attributes for all records in a file: NONE, CR, FTN, PRN,
NOBKS. Applies only to non-STREAM record formats. For a description
of these record attributes, see the discussion of the RMS field FAB$B_RAT
in the VSI OpenVMS Record Management Services Reference Manual.

record-size Specifies the maximum record size for all records in a file: 0 to 32767.
Applies only to FIXED or STREAM record formats. For a description
of possible RMS record sizes, see the discussion of the RMS field FAB
$W_MRS in the VSI OpenVMS Record Management Services Reference
Manual.

ISO 9660 media can be mastered from platforms that do not support semantics of files containing
predefined record formats. The /UNDEFINED_FAT qualifier establishes default file attributes to
be used for records on ISO 9660 media for which no record format has been specified.

The /UNDEFINED_FAT qualifier is valid only in conjunction with
the /MEDIA_FORMAT=CDROM qualifier.

This qualifier temporarily overrides all undefined file types, replacing them with selectable record
formats having selectable record attributes and selectable record sizes as shown in the following
illustrations:

record_format

1. FIXED:record-attributes[, …]:record-size

2. VARIABLE:record-attributes[, …]

3. STREAM:record-size

4. STREAM_LF:record-size

5. STREAM_CR:record-size

6. LSB_VARIABLE:record-attributes[, …]
record_attributes

334

DCL Commands

1. NONE - None

2. CR - Carriage_return

3. FTN - Fortran

4. PRN - Print

5. NOBKS - No-Block-Span
record_size

1. 1 to 32767

Example
In the following example, the volume labeled OFFENS is mounted on DKA1 and all files on
the volume are defined to be fixed length, carriage return, and 80 bytes in length. MOUNT also
assigns the logical name STRAT.

$ MOUNT/MEDIA_FORMAT=CDROM/UNDEFINED_FAT=(FIXED:CR:80) DKA1: OFFENS
 STRAT

/UNLOAD (default)
/NOUNLOAD

Controls whether or not the disk or magnetic tape volume or volumes specified in the MOUNT
command are unloaded when they are dismounted.

Example
In the following example, the volume labeled OFFENS is mounted on DKA1 with
the /NOUNLOAD qualifier so that it can be dismounted without being physically unloaded.
MOUNT also assigns the logical name STRAT.

$ MOUNT/NOUNLOAD DKA1: OFFENS STRAT

/WINDOWS=n

Specifies the number of mapping pointers to be allocated for file windows.

The parameter, n, specifies a value from 7 to 80 that overrides the default value specified when
the volume was initialized.

When a file is opened, the file system uses the mapping pointers to access data in the file. Use
MOUNT/WINDOWS to override the default value specified when the volume was initialized. If
no value was specified at volume initialization, the default number of mapping pointers is 7.

You must have the operator user privilege (OPER) to use the /WINDOWS qualifier.

Example
The following command makes the volume labeled GONWITH on DKA2 available systemwide
and assigns the logical name THE_WINDOW. You override the default number of mapping
pointers by specifying a value of 25 for the /WINDOWS qualifier.

$ MOUNT/SYSTEM/WINDOWS=25 DKA2: GONWITH THE_WINDOW

335

DCL Commands

/WRITE (default)
/NOWRITE

Controls whether the volume can be written.

By default, a volume is considered read/write when it is mounted. You can specify /NOWRITE to
provide read-only access to protect files. This is equivalent to write-locking the device.

For host-based volume shadowing devices, there are other considerations. See the VSI Volume
Shadowing for OpenVMS manual for more information.

Example

The following command mounts a volume labeled BOOKS on NODE$DKA1 and then proceeds
to mount it on each node in the existing OpenVMS Cluster. The/NOWRITE qualifier makes the
volume available for read-only access.

$ MOUNT/CLUSTER/NOWRITE NODE$DKA1: BOOKS

Examples
For examples 1 and 2, operator assistance is not required, assuming the volumes are in the drives.
Examples 3 to 6 describe operator-assisted mounts. Examples 7 and 8 describe mounting ISO 9660
CD-ROM volume sets, example 9 makes subsystems on a volume accessible, and example 10
demonstrates mounting a shadow set.

1. $ MOUNT MTA0: MATH06 STAT_TAPE
%MOUNT-I-MOUNTED, MATH06 mounted on _MTA0:
$ COPY ST061178.DAT STAT_TAPE:

This MOUNT command requests the magnetic tape whose volume label is MATH06 to be
mounted on the device MTA0 and assigns the logical name STAT_TAPE to the volume.

Subsequently, the COPY command copies the disk file ST061178.DAT to the magnetic tape.

2. $ ALLOCATE DM:
%DCL-I-ALLOC, _DMB2: allocated
$ MOUNT DMB2: TEST_FILES
%MOUNT-I-MOUNTED, TEST_FILES mounted on _DMB2:

This ALLOCATE command requests an available RK06/RK07 device. After the response from
the ALLOCATE command, the physical volume can be placed on the allocated device. Then, the
MOUNT command mounts the volume.

3. $ MOUNT DM: TEST_FILES
%MOUNT-I-OPRQST, Please mount volume TEST_FILES in device _DMB2:
%MOUNT-I-MOUNTED, TEST_FILES mounted on _DMB2:

This example achieves the same result as the series of commands in the preceding example.
The MOUNT command requests an available RK06/RK07 device or the volume labeled
TEST_FILES. After the volume is physically mounted in the device named in the response from
MOUNT, the system completes the operation. Note that the device is automatically allocated by
MOUNT.

4. $ MOUNT DYA1: TESTSYS

336

DCL Commands

%MOUNT-I-OPRQST, Please mount volume TESTSYS in device DYA1:
Ctrl/Y
$ EXIT
%MOUNT-I-OPRQSTCAN, operator request canceled

This MOUNT command requests the operator to mount the volume TESTSYS on the device
DYA1. In this example, the user cancels the mount by pressing Ctrl/Y. Notice that the image must
exit before the mount request is actually canceled. Here, the EXIT command causes the image
to exit. However, any command that is not performed within the command interpreter causes the
current image to exit.

5. $ MOUNT DYA1: TESTSYS
%MOUNT-I-OPRQST, Device _DYA1: is not available for mounting.
%MOUNT-I-OPRQSTCAN, operator request canceled
%MOUNT-I-OPRQST, Please mount volume TESTSYS in device _DYA1:
%MOUNT-I-MOUNTED, TESTSYS mounted on _DYA1:
%MOUNT-I-OPRQSTDON, operator request canceled - mount
completed successfully

This MOUNT command requests the operator to mount the volume TESTSYS on the device
DYA1. Because DYA1 is allocated to another user, the device cannot be mounted. In this case, the
user can wait for the device to become available, redirect the mount to another device, or abort the
mount. Here, the user remains in operator-assisted mount waiting for the process that is using the
device to deallocate it.

At this point, because the device is available but no volume is mounted, the original mount request
is canceled, and a new request to mount TESTSYS is issued. Finally, the operator places the
volume in the drive and lets MOUNT retry the mount. When the mount completes, the request is
canceled.

6. $ MOUNT DYA1: TESTSYS/COMMENT="Is there an operator around?"
%MOUNT-I-OPRQST, Please mount volume TESTSYS in device _DYA1:
Is there an operator around?
%MOUNT-I-NOOPR, no operator available to service request
 .
 .
 .
%MOUNT-I-MOUNTED, TESTSYS mounted on _DYA1:
%MOUNT-I-OPRQSTDON, operator request canceled - mount
completed successfully

This MOUNT command requests the operator to mount the volume TESTSYS on the device
DYA1. In this example, no operator is available to service the request. At this point, the user can
abort the mount by pressing Ctrl/Y, or wait for an operator. Here, the user waited, and an operator
eventually became available to service the request.

7. $ MOUNT/SYSTEM/MEDIA=CDROM 1DKA1 USER
%MOUNT-I-CDROM_ISO, USER:VMS_ONLINE_DOCUMENTATION (1 of 4) ,
mounted on _1DKA1: (CDROM)
$ MOUNT/SYSTEM/MEDIA=CDROM 1DKA2 PROGRAMMING_1
%MOUNT-I-CDROM_ISO, PROGRAMMING_1:VMS_ONLINE_DOCUMENTATION (2 of 4) ,
mounted on _1DKA2: (CDROM)
$ MOUNT/SYSTEM/MEDIA=CDROM 1DKA3 PROGRAMMING_2
%MOUNT-I-CDROM_ISO, PROGRAMMING_2:VMS_ONLINE_DOCUMENTATION (3 of 4) ,
mounted on _1DKA3: (CDROM)
MOUNT/SYSTEM/MEDIA=CDROM 1DKA4 MANAGEMENT
%MOUNT-I-CDROM_ISO, MANAGEMENT:VMS_ONLINE_DOCUMENTATION (4 of 4) ,

337

DCL Commands

mounted on _1DKA4: (CDROM)

These commands mount each member of a four-member ISO 9660 volume set whose volume-set
name is VMS_ONLINE_DOCUMENTATION.

8. $ MOUNT/SYSTEM/MEDIA=CDROM 1DKA1,1DKA2,1DKA3,1DKA4
USER,PROGRAMMING_1,PROGRAMMING_2,MANAGEMENT
%MOUNT-I-CDROM_ISO, USER:VMS_ONLINE_DOCUMENTATION (1 of 4) , mounted on
_1DKA1: (CDROM)
%MOUNT-I-CDROM_ISO, PROGRAMMING_1:VMS_ONLINE_DOCUMENTATION (2 of 4) ,
mounted on _1DKA2: (CDROM)
%MOUNT-I-CDROM_ISO, PROGRAMMING_2:VMS_ONLINE_DOCUMENTATION (3 of 4) ,
mounted on _1DKA3: (CDROM)
%MOUNT-I-CDROM_ISO, MANAGEMENT:VMS_ONLINE_DOCUMENTATION (4 of 4) ,
mounted on _1DKA4: (CDROM)

This command mounts four members of an ISO 9660 volume set whose volume set name is
VMS_ONLINE_DOCUMENTATION.

9. $ MOUNT/SYSTEM/SUBSYSTEM 8DKA300: ATLANTIS_WORK1
%MOUNT-I-MOUNTED, ATLANTIS_WORK1 mounted on _8DKA300: (ATLANTIS)
$ SHOW DEVICE/FULL 8DKA300:

Disk 8DKA300: (ATLANTIS), device type RZ24, is online, mounted,
 file-oriented device, shareable, served to cluster via MSCP Server,
 error logging is enabled.

Error count 0 Operations completed
 385
 Owner process "" Owner UIC
 [SYSTEM]
 Owner process ID 00000000 Dev Prot
 S:RWPL,O:RWPL,G:R,W
 Reference count 1 Default buffer size
 512
 Total blocks 409792 Sectors per track
 38
 Total cylinders 1348 Tracks per cylinder
 8
 Allocation class 8

 Volume label "ATLANTIS_WORK1" Relative volume number
 0
 Cluster size 3 Transaction count
 1
 Free blocks 396798 Maximum files allowed
 51224
 Extend quantity 5 Mount count
 1
 Mount status System Cache name "_
8DKA700:XQPCACHE"
 Extent cache size 64 Maximum blocks in extent cache
 39679
 File ID cache size 64 Blocks currently in extent cache
 0
 Quota cache size 50 Maximum buffers in FCP cache
 295

338

DCL Commands

 Volume owner UIC [VMS,PLATO] Vol Prot
 S:RWCD,O:RWCD,G:RWCD,W:RWCD

Volume status: ODS-2, subject to mount verification, protected
 subsystems enabled, file high-water marking, write-through caching
 enabled.

The MOUNT command mounts a volume labeled ATLANTIS_WORK1, which is available
systemwide. Subsystems on the volume are accessible.

10. $ MOUNT DSA0: /SHADOW=(200DKA200:,200DKA300:,200DKA400:) X5OZCOPY
%MOUNT-I-MOUNTED, X5OZCOPY mounted on _DSA0:
%MOUNT-I-SHDWMEMSUCC, _200DKA200: (VIPER1) is now a valid member of
the shadow set
%MOUNT-I-SHDWMEMSUCC, _200DKA300: (VIPER1) is now a valid member of
the shadow set
%MOUNT-I-SHDWMEMSUCC, _200DKA400: (VIPER1) is now a valid member of
the shadow set
$ DISMOUNT DSA0:
$ MOUNT/INCLUDE DSA0: /SHADOW=200DKA200: X5OXCOPY
%MOUNT-I-MOUNTED, X5OZCOPY mounted on _DSA0:
%MOUNT-I-SHDWMEMSUCC, _200DKA200: (VIPER1) is now a valid member of
the shadow set
%MOUNT-I-AUTOMEMSUCC, _200DKA300: (VIPER1) automatically added to the
shadow set
%MOUNT-I-AUTOMEMSUCC, _200DKA400: (VIPER1) automatically added to the
shadow set

In this example, an existing shadow set is mounted in two ways. The first MOUNT command
specifies each member of the shadow set with the /SHADOW qualifier. Then, after DSA0: is
dismounted, the second MOUNT command uses the /INCLUDE qualifier to automatically mount
all members of the shadow set.

339

DCL Commands

340

Lexical Functions
Lexical Functions
Lexical Functions — A set of functions that return information about character strings and attributes
of the current process.

Description
The command language includes constructs, called lexical functions, that return information about the
current process and about arithmetic and string expressions. The functions are called lexical functions
because the command interpreter evaluates them during the command input scanning (or lexical
processing) phase of command processing.

You can use lexical functions in any context in which you normally use symbols or expressions. In
command procedures, you can use lexical functions to translate logical names, to perform character
string manipulations, and to determine the current processing mode of the procedure.

The general format of a lexical function is as follows:

F$function-name([args,...])

where:

F$ Indicates that what follows is a lexical function.
function-
name

A keyword specifying the function to be evaluated. Function names can be truncated
to any unique abbreviation.

() Enclose function arguments, if any. The parentheses are required for all functions,
including functions that do not accept any arguments.

args,... Specify arguments for the function, ifany, using integer or character string
expressions.

For more information on specifying expressions, see the VSI OpenVMS User's Manual.

Table 4 lists each lexical function and briefly describes the information that each function returns. A
detailed description of each function, including examples, is given in the following pages.

Table 4. Summary of Lexical Functions

Function Description
F$CONTEXT Specifies selection criteria for use with the F$PID function.
F$CSID Returns an OpenVMS Cluster identification number and updates the

context symbol to point to the current position in the system's cluster
node list.

F$CUNITS Converts a number from one specified unit of measure to another.
F$CVSI Extracts bit fields from character string data and converts the result, as

a signed value, to an integer.
F$CVTIME Retrieves information about an absolute, combination, or delta time

string.

341

Lexical Functions

Function Description
F$CVUI Extracts bit fields from character string data and converts the result, as

an unsigned value, to an integer.
F$DELTA_TIME Returns the time difference between a given start and end time.
F$DEVICE Returns device names of all devices on a system that meet the

specified selection criteria.
F$DIRECTORY Returns the current default directory name string.
F$EDIT Edits a character string based on the edits specified.
F$ELEMENT Extracts an element from a string in which the elements are separated

by a specified delimiter.
F$ENVIRONMENT Obtains information about the DCL command environment.
F$EXTRACT Extracts a substring from a character string expression.
F$FAO Invokes the $FAO system service to convert the specified control

string to a formatted ASCII output string.
F$FID_TO_NAME (Alpha/
Integrity servers only)

Translates a file identification to a file specification.

F$FILE_ATTRIBUTES Returns attribute information fora specified file.
F$GETDVI Invokes the $GETDVI system service to return a specified item of

information for a specified device.
F$GETENV (Alpha only) Invokes the $GETENV system service to return the value of the

specified console environment variable.
F$GETJPI Invokes the $GETJPI system service to return accounting, status, and

identification information for a process.
F$GETQUI Invokes the $GETQUI system service to return information about

queues, batch and print jobs currently in those queues, form
definitions, and characteristic definitions kept in the queue database.

F$GETSYI Invokes the $GETSYI system service to return status and
identification information about the local system, or about a node in
the local cluster, if your system is part of a cluster.

F$IDENTIFIER Converts an identifier in named format to its integer equivalent, or
vice versa.

F$INTEGER Returns the integer equivalent of the result of the specified expression.
F$LENGTH Returns the length of a specified string.
F$LICENSE (Alpha/
Integrity servers only)

Checks whether the specified license is loaded on the system.

F$LOCATE Locates a character or character substring within a string and returns
its offset within the string.

F$MATCH_WILD Performs a wildcard matching between a candidate and a pattern
string.

F$MESSAGE Returns the message text associated with a specified system status
code value.

F$MODE Shows the mode in which a process is executing.
F$MULTIPATH (Alpha/
Integrity servers only)

Returns a specified item of information for a specific multipath-
capable device.

342

Lexical Functions

Function Description
F$PARSE Invokes the $PARSE RMS service to parse a file specification and

return either the expanded file specification or the particular file
specification field that you request.

F$PID For each invocation, returns the next process identification number in
sequence.

F$PRIVILEGE Returns a value of TRUE or FALSE depending on whether your
current process privileges match the privileges listed in the argument.

F$PROCESS Returns the current process name string.
F$SEARCH Invokes the $SEARCH RMS service to search a directory file, and

returns the full file specification for a file you name.
F$SETPRV Sets the specified privileges and returns a list of keywords indicating

the previous state of these privileges for the current process.
F$STRING Returns the string equivalent of the result of the specified expression.
F$TIME Returns the current date and time of day, in the format dd-mmm-yyyy

hh:mm:ss.cc.
F$TRNLNM Translates a logical name and returns the equivalence name string or

the requested attributes of the logical name.
F$TYPE Determines the data type of a symbol.
F$UNIQUE (Alpha/Integrity
servers only)

Generates a string that is suitable to be a file name and is guaranteed
to be unique across the cluster.

F$USER Returns the current user identification code (UIC).
F$VERIFY Returns the integer 1 if command procedure verification is set on;

returns the integer 0 if command procedure verification is set off. The
F$VERIFY function also can set new verification states.

F$CONTEXT
F$CONTEXT — Specifies selection criteria for use with the F$PID function. The F$CONTEXT
function enables the F$PID function to obtain information about processes from any node in an
OpenVMS Cluster system.

Format
F$CONTEXT(context-type, context-symbol, selection-item, selection-
value, value-qualifier)

Return Value
A null string ("").

Arguments
context-type

Specifies the type of context to be built.

343

Lexical Functions

At present, the only context type available is PROCESS, which is used in constructing selection
criteria for F$PID. Privileges are not required to see processes for the same UIC. To see processes
for another UIC in the same UIC group, you need the GROUP privilege, and to see processes
systemwide, you need the WORLD privilege.

context-symbol

Specifies a symbol that DCL uses to refer to the context memory being constructed by the F
$CONTEXT function. The function F$PID uses this context symbol to process the appropriate
list of process identification (PID) numbers. Specify the context symbol by using a symbol.
The first time you use the F$CONTEXT function in a command procedure, use a symbol that is
either undefined or equated to the null string. The symbol created will be a local symbol of type
“PROCESS_CONTEXT”. When the context is no longer valid – that is, when all PIDs have been
retrieved by calls to the F$PID function or an error occurs during one of these calls – the symbol
no longer has a type of “PROCESS_CONTEXT”. Then you can use the F$TYPE function in the
command procedure to find out if it is necessary to cancel the context.

After setting up the selection criteria, use this context symbol when calling F$PID. Specifies a
keyword that tells F$CONTEXT which selection criterion to use. Use only one selection-item
keyword per call to F$CONTEXT.

Note

Do not use the NEQ selection value on a list of items because it causes the condition to always be
true.

For example:

$ EXAMPLE=f$context("PROCESS", CTX,"USERNAME","A*,B*","NEQ")

This equation is parsed as “if the user name is not equal to A* or the user name is not equal to B*,
then return the process of the users that meet the criteria.” Because the operand is a logical or, the
conditions will always be true (any name will be found to be not equal to A* or B*; ALFRED will not
be equal to B*; BOB will not be equal to A*).

The following table shows valid selection-item keywords for the PROCESS context type:

Selection Item Selection
Value

Value Qualifiers Comments

ACCOUNT String EQL, NEQ Valid account name or list of names.
The asterisk (*) and the percent sign (%)
wildcard characters are allowed.

AUTHPRI Integer GEQ, GTR, LEQ,
LSS, EQL, NEQ

On Alpha, valid authorized base priority
(0--63).

CANCEL Cancels the selection criteria for this
context.

CURPRIV Keyword ALL, ANY, EQL,
NEQ

Valid privilege name keyword or list of
keywords. For more information, see the VSI
OpenVMS Guide to System Security.

GRP Integer GEQ, GTR, LEQ,
LSS, EQL, NEQ

UIC group number.

HW_MODEL Integer EQL, NEQ Valid hardware model number.

344

Lexical Functions

Selection Item Selection
Value

Value Qualifiers Comments

HW_NAME String EQL, NEQ Valid hardware name or a list of keywords.
The asterisk (*) and the percent sign (%)
wildcard characters are allowed.

JOBPRCCNT Integer GEQ, GTR, LEQ,
LSS, EQL, NEQ

Subprocess count for entire job.

JOBTYPE Keyword EQL, NEQ Valid job-type keyword. Valid keywords
are DETACHED, NETWORK, BATCH,
LOCAL, DIALUP, and REMOTE. For more
information, see the VSI OpenVMS User's
Manual.

MASTER_PID String EQL, NEQ PID of master process.
MEM Integer GEQ, GTR, LEQ,

LSS, EQL, NEQ
UIC member number.

MODE Keyword EQL, NEQ Valid process mode keyword. Valid
keywords are OTHER, NETWORK,
BATCH, and INTERACTIVE. For more
information, see the VSI OpenVMS User's
Manual.

NODE_CSID Integer EQL, NEQ Node's cluster ID number.
NODENAME String EQL, NEQ Node name or list of node names. The

asterisk (*) and the percent sign (%)
wildcard characters are allowed. The default
is your local node. To request all nodes, use
the value “*”.

OWNER String EQL, NEQ PID of immediate parent process.
PRCCNT Integer GEQ, GTR, LEQ,

LSS, EQL, NEQ
Subprocess count of process.

PRCNAM String EQL, NEQ Process name or list of process names.
The asterisk (*) and the percent sign (%)
wildcard characters are allowed.

PRI Integer GEQ, GTR, LEQ,
LSS, EQL, NEQ

Process priority level number (0--63, on
Alpha).

PRIB Integer GEQ, GTR, LEQ,
LSS, EQL, NEQ

Base process priority level number (0--63,
on Alpha).

STATE Keyword EQL, NEQ Valid process state keyword. For more
information, see the description of the
$GETJPI service in the VSI OpenVMS
System Services Reference Manual.

STS Keyword EQL, NEQ Valid process status keyword. For more
information, see the description of the
$GETJPI service in the VSI OpenVMS
System Services Reference Manual.

TERMINAL String EQL, NEQ Terminal name or list of names. The asterisk
(*) and the percent sign (%) wildcard
characters are allowed.

345

Lexical Functions

Selection Item Selection
Value

Value Qualifiers Comments

UIC String EQL, NEQ User identification code (UIC) identifier
(that is, of the form “[group,member]”).

USERNAME String EQL, NEQ User name or list of user names. The asterisk
(*) and the percent sign (%) wildcard
characters are allowed.

selection-value

Specifies the value of the selection criteria. For example, to process all the processes running on node
MYVAX, specify “MYVAX” with the “NODENAME” keyword. For example:

$ X = F$CONTEXT("PROCESS", ctx, "NODENAME", "MYVAX", "EQL")

Values that are lists are valid with some selection items. If you specify more than one item, separate
them with commas (,). The following example specifies a list of the nodes MYVAX, HERVAX, and
HISVAX:

$ X=F$CONTEXT("PROCESS",ctx,"NODENAME","MYVAX,HERVAX,HISVAX","EQL")

You can use the asterisk (*) and the percent sign (%) wildcard characters for some values. Using
wildcard characters for selection items is similar to using wildcard characters for file names.

value-qualifier

Specifies qualifiers for selection values. You must qualify selection values.

You can qualify a number, for example, by requesting that the selection be based on one of the
following process values:

• LSS – less than the value specified in the call to F$PID

• LEQ – less than or equal to the value specified in the call to F$PID

• GTR – greater than the value specified in the call to F$PID

• GEQ – greater than or equal to the value specified in the call to F$PID

• EQL – equal to the value specified in the call to F$PID

• NEQ – not equal to the value specified in the call to F$PID

You can qualify some lists with the ALL, ANY, EQL, or NEQ keywords. Such lists are usually masks
such as the process privilege mask, which consists of the set of enabled privileges.

• ALL – requires that all items in the list be true for a process

• ANY – requests that any item in the list be part of the attributes of a process

• EQL – requires the values to match exactly (that is, values not specified must not be true of the
process)

• NEQ – requires that the value must not match

When using multiple selection values with a particular selection qualifier, a match on any one of the
selection criteria is considered valid (as if an OR operand was in place); the selection values are not
cumulative criteria (as if an AND operand was in place).

346

Lexical Functions

The difference between ALL and EQL is that the values specified with ALL must exist, but other
unspecified values can exist also. EQL requires that all values specified must exist, and all others may
not. For example, to request those processes whose current privileges include TMPMBX (temporary
mailbox) and OPER (operator), but may include other privileges, specify the ALL keyword. To
request those processes whose current privileges are TMPMBX and OPER exclusively, specify the
EQL keyword.

Description
Use the F$CONTEXT function to set up selection criteria for the F$PID function.

The F$CONTEXT function is called as many times as necessary to produce the criteria needed;
however, each call can specify only one selection item. Lists of item values are allowed, where
appropriate, and more than one context can be operated upon at a time.

After establishing the selection criteria with appropriate calls to F$CONTEXT, F$PID is called
repeatedly to return all the process identification (PID) numbers that meet the criteria specified in the
F$CONTEXT function. When there are no more such processes, the F$PID function returns a null
string.

After the F$PID function is called, the context symbol is considered “frozen”; F$CONTEXT cannot
be called again with the same context symbol until the associated context selection criteria have been
deleted. If you attempt to set up additional selection criteria with the same context symbol, an error
message is displayed; however, the context and selection criteria are not affected and calls to the F
$PID function can continue.

The F$CONTEXT function uses process memory to store the selection criteria. This memory is
deleted under two circumstances. Memory is deleted when the F$PID function is called and a null
string ("") is returned – that is, when all processes that meet the selection criteria have been returned.
Memory also is deleted if the CANCEL selection-item keyword is used in a call to F$CONTEXT
with an established context. This type of call is appropriate for a Ctrl/Y operation or another condition
handling routine.

Examples
1. $!Establish an error and Ctrl/Y handler

$!
$ ON ERROR THEN GOTO error
$ ON CONTROL_Y THEN GOTO error
$!
$ ctx = ""
$ temp = F$CONTEXT ("PROCESS", ctx, "NODENAME", "*","EQL")
$ temp = F$CONTEXT ("PROCESS", ctx, "USERNAME", "M*,SYSTEM","EQL")
$ temp = F$CONTEXT ("PROCESS", ctx, "CURPRIV", "SYSPRV,OPER", "ALL")

$!
$!Loop over all processes that meet the selection criteria.
$!Print the PID and the name of the image for each process.
$!
$loop:
$ pid = F$PID(ctx)
$ IF pid .EQS. ""
$ THEN
$ GOTO endloop
$ ELSE
$ image = F$GETJPI(pid,"IMAGNAME")

347

Lexical Functions

$ SHOW SYMBOL pid
$ WRITE SYS$OUTPUT image
$ GOTO loop
$ ENDIF
$!The loop over the processes has ended.
$!
$endloop:
$!
$ EXIT
$!
$!Error handler. Clean up the context's memory with
$!the CANCEL selection item keyword.
$!
$error:
$ IF F$TYPE(ctx) .eqs. "PROCESS_CONTEXT" THEN -
_$ temp = F$CONTEXT ("PROCESS", ctx, "CANCEL")
$!
$ EXIT

In this example, F$CONTEXT is called three times to set up selection criteria. The first call
requests that the search take place on all nodes in the cluster. The second call requests that only
the processes whose user name either starts with an “M” or is “SYSTEM” be processed. The
third call restricts the selection to those processes whose current privileges include both SYSPRV
(system privilege) and OPER (operator) and can have other privileges set.

The command lines between the labels “loop” and “endloop” continually call F$PID to obtain
the processes that meet the criteria set up in the F$CONTEXT calls. After retrieving each PID, F
$GETJPI is called to return the name of the image running in the process. Finally, the procedure
displays the name of the image.

In case of error or a Ctrl/Y operation, control is passed to error and the context is closed if
necessary. In this example, note the check for the symbol type PROCESS_CONTEXT. If the
symbol has this type, selection criteria must be canceled by a call to F$CONTEXT. If the symbol
is not of the type PROCESS_CONTEXT, either selection criteria have not been set up yet in F
$CONTEXT, or the symbol was used with F$PID until an error occurred or until the end of the
process list was reached.

2. f$context("process",ctx,"prcnam ","symbiont*,mcote*","eql")

f$context("process",ctx,"prcnam ","symbiont*,mcote* ","neq")

f$context("process",ctx,"prcnam ","mcote* ","neq")
f$context("process",ctx,"prcnam ","symbiont*","neq")

This example shows three sets of lexicals showing the difference between the EQL and the NEQ
selection values. The first lexical function (with EQL) passes back all processes with symbiont
and mcote in the process name. The second and third lexical functions (with NEQ) are equivalent
in that they both will pass back all processes (processes that do not have symbiont in the process
name, or processes that do not have mcote in the process name.)

F$CSID
F$CSID — Returns an identification number from an OpenVMS Cluster system and updates the
context symbol to point to the current position in the system's cluster node list.

348

Lexical Functions

Format
F$CSID(context-symbol)

Return Value
A character string containing the system cluster identification number in the system's list of clustered
nodes. If the current system is not a member of a cluster, the first return value is null. After the last
system cluster identification number is returned, the F$CSID function returns a null string ("").

Arguments
context-symbol

Specifies a symbol that DCL uses to store a pointer into the system's list of clustered nodes. The F
$CSID function uses this pointer to return a cluster identification number.

Specify the context-symbol argument by using a symbol. The first time you use the F$CSID
function, use a symbol that is either undefined or equated to the null string.

If the context-symbol argument is undefined or equated to a null string, the F$CSID function
returns the cluster identification number of the first system in the system's cluster node list.
Subsequent calls to the F$CSID function will return the cluster identification number of the rest of the
nodes in the cluster.

Description
The F$CSID function returns a cluster identification number, and updates the context symbol to point
to the current position in the system's cluster node list.

If the current system is not a member of a cluster, the first return valueis null.

You can use the F$CSID function to obtain all of the cluster identification numbers on the system. For
each cluster identification returned, the F$GETSYI function can be used to obtain information about
the particular system.

Once the context-symbol argument is initialized by the first call, each subsequent F$CSID
function call returns the cluster identification number of another node in the cluster. (Note that the
cluster identification numbers are returned in random order.) After the cluster identification number of
the last system in the list is returned, the F$CSID function returns a null string.

Example
$ IF F$GETSYI("CLUSTER_MEMBER") .EQS. "FALSE" THEN GOTO NOT_CLUSTER
$ CONTEXT = ""
$START:
$ id = F$CSID (CONTEXT)
$ IF id .EQS. "" THEN EXIT
$ nodename = F$GETSYI ("NODENAME",,id)
$ WRITE SYS$OUTPUT nodename
$ GOTO start
$NOT_CLUSTER:
$ WRITE SYS$OUTPUT "Not a member of a cluster."
$ EXIT

349

Lexical Functions

This command procedure uses the F$CSID function to display a list of cluster system names. The
assignment statement declares the symbol CONTEXT, which is used as the context-symbol
argument for the F$CSID function. Because CONTEXT is equated to a null string, the F$CSID
function will return the first cluster identification number in the cluster node list.

If the F$CSID function returns a null value, then the command procedure either is at the end of the
list, or is attempting this operation on a non-clustered node. The call to F$GETSYI checks whether
the current node is a member of a cluster. The command procedure will exit on this condition.

If the F$CSID function does not return a null value, then the command procedure uses the
identification number as the third argument to the F$GETSYI function to obtain the name of the
system. The name is then displayed using the WRITE command.

F$CUNITS
F$CUNITS — Converts a number from one specified unit of measure to another.

Format
F$CUNITS(number [,from-units, to-units])

Return Value
A number representing the converted value.

Arguments
number

Specifies a 32-bit (or smaller) number to convert.

from-units

Specifies the unit of measure from which to convert. When only first argument is present, the default
option for this field is BLOCKS. Supported options for this field are BLOCKS, B, KB, MB, GB, and
TB.

to-units

Specifies the unit of measure to which to convert. When only first argument is present, or the second
argument is BLOCKS, the default option for this field is BYTES and the result gets rounded off to
appropriate "to-unit". Supported options for this field are BLOCKS, BYTES, B, KB, MB, GB, and
TB. Keyword "BYTES" is supported only for BLOCKS to BYTES conversion.

Examples
1. $ WRITE SYS$OUTPUT F$CUNITS(1024)

512KB

$ WRITE SYS$OUTPUT F$CUNITS(1024, "BLOCKS")
512KB

$ WRITE SYS$OUTPUT F$CUNITS(1024, "BLOCKS", "BYTES")

350

Lexical Functions

512KB

The above examples convert 1024 blocks to the equivalent in bytes and auto scale the output. The
result is 512 KB.

2. $ WRITE SYS$OUTPUT F$CUNITS(1024, "BLOCKS", "B")
524288B

This example converts 1024 Blocks to non scaled bytes value. The result is 524288 Bytes.

3. $ WRITE SYS$OUTPUT F$CUNITS (512,"B", "BLOCKS")
1BLOCKS

This example converts 512 Bytes to the equivalent in Blocks. The result is 1 Blocks.

4. $ WRITE SYS$OUTPUT F$CUNITS (10,"KB","B")
10240B

This example converts 10 KB to the equivalent in Bytes. The result is 10240 Bytes.

5. $ WRITE SYS$OUTPUT F$CUNITS (1024,"MB","GB")
1GB

This example converts 1024 MB to the equivalent in GB. The result is 1 GB.

6. $ WRITE SYS$OUTPUT F$CUNITS(512, "MB", "BLOCKS")
1048576BLOCKS

This example converts 512 MB to the equivalent in BLOCKS. The result is 1048576 Blocks.

"CONFLICT" warning message is displayed when keyword "BYTES" is used for other than
"BLOCKS" to "BYTES" conversion. For example:

$ WRITE SYS$OUTPUT F$CUNITS (512,"BYTES","BLOCKS")
%DCL-W-CONFLICT, illegal combination of command elements - check
 documentation
\BYTES\
$ WRITE SYS$OUTPUT F$CUNITS (10,"KB","BYTES")
%DCL-W-CONFLICT, illegal combination of command elements - check
 documentation
\BYTES\

The correct syntax to be used is as follows:

$ WRITE SYS$OUTPUT F$CUNITS (512,"B", "BLOCKS")
1BLOCKS
$ WRITE SYS$OUTPUT F$CUNITS (10,"KB","B")
10240B

F$CVSI
F$CVSI — Converts the specified bits in the specified character string to a signed number.

Format
F$CVSI(start-bit,number-of-bits,string)

351

Lexical Functions

Return Value
The integer equivalent of the extracted bit field, converted as a signed value.

Arguments
start-bit

Specifies the offset of the first bit to be extracted. The low-order (rightmost) bit of a string is position
number 0 for determining the offset. Specify the offset as an integer expression.

If you specify an expression with a negative value, or with a value that exceeds the number of bits in
the string, then DCL displays the INVRANGE error message.

number-of-bits

Specifies the length of the bit string to be extracted, which must be less than or equal to the number of
bits in the string.

If you specify an expression with a negative value, or with a value that exceeds the number of bits in
the string, then DCL displays the INVRANGE error message.

string

Specifies the string from which the bits are taken. Specify the string as a character string expression.

Examples
1. $ A[0,32] = %X2B

$ SHOW SYMBOL A
 A = "+..."
$ X = F$CVSI(0,4,A)
$ SHOW SYMBOL X
 X = -5 Hex = FFFFFFFB Octal = 37777777773

This example uses an arithmetic overlay to assign the hexadecimal value 2B to all 32 bits of the
symbol A. For more information on arithmetic overlays, seethe description of the assignment
statement (=).

The symbol A has a string value after the overlay because it was previously undefined. (If a
symbol is undefined, it has a string value as a result of an arithmetic overlay. If a symbol was
previously defined, it retains the same data type after the overlay.) The hexadecimal value 2B
corresponds to the ASCII value of the plus sign (+).

Next, the F$CVSI function extracts the low-order 4 bits from the symbol A;the low-order 4 bits
contain the binary representation of the hexadecimal value B. These bits are converted, as a signed
value, to an integer. The converted value, -5, is assigned to the symbol X.

2. $ SYM[0,32] = %X2A
$ SHOW SYMBOL SYM
 SYM = "*..."
$ Y = F$CVSI(0,33,SYM)
%DCL-W-INVRANGE, field specification is out of bounds - check sign and
 size
$ SHOW SYMBOL Y

352

Lexical Functions

%DCL-W-UNDSYM, undefined symbol - check spelling

In this example, the width argument specified with the F$CVSI function is too large. Therefore,
DCL issues an error message and the symbol Y is not assigned a value.

F$CVTIME
F$CVTIME — Converts an absolute or a combination time string to a string of the form
yyyy-mm-dd hh:mm:ss.cc. The F$CVTIME function can also return information about an
absolute, combination, or delta time string.

Format
F$CVTIME([input_time] [,output_time_format] [,output_field])

Return Value
A character string containing the requested information.

Arguments
input_time

Specifies a string containing absolute, a delta, or a combination time, or TODAY, TOMORROW, or
YESTERDAY. Specify the input time string as a character string expression.

If the input_time argument is omitted or is specified as a null string (""), the current system date
and time, in absolute format, is used. If parts of the date field are omitted, the missing values default
to the current date. If parts of the time field are omitted, the missing values default to zero.

For more information on specifying time values, see the VSI OpenVMS User's Manual or the online
help topic Date.

If the input_time argument is a delta time, you must specify the output_time_format
argument as DELTA.

output_time_format

Specifies the time format for the information you want returned. Specify the
output_time_format argument as one of the following character string expressions:

ABSOLUTE The requested information should be returned in absolute time format,
which is dd-mmm-yyyy hh:mm:ss.cc. Single-digit days are returned
with no leading space or zero.

COMPARISON (default) The requested information should be returned in the form yyyy-mm-dd
hh:mm:ss.cc (used for comparing two times).

DELTA The requested information should be returned in delta format,
which is dddd-hh:mm:ss.cc. If you specify DELTA as the
output_time_format argument, then you must also provide a
delta time specification for the input_time argument.

output_field

353

Lexical Functions

Specifies a character string expression containing one of the following (do not abbreviate): DATE,
MONTH, DATETIME (default), SECOND, DAY, TIME, HOUR, WEEKDAY, HUNDREDTH,
YEAR, MINUTE, DAYOFYEAR, HOUROFYEAR, MINUTEOFYEAR, SECONDOFYEAR.

The information is returned in the time format specified by the output_time_format argument.

If the input_time argument is a delta time and the output_time_format argument is
DELTA, you cannot specify MONTH, WEEKDAY, YEAR, DAYOFYEAR, HOUROFYEAR,
MINUTEOFYEAR, or SECONDOFYEAR.

When the weekday is returned, the first letter is in uppercase, and the following letters are in
lowercase.

Description
When using the F$CVTIME function, you can omit optional arguments that can be used to the right
of the last argument you specify; however, you must include commas (,) as placeholders if you omit
optional arguments to the left of the last argument you specify.

When specifying the input time argument in either absolute or combination time format, you can
specify ABSOLUTE or COMPARISON as the output_time_format argument; you cannot
specify DELTA.

When specifying the input_time argument in delta time format, you must specify DELTA as the
output_time_format argument.

Examples
1. $ TIME = F$TIME()

$ SHOW SYMBOL TIME
 TIME = "14-DEC-2002 10:56:23.10"
$ TIME = F$CVTIME(TIME)
$ SHOW SYMBOL TIME
 TIME = "2002-12-14 10:56:23.10"

This example uses the F$TIME function to return the system time as a character string and to
assign the time to the symbol TIME. Then the F$CVTIME function is used to convert the system
time to an alternate time format. Note that you do not need to place quotation marks (“ ”) around
the argument TIME because it is a symbol. Symbols are automatically evaluated when they are
used as arguments for lexical functions.

You can use the resultant string to compare two dates (using .LTS. and .GTS. operators). For
example, you can use F$CVTIME to convert two time strings and store the results in the symbols
TIME_1 and TIME_2. You can compare the two values, and branch to a label, based on the
following results:

 $ IF TIME_1 .LTS. TIME_2 THEN GOTO FIRST

2. $ NEXT = F$CVTIME("TOMORROW",,"WEEKDAY")
$ SHOW SYMBOL NEXT
 NEXT = "Tuesday"

In this example, F$CVTIME returns the weekday that corresponds to the absolute time keyword
“TOMORROW”. You must enclose the arguments “TOMORROW” and “WEEKDAY” in
quotation marks because they are character string expressions. Also, you must include a comma as
a placeholder for the output_time_format argument that is omitted.

354

Lexical Functions

3. $ SHOW TIME
 27-MAR-2002 09:50:31
$ WRITE SYS$OUTPUT F$CVTIME(,,"DAYOFYEAR")
86
$ WRITE SYS$OUTPUT F$CVTIME(,,"HOUROFYEAR")
2049
$ WRITE SYS$OUTPUT F$CVTIME(,,"MINUTEOFYEAR")
122991
$ WRITE SYS$OUTPUT F$CVTIME(,,"SECONDOFYEAR")
7379476

In this example, F$CVTIME returns the values for the following keywords: DAYOFYEAR,
HOUROFYEAR, MINUTEOFYEAR, and SECONDOFYEAR.

F$CVUI
F$CVUI — Extracts bit fields from character string data and converts the result to an unsigned
number.

Format
F$CVUI(start-bit,number-of-bits,string)

Return Value
The integer equivalent of the extracted bit field, converted as an unsigned value.

Arguments
start-bit

Specifies the offset of the first bit to be extracted. The low-order(rightmost) bit of a string is position
number 0 for determining the offset. Specify the offset as an integer expression.

If you specify an expression with a negative value, or with a value that exceeds the number of bits in
the string, DCL displays the INVRANGE error message.

number-of-bits

Specifies the length of the bit string to be extracted, which must be less than or equal to the number of
bits in the string argument.

If you specify an expression with a negative value, or with a value that is invalid when added to the
bit position offset, DCL displays the INVRANGE error message. Specifies the character string to be
edited.

string

Specifies the character string to be edited.

Example
$ A[0,32] = %X2B
$ SHOW SYMBOL A
 A = "+..."

355

Lexical Functions

$ X = F$CVUI(0,4,A)
$ SHOW SYMBOL X
 X = 11 Hex = 0000000B Octal = 00000000013

This example uses an arithmetic overlay to assign the hexadecimal value 2B to all 32 bits of the
symbol A. The symbol A has a string value after the overlay because it was previously undefined.
(If a symbol is undefined, it has a string value as a result of an arithmetic overlay. If a symbol
was previously defined, it retains the same data type after the overlay.) The hexadecimal value 2B
corresponds to the ASCII character “+”.

Next, the F$CVUI function extracts the low-order 4 bits from the symbol A; the low-order 4 bits
contain the binary representation of the hexadecimal value B. These bits are converted, as a signed
value, to an integer. The converted value, 11, is assigned to the symbol X.

F$DELTA_TIME
F$DELTA_TIME — Returns the time difference between a given start and end time. The end time
must be the same as or later than the start time.

Synopsis
F$DELTA_TIME(start-time,end-time,format)

Return Value
A character string containing the difference between the start and end times. The returned string has
the following fixed format:

dddd hh:mm:ss.cc

Arguments
start-time

Absolute time expression of the start time in the following format:

dd-mmm-yyyy hh:mm:ss.cc

end-time

Absolute time expression of the end time in the following format:

dd-mmm-yyyy hh:mm:ss.cc

format

Format for delta time return value. The keywords are as follows:

• ASCTIM: ASCII time format

• DCL: DCL delta time format. This format can be used as an input to other DCL time-related
lexicals and commands.

Example
1. $ START=F$TIME()

$ END=F$TIME()

356

Lexical Functions

$ SHOW SYMBOL START
START = "15-JUL-2003 16:26:35.77"
$ SHOW SYMBOL END
END = "15-JUL-2003 16:26:41.39"
$ WRITE SYS$OUTPUT F$DELTA_TIME(START,END)
 0 00:00:05.62

This example uses the F$TIME() lexical function to define a symbol for the start time and end
time. It then uses F$DELTA_TIME to display the time difference between the start and end time.

2. WRITE SYS$OUTPUT F$DELTA_TIME(START,END,"DCL")
0-00:00:11.91
$ WRITE SYS$OUTPUT F$DELTA_TIME(START,END,"ASCTIM")
 0 00:00:11.91

This example returns the delta between the start and end time in DCL and ASCII formats.

3. WRITE SYS$OUTPUT F$DELTA_TIME ("BOOT", "LOGIN")
 0 10:24:18.92
$ WRITE SYS$OUTPUT F$DELTA_TIME ("BOOT", "LOGIN", "DCL")
0-10:24:18.92
$ WRITE SYS$OUTPUT F$DELTA_TIME ("BOOT", "LOGIN", "ASCTIM")
 0 10:24:18.92

This example returns the delta between the boot and login time in DCL and ASCII formats.

F$DEVICE
F$DEVICE — Returns the device names of all devices on a system that meet the specified selection
criteria. Note that the device names are returned in random order.

Format
F$DEVICE([search_devnam],[devclass],[devtype],[stream-id])

Return Value
A character string containing the name of a device in the system's list of devices. After the last device
name in the system's device list is returned, the F$DEVICE function returns a null string ("").

Arguments
search_devnam

Specifies the name of the device for which F$DEVICE is to search. The asterisk (*) and the percent
sign (%) wildcard characters are allowed in the search_devnam argument.

Specify the search_devnam argument as a character string expression.

devclass

Specifies the device class for which F$DEVICE is to search. Specify the devclass argument as a
character string expression that corresponds to a valid device class name.

See the DVI$_DEVTYPE item in the $GETDVI system service for additional information.

357

Lexical Functions

devtype

Specifies the device type for which F$DEVICE is to search. Specify the devtype argument as a
character string expression that corresponds to a valid type name. See the DVI$_DEVTYPE item in
the $GETDVI system service for additional information.

Note

Specifying a device type without specifying a device class will result in an error.

stream-id

A positive integer representing the search stream identification number.

The search stream identification number is used to maintain separate search contexts when you use
the F$DEVICE function more than once and when you supply different search criteria. If you use
the F$DEVICE function more than once ina command procedure and if you also use different search
criteria, specify stream-id arguments to identify each search separately.

If the search criteria are changed in a call before the device name list is exhausted, the context will be
reinitialized and the search will restart.

If you omit the stream-id argument, the F$DEVICE function assumes an implicit single search
stream. That is, the F$DEVICE function starts searching at the beginning each time you specify
different search criteria.

Description
The F$DEVICE function allows you to search for devices that meet certain search criteria by using
the $DEVICE_SCAN system service.

The F$DEVICE function allows asterisk (*) and percent sign (%) wildcard character searches based
only on the device name; you must specify a valid character string expression for the device class or
device type.

You can use the F$DEVICE function in a loop in a command procedure to return device names that
match the specified selection criteria. Each time the F$DEVICE function is executed, it returns the
next device on the system that matches the selection criteria. Note that devices are returned in no
particular order. After the last device name is returned, the next F$DEVICE function returns a null
string.

Note that you must maintain the context of the search string explicitly (by specifying the stream-
id argument) or implicitly (by omitting the stream-id argument). In either case, you must specify
the same selection criteria each time you execute the F$DEVICE system service with the same
(explicit or implicit) stream.

Example
$ START:
$ DEVICE_NAME = F$DEVICE("*0:","DISK","RA60")
$ IF DEVICE_NAME .EQS. "" THEN EXIT
$ SHOW SYMBOL DEVICE_NAME
$ GOTO START

This command procedure displays the device names of all the RA60s on a unit numbered 0.

358

Lexical Functions

Because no stream-id argument is specified, F$DEVICE uses an implicit search stream. Each
subsequent use of the F$DEVICE function uses the same search criteria to return the next device
name. After the last device name is displayed, the F$DEVICE function returns a null string and the
procedure exits.

F$DIRECTORY
F$DIRECTORY — Returns the current default directory name string. The F$DIRECTORY function
has no arguments, but must be followed by parentheses.

Format
F$DIRECTORY()

Return Value
A character string for the current default directory name, including brackets ([]). If you use the
SET DEFAULT command and specify angle brackets (<>) in a directory specification, the F
$DIRECTORY function returns angle brackets in the directory string.

Arguments
None.

Description
You can use the F$DIRECTORY function to save the name of the current default directory in a
command procedure, to change the default to another directory to do work, and to later restore the
original setting.

Example
$ SAVE_DIR = F$DIRECTORY()
$ SET DEFAULT [CARLEN.TESTFILES]
 .
 .
 .
$ SET DEFAULT 'SAVE_DIR'

This example shows an excerpt from a command procedure that uses the F$DIRECTORY function to
save the current default directory setting. The assignment statement equates the symbol SAVE_DIR
to the current directory. Then the SET DEFAULT command establishes a new default directory. Later,
the symbol SAVE_DIR is used in the SET DEFAULT command that restores the original default
directory.

Note that you can use the F$ENVIRONMENT function with the DEFAULT keyword to return
the default disk and directory. You should use the F$ENVIRONMENT function rather than the F
$DIRECTORY function in situations involving more than one disk.

F$EDIT
F$EDIT — Edits the character string based on the edits specified in the edit-list argument.

359

Lexical Functions

Format
F$EDIT(string, edit-list)

Return Value
A character string containing the specified edits.

Arguments
string

Specifies a character string to be edited. Quoted sections of the string are not edited.

edit-list

Specifies a character string containing one or more of the following keywords that specify the types of
edits to be made to the string:

Edit Action
COLLAPSE Removes all spaces or tabs.
COMPRESS Replaces multiple spaces or tabs with a single space.
LOWERCASE Changes all uppercase characters to lowercase.
TRIM Removes leading and trailing spaces or tabs.
UNCOMMENT Removes comments.
UPCASE Changes all lowercase characters to uppercase.

If you specify more than one keyword, separate them with commas (,). Do not abbreviate these
keywords.

Edits are not applied to quoted sections of strings; therefore, if a string contains quotation marks (“ ”),
the characters within the quotation marks are not affected by the edits specified in the edit list.

Note

When UPCASE is specified with LOWERCASE in an edit-list, UPCASE takes precedence.

Examples
1. $ LINE = " THIS LINE CONTAINS A "" QUOTED "" WORD"

$ SHOW SYMBOL LINE
 LINE = " THIS LINE CONTAINS A " QUOTED " WORD"
$ NEW_LINE = F$EDIT(LINE, "COMPRESS, TRIM")
$ SHOW SYMBOL NEW_LINE
 NEW_LINE = "THIS LINE CONTAINS A " QUOTED " WORD"

This example uses the F$EDIT function to compress and trim a string by replacing multiple
blanks with a single blank, and by removing leading and trailing blanks. The string LINE contains
quotation marks around the word QUOTED. (To enter quotation marks into a character string, use
double quotation marks in the assignment statement.)

Note that the F$EDIT function does not compress the spaces in the quoted section of the string;
therefore, the spaces are retained around the word QUOTED.

360

Lexical Functions

2. $ LOOP:
$ READ/END_OF_FILE = DONE INPUT_FILE RECORD
$ RECORD = F$EDIT(RECORD, "TRIM, UPCASE")
$ WRITE OUTPUT_FILE RECORD
$ GOTO LOOP
 .
 .
 .

This example sets up a loop to read records from a file, to edit them, and to write them to an
output file. The edited records have leading and trailing blanks removed, and are converted to
uppercase.

3. $ UNCOMMENT_LINE = F$EDIT("$ DIR ! THIS IS THE COMMENT", "UNCOMMENT")
$ SHOW SYMBOL UNCOMMENT_LINE
$ UNCOMMENT_LINE = "$ DIR"

This example uses the F$EDIT function to remove comments.

F$ELEMENT
F$ELEMENT — Extracts one element from a string of elements.

Format
F$ELEMENT(element-number, delimiter, string)

Return Value
A character string containing the specified element.

Arguments
element-number

Specifies the number of the element to extract (numbering begins with zero). Specify the element-
number argument as an integer expression. If the element-number argument exceeds the number
of elements in the string, F$ELEMENT returns the delimiter.

delimiter

Specifies a character used to separate the elements in the string. Specify the delimiter as a character
string expression.

string

Specifies a string containing a delimited list of elements. Specify the string as a character string
expression.

Examples
1. $ DAY_LIST = "MON/TUE/WED/THU/FRI/SAT/SUN"

$ INQUIRE DAY "ENTER DAY (MON TUE WED THU FRI SAT SUN)"
$ NUM = 0

361

Lexical Functions

$ LOOP:
$ LABEL = F$ELEMENT(NUM,"/",DAY_LIST)
$ IF LABEL .EQS. "/" THEN GOTO END
$ IF DAY .EQS. LABEL THEN GOTO ’LABEL’
$ NUM = NUM +1
$ GOTO LOOP
$
$ MON:
 .
 .
 .

This example sets up a loop to test an input value against the elements in a list of values. If the
value for DAY matches one of the elements in DAY_LIST, control is passed to the corresponding
label. If the value returned by the F$ELEMENT function matches the delimiter, the value DAY
was not present in the DAY_LIST, and control is passed to the label END.

2. ! INDEX.COM
$!
$ CHAPTERS = "0,1,2,3,4,5,6,A,B,C"
$ NEXT = 0
$ LOOP:
$ NEXT = NEXT + 1
$ NUM = F$ELEMENT(NEXT,",",CHAPTERS)
$ IF (NUM .NES. ",")
$ THEN
$ RUN INDEX CHAP’NUM’
$ GOTO LOOP
$ ENDIF

This example processes files named CHAP1, CHAP2, ... CHAP6, CHAPA, CHAPB, and
CHAPC, in that order. (Zero is included in the CHAPTERS string to initialize the procedure
logic.) NEXT is initialized to zero. The procedure enters the loop. In the first iteration, NEXT
is incremented to 1 and the result of the F$ELEMENT call is the string “1”. The procedure
runs the index, chapter1. In the second iteration, NEXT is incremented to 2 and the result of the
F$ELEMENT call is the string “1”. The procedure runs the index, chapter2. Processing continues
until the result of the F$ELEMENT call is the delimiter specified in the call.

F$ENVIRONMENT
F$ENVIRONMENT — Returns information about the current DCL command environment.

Format
F$ENVIRONMENT(item)

Return Value
Information that corresponds to the specified item. The return value can be either an integer or a
character string, depending on the specified item.

Arguments
item

362

Lexical Functions

Specifies the type of information to be returned. Specify one of the following keywords (do not
abbreviate these keywords):

Item Data Type Information Returned
CAPTIVE String TRUE if you are logged in to a captive account. The

system manager can define captive accounts in the user
authorization file (UAF)by using the Authorize utility
(AUTHORIZE).

CONTROL String Control characters currently enabled with
SETCONTROL. Multiple characters are separated by
commas; if no control characters are enabled, the null
string ("") is returned.

DEFAULT String Current default device and directory name. The
returned string is the same as SHOW DEFAULT
output.

DEPTH Integer Current command procedure depth. The command
procedure depth is 0 when you log in interactively and
when you submit a batch job. The command procedure
depth is 1 when you execute a command procedure
interactively or from within a batch job. A nested
command procedure has a depth of 1 greater than
the depth of the command procedure from which the
nested procedure is executed.

DISIMAGE String TRUE if you are logged in to an account that does
not allow you to directly invoke images (for example,
RUN is not allowed). The system manager can add or
remove the DISIMAGE attribute for accounts in the
UAF by using AUTHORIZE.

INTERACTIVE String TRUE if the process is executing interactively.
KEY_STATE String Current locked keypad state. See the description of

the DEFINE/KEY command for more information on
keypad states.

MAX_DEPTH Integer Maximum allowable command procedure depth.
MESSAGE String Current setting of SET MESSAGE qualifiers.

Each qualifier in the string is prefaced by
a slash (/); therefore, the output from F
$ENVIRONMENT(“MESSAGE”) can be appended
to the SET MESSAGE command to form a valid DCL
command line.

NOCONTROL String Control characters currently disabled with
SETNOCONTROL. Multiple characters are separated
by commas (,); if no control characters are disabled,
the null string is returned.

ON_CONTROL_Y String If issued from a command procedure, returns TRUE if
ON_CONTROL_Y is set. ON_CONTROL_Y always
returns FALSE at DCL command level.

ON_SEVERITY String If issued from a command procedure, returns the
severity level at which the action specified with the

363

Lexical Functions

Item Data Type Information Returned
ON command is performed. ON_SEVERITY returns
NONE when SET NOON is in effect or at DCL
command level.

OUTPUT_RATE String Delta time string containing the default output rate,
which indicates how often data is written to the
batch job log file while the batch job is executing.
OUTPUT_RATE returns a null string if used
interactively.

PROCEDURE String File specification of the current command procedure.
If used interactively, the terminal device name is
returned.

PROMPT String Current DCL prompt.
PROMPT_CONTROL String TRUE if a carriage return and line feed precede the

prompt.
PROTECTION String Current default file protection. The string can be used

with the SET PROTECTION/DEFAULT command to
form a valid DCL command line.

RESTRICTED String TRUE if you are logged in to a restricted account. The
system manager can define restricted accounts in the
UAF by using AUTHORIZE.

SYMBOL_SCOPE String [NO]LOCAL, [NO]GLOBAL to indicate the current
symbol scoping state.

VERB_SCOPE String [NO]LOCAL, [NO]GLOBAL to indicate the current
symbol scoping state for verbs. (For more information,
see the description of the SET SYMBOL command.)

VERIFY_IMAGE String TRUE if image verification (SET VERIFY=IMAGE)
is in effect. If image verification is in effect, then the
command procedure echoes input data read by images.

VERIFY_PREFIX String Returns the prefix control string set by means of the
SET PREFIX command.

VERIFY_PROCEDURE String TRUE if procedure verification
SETVERIFY=PROCEDURE is in effect. If command
verification is in effect, then the command procedure
echoes DCL command lines.

Examples
1. $ SAVE_MESSAGE = F$ENVIRONMENT("MESSAGE")

$ SET MESSAGE/NOFACILITY/NOIDENTIFICATION
 .
 .
 .
$ SET MESSAGE'SAVE_MESSAGE'

This example uses the F$ENVIRONMENT function to save the current message setting before
changing the setting. At the end of the command procedure, the original message setting is
restored. The single quotation marks (' ') surrounding the symbol SAVE_MESSAGE indicate that
the value for the symbol should be substituted.

364

Lexical Functions

2. $ MAX = F$ENVIRONMENT("MAX_DEPTH")
$ SHOW SYMBOL MAX
 MAX = 32 Hex = 00000020 Octal = 00000000040

This example uses the F$ENVIRONMENT function to determine the maximum depth allowable
within command procedures.

3. $ SAVE_PROT = F$ENVIRONMENT("PROTECTION")
$ SET PROTECTION = (SYSTEM:RWED, OWNER:RWED, GROUP, WORLD)/DEFAULT
 .
 .
 .
$ SET PROTECTION = ('SAVE_PROT')/DEFAULT

This example uses the F$ENVIRONMENT function to save the current default protection before
changing the protection. At the end of the command procedure, the original protection is restored.
You must place single quotation marks around the symbol SAVE_PROT to request symbol
substitution.

F$EXTRACT
F$EXTRACT — Extracts the specified characters from the specified string.

Format
F$EXTRACT(start,length,string)

Return Value
A character string containing the characters delimited by the start and length arguments.

Arguments
start

Specifies the offset of the starting character of the string you want to extract. Specify the start
argument as an integer expression that is greater than or equal to zero.

The offset is the relative position of a character or a substring with respect to the beginning of the
string. Offset positions begin with zero. The string always begins with the leftmost character.

If you specify an offset that is greater than or equal to the length of the string, F$EXTRACT returns a
null string ("").

length

Specifies the number of characters you want to extract; must be less than or equal to the size of the
string. Specify the length as an integer expression that is greater than or equal to zero.

If you specify a length that exceeds the number of characters from the offset to the end of the string,
the F$EXTRACT function returns the characters from the offset through the end of the string.

string

365

Lexical Functions

Specifies the character string to be edited. Specify the string as a character string expression.

Examples
1. $ NAME = "PAOLO TESTA"

$ FIRST = F$EXTRACT(0,5,NAME)
$ SHOW SYMBOL FIRST
 FIRST = "PAOLO"

This portion of a command procedure uses the F$EXTRACT function to extract the first 5
characters from the character string assigned to the symbol NAME. The offset and length
arguments are integers, and the string argument is a symbol. You do not need to use quotation
marks (“ ”) around integers or symbols when they are used as arguments for lexical functions.

2. $ P1 = "MYFILE.DAT"
$ FILENAME = F$EXTRACT(0,F$LOCATE(".",P1),P1)

This portion of a command procedure shows how to locate a character within a string, and how to
extract a substring ending at that location.

The lexical function F$LOCATE gives the numeric value representing the offset position of a
period in the character string value of P1. (The offset position of the period is equal to the length
of the substring before the period.)

This F$LOCATE function is used as an argument in the F$EXTRACT function to specify the
number of characters to extract from the string. If a procedure is invoked with the parameter
MYFILE.DAT, these statements result in the symbol FILENAME being given the value MYFILE.

Note that the F$LOCATE function in the above example assumes that the file specification does
not contain a node name or a directory specification containing a subdirectory name. To obtain the
file name from a full file specification, use the F$PARSE function.

3. $ IF F$EXTRACT(12,2,F$TIME()) .GES. "12" THEN GOTO AFTERNOON
$ MORNING:
$ WRITE SYS$OUTPUT "Good morning!"
$ EXIT
$ AFTERNOON:
$ WRITE SYS$OUTPUT "Good afternoon!"
$ EXIT

This example shows a procedure that displays a different message, depending on whether the
current time is morning or afternoon. It first obtains the current time of day by using the F$TIME
function. The F$TIME function returns a character string, which is the string argument for the
F$EXTRACT function. The F$TIME function is automatically evaluated when it is used as an
argument, so you do not need to use quotation marks.

Next, the F$EXTRACT function extracts the hours from the date and time string returned by F
$TIME. The string returned by F$TIME always contains the hours field beginning at an offset of
12 characters from the start of the string.

The F$EXTRACT function extracts 2 characters from the string, beginning at this offset, and
compares the string value extracted with the string value 12. If the comparison is true, then the
procedure writes “Good afternoon!”. Otherwise, it writes “Good morning!”.

Note that you can also use the F$CVTIME function to extract the hour field from a time
specification. This method is easier than the one shown in the above example.

366

Lexical Functions

F$FAO
F$FAO — Converts character and numeric input to ASCII character strings. (FAO stands for
formatted ASCII output.) By specifying formatting instructions, you can use the F$FAO function to
convert integer values to character strings, to insert carriage returns and form feeds, to insert text, and
so on.

Format
F$FAO(control-string[,argument[,...]])

Return Value
A character string containing formatted ASCII output. This output string is created from the fixed text
and FAO directives in the control string.

Arguments
control-string

Specifies the fixed text of the output string, consisting of text and any number of FAO directives. The
control string may be any length. Specify the control string as a character string expression.

The F$FAO function uses FAO directives to modify or insert ASCII data into the fixed text in the
control string.

Table 5 lists the FAO directives you can specify in a control string.

argument[,...]

Specifies from 1 to 15 arguments required by the FAO directives used in the control string. Specify
the arguments as integer or character string expressions.Table 5 lists the argument types required by
each FAO directive.

FAO directives may require one or more arguments. The order of the arguments must correspond
exactly with the order of the directives in the control string. In most cases, an error message is not
displayed if you misplace an argument.

If you specify an argument whose type (integer or string) does not match that of the corresponding
directive, unpredictable results are returned. You can use the F$INTEGER and F$STRING lexical
functions to convert arguments to the proper type.

If there are not enough arguments listed, F$FAO continues reading past the end of an argument list.
Therefore, always be sure to include enough arguments to satisfy the requirements of all the directives
in a control string.

If you specify an invalid parameter for any directive, you may see unexpected errors, which indicate
that the command did not succeed. (These errors are passed through to you from the $FAO system
service.)

Description
The F$FAO lexical function invokes the $FAO system service to convert character and numeric
input to ASCII character strings. (FAO stands for formatted ASCII output.) By specifying formatting

367

Lexical Functions

instructions, you can use the F$FAO function to convert integer values to character strings, to insert
carriage returns and form feeds, to insert text, and so on.

Specify an FAO directive using any one of the following formats:

Format Function
!DD One directive
!n(DD) A directive repeated a specified number of times
!lengthDD A directive that places its output in a field of a specified length
!n(lengthDD) A directive that is repeated a specified number of times and generates output

fields of a specified length

The exclamation point (!) indicates that the following character or characters are to be interpreted as
an FAO directive. DD represents a 1- or 2-character uppercase code indicating the action that F$FAO
is to perform. When specifying repeat counts, n is a decimal value specifying the number of times the
directive is to be repeated. The length value is a decimal number that instructs F$FAO to generate
an output field of “length” characters.

Repeat counts and output lengths may also be specified by using a number sign (#) in place of
absolute numeric value. If you use a number sign, you must specify the numeric value as an integer
expression in the corresponding place in the argument list.

When a variable output field is specified with a repeat count, only one length parameter is required,
because each output string has the specified length.

The FAO directives are grouped in the following categories:

• Character string insertion

• Zero-filled numeric conversion

• Blank-filled numeric conversion

• Special formatting

• Parameter interpretation

Table 5 summarizes the FAO directives and shows the required argument types. In addition, the
following sections describe output strings from directives that perform character string insertion, zero-
filled numeric conversion, and blank-filled numeric conversion.

Note

Two types of directives that are supported by the $FAO system service are not supported by the DCL
F$FAO lexical function. These types are:

• Quadword numeric directives (Q, H, and J), which are not supported in DCL because all DCL
numeric values are stored and manipulated as longwords.

• String directives other than the !AS directive, which are not supported in DCL because all DCL
strings are stored and manipulated by descriptor.

368

Lexical Functions

For further information on the $FAO system service directive, see the VSI OpenVMS System Services
Reference Manual.

Table 5. Summary of FAO Directives

Directive Argument Type Description
Character string insertion:
!AS String Inserts a character string as is.
Zero-filled numeric conversion:
!OB Integer Converts a byte to octal notation.
!OW Integer Converts a word to octal notation.
!OL Integer Converts a longword to octal notation.
!XB Integer Converts a byte to hexadecimal notation.
!XW Integer Converts a word to hexadecimal notation.
!XL Integer Converts a longword to hexadecimal notation.
!ZB Integer Converts a byte to decimal notation.
!ZW Integer Converts a word to decimal notation.
!ZL Integer Converts a longword to decimal notation.
Blank-filled numeric conversion:
!UB Integer Converts a byte to decimal notation without adjusting for

negative numbers.
!UW Integer Converts a word to decimal notation without adjusting for

negative numbers.
!UL Integer Converts a longword to decimal notation without adjusting for

negative numbers.
!SB Integer Converts a byte to decimal notation with negative numbers

converted properly.
!SW Integer Converts a word to decimal notation with negative numbers

converted properly.
!SL Integer Converts a longword to decimal notation with negative numbers

converted properly.
Special formatting:
!/ None Inserts a carriage return and a line feed.
!_ None Inserts a tab.
!^ None Inserts a form feed.
!! None Inserts an exclamation point (!).
!%I Integer Converts a longword integer to a named UIC in the format

[group-identifier,member-identifier].
!%S None Inserts an “s” if the most recently converted number is not 1.

(Not recommended for use with multilingual products.)
Converts a longword integer to a numeric UIC in the format
[g,m], where g is the group number and m is the member number.

!%U Integer

The directive inserts the brackets and the comma.

369

Lexical Functions

Directive Argument Type Description
!n<...!> None Left-justifies and blank-fills all data represented by the

instructions … in <LINE> fields n characters wide.
!n*c None Repeats the character represented by c for n times.
!n%C String Inserts a character string when the most recently evaluated

argument has the value n. (Recommended for use with
multilingual products.)

!%E String Inserts a character string when the value of the most recently
evaluated argument does not match any preceding !n%C
directives. (Recommended for use with multilingual products.)

!%F None Marks the end of a plurals statement.
!%T Integer equal to 0 Inserts the current time.
!%D Integer equal to 0 Inserts the current date/time.
Argument interpretation:
!- None Reuses the last argument.
!+ None Skips the next argument.

Output Strings from Character String Insertion
The !AS directive inserts a character string (specified as an argument for the directive) into the control
string. The field length of the character string when it is inserted into the control string defaults to
the length of the character string. If the default length is shorter than an explicitly stated field length,
the string is left-justified and blank-filled. If the default length is longer than an explicitly stated field
length, the string is truncated on the right.

Output Strings from Zero-Filled Numeric Conversion
Directives for zero-filled numeric conversion convert an integer (specified as an argument for the
directive) to decimal, octal, or hexadecimal notation. The ASCII representation of the integer is
inserted into the control string. Default output field lengths for the converted argument are determined
as follows:

• Directives that convert arguments to octal notation return 3 digits for byte conversion, 6 digits for
word conversion, and 11 digits for longword conversion. Numbers are right-justified and zero-
filled on the left. Explicit-length fields longer than the default are blank-filled on the left. Explicit-
length fields shorter than the default are truncated on the left.

• Directives that convert arguments to hexadecimal notation return 2 digits for byte conversion, 4
digits for word conversion, and 8 digits for longword conversion. Numbers are right-justified and
zero-filled on the left. Explicit-length fields longer than the default are blank-filled on the left.
Explicit-length fields shorter than the default are truncated on the left.

• Directives that convert arguments to decimal notation return the required number of characters for
the decimal number. Explicit-length fields longer than the default are zero-filled on the left. If an
explicit-length field is shorter than the number of characters required for the decimal number, the
output field is completely filled with asterisks (*).

For byte conversion, only the low-order 8 bits of the binary representation of the argument are used.
For word conversion, only the low-order 16 bits of the binary representation of the argument are used.
For longword conversion, the entire 32-bit binary representation of the argument is used.

370

Lexical Functions

Output Strings from Blank-Filled Numeric Conversion
Directives for blank-filled numeric conversion convert an integer (specified as an argument for
the directive) to decimal notation. These directives can convert the integer as a signed or unsigned
number. The ASCII representation of the integer is inserted into the control string.

Output field lengths for the converted argument default to the required number of characters. Values
shorter than explicit-length fields are right-justified and blank-filled; values longer than explicit-
length fields cause the field to be filled with asterisks.

For byte conversion, only the low-order 8 bits of the binary representation of the argument are used.
For word conversion, only the low-order 16 bits of the binary representation of the argument are used.
For longword conversion, the entire 32-bit binary representation of the argument is used.

Output Strings from Special Formatting Directives
The !n%C and !%E directives insert an ASCII string (based on the value of the most recently
evaluated argument) into the output string. These directives are useful for inserting irregular plural
nouns and verbs.

If the most recently evaluated argument equals n, the text between one directive and the next is
inserted into the output string. If the most recently evaluated argument does not equal n, the next !n
%C directive is processed.

If n must be a negative number, you must specify it as an argument and use the number sign (#).

You can specify the !n%C and !%E directives with repeat counts. If you specify repeat counts, the text
between one directive and the next is copied to the output string the specified number of times.

The %F directive marks the end of a plurals statement.

Examples
1. $ COUNT = 57

$ REPORT = F$FAO("NUMBER OF FORMS = !SL",COUNT)
$ SHOW SYMBOL REPORT
 REPORT = "NUMBER OF FORMS = 57"

In this command procedure, the FAO directive !SL is used in a control string to convert the
number equated to the symbol COUNT to a character string. The converted string is inserted into
the control string.

Note that COUNT is assigned an integer value of 57. The F$FAO function returns the ASCII
string, “NUMBER OF FORMS = 57”, and assigns the string to the symbol REPORT.

2. $ A = "ERR"
$ B = "IS"
$ C = "HUM"
$ D = "AN"
$ PHRASE = F$FAO("TO !3(AS)",A,B,C+D)
$ SHOW SYMBOL PHRASE
$ PHRASE = "TO ERRISHUMAN"

In this command procedure, the !AS directive is used to insert the values assigned to the symbols
A, B, C, and D into the control string.

371

Lexical Functions

Because the specified repeat count for the !AS directive is 3, F$FAO looks for three arguments.
The arguments in this example include the symbol A (“ERR”), the symbol B (“IS”), and the
expression C+D (“HUMAN”). Note that the values of these string arguments are concatenated to
form the string “ERRISHUMAN”.

3. $ A = "ERR"
$ B = "IS"
$ C = "HUMAN"
$ PHRASE = F$FAO("TO !#(#AS)",3,6,A,B,C)
$ SHOW SYMBOL PHRASE
$ PHRASE = "TO ERR IS HUMAN "

In this command procedure, the F$FAO function is used with the !AS directive to format a
character string. The first number sign (#) represents the repeat count given by the first argument,
3. The second number sign represents the field size given by the second argument, 6. The next
three arguments (A,B,C) provide the strings that are placed into the control string each time the !
AS directive is repeated.

Each argument string is output to a field having a length of 6 characters. Because each string
is less than 6 characters, each field is left-justified and padded with blank spaces. The resulting
string is assigned to the symbol PHRASE.

4. $ OFFSPRING = 1
$ REPORT = F$FAO-
("There !0UL!1%Cis!%Eare!%F !-!UL !-!0UL!1%Cchild!%Echildren!%F
 here",OFFSPRING)
$ SHOW SYMBOL REPORT
$ REPORT ="There is 1 child here"

In this command procedure, the !0UL directive evaluates the argument OFFSPRING but does
not insert the value in the output string. The !n%C directive inserts the character string “is”
into the output string because its value and the value of the argument OFFSPRING match. The
directives !-!UL evaluate the argument a second time so that the correct character string can be
inserted in the proper place in the output string. The !%F directive marks the end of each plurals
statement. The F$FAO function returns the ASCII string “There is 1 child here” and assigns the
string to the symbol REPORT.

F$FID_TO_NAME (Alpha/Integrity servers
Only)
F$FID_TO_NAME — Translates a file identification to a file specification.

Format
F$FID_TO_NAME(device-name,file-id)

Return Value
A character string containing the file specification.

372

Lexical Functions

Arguments
device-name

Specifies the device on which the file resides. You can specify a logical name for the device.

file-id

Specifies the file identification that is to be translated into the correlating file specification.

Example
$WRITE SYS$OUTPUT F$FID_TO_NAME("SYS$SYSDEVICE","(2901,33,0)")
DISK$NODE1:[VMS$COMMON.SYSEXE]SHOW.EXE;1

This example demonstrates that the file with identifier "2901,33,0" on the system disk is file
SHOW.EXE. Note: You can omit the parentheses around the file identifier, provided it is enclosed by
double quotation marks.

F$FILE_ATTRIBUTES
F$FILE_ATTRIBUTES — Returns attribute information for a specified file.

Format
F$FILE_ATTRIBUTES(filespec,item)

Return value
Either an integer or a character string, depending on the item you request.Table 6shows the data types
of the values returned for each item.

Arguments
filespec
Specifies the name of the file about which you are requesting information. You must specify the file
name as a character string expression. You can specify only one file name. Wildcard characters are not
allowed.

item
Indicates which attribute of the file is to be returned. The item argument must be specified as a
character string expression, and can be anyone of the OpenVMS RMS field names listed in Table 6.

Description
Use the F$FILE_ATTRIBUTES lexical function in DCL assignment statements and expressions
to return file attribute information.Table 6 lists the items you can specify with thee F
$FILE_ATTRIBUTES function, the information returned, and the data type of this information.

Table 6. F$FILE_ATTRIBUTES Items

Item Return Type Information Returned
AI String TRUE if after-image (AI) journaling is enabled; FALSE if

disabled.

373

Lexical Functions

Item Return Type Information Returned
ALQ Integer Allocation quantity.
BDT String Backup date/time.
BI String TRUE if before-image (BI) journaling is enabled; FALSE if

disabled.
BKS Integer Bucket size.
BLS Integer Block size.
CBT String TRUE if contiguous-best-try; otherwise FALSE.
CDT String Creation date/time.
CTG String TRUE if contiguous; otherwise FALSE.
DEQ Integer Default extension quantity.
DID String Directory ID string.
DIRECTORY String Returns TRUE or FALSE. Returns TRUE if it is a directory.
DVI String Device name string.
EDT String Expiration date/time.
EOF Integer Number of blocks used.
ERASE String TRUE if a file’s contents are erased before a file is deleted;

otherwise FALSE.
FFB Integer First free byte.
FID String File ID string.
FILE_LENGTH_HINT String Record count and data byte count in the form (n,m), where

n is the record count and m is the data byte count. An
invalidated count is specified by a -1 for n or m.

FSZ Integer Fixed control area size.
GBC Integer Global buffer count.
GBC32 Integer Enhanced longword version of global buffer count with a

per-file maximum size of about 2.1 billion for indexed files.
GBCFLAGS String Per-file management flags for sizing of global buffer

cache. Returns PERCENT if global buffer count is
expressed as a percentage, DEFAULT if global buffer size
is determined at runtime by an algorithm using two global
buffer SYSGEN parameters (GB_CACHEALLMAX and
GB_DEFPERCENT); or NONE if no per-file management
flags are enabled for the file.

GRP Integer Owner group number.
JOURNAL_FILE String TRUE if the file is a journal; otherwise FALSE.
KNOWN String Known file; returns TRUE or FALSE to indicate whether

file is installed with the Install utility (INSTALL). However,
returns NOSUCHFILE if a file does not exist (for example,
the file has been installed but subsequently deleted).

LOCKED String TRUE if a file is deaccessed-locked; otherwise FALSE.
LRL Integer Longest record length.

374

Lexical Functions

Item Return Type Information Returned
MBM Integer Owner member number.
MOVE String TRUE if move file operations are enabled; otherwise

FALSE.
MRN Integer Maximum record number.
MRS Integer Maximum record size.
NOA Integer Number of areas.
NOBACKUP String FALSE if the file is marked for backup; TRUE if the file is

marked NOBACKUP.
NOK Integer Number of keys.
ORG String File organization; returns SEQ, REL, IDX.
PRESHELVED (Alpha/
Integrity servers only)

String TRUE if the file is preshelved; otherwise FALSE.

PRO String File protection string.
PVN Integer Prolog version number.
RAT String Record attributes; returns CR, PRN, FTN, "".
RCK String TRUE if read check; otherwise FALSE.
RDT String Revision date/time.
RFM String Record format string; returns the values VAR, FIX, VFC,

UDF, STM, STMLF, STMCR.
RU String TRUE if recovery unit (RU) journaling is enabled; returns

TRUE or FALSE.
RVN Integer Revision number.
SHELVABLE String TRUE if the file is shelvable; otherwise FALSE.
SHELVED String TRUE if the file is shelved; otherwise FALSE.
STORED_SEMANTICS String ASCII string that represents stored semantics.
UIC String Owner user identification code (UIC) string.
VERLIMIT Integer Version limit number. The value 32767 indicates that no

version limit was set.
WCK String TRUE if write check; otherwise FALSE.

File attributes are stored in the file header, which is created from information in OpenVMS RMS
control blocks. For more information on OpenVMS RMS control blocks, see the VSI OpenVMS
Record Management Services Reference Manual.

Examples
1. $ FILE_ORG = F$FILE_ATTRIBUTES("QUEST.DAT","ORG")

$ SHOW SYMBOL FILE_ORG
FILE_ORG = "SEQ"

This example uses the F$FILE_ATTRIBUTES function to assign the value of the file organization
type to the symbol FILE_ORG. The F$FILE_ATTRIBUTES function returns the character string
SEQ to show that QUEST.DAT is a sequential file. The QUEST.DAT and ORG arguments for the

375

Lexical Functions

F$FILE_ATTRIBUTES function are string literals and must be enclosed in quotation marks (" ")
when used in expressions.

2. $ RFM = F$FILE_ATTRIBUTES("KANSAS::USE$:[CARS]SALES.CMD","RFM")
$ SHOW SYMBOL RFM
RFM = "VAR"

This example uses the F$FILE_ATTRIBUTES function to return information about a file on
a remote node. The function returns the record format string VAR, indicating that records are
variable length.

F$GETDVI
F$GETDVI — Returns a specified item of information for a specified device.

Format
F$GETDVI(device-name,item[,pathname])

Return Value
Either an integer or a character string, depending on the item you request. Table 7 shows the data
types of the values returned for each item.

Arguments
device-name

Specifies a physical device name or a logical name equated to a physical device name. Specify the
device name as a character string expression.

After the device-name argument is evaluated, the F$GETDVI function examines the first character
of the name. If the first character is an underscore (_), the name is considered a physical device name;
otherwise, a single level of logical name translation is performed and the equivalence name, if any, is
used.

item

Specifies the type of device information to be returned. The item argument must be specified as a
character string expression and can be any one of the items listed in Table 7.

pathname(Alpha/Integrity servers only)

Specifies a path name for a multipath-capable device. Specify the path name as a character string
expression.

Check the definitions of the item codes in Table 7 to see if the pathname argument is used. In
general, item codes that return information that can vary by path do use the pathname argument.
You can see the paths for a multipath device by using the SHOW DEVICE /FULL command, the
SYS$DEVICE_PATH_SCAN system service, or the F$MULTIPATH lexical function.

If the pathname argument is specified, it is validated against the existing paths for the specified
device. If the path does not exist, the NOSUCHPATH error is returned – even if the specified item
code does not make use of the pathname argument.

376

Lexical Functions

Description
The F$GETDVI lexical function invokes the $GETDVI system service to return a specified item of
information for a specified device. You can obtain a list of devices on your current system by using
the lexical function F$DEVICE. Unless otherwise stated in the description of the item argument,
F$GETDVI returns device information about the local node only.

This lexical function allows a process to obtain information for a device to which the process has not
necessarily assigned a channel.

The F$GETDVI function returns information on all items that can be specified with the $GETDVI
system service. In addition to the items that the $GETDVI system service allows, the F$GETDVI
function allows you to specify the item EXISTS.

Table 7 lists the items you can specify with the F$GETDVI function, the type of information returned,
and the data types of the return values. In addition to the return information listed in Table 7, the
F$GETDVI lexical function returns any error messages generated by the $GETDVI system service.

For more information on the $GETDVI system service and the items you can specify, see the VSI
OpenVMS System Services Reference Manual.

Table 7. F$GETDVI Items

Item Return Type Information Returned1

ACCESSTIMES_RECORDED
(Alpha/I64 only)

String TRUE or FALSE to indicate whether the volume
supports the recording of access times.

ACPPID String Ancillary control process (ACP) identification.
ACPTYPE String ACP type code, as one of the following strings:

F11V1, F11V2, F11V3, F11V4, F11V5,
F64, HBS, JNL, MTA, NET, REM, UCX, or
ILLEGAL.

The ACPTYPE item returns ILLEGAL if:

• The device is not mounted or is mounted
using the /FOREIGN qualifier.

• The ACPTYPE is not currently defined.
ALL String TRUE or FALSE to indicate whether the device is

allocated.
ALLDEVNAM String Allocation class device name.
ALLOCLASS Longword

integer
between 0
and 255

Allocation class of the host.

ALT_HOST_AVAIL String TRUE or FALSE to indicate whether the host
serving the alternate path is available.

ALT_HOST_NAME String Name of the host serving the alternate path.
ALT_HOST_TYPE String Hardware type of the host serving the alternate

path.

377

Lexical Functions

Item Return Type Information Returned1

AVAILABLE_PATH_COUNT
(Alpha/I64 only)

Integer Number of available, working paths for a
multipath-capable device.

AVL String TRUE or FALSE to indicate whether the device is
available for use.

CCL String TRUE or FALSE to indicate whether the device is
a carriage control device.

CLUSTER Integer Volume cluster size.
CONCEALED String TRUE or FALSE to indicate whether the logical

device name translates to a concealed device.
CYLINDERS Integer Number of cylinders on the volume (disks only).
DEVBUFSIZ Integer Device buffer size.
DEVCHAR Integer Device characteristics.
DEVCHAR2 Integer Additional device characteristics.
DEVCLASS Integer Device class. See the Examples section to

determine the device class values returned on
your system.

DEVDEPEND Integer Device-dependent information.
DEVDEPEND2 Integer Additional device-dependent information.
DEVICE_MAX_IO_SIZE (Alpha
and I64 only)

Integer The maximum unsegmented transfer size
supported by the device's device driver. Although
this value is the absolute maximum size
supported by the device driver, other software
layers (RMS and XFC, for example) might
impose lower maximum values, thereby limiting
the maximum transfer size.

DEVICE_TYPE_NAME String Device type name. Note that if the device is
a SCSI tape or disk, the device type name is
retrieved directly from the device.

DEVLOCKNAM String A unique lock name for the device.
DEVNAM String Device name.
DEVSTS Integer Device-dependent status information.
DEVTYPE Integer Device type. See the Examples section to

determine the device type values returned on your
system.

DFS_ACCESS String TRUE or FALSE to indicate whether the device
is a virtual disk connected to a remote Distributed
File System (DFS) server.

DIR String TRUE or FALSE to indicate whether the device is
directory structured.

DMT String TRUE or FALSE to indicate whether the device is
marked for dismount.

DUA String TRUE or FALSE to indicate whether the device is
a generic device.

378

Lexical Functions

Item Return Type Information Returned1

ELG String TRUE or FALSE to indicate whether the device
has error logging enabled.

ERASE_ON_DELETE (Alpha/
I64 only)

String TRUE or FALSE to indicate whether disk blocks
are zeroed upon file deletion on the volume.

ERRCNT Integer Error count of the device. If the error
count has been reset with the SET
DEVICE /RESET=ERRCNT command, you
can use the SHOW DEVICE/FULL command to
display the date and time that the error count was
reset. If the pathname parameter is specified, only
the error count for that path is returned. If the
pathname parameter is omitted, the summation of
the error counts for all paths in a multipath device
is returned.

ERROR_RESET_TIME (Alpha/
I64 only)

String Time at which the error count was reset.

EXISTS String TRUE or FALSE to indicate whether the device
exists on the system.

EXPSIZE (Alpha/I64 only) Integer Current expansion limit on the volume.
FC_HBA_FIRMWARE_REV
(Alpha/I64 only)

String Firmware revision information of a Fibre Channel
host bus adapter. A null string is returned for all
other devices.

FC_NODE_NAME (Alpha/I64
only)

String The Fibre Channel host bus adapter node name.

FC_PORT_NAME (Alpha/I64
only)

String The Fibre Channel host bus adapter port name.

FOD String TRUE or FALSE to indicate whether the device is
a files-oriented device.

FOR String TRUE or FALSE to indicate whether the device is
mounted using the /FOREIGN qualifier.

FREEBLOCKS Integer Number of free blocks on the volume (disks
only).

FULLDEVNAM String Fully qualified device name.
GEN String TRUE or FALSE to indicate whether the device is

a generic device.
HARDLINKS_SUPPORTED
(Alpha/I64 only)

String TRUE or FALSE to indicate whether hardlinks,
rather than aliases, are supported on the volume.

HOST_AVAIL String TRUE or FALSE to indicate whether the host
serving the primary path is available.

HOST_COUNT Integer Number of hosts that make the device available to
other nodes in the OpenVMS Cluster.

HOST_NAME String Name of the host serving the primary path.
HOST_TYPE String Hardware type of the host serving the primary

path.

379

Lexical Functions

Item Return Type Information Returned1

IDV String TRUE or FALSE to indicate whether the device is
capable of providing input.

LAN_ALL_MULTICAST_MODE
(Alpha/I64 only)

String TRUE or FALSE to indicate whether the device
is enabled to receive all multicast packets rather
than only packets addressed to enabled multicast
addresses.

LAN_AUTONEG_ENABLED
(Alpha/I64 only)

String TRUE or FALSE to indicate whether the device is
set to autonegotiate the speed and duplex settings.

LAN_DEFAULT_MAC_
ADDRESS (Alpha/I64 only)

String The default MAC (media access control) address
of the device.

LAN_FULL_DUPLEX (Alpha/
I64 only)

String TRUE or FALSE to indicate whether the device is
operating in full-duplex mode.

LAN_JUMBO_FRAMES_
ENABLED (Alpha/I64 only)

String TRUE or FALSE to indicate whether jumbo
frames are enabled on the device.

LAN_LINK_STATE_VALID
(Alpha/I64 only)

String TRUE or FALSE to indicate whether or not
the device driver for the LAN device correctly
maintains the link status. The device drivers for
the following devices do not maintain the link
status: DEMNA, any TURBOchannel adapter,
any PCMPIA Ring adapter, Galaxy shared
memory, TGEC, DE205, DE422, DE425, DE434,
DE435, DE500 (the -XA and -AA variants; only
the -BA variant is supported.)

LAN_LINK_UP (Alpha/I64 only) String TRUE or FALSE to indicate whether the link
is up. This item code is valid only for the
template device (that is, unit number 0); this
item returns 0 if used with a non-template
LAN device. This item is supported only on
newer adapters; to determine whether or not
a particular device supports LAN_LINK_UP,
you must first use F$GETDVI with the
item LAN_LINK_STATE_VALID. See that
item description for more information. If
LAN_LINK_UP is used on an adapter that does
not maintain the link status, the returned status
will be SS$_UNSUPPORTED.

LAN_MAC_ADDRESS (Alpha/
I64 only)

String The current MAC (media access control) address
of the device. For more information about the
distinction between the default and current MAC
addresses, see the VSI OpenVMS System Services
Reference Manual.

LAN_PROMISCUOUS_MODE
(Alpha/I64 only)

String TRUE or FALSE to indicate whether the device
is enabled to receive all packets, rather than only
packets addressed to the MAC addresses and to
enabled multicast addresses.

LAN_PROTOCOL_NAME
(Alpha/I64 only)

String The name of the LAN protocol running on the
device.

380

Lexical Functions

Item Return Type Information Returned1

LAN_PROTOCOL_TYPE
(Alpha/I64 only)

String The type of the LAN protocol running on the
device.

LAN_SPEED (Alpha/I64 only) Integer The speed of the LAN device, in units of
megabits per second. Valid values are 4, 10, 16,
100, 1000, and 10000.

LOCKID Integer Clusterwide lock identification.
LOGVOLNAM String Logical volume name.
MAILBOX_BUFFER_QUOTA
(Alpha/I64 only)

Integer The current mailbox quota as an unsigned integer
longword.

MAILBOX_INITIAL_QUOTA
(Alpha/I64 only)

Integer The initial mailbox quota as an unsigned integer
longword.

MAXBLOCK Integer Number of logical blocks on the volume.
MAXFILES Integer Maximum number of files on the volume (disks

only).
MBX String TRUE or FALSE to indicate whether the device is

a mailbox.
MEDIA_ID Integer Nondecoded media ID.
MEDIA_NAME String Either the name of the disk or the tape type.
MEDIA_TYPE String Device name prefix.
MNT String TRUE or FALSE to indicate whether the device is

mounted.
MOUNT_TIME (Alpha/I64 only) String Time at which the volume was mounted. For

volumes mounted in a cluster, only the time of
the initial mount is recorded; the time of any
subsequent mount is not recorded.

MOUNTCNT Integer Number of times the volume has been mounted
on the local system. The value of MOUNTCNT
displayed by the SHOW DEVICE command is
the total of all mounts of the volume across all
members of the cluster.

MOUNTVER_ELIGIBLE
(Alpha/I64 only)

String TRUE or FALSE to indicate whether the volume
is eligible to undergo mount verification. A
volume mounted with either the /FOREIGN
or /NOMOUNT_VERIFICATION qualifier is not
subject to mount verification.

MPDEV_AUTO_PATH_SW_CNT
(Alpha/I64 only)

Integer Number of times a multipath device has
automatically switched paths because of an I/
O error or as the result of automatically "failing
back" to a local path from a remote path once the
local path became available.

MPDEV_CURRENT_PATH
(Alpha/I64 only)

String Current path name for multipath devices. If
the device is not part of a multipath set, this
lexical returns the name of the device path if
the class driver for this device supports path
names. SYS$DKDRIVER, SYS$DUDRIVER,

381

Lexical Functions

Item Return Type Information Returned1

SYS$MKDRIVER, and SYS$GKDRIVER
support path names. Returns a null string if the
class driver for the device does not support path
names.

MPDEV_MAN_PATH_SW_CNT
(Alpha/I64 only)

Integer Number of times a multipath device has
manually switched paths because of a SET
DEVICE /PATH /SWITCH command or use of
the $SET_DEVICE system service.

MT3_DENSITY String Current density of the device (tapes only.)
MT3_SUPPORTED String TRUE or FALSE to indicate whether the device

supports densities defined in the MT3DEF (for
Alpha tapes only.)

MULTIPATH (Alpha/I64 only) String TRUE or FALSE to indicate whether the device is
a member of a multipath set.

MVSUPMSG (Alpha/I64 only) String TRUE or FALSE to indicate whether mount
verification OPCOM messages are currently
being supressed on this device. See the
MVSUPMSG_INTVL and MVSUPMSG_NUM
system parameters for more information on the
supression of mount verification messages.

NET String TRUE or FALSE to indicate whether the device is
a network device.

NEXTDEVNAM String Device name of the next volume in a volume set
(disks only).

NOCACHE_ON_VOLUME
(Alpha/I64 only)

String TRUE or FALSE to indicate whether the volume
is mounted with all caching disabled.

NOHIGHWATER (Alpha/I64
only)

String TRUE or FALSE to indicate whether high-water
marking is disabled on the volume.

NOSHARE_MOUNTED (Alpha/
I64 only)

String TRUE or FALSE to indicate whether the volume
is mounted with /NOSHARE.

ODS2_SUBSET0 (Alpha/I64
only)

String TRUE or FALSE to indicate whether the volume
mounted supports only a subset of the ODS-2 file
structure.

ODS5 (Alpha/I64 only) String TRUE or FALSE to indicate whether the volume
is mounted ODS-5.

ODV String TRUE or FALSE to indicate whether the device is
capable of providing output.

OPCNT Integer Operation count of the device. Note that the
operation count may have been reset with the
SET DEVICE/RESET=OPCNT command. If
the pathname parameter is specified, only the
operation count for that path is returned. If the
pathname parameter is omitted, the summation of
the operation counts for all paths in a multipath
device is returned.

382

Lexical Functions

Item Return Type Information Returned1

OPR String TRUE or FALSE to indicate whether the device is
an operator.

OWNUIC String User identification code (UIC) of the device
owner.

PATH_AVAILABLE (Alpha/I64
only)

String TRUE or FALSE to indicate whether the
specified path is available. This item code is
typically used with the pathname parameter. If
the pathname parameter is omitted, information
about the current path of the multipath device is
returned.

PATH_NOT_RESPONDING
(Alpha/I64 only)

String TRUE or FALSE to indicate whether the
specified path is marked as not responding. This
item code is typically used with the pathname
parameter. If the pathname parameter is omitted,
information about the current path of the
multipath device is returned.

PATH_POLL_ENABLED (Alpha/
I64 only)

String TRUE or FALSE to indicate whether the
specified path is enabled for multipath polling.
This item code is typically used with the
pathname parameter. If the pathname parameter
is omitted, information about the current path of
the multipath device is returned.

PATH_SWITCH_FROM_TIME
(Alpha/I64 only)

String Time from which this path was switched, either
manually or automatically. This item code is
typically used with the pathname parameter. If
the pathname parameter is omitted, information
about the current path of the multipath device is
returned.

PATH_SWITCH_TO_TIME
(Alpha/I64 only)

String Time to which this path was switched, either
manually or automatically. This item code is
typically used with the pathname parameter. If
the pathname parameter is omitted, information
about the current path of the multipath device is
returned.

PATH_USER_DISABLED
(Alpha/I64 only)

String TRUE or FALSE to indicate whether the
specified path has been disabled using the SET
DEVICE /PATH /NOENABLE command. This
item code is typically used with the pathname
parameter. If the pathname parameter is omitted,
information about the current path of the
multipath device is returned.

PID String Process identification number of the device
owner.

PREFERRED_CPU Integer Return argument is a 32-bit CPU bit mask
with a bit set indicating the preferred CPU. A
return argument containing a bit mask of zero
indicates that no preferred CPU exists, either
because Fast Path is disabled or the device is not

383

Lexical Functions

Item Return Type Information Returned1

a Fast Path capable device. The return argument
serves as a CPU bit mask input argument to the
$PROCESS_AFFINITY system service. The
argument can be used to assign an application
process to the optimal preferred CPU.

PREFERRED_CPU_BITMAP
(Alpha/I64 only)

String A bitmap string of zeros and, at most, a single
1. The 1 in the bitmask represents the number
of the CPU to which the device is affinitized.
The length of the string determines by how many
CPUs are on the system. If there is no 1 in the
bitmap string, then either Fast Path is disabled
systemwide, or the device is not Fast Path-
capable.

PROT_SUBSYSTEM_ENABLED
(Alpha/I64 only)

String TRUE or FALSE to indicate whether the volume
is mounted with protected subsystems enabled.

QLEN (Alpha/I64 only) Integer The queue length for the device. This value is the
number of I/O requests already in the driver ---
not the depth of the I/O pending queue.

RCK String TRUE or FALSE to indicate whether the device
has read checking enabled.

RCT String TRUE or FALSE to indicate whether the disk
contains RCT.

REC String TRUE or FALSE to indicate whether the device is
record oriented.

RECSIZ Integer Blocked record size.
REFCNT Integer Reference count of processes using the device.
REMOTE_DEVICE String TRUE or FALSE to indicate whether the device is

a remote device.
RND String TRUE or FALSE to indicate whether the device

allows random access.
ROOTDEVNAM String Device name of the root volume in a volume set

(disks only).
RTM String TRUE or FALSE to indicate whether the device is

a real-time device.
SCSI_DEVICE_FIRMWARE_
REV (Alpha/I64 only)

String Firmware revision number of a SCSI disk or
SCSI tape. A null string is returned for any other
device.

SDI String TRUE or FALSE to indicate whether the device is
single-directory structured.

SECTORS Integer Number of sectors per track (disks only).
SERIALNUM Integer Volume serial number (disks only).
SERVED_DEVICE String TRUE or FALSE to indicate whether the device is

a served device.

384

Lexical Functions

Item Return Type Information Returned1

SET_HOST_TERMINAL String TRUE or FALSE to indicate whether the device is
a remote terminal for a SET HOST session from a
remote node.

SHDW_CATCHUP_COPYING String TRUE or FALSE to indicate whether the device
is a member that is the target of a full copy
operation.

SHDW_COPIER_NODE (Alpha/
I64 only)

String The name of the node that is actively performing
the copy or merge operation.

SHDW_DEVICE_COUNT
(Alpha/I64 only)

Integer The total number of devices in the virtual unit,
including devices being added as copy targets.

SHDW_GENERATION (Alpha/
I64 only)

String The current internal revision number for the
virtual unit. This value is subject to change.

SHDW_MASTER String TRUE or FALSE to indicate whether the device is
a virtual unit.

SHDW_MASTER_MBR (Alpha/
I64 only)

String The name of the master member unit that will be
used for merge and copy repair operations and for
shadow set recovery operations.

SHDW_MASTER_NAME String Device name of the virtual unit that represents
the shadow set of which the specified device is a
member. F$GETDVI returns a null string ("") if
the specified device is not a member, or is itself a
virtual unit.

SHDW_MBR_COPY_DONE
(Alpha/I64 only)

String The percent of the copy operation completed on
this member unit.

SHDW_MBR_COUNT (Alpha/
I64 only)

String The number of full source members in the virtual
unit. Devices being added as copy targets are not
full source members.

SHDW_MBR_MERGE_DONE
(Alpha/I64 only)

String The percent of the merge operation completed on
this member unit.

SHDW_MBR_READ_COST
(Alpha/I64 only)

String The current value set for the member unit. This
value can be modified to use a user-specified
value.

SHDW_MEMBER String TRUE or FALSE to indicate whether the device is
a shadow set member.

SHDW_MERGE_COPYING
(Alpha/I64 only)

String TRUE or FALSE to indicate whether the device is
a merge member of the shadow set.

SHDW_MINIMERGE_ENABLE
(Alpha/I64 only)

String A value of TRUE indicates that the virtual unit
will undergo a mini-merge, not a full merge, if a
system in the cluster crashes.

SHDW_NEXT_MBR_NAME String Device name of the next member in the shadow
set. If you specify a virtual unit, F$GETDVI
returns the device name of a member of the
shadow set. If you specify the name of a shadow
set member unit with the device name and item
arguments, F$GETDVI returns the name of the
"next" member unit or a null string if there are

385

Lexical Functions

Item Return Type Information Returned1

no more members. To determine all the members
of a shadow set, first specify the virtual unit
to F$GETDVI; on subsequent calls, specify
the member name returned by the previous
F$GETDVI call until it has finished, when it
returns a null member name. The device name
includes the allocation class if the allocation class
is not zero; otherwise it includes the device name
of the disk controller.

SHDW_READ_SOURCE (Alpha/
I64 only)

String The name of the member unit that will be used for
reads at this time. The unit with the lowest sum
total of its queue length and read cost is used.
This is a dynamic value.

SHDW_SITE (Alpha/I64 only) Integer The site value for the specified device. This value
is set by the SET DEVICE or SET SHADOW
command.

SHDW_TIMEOUT (Alpha/I64
only)

Integer The user-specified timeout value set for the
device. If the user has not set a value by using
the SETSHOSHADOW utility, the value of the
SYSGEN parameter SHADOW_MBR_TMO
is used for member units and the value of
MVTIMEOUT is used for virtual units.

SHR String TRUE or FALSE to indicate whether the device is
shareable.

SPL String TRUE or FALSE to indicate whether the device is
being spooled.

SPLDEVNAM String Name of the device being spooled.
SQD String TRUE or FALSE to indicate whether the device is

sequential block-oriented (that is, magnetic tape).
STS Integer Status information.
SWL String TRUE or FALSE to indicate whether the device is

software write-locked.
TOTAL_PATH_COUNT (Alpha/
I64 only)

Integer Number of paths for a multipath-capable device.

TRACKS Integer Number of tracks per cylinder (disks only).
TRANSCNT Integer Volume transaction count.
TRM String TRUE or FALSE to indicate whether the device is

a terminal.
TT_ACCPORNAM String The terminal server name and port name.
TT_ALTYPEAHD String TRUE or FALSE to indicate whether the terminal

has an alternate type-ahead buffer (terminals
only).

TT_ANSICRT String TRUE or FALSE to indicate whether the terminal
is an ANSI CRT terminal (terminals only).

386

Lexical Functions

Item Return Type Information Returned1

TT_APP_KEYPAD String TRUE or FALSE to indicate whether the keypad
is in applications mode (terminals only).

TT_AUTOBAUD String TRUE or FALSE to indicate whether the terminal
has automatic baud rate detection (terminals
only).

TT_AVO String TRUE or FALSE to indicate whether the terminal
has a VT100-family terminal display (terminals
only).

TT_BLOCK String TRUE or FALSE to indicate whether the terminal
has block mode capability (terminals only).

TT_BRDCSTMBX String TRUE or FALSE to indicate whether the terminal
uses mailbox broadcast messages (terminals
only).

TT_CHARSET Integer A bitmap indicating the coded character set
supported by the terminal.

TT_CRFILL String TRUE or FALSE to indicate whether the terminal
requires fill after a carriage return (terminals
only).

TT_CS_HANGUL String TRUE or FALSE to indicate whether the terminal
supports the DEC Korean coded character set.

TT_CS_HANYU String TRUE or FALSE to indicate whether the terminal
supports the DEC Hanyu coded character set.

TT_CS_HANZI String TRUE or FALSE to indicate whether the terminal
supports the DEC Hanzi coded character set.

TT_CS_KANA String TRUE or FALSE to indicate whether the terminal
supports the DEC Kana coded character set.

TT_CS_KANJI String TRUE or FALSE to indicate whether the terminal
supports the DEC Kanji coded character set.

TT_CS_THAI String TRUE or FALSE to indicate whether the terminal
supports the DEC Thai coded character set.

TT_DECCRT String TRUE or FALSE to indicate whether the terminal
is a DIGITAL CRT terminal (terminals only).

TT_DECCRT2 String TRUE or FALSE to indicate whether the terminal
is a DIGITAL CRT2 terminal (terminals only).

TT_DECCRT3 String TRUE or FALSE to indicate whether the terminal
is a DIGITAL CRT3 terminal (terminals only).

TT_DECCRT4 String TRUE or FALSE to indicate whether the terminal
is a DIGITAL CRT4 terminal (terminals only).

TT_DIALUP String TRUE or FALSE to indicate whether the terminal
is connected to dialup (terminals only).

TT_DISCONNECT String TRUE or FALSE to indicate whether the terminal
can be disconnected (terminals only).

387

Lexical Functions

Item Return Type Information Returned1

TT_DMA String TRUE or FALSE to indicate whether the
terminal has direct memory access (DMA) mode
(terminals only).

TT_DRCS String TRUE or FALSE to indicate whether the terminal
supports loadable character fonts (terminals only).

TT_EDIT String TRUE or FALSE to indicate whether the edit
characteristic is set.

TT_EDITING String TRUE or FALSE to indicate whether advanced
editing is enabled (terminals only).

TT_EIGHTBIT String TRUE or FALSE to indicate whether the terminal
uses the 8-bit ASCII character set (terminals
only).

TT_ESCAPE String TRUE or FALSE to indicate whether the terminal
generates escape sequences (terminals only).

TT_FALLBACK String TRUE or FALSE to indicate whether the terminal
uses the multinational fallback option (terminals
only).

TT_HALFDUP String TRUE or FALSE to indicate whether the terminal
is in half-duplex mode (terminals only).

TT_HANGUP String TRUE or FALSE to indicate whether the hangup
characteristic is set (terminals only).

TT_HOSTSYNC String TRUE or FALSE to indicate whether the terminal
has host/terminal communication (terminals
only).

TT_INSERT String TRUE or FALSE to indicate whether insert mode
is the default line editing mode (terminals only).

TT_LFFILL String TRUE or FALSE to indicate whether the terminal
requires fill after a line feed (terminals only).

TT_LOCALECHO String TRUE or FALSE to indicate whether the local
echo characteristic is set (terminals only).

TT_LOWER String TRUE or FALSE to indicate whether the terminal
has the lowercase characters set (terminals only).

TT_MBXDSABL String TRUE or FALSE to indicate whether mailboxes
associated with the terminal will receive
unsolicited input notification or input notification
(terminals only).

TT_MECHFORM String TRUE or FALSE to indicate whether the terminal
has mechanical form feed (terminals only).

TT_MECHTAB String TRUE or FALSE to indicate whether the terminal
has mechanical tabs and is capable of tab
expansion (terminals only).

TT_MODEM String TRUE or FALSE to indicate whether the terminal
is connected to a modem (terminals only).

TT_MODHANGUP String TRUE or FALSE to indicate whether the modify
hangup characteristic is set (terminals only).

388

Lexical Functions

Item Return Type Information Returned1

TT_NOBRDCST String TRUE or FALSE to indicate whether the terminal
will receive broadcast messages (terminals only).

TT_NOECHO String TRUE or FALSE to indicate whether the input
characters are echoed.

TT_NOTYPEAHD String TRUE or FALSE to indicate whether data must
be solicited by a read operation.

TT_OPER String TRUE or FALSE to indicate whether the terminal
is an operator terminal (terminals only).

TT_PAGE Integer Terminal page length (terminals only).
TT_PASTHRU String TRUE or FALSE to indicate whether PASSALL

mode with flow control is available (terminals
only).

TT_PHYDEVNAM String Physical device name associated with a channel
number or virtual terminal.

TT_PRINTER String TRUE or FALSE to indicate whether there is a
printer port available (terminals only).

TT_READSYNC String TRUE or FALSE to indicate whether the terminal
has read synchronization (terminals only).

TT_REGIS String TRUE or FALSE to indicate whether the terminal
has ReGIS graphics (terminals only).

TT_REMOTE String TRUE or FALSE to indicate whether the terminal
has established modem control (terminals only).

TT_SCOPE String TRUE or FALSE to indicate whether the terminal
is a video screen display (terminals only).

TT_SECURE String TRUE or FALSE to indicate whether the terminal
can recognize the secure server (terminals only).

TT_SETSPEED String TRUE or FALSE to indicate whether you cannot
set the speed on the terminal line (terminals only).

TT_SIXEL String TRUE or FALSE to indicate whether the sixel is
supported (terminals only).

TT_SYSPWD String TRUE or FALSE to indicate whether the system
password is enabled for a particular terminal.

TT_TTSYNC String TRUE or FALSE to indicate whether there is
terminal/host synchronization (terminals only).

TT_WRAP String TRUE or FALSE to indicate whether a new line
should be inserted if the cursor moves beyond the
right margin.

UNIT Integer The unit number.
VOLCHAR (Alpha/I64 only) String 128-bit string (16 bytes) that represents the

volume characteristics or capabilities of the
mounted device. If a bit is set, the volume is
capable of performing the function.

VOLCOUNT Integer The count of volumes in a volume set (disks
only).

389

Lexical Functions

Item Return Type Information Returned1

VOLNAM String The volume name.
VOLNUMBER Integer Number of the current volume in a volume set

(disks only).
VOLSETMEM String TRUE or FALSE to indicate whether the device is

a volume set (disks only).
VOLSIZE (Alpha/I64 only) Integer The volume's current logical volume size.
VOLUME_EXTEND_
QUANTITY (Alpha/I64 only)

Integer Number of blocks to be used as the default
extension size for all files on the volume.

VOLUME_MOUNT_GROUP
(Alpha/I64 only)

String TRUE or FALSE to indicate whether the volume
is mounted /GROUP.

VOLUME_MOUNT_SYS
(Alpha/I64 only)

String TRUE or FALSE to indicate whether the volume
is mounted /SYSTEM.

VOLUME_PENDING_WRITE_
ERR (Alpha/I64 only)

Integer The number of pending write errors on the
volume.

VOLUME_RETAIN_MAX
(Alpha/I64 only)

String The maximum retention time for the volume,
as specified with the DCL command SET
VOLUME/RETENTION.

VOLUME_RETAIN_MIN
(Alpha/I64 only)

String The minimum retention time for the volume,
as specified with the DCL command SET
VOLUME/RETENTION.

VOLUME_SPOOLED_DEV_
CNT (Alpha/I64 only)

Integer The number of devices spooled to the volume.

VOLUME_WINDOW (Alpha/I64
only)

Integer The default window size for the volume.

VPROT String The volume protection mask.
WCK String TRUE or FALSE to indicate whether the device

has write checking enabled.
WRITETHRU_CACHE_
ENABLED

(Alpha/I64 only)

String TRUE or FALSE to indicate whether the volume
is mounted with write through caching enabled.

WWID (Alpha/I64 only) String Worldwide identifier for a Fibre Channel device.
1In addition to the return information listed, the F$GETDVI lexical function returns any error messages generated by the system service
$GETDVI.

Examples
1. $ ERR = F$GETDVI("_DQA0","ERRCNT")

$ SHOW SYMBOL ERR
 ERR = 0 Hex = 00000000 Octal = 000000

This example shows how to use the F$GETDVI function to return an error count for the device
DQA0. You must place quotation marks (“ ”)around the device name DQA0 and the item
ERRCNT because they are string literals.

2. $ LIBRARY/EXTRACT=$DCDEF/OUTPUT=$DCDEF.TXT SYS$LIBRARY:STARLET.MLB

390

Lexical Functions

This example shows how to create a file, $DCDEF.TXT, containing a list of values for device
types and device classes from the STARLET library. The device classes begin with 'DC$', and
device types begin with 'DT$'.

Note that most modern SCSI disks and tapes return the generic DEVTYPE code
(DT$_GENERIC_DK or DT$_GENERIC_MK), therefore you should use the
DEVICE_TYPE_NAME item:

$ X=F$GETDVI("XDELTA$DKA0:","DEVICE_TYPE_NAME")
$ SHOW SYMBOL X X = "RZ29B"

3. $ WRITE SYS$OUTPUT F$GETDVI ("1DGA30", PATH_SWITCH_TO_TIME",
_$ "PGA0.5000-1FE1-0001=5782")

19-MAY-2006 14:47:41.77

This example shows the use of the optional path name parameter for F$GETDVI. If a path is
not specified,information for the multipath current path is returned. To determine the paths for a
multipath device, use the F$MULTIPATH lexical function.

F$GETENV
F$GETENV — Returns the value of the specified console environment variable.

Format
F$GETENV(itmlst)

Return Value
Returns the value of the specified console environment variable. You can modify the console
environment variables when the system is in console mode. This lexical function allows you to read
the contents of these variables when the system is running.

Arguments
itmlst

The defined console environment variable names are:

Auto_action, Boot_dev, Bootdef_dev, Booted_dev, Boot_file, Booted_file, Boot_osflags,
Booted_osflags, Boot_reset, Dump_dev, Enable_audit, License, Char_set, Language, Tty_dev

Description
Returns the value(s) of the specified console environment variable(s).

Example
$ dump_device = f$getenv("dump_dev")
$ write sys$output "The dump device for this system is ", dump_device

391

Lexical Functions

This function writes out the dump device for the system.

F$GETJPI
F$GETJPI — Returns information about the specified process.

Format
F$GETJPI(pid,item)

Return Value
Either an integer or a character string, depending on the item you request. Table 8 shows the data
types of the values returned for each item.

Arguments
pid

Specifies the process identification (PID) number of the process for which information is being
reported. Specify the pid argument as a character string expression. You can omit the leading zeros.

If you specify a null string (""), the current PID number is used.

You cannot use an asterisk (*) or percent sign (%) wildcard character to specify the pid argument
in the F$GETJPI function, as you can with the $GETJPI system service. To get a list of process
identification numbers, use the F$PID function.

item

Indicates the type of process information to be returned. Specify the item argument as a character
string expression. You can specify any one of the items listed in Table 8.

Description
The F$GETJPI lexical function invokes the $GETJPI system service to return information about the
specified process.

Note

Requires GROUP privilege to obtain information on other processes in the same group. Requires
WORLD privilege to obtain information on any other processes in the system.

The function returns information on all items that can be specified with the $GETJPI system service.
For more information on the $GETJPI system service, see the VSI OpenVMS System Services
Reference Manual.

The F$GETJPI lexical function returns a zero or a null string if the target process is in a suspended
or MWAIT (resource wait) state and the item requested is stored in the virtual address space of the
process.

You can use the F$GETJPI lexical function to find out whether a process automatically unshelves
files.

392

Lexical Functions

When you specify the STS2 item code, F$GETJPI returns a 32-bitnumeric value. When you convert
this numeric value to binary format, the digit at symbolic bit position PCB$V_NOUNSHELVE shows
you the process unshelving default. If the bit is 1, automatic unshelvingis turned off; if 0, automatic
unshelving is turned on.

Table 8 lists the items you can specify with the F$GETJPI function, the information returned, and the
data type of this information.

Table 8. F$GETJPI Items

Item Return Type Information Returned
ACCOUNT String Account name string (8 characters filled with

trailing blanks).
APTCNT Integer Active page table count.
ASTACT Integer Access modes with active asynchronous system

traps (ASTs).
ASTCNT Integer Remaining AST quota.
ASTEN Integer Access modes with ASTs enabled.
ASTLM Integer AST limit quota.
AUTHPRI Integer Maximum priority that a process without the

ALTPRI (alter priority) privilege can achieve with
the $SETPRI system service.

AUTHPRIV String Privileges that a process is authorized to enable.
BIOCNT Integer Remaining buffered I/O quota.
BIOLM Integer Buffered I/O limit quota.
BUFIO Integer Count of process buffered I/O operations.
BYTCNT Integer Remaining buffered I/O byte count quota.
BYTLM Integer Buffered I/O byte count quota.
CASE_LOOKUP_IMAGE
(Alpha/Integrity servers only)

String Returns information about the file name lookup
case sensitivity of a specified process. This value
is set only for the life of the image. Values are
BLIND or SENSITIVE.

See the Guide to OpenVMS File Applications for
additional information.

CASE_LOOKUP_PERM (Alpha/
Integrity servers only)

String Returns information about the file name lookup
case sensitivity of a specified process. This value
is set for the life of the process unless the style is
set again. Values are BLIND or SENSITIVE.

See the Guide to OpenVMS File Applications for
additional information.

CLASSIFICATION (Alpha/
Integrity servers only)

String Current MAC classification, as a 20-byte padded
string, stored in the PSB.

CLINAME String Current command language interpreter; always
returns DCL.

CPULIM Integer Limit on process CPU time.

393

Lexical Functions

Item Return Type Information Returned
CPUTIM Integer CPU time used in hundredths of a second.
CREPRC_FLAGS Integer Flags specified by the stsflg argument in the

$CREPRC call that created the process.
CURPRIV String Current process privileges.
CURRENT_CAP_MASK (Alpha/
Integrity servers only)

Integer Current capabilities mask for the specified kernel
thread. See the SET PROCESS/CAPABILITIES
command for additional information.

DFPFC Integer Default page fault cluster size.
DFWSCNT Integer Default working set size.
DIOCNT Integer Remaining direct I/O quota.
DIOLM Integer Direct I/O limit quota.
DIRIO Integer Count of direct I/O operations for the process.
EFCS Integer Local event flags 0--31.
EFCU Integer Local event flags 32--63.
EFWM Integer Event flag wait mask.
ENQCNT Integer Lock request quota remaining.
ENQLM Integer Lock request quota limit.
EXCVEC Integer Address of a list of exception vectors.
FAST_VP_SWITCH Integer Number of times this process has issued a

vector instruction that enabled an inactive vector
processor without the expense of a vector context
switch.

FILCNT Integer Remaining open file quota.
FILLM Integer Open file quota.
FINALEXC Integer Address of a list of final exception vectors.
FREP0VA Integer First free page at end of program region (P0

space) (irrelevant if no image is running).
FREP1VA Integer First free page at end of control region (P1 space).
FREPTECNT Integer Number of pages available for virtual memory

expansion.
GPGCNT Integer Global page count in working set.
GRP Integer Group number of the user identification code

(UIC).
HOME_RAD Integer Home resource affinity domain (RAD). RAD is

supported on AlphaServer GS series systems and
starting from OpenVMS Version 8.4, support is
extended to NUMA capable Integrity servers.

IMAGECOUNT Integer Number of images that have been run down for
the process.

IMAGE_AUTHPRIV (Alpha/
Integrity servers only)

String Authorized privilege mask of the installed image.

394

Lexical Functions

Item Return Type Information Returned
IMAGE_PERMPRIV (Alpha/
Integrity servers only)

String Permanent (default) privilege mask of the
installed image.

IMAGE_WORKPRIV (Alpha/
Integrity servers only)

String Working (active) privilege mask of the installed
image.

IMAGNAME String File name of the current image.
IMAGPRIV String Privileges with which the current image was

installed.
INSTALL_RIGHTS (Alpha/
Integrity servers only)

Integer Binary content of the install rights list. This item
code returns a list of install rights separated by
commas.

INSTALL_RIGHTS_SIZE
(Alpha/Integrity servers only)

Integer Number of bytes needed to store the install rights.

JOBPRCCNT Integer Number of subprocesses owned by the job.
JOBTYPE Integer Execution mode of the process at the root of the

job tree.
KT_LIMIT Integer Returns the per-process kernel threads limit for

the process.
LAST_LOGIN_I String Time of your last interactive login (the value that

was reported when you logged in).
LAST_LOGIN_N String Time of your last non-interactive login (the value

that was reported when you logged in).
LOGIN_FAILURES Integer Number of login failures that occurred prior to

the start of the current session (the value that was
reported when you logged in).

LOGIN_FLAGS Integer A longword bitmask that contains additional
information relating to the login sequence.

LOGINTIM String Process creation time.
MASTER_PID String Process identification (PID) number of the

process at the top of the current job's process tree.
MAXDETACH Integer Maximum number of detached processes allowed

the user who owns the process.
MAXJOBS Integer Maximum number of active processes allowed for

the user who owns the process.
MEM Integer Member number of the UIC.
MODE String Current process mode (BATCH, INTERACTIVE,

NETWORK, or OTHER).
MSGMASK Integer Current message mask as established by the

SETMESSAGE command. If no mask is
specified, the default system message mask is
described in the $GETMSG system service.
For additional information, seethe $PUTMSG
system service (for message mask bits), and the
F$ENVIRONMENT lexical MESSAGE item.

395

Lexical Functions

Item Return Type Information Returned
MULTITHREAD Integer Current setting for the process (limited by the

system setting).
NODENAME String The name of the OpenVMS Cluster node on

which the process is running.
NODE_CSID Integer Cluster ID of the OpenVMS Cluster node on

which the process is running.
NODE_VERSION String Operating system version number of the

OpenVMS Cluster node on which the process is
running.

OWNER String Process identification number of process owner.
PAGEFLTS Integer Count of page faults.
PAGFILCNT Integer Remaining paging file quota.
PAGFILLOC Integer Location of the paging file.
PARSE_STYLE_PERM (Alpha/
Integrity servers only)

String Values that were set by
$SET_PROCESS_PROPERTIESW.

PARSE_STYLE_IMAGE (Alpha/
Integrity servers only)

String Values that were set by
$SET_PROCESS_PROPERTIESW.

PERMANENT_CAP_MASK
(Alpha/Integrity servers only)

Integer Permanent capabilities mask for the specified
kernel thread. See the SET PROCESS/
CAPABILITIES command for additional
information.

PERSONA_AUTHPRIV (Alpha/
Integrity servers only)

String Authorized privilege mask of the persona.

PERSONA_ID (Alpha/Integrity
servers only)

Integer The ID of the persona as a longword integer.

PERSONA_PERMPRIV (Alpha/
Integrity servers only)

String Permanent (default) privilege mask of the
persona.

PERSONA_RIGHTS (Alpha/
Integrity servers only)

Integer Binary content of the persona rights list. This
item code returns a list of persona rights separated
by commas.

PERSONA_RIGHTS_SIZE
(Alpha/Integrity servers only)

Integer Number of bytes needed to store the persona
rights.

PERSONA_WORKPRIV (Alpha/
Integrity servers only)

String Privilege mask of the working (active) persona.

PGFLQUOTA Integer Paging file quota (maximum virtual page count).
PHDFLAGS Integer Flags word.
PID String Process identification number.
PPGCNT Integer Process page count.
PRCCNT Integer Number of subprocesses owned by the process.
PRCLM Integer Subprocess quota.
PRCNAM String Process name.
PRI Integer Process's current priority.

396

Lexical Functions

Item Return Type Information Returned
PRIB Integer Process's base priority.
PROC_INDEX Integer Process's index number.
PROCESS_RIGHTS String Contents of the process's local rights list,

including your UIC. This item code returns a list
of identifier names separated by commas.

PROCPRIV String Process's default privileges.
RIGHTSLIST String Contents of all of the process rights lists;

the equivalent of PROCESS_RIGHTS plus
SYSTEM_RIGHTS. This item code returns a list
of identifier names separated by commas.

RIGHTS_SIZE Integer Number of bytes required to buffer the rights list.
The rights list includes both the system rights list
and the process rights list.

SCHED_CLASS_NAME (Alpha/
Integrity servers only)

String Returns the name of the scheduling class if the
process is class scheduled, null string if not.

SHRFILLM Integer Maximum number of open shared files allowed
for the job to which the process belongs.

SEARCH_SYMLINK_PERM String Returns one of the following values:

• NOWILDCARD

• WILDCARD

• NOELLIPSIS
SEARCH_SYMLINK_TEMP String Returns one of the following values:

• NOWILDCARD

• WILDCARD

• NOELLIPSIS
SITESPEC Integer Per-process site-specific longword.
SLOW_VP_SWITCH Integer Number of times this process has issued a

vector instruction that enabled an inactive vector
processor with a full vector context switch.

STATE String Process state.
STS Integer First longword of process status flags.
STS2 Integer Second longword of process status flags.
SUBSYSTEM_RIGHTS (Alpha/
Integrity servers only)

Integer Binary content of the subsystem rights list.
This item code returns a list of subsystem rights
separated by commas.

SUBSYSTEM_RIGHTS_SIZE
(Alpha/Integrity servers only)

Integer Number of bytes needed to store the subsystem
rights.

SWPFILLOC Integer Location of the swap file.

397

Lexical Functions

Item Return Type Information Returned
SYSTEM_RIGHTS String Contents of the system rights list for the process.

This item code returns a list of identifier names
separated by commas.

SYSTEM_RIGHTS_SIZE
(Alpha/Integrity servers only)

Integer Number of bytes needed to store the system
rights.

TABLENAME String File specification of the process's current
command language interpreter (CLI) table.

TERMINAL String Login terminal name for interactive users (1--7
characters).

TMBU Integer Termination mailbox unit number.
TOKEN String Token size, specified as TRADITIONAL (255

bytes) or EXPANDED (4000 bytes).
TQCNT Integer Remaining timer queue entry quota.
TQLM Integer Timer queue entry quota.
TT_ACCPORNAM String Access port name for the terminal associated with

the process.
TT_PHYDEVNAM String Physical device name of the terminal associated

with the process.
UAF_FLAGS Integer User authorization file (UAF) flags from the UAF

record of the user who owns the process.
UIC String Process's user identification code (UIC).
USERNAME String User name string (12 characters filled with

trailing blanks).
VIRTPEAK Integer Peak virtual address size.
VOLUMES Integer Count of volume mount operations that the

process has done.
VP_CONSUMER Boolean Flag indicating whether the process is a vector

consumer.
VP_CPUTIM Integer Total amount of time the process has accumulated

as a vector customer.
WSAUTH Integer Maximum authorized working set size.
WSAUTHEXT Integer Maximum authorized working set extent.
WSEXTENT Integer Current working set extent.
WSPEAK Integer Working set peak.
WSQUOTA Integer Working set size quota.
WSSIZE Integer Process's current working set limit.

If you use the $GETJPI function to request information on the null processor the swapper process,
you can specify any of the items in Table 8 except the following:

ACCOUNT BYTLM ENQCNT ENQLM
EXCVEC FILCNT FILM FINALEXC
IMAGNAME LOGINTIM MSGMASK PAGFILCNT

398

Lexical Functions

PGFLQUOTA PRCCNT PRCLM PROCPRIV
SITESPEC TQCNT TQLM USERNAME
VIRTPEAK VOLUMES WSPEAK

Examples
1. $ NAME = F$GETJPI("3B0018","USERNAME")

$ SHOW SYMBOL NAME
 NAME = "JANE "

This example shows how to use the F$GETJPI function to return the user name for the process
number 3B0018. The user name is assigned to the symbol NAME.

2. $ X=F$ENVIRONMENT("MESSAGE")
$ SHOW SYMBOL X
 X = "/FACILITY/SEVERITY/IDENTIFICATION/TEXT"
$ X=F$GETJPI("0","MSGMASK")
$ SHOW SYMBOL X
 X = 15 Hex = 0000000F Octal = 00000000017
$ SET MESSAGE /NOFACILITY
$ X=F$ENVIRONMENT("MESSAGE")
$ SHOW SYMBOL X
 X = "/NOFACILITY/SEVERITY/IDENTIFICATION/TEXT"
$ X=F$GETJPI("0","MSGMASK")
$ SHOW SYMBOL X
 X = 7 Hex = 00000007 Octal = 00000000007
$ SET MESSAGE /FACILITY
$ X=F$ENVIRONMENT("MESSAGE")
$ SHOW SYMBOL X
 X = "/FACILITY/SEVERITY/IDENTIFICATION/TEXT"
$ X=F$GETJPI("0","MSGMASK")
$ SHOW SYMBOL X
 X = 15 Hex = 0000000F Octal = 00000000017
$

This example shows the use of the F$GETJPI MSGMASK item.

F$GETQUI
F$GETQUI — Returns information about queues, including batch and print jobs currently in the
queues, form definitions, and characteristic definitions kept in the queue database. Also returns
information about queue managers.

Format
F$GETQUI(function,[item],[object-id],[flags])

Return Value
Either an integer or a character string, depending on the item you request. For items that return a
Boolean value, the string is TRUE or FALSE. If the $GETQUI system service returns an error code,
F$GETQUI returns a null string ("").

399

Lexical Functions

Arguments
function

Specifies the action that the F$GETQUI lexical function is to perform. F$GETQUI supports all
functions that can be specified with the $GETQUI system service. The following table lists these
functions:

Function Description
CANCEL_OPERATION Terminates any wildcard operation that may have been initiated

by a previous call to F$GETQUI.
DISPLAY_CHARACTERISTIC Returns information about a specific characteristic definition or

the next characteristic definition in a wildcard operation.
DISPLAY_ENTRY Returns information about a specific job entry or the next

job entry that matches the selection criteria in a wildcard
operation. The DISPLAY_ENTRY function code is similar
to the DISPLAY_JOB function code int hat both return job
information. DISPLAY_JOB, however, requires that a call be
made to establish queue context; DISPLAY_ENTRY does not
require that queue context be established. Only those entries that
match the user-name of the current process will be processed.

DISPLAY_FILE Returns information about the next file defined for the current
job context. Before you make a call to F$GETQUI to request
file information, you must make a call to display queue and job
information (with the DISPLAY_QUEUE and DISPLAY_JOB
function codes) or to display entry information (with the
DISPLAY_ENTRY function code).

DISPLAY_FORM Returns information about a specific form definition or the next
form definition in a wildcard operation.

DISPLAY_JOB Returns information about the next job defined for the current
queue context. Before you make a call to F$GETQUI to
request job information, you must make a call to display
queue information (with the DISPLAY_QUEUE function
code). The DISPLAY_JOB function code is similar to the
DISPLAY_ENTRY function code in that both return job
information. DISPLAY_JOB, however, requires that a call be
made to establish queue context;DISPLAY_ENTRY does not
require that queue context be established.

DISPLAY_MANAGER Returns information about a specific queue manager or the next
queue manager in a wildcard operation.

DISPLAY_QUEUE Returns information about a specific queue definition or the next
queue definition in a wildcard operation.

TRANSLATE_QUEUE Translates a logical name for a queue to the equivalence name for
the queue.

Some function arguments cannot be specified with the item-code, the object-id, or the
flags argument. The following table lists each function argument and corresponding format line to
show whether the item-code, object-id, and flagsarguments are required, optional, or not
applicable for that specific function. In the following format lines, brackets ([]) denote an optional
argument. An omitted argument means the argument is not applicable for that function. Note that two

400

Lexical Functions

commas (,,) must be used as placeholders to denote an omitted (whether optional or not applicable)
argument.

Function Format Line
CANCEL_OPERATION F$GETQUI(“CANCEL_OPERATION”) or F$GETQUI (“ ”)
DISPLAY_CHARACTERISTIC F$GETQUI(“DISPLAY_CHARACTERISTIC”,[item],object-id,

[flags])
DISPLAY_ENTRY F$GETQUI(“DISPLAY_ENTRY”,[item],[object-id],[flags])
DISPLAY_FILE F$GETQUI(“DISPLAY_FILE”,[item],,[flags])
DISPLAY_FORM F$GETQUI(“DISPLAY_FORM”,[item],object-id,[flags])
DISPLAY_JOB F$GETQUI(“DISPLAY_JOB”,[item],,[flags])
DISPLAY_MANAGER F$GETQUI("DISPLAY_MANAGER",[item],object-id,[flags])
DISPLAY_QUEUE F$GETQUI(“DISPLAY_QUEUE”,[item],object-id,[flags])
TRANSLATE_QUEUE F$GETQUI(“TRANSLATE_QUEUE”,[item],object-id)

item

Corresponds to a $GETQUI system service output item code. The item argument specifies the kind
of information you want returned about a particular queue, job, file, form, or characteristic. Table 10
lists each item code and the data type of the value returned for each item code.

object-id

Corresponds to the $GETQUI system service QUI$SEARCH_NAME, QUI$_SEARCH_NUMBER,
and QUI$_SEARCH_JOB_NAME input item codes. The object-id argument specifies either the
name or the number of an object (for example, a specific queue name, job name, or form number)
about which F$GETQUI is to return information. The asterisk (*) and the percent sign (%) wildcard
characters are allowed for the following functions:

DISPLAY_CHARACTERISTIC
DISPLAY_ENTRY
DISPLAY_FORM
DISPLAY_MANAGER
DISPLAY_QUEUE

By specifying an asterisk (*) or percent sign (%) wildcard character as the object-id argument on
successive calls, you can get status information about one or more jobs in a specific queue or about
files within jobs in a specific queue. When a name is used with wildcard characters, each call returns
information for the next object (queue, form, and so on) in the list. A null string ("") is returned when
the end of the list is reached. A wildcard can represent only object names, not object numbers.

flags

Specifies a list of keywords, separated by commas, that corresponds to the flags defined for the
$GETQUI system service QUI$_SEARCH_FLAGS input item code.(These flags are used to define
the scope of the object search specified in the call to the $GETQUI system service.) Note that
keywords in Table 9 can be used only with certain function codes.

Table 9. F$GETQUI Keywords

Keyword Valid Function Code Description
ALL_JOBS DISPLAY_JOB Requests that F$GETQUI search

all jobs included in the established

401

Lexical Functions

Keyword Valid Function Code Description
queue context. If you do not specify
this flag, F$GETQUI returns
information only about jobs that
have the same user name as the
caller.

BATCH DISPLAY_QUEUE
DISPLAY_ENTRY

Selects batch queues.

EXECUTING_JOBS DISPLAY_ENTRY
DISPLAY_JOB

Selects executing jobs.

FREEZE_CONTEXT DISPLAY_CHARACTERISTIC
DISPLAY_ENTRY
DISPLAY_FILE
DISPLAY_FORM
DISPLAY_JOB
DISPLAY_MANAGER
DISPLAY_QUEUE

When in wildcard mode, prevents
advance of wildcard context to the
next object. If you do not specify this
flag, the context is advanced to the
next object.

GENERIC DISPLAY_ENTRY
DISPLAY_QUEUE

Selects generic queues for searching.

HOLDING_JOBS DISPLAY_ENTRY
DISPLAY_JOB

Selects jobs on unconditional hold.

PENDING_JOBS DISPLAY_ENTRY
DISPLAY_JOB

Selects pending jobs.

PRINTER DISPLAY_QUEUE
DISPLAY_ENTRY

Selects printer queues.

RETAINED_JOBS DISPLAY_ENTRY
DISPLAY_JOB

Selects jobs being retained.

SERVER DISPLAY_QUEUE
DISPLAY_ENTRY

Selects server queues.

SYMBIONT DISPLAY_QUEUE
DISPLAY_ENTRY

Selects all output queues.
Equivalent to specifying
“PRINTER,SERVER,TERMINAL”.

TERMINAL DISPLAY_QUEUE
DISPLAY_ENTRY

Selects terminal queues.

THIS_JOB DISPLAY_ENTRY
DISPLAY_FILE DISPLAY_JOB
DISPLAY_QUEUE

Selects all job file information about
the calling batch job (entry), the
command file being executed, or the
queue associated with the calling
batch job.

TIMED_RELEASE_JOBS DISPLAY_ENTRY
DISPLAY_JOB

Selects jobs on hold until a specified
time.

WILDCARD DISPLAY_CHARACTERISTIC
DISPLAY_ENTRY
DISPLAY_FORM
DISPLAY_MANAGER
DISPLAY_QUEUE

Establishes and saves a context.
Because the context is saved, the
next operation can be performed
based on that context.

402

Lexical Functions

Description
The F$GETQUI lexical function invokes the $GETQUI system service to return information about
queues, batch and print jobs currently in those queues, form definitions, and characteristic definitions
kept in the system job queue file.

Note

For most operations, read (R) access is required.

The F$GETQUI lexical function provides all the features of the$GETQUI system service, including
wildcard and nested wildcard operations. For example, in nested wildcard operations, $GETQUI
returns information about objects defined within another object. Specifically, this mode allows you
to query jobs contained in a selected queue or files contained in a selected job in a sequence of calls.
After each call, the system saves the GQC (internal GETQUI context block) so that the GQC can
provide the queue or job context necessary for subsequent calls.

Restriction

The GQC that is saved for wildcarded F$GETQUI calls is destroyed if you run any DCL queue-
related command, such as SHOW QUEUE or SHOW ENTRY. To avoid this problem, use the SPAWN
command to create a new process in which to run the DCL commands.

For more information, see the description of the $GETQUI system service in the VSI OpenVMS
System Services Reference Manual.

The F$GETQUI function returns information on all items that can be specified with the $GETQUI
system service. Table 10 lists the items you can specify with the F$GETQUI function, the information
returned, and the data type of this information.

Table 10. F$GETQUI Items

Item Return Type Information Returned
ACCOUNT_NAME1 String The account name of the owner of the

specified job.
AFTER_TIME String The system time at or after which the

specified job can execute.
ASSIGNED_QUEUE_NAME 1 String The name of the execution queue to which

the logical queue specified in the call to F
$GETQUI is assigned.

AUTOSTART_ON String A list of nodes or node device pairs
indicating where the queue can start.

BASE_PRIORITY Integer The priority at which batch jobs are initiated
from a batch execution queue or the priority
of a symbiont process that controls output
execution queues.

CHARACTERISTICS1 String The characteristics associated with the
specified queue or job.

CHARACTERISTIC_NAME String The name of the specified characteristic.
CHARACTERISTIC_NUMBER Integer The number of the specified characteristic.

403

Lexical Functions

Item Return Type Information Returned
CHECKPOINT_DATA1 String The value of the DCL symbol BATCH

$RESTART when the specified batch job is
restarted.

CLI1 String The name of the command language
interpreter (CLI) used to execute the
specified batch job. The file specification
returned assumes the device name SYS
$SYSTEM and the file type EXE.

COMPLETED_BLOCKS Integer The number of blocks that the symbiont has
processed for the specified print job. This
item code is applicable only to print jobs.

CONDITION_VECTOR1 Integer The vector of three longwords. The first
longword gives the completion status of
the specified job. The second and third
longwords give additional status about the
print job.

CPU_DEFAULT String The default CPU time limit specified for
the queue in delta time. This item code is
applicable only to batch execution queues.

CPU_LIMIT1 String The maximum CPU time limit specified for
the specified job or queue in delta time. This
item code is applicable only to batch jobs
and batch execution queues.

DEFAULT_FORM_NAME String The name of the default form associated
with the specified output queue.

DEFAULT_FORM_STOCK String The name of the paper stock on which the
specified default form is to be printed.

DEVICE_NAME String The node and device (or both) on which the
specified execution queue is located. For
output execution queues, only the device
name is returned. The node name is used
only in mixed-architecture OpenVMS
Cluster systems. The node name is specified
by the system parameter SCSNODE for the
processor on which the queue executes.

For batch execution queues, a null string ("")
is returned. To get the name of the node on
which a batch queue is executing, use the
SCSNODE_NAME item.

ENTRY_NUMBER Integer The queue entry number of the specified job.
EXECUTING_JOB_COUNT Integer The number of jobs in the queue that are

currently executing.
FILE_BURST String TRUE or FALSE to indicate whether burst

and flag pages are to be printed preceding a
file.

404

Lexical Functions

Item Return Type Information Returned
FILE_CHECKPOINTED1 String TRUE or FALSE to indicate whether the

specified file is checkpointed.
FILE_COPIES1 Integer The number of times the specified file is to

be processed. This item code is applicable
only to output execution queues.

FILE_COPIES_DONE1 Integer The number of times the specified file has
been processed. This item code is applicable
only to output execution queues.

FILE_COUNT Integer The number of files in a specified job.
FILE_DELETE String TRUE or FALSE to indicate whether the

specified file is to be deleted after execution
of request.

FILE_DEVICE1 String The internal file-device value that uniquely
identifies the selected file. This value
specifies the following field in the RMS
NAM block:

NAM$T_DVI (16 bytes)
FILE_DID1 String The internal file-did value that uniquely

identifies the selected file. This value
specifies the following field in the RMS
NAM block:

NAM$W_DID (6 bytes)
FILE_DOUBLE_SPACE String TRUE or FALSE to indicate whether the

symbiont formats the file with double
spacing.

FILE_EXECUTING1 String TRUE or FALSE to indicate whether the
specified file is being processed.

FILE_FLAG String TRUE or FALSE to indicate whether a flag
page is to be printed preceding a file.

FILE_FLAGS1 Integer The processing options that have been
selected for the specified file. The integer
represents a bit field. To find the settings of
each bit in the field, use one of the following
items in place of FILE_FLAGS:

FILE_BURST
FILE_DELETE
FILE_DOUBLE_SPACE
FILE_FLAG
FILE_PAGE_HEADER
FILE_PAGINATE
FILE_PASSALL
FILE_TRAILER

FILE_IDENTIFICATION1 String The internal file-identification value
that uniquely identifies the selected file.

405

Lexical Functions

Item Return Type Information Returned
This value specifies the following file-
identification field in the RMS NAM block:

NAM$W_FID (6 bytes)
FILE_PAGE_HEADER String TRUE or FALSE to indicate whether a

page header is to be printed on each page of
output.

FILE_PAGINATE String TRUE or FALSE to indicate whether the
symbiont paginates output by inserting a
form feed whenever output reaches the
bottom margin of the form.

FILE_PASSALL String TRUE or FALSE to indicate whether the
symbiont prints the file in PASSALL mode.

FILE_SETUP_MODULES1 String The names of the text modules that are to be
extracted from the device control library and
copied to the printer before the specified file
is printed. This item code is meaningful only
for output execution queues.

FILE_SPECIFICATION1 String The fully qualified RMS file specification of
the file about which F$GETQUI is returning
information.

FILE_STATUS1 Integer File status information. The integer
represents a bit field. To find the settings of
each bit in the field, use one of the following
items in place of FILE_STATUS:

FILE_CHECKPOINTED
FILE_EXECUTING

FILE_TRAILER String TRUE or FALSE to indicate whether a
trailer page is to be printed following a file.

FIRST_PAGE1 Integer The page number at which the printing
of the specified file is to begin. This item
code is applicable only to output execution
queues.

FORM_DESCRIPTION String The text string that describes the specified
form to users and operators.

FORM_FLAGS Integer The processing options that have been
selected for the specified form. The integer
represents a bit field. To find the settings of
each bit in the field, use one of the following
items in place of FORM_FLAGS:

FORM_SHEET_FEED
FORM_TRUNCATE
FORM_WRAP

FORM_LENGTH Integer The physical length of the specified form in
lines. This item code is applicable only to
output execution queues.

406

Lexical Functions

Item Return Type Information Returned
FORM_MARGIN_BOTTOM Integer The bottom margin of the specified form in

lines.
FORM_MARGIN_LEFT Integer The left margin of the specified form in

characters.
FORM_MARGIN_RIGHT Integer The right margin of the specified form in

characters.
FORM_MARGIN_TOP Integer The top margin of the specified form inlines.
FORM_NAME1 String The name of the specified form or the

mounted form associated with the specified
job or queue.

FORM_NUMBER Integer The number of the specified form.
FORM_SETUP_MODULES String The names of the text modules that are to

be extracted from the device control library
and copied to the printer before a file is
printed on the specified form. This item
code is meaningful only for output execution
queues.

FORM_SHEET_FEED String TRUE or FALSE to indicate whether the
symbiont pauses at the end of each physical
page so that another sheet of paper can be
inserted.

FORM_STOCK1 String The name of the paper stock on which the
specified form is to be printed.

FORM_TRUNCATE String TRUE or FALSE to indicate whether the
printer discards any characters that exceed
the specified right margin.

FORM_WIDTH Integer The width of the specified form.
FORM_WRAP String TRUE or FALSE to indicate whether the

printer prints any characters that exceed the
specified right margin on the following line.

GENERIC_TARGET String The names of the execution queues that are
enabled to accept work from the specified
generic queue. This item code is meaningful
only for generic queues.

HOLDING_JOB_COUNT Integer The number of jobs in the queue being held
until explicitly released.

INTERVENING_BLOCKS Integer The number of blocks associated with
pending jobs in the queue that were skipped
during the current call to F$GETQUI. These
jobs were not reported because they did not
match the selection criterion in effect for the
call to F$GETQUI.

INTERVENING_JOBS Integer The number of pending jobs in the queue
that were skipped during the current call to
F$GETQUI. These jobs were not reported

407

Lexical Functions

Item Return Type Information Returned
because they did not match the selection
criterion in effect for the call to F$GETQUI.

JOB_ABORTING String TRUE or FALSE to indicate whether the
system is attempting to abort the execution
of a job.

JOB_COMPLETION_QUEUE1 String The name of the queue on which the
specified job executed.

JOB_COMPLETION_TIME1 String The time at which the execution of the
specified job completed.

JOB_COPIES1 Integer The number of times the specified print job
is to be repeated.

JOB_COPIES_DONE1 Integer The number of times that the specified print
job has been repeated.

JOB_CPU_LIMIT1 String TRUE or FALSE to indicate whether a CPU
time limit is specified for the job.

JOB_ERROR_RETENTION1 String TRUE or FALSE to indicate whether the
user requested that the specified job be
retained in the queue if the job completes
unsuccessfully.

JOB_EXECUTING String TRUE or FALSE to indicate whether the
specified job is executing or printing.

JOB_FILE_BURST1 String TRUE or FALSE to indicate whether a burst
page option is explicitly specified for the
job.

JOB_FILE_BURST_ONE1 String TRUE or FALSE to indicate whether burst
and flag pages precede only the first copy of
the first file in the job.

JOB_FILE_FLAG1 String TRUE or FALSE to indicate whether a flag
page precedes each file in the job.

JOB_FILE_FLAG_ONE1 String TRUE or FALSE to indicate whether a flag
page precedes only the first copy of the first
file in the job.

JOB_FILE_PAGINATE1 String TRUE or FALSE to indicate whether a
paginate option is explicitly specified for the
job.

JOB_FILE_TRAILER1 String TRUE or FALSE to indicate whether a
trailer page follows each file in the job.

JOB_FILE_TRAILER_ONE1 String TRUE or FALSE to indicate whether a
trailer page follows only the last copy of the
last file in the job.

JOB_FLAGS1 Integer The processing options selected for the
specified job. The integer represents a bit
field. To find the settings of each bit in the
field, use one of the following items in place
of JOB_FLAGS:

408

Lexical Functions

Item Return Type Information Returned
JOB_CPU_LIMIT
JOB_ERROR_RETENTION
JOB_FILE_BURST
JOB_FILE_BURST_ONE
JOB_FILE_FLAG
JOB_FILE_FLAG_ONE
JOB_FILE_PAGINATE
JOB_FILE_TRAILER
JOB_FILE_TRAILER_ONE
JOB_LOG_DELETE
JOB_LOG_NULL
JOB_LOG_SPOOL
JOB_LOWERCASE
JOB_NOTIFY
JOB_RESTART
JOB_RETENTION_TIME
JOB_WSDEFAULT
JOB_WSEXTENT
JOB_WSQUOTA

JOB_HOLDING String TRUE or FALSE to indicate whether the job
will be held until it is explicitly released.

JOB_INACCESSIBLE String TRUE or FALSE to indicate whether the
caller does not have read access to the
specific job and file information in the
system queue file. When FALSE, the
DISPLAY_JOB and DISPLAY_FILE
operations can return information for only
the following output value item codes:

AFTER_TIME
COMPLETED_BLOCKS
ENTRY_NUMBER
INTERVENING_BLOCKS
INTERVENING_JOBS
JOB_SIZE
JOB_STATUS

JOB_LIMIT Integer The number of jobs that can execute
simultaneously on the specified queue.
This item code is applicable only to batch
execution queues.

JOB_LOG_DELETE 1 String TRUE or FALSE to indicate whether the log
file is deleted after it is printed.

JOB_LOG_NULL1 String TRUE or FALSE to indicate whether a log
file is not created.

JOB_LOG_SPOOL1 String TRUE or FALSE to indicate whether the job
log file is queued for printing when the job
is complete.

409

Lexical Functions

Item Return Type Information Returned
JOB_LOWERCASE1 String TRUE or FALSE to indicate whether the job

is to be printed on a printer that can print
both uppercase and lowercase letters.

JOB_NAME1 String The name of the specified job.
JOB_NOTIFY1 String TRUE or FALSE to indicate whether a

message is broadcast to a terminal when a
job completes or aborts.

JOB_PENDING String TRUE or FALSE to indicate whether the job
is pending.

JOB_PID String The process identification (PID) number of
the executing batch job.

JOB_REFUSED String TRUE or FALSE to indicate whether the job
was refused by the symbiont and is waiting
for the symbiont to accept it for processing.

JOB_RESET_MODULES String The names of the text modules that are to
be extracted from the device control library
and copied to the printer before each job
in the specified queue is printed. This item
code is meaningful only for output execution
queues.

JOB_RESTART1 String TRUE or FALSE to indicate whether the job
will restart after a system failure or can be
requeued during execution.

JOB_RETAINED String TRUE or FALSE to indicate whether the job
has completed but is being retained in the
queue.

JOB_RETENTION String TRUE or FALSE to indicate whether the
user requested that the job be retained
indefinitely in the queue regardless of the
job's completion status.

JOB_RETENTION_TIME1 String Returns the system time until which the user
requested the job be retained in the queue.
The system time may be expressed in either
absolute or delta time format.

JOB_SIZE Integer The total number of blocks in the specified
print job.

JOB_SIZE_MAXIMUM Integer The maximum number of blocks that a print
job initiated from the specified queue can
contain. This item code is applicable only to
output execution queues.

JOB_SIZE_MINIMUM Integer The minimum number of blocks that a print
job initiated from the specified queue can
contain. This item code is applicable only to
output execution queues.

410

Lexical Functions

Item Return Type Information Returned
JOB_STALLED String TRUE or FALSE to indicate whether the

specified job is stalled because the physical
device on which the job is printing is stalled.

JOB_STARTING String TRUE or FALSE to indicate whether the job
controller is starting to process the job and
has begun communicating with an output
symbiont or a job controller on another
node.

JOB_STATUS Integer The specified job's status flags. The integer
represents a bit field. To find the settings of
each bit in the field, use one of the following
items in place of JOB_STATUS:

JOB_ABORTING
JOB_EXECUTING
JOB_HOLDING
JOB_INACCESSIBLE
JOB_REFUSED
JOB_REQUEUE
JOB_RESTART
JOB_RETAINED
JOB_STARTING
JOB_TIMED_RELEASE
JOB_SUSPENDED
JOB_PENDING

JOB_SUSPENDED String TRUE or FALSE to indicate whether the job
is suspended.

JOB_TIMED_RELEASE String TRUE or FALSE to indicate whether the job
is waiting for a specified time to execute.

JOB_WSDEFAULT1 String TRUE or FALSE to indicate whether a
default working set size is specified for the
job.

JOB_WSEXTENT1 String TRUE or FALSE to indicate whether a
working set extent is specified for the job.

JOB_WSQUOTA1 String TRUE or FALSE to indicate whether a
working set quota is specified for the job.

LAST_PAGE1 Integer The page number at which the printing of
the specified file should end. This item
code is applicable only to output execution
queues.

LIBRARY_SPECIFICATION String The name of the device control library for
the specified queue. The library specification
assumes the device and directory name SYS
$LIBRARY and a file type of .TLB. This
item code is meaningful only for output
execution queues.

LOG_QUEUE1 String The name of the queue into which the log
file produced for the specified batch job is

411

Lexical Functions

Item Return Type Information Returned
to be entered for printing. This item code is
applicable only to batch jobs.

LOG_SPECIFICATION1 String The name of the log file specified for a
job. This item code is meaningful only for
batch jobs. Use the JOB_LOG_NULL item
code to determine whether a log file will be
produced.

MANAGER_NAME String The queue manager name.
MANAGER_NODES String The names of the nodes on which the queue

manager may run.
MANAGER_STATUS Integer The specified queue manager's status flags.

To find the settings of each bit in the field,
use one of the following items in place of
MANAGER_STATUS:

MANAGER_FAILOVER
MANAGER_RUNNING
MANAGER_START_PENDING
MANAGER_STARTING
MANAGER_STOPPED
MANAGER_STOPPING

NOTE1 String The note that is to be printed on the job flag
and file flag pages of the specified job. This
item code is meaningful only for output
execution queues.

OPERATOR_REQUEST1 String The message that is to be sent to the queue
operator before the specified job begins to
execute. This item code is meaningful only
for output execution queues.

OWNER_UIC1 String The owner user identification code (UIC) of
the specified queue.

PAGE_SETUP_MODULES String The names of the text modules to be
extracted from the device control library and
copied to the printer before each page of the
specified form is printed.

PARAMETER_1 to PARAMETER_81 String The value of the user-defined parameters
that become the value of the DCL symbols
P1 to P8 respectively.

PENDING_JOB_BLOCK_COUNT Integer The total number of blocks for all pending
jobs in the queue (valid only for output
execution queues).

PENDING_JOB_COUNT Integer The number of jobs in the queue in a
pending state.

PENDING_JOB_REASON Integer The reason that the job is in a pending
state. The integer represents a bit field. To
find the settings of each bit in the field,

412

Lexical Functions

Item Return Type Information Returned
use one of the following items in place of
PENDING_JOB_REASON:

PEND_CHAR_MISMATCH
PEND_JOB_SIZE_MAX
PEND_JOB_SIZE_MIN
PEND_LOWERCASE_MISMATCH
PEND_NO_ACCESS
PEND_QUEUE_BUSY
PEND_QUEUE_STATE
PEND_STOCK_MISMATCH

PEND_CHAR_MISMATCH String TRUE or FALSE to indicate whether the job
requires characteristics that are not available
on the execution queue.

PEND_JOB_SIZE_MAX String TRUE or FALSE to indicate whether the
block size of the job exceeds the upper block
limit of the execution queue.

PEND_JOB_SIZE_MIN String TRUE or FALSE to indicate whether the
block size of the job is less than the lower
limit of the execution queue.

PEND_LOWERCASE_MISMATCH String TRUE or FALSE to indicate whether the job
requires a lowercase printer.

PEND_NO_ACCESS String TRUE or FALSE to indicate whether the
owner of the job does not have access to the
execution queue.

PEND_QUEUE_BUSY String TRUE or FALSE to indicate whether the
job is pending because the number of jobs
currently executing on the queue equals the
job limit for the queue.

PEND_QUEUE_STATE String TRUE or FALSE to indicate whether the job
is pending because the execution queue is
not in a running open state.

PEND_STOCK_MISMATCH String TRUE or FALSE to indicate whether
the stock type required by the job's form
does not match the stock type of the form
mounted on the execution queue.

PRIORITY1 Integer The scheduling priority of the specified job.
PROCESSOR String The name of the symbiont image that

executes print jobs initiated from the
specified queue.

PROTECTION1 String The specified queue's protection mask.
QUEUE_ACL_SPECIFIED String TRUE or FALSE to indicate whether an

access control list has been specified for the
queue.

QUEUE_ALIGNING String TRUE or FALSE to indicate whether the
queue is currently printing alignment pages.
A queue prints alignment pages when it is

413

Lexical Functions

Item Return Type Information Returned
restarted from a paused state by using the
command START/QUEUE/ALIGN.

QUEUE_AUTOSTART String TRUE or FALSE if the specified queue has
been designated as an AUTOSTART queue.

QUEUE_AUTOSTART_INACTIVE String TRUE or FALSE if the queue is an autostart
queue that will not be automatically started.
If TRUE, a START/QUEUE or INIT/
QUEUE/START command must be issued to
restart the queue.

QUEUE_AVAILABLE String TRUE or FALSE if the queue is processing
one or more jobs but is capable of
processing one or more additional jobs.

QUEUE_BATCH String TRUE or FALSE to indicate whether the
queue is a batch queue or a generic batch
queue.

QUEUE_BUSY String TRUE or FALSE if the number of jobs
currently executing on the queue equals the
job limit for the queue.

QUEUE_CLOSED String TRUE or FALSE to indicate whether the
queue is closed and will not accept new jobs
until the queue is put in an open state.

QUEUE_CPU_DEFAULT String TRUE or FALSE to indicate whether a
default CPU time limit has been specified
for all jobs in the queue.

QUEUE_CPU_LIMIT String TRUE or FALSE to indicate whether a
maximum CPU time limit has been specified
for all jobs in the queue.

QUEUE_DESCRIPTION String The description of the queue that was
defined by using the /DESCRIPTION
qualifier with the INITIALIZE/QUEUE
command.

QUEUE_DIRECTORY String The device and directory specification of
the queue database directory for the queue
manager.

QUEUE_FILE_BURST String TRUE or FALSE to indicate whether burst
and flag pages precede each file in each job
initiated from the queue.

QUEUE_FILE_BURST_ONE String TRUE or FALSE to indicate whether burst
and flag pages precede only the first copy
of the first file in each job initiated from the
queue.

QUEUE_FILE_FLAG String TRUE or FALSE to indicate whether a flag
page precedes each file in each job initiated
from the queue.

414

Lexical Functions

Item Return Type Information Returned
QUEUE_FILE_FLAG_ONE String TRUE or FALSE to indicate whether a flag

page precedes only the first copy of the first
file in each job initiated from the queue.

QUEUE_FILE_PAGINATE String TRUE or FALSE to indicate whether the
output symbiont paginates output for each
job initiated from this queue. The output
symbiont paginates output by inserting a
form feed whenever output reaches the
bottom margin of the form.

QUEUE_FILE_TRAILER String TRUE or FALSE to indicate whether a
trailer page follows each file in each job
initiated from the queue.

QUEUE_FILE_TRAILER_ONE String TRUE or FALSE to indicate whether a
trailer page follows only the last copy of the
last file in each job initiated from the queue.

QUEUE_FLAGS Integer The processing options that have been
selected for the specified queue. The integer
represents a bit field. To find the settings of
each bit in the field, use one of the following
items in place of QUEUE_FLAGS:

QUEUE_ACL_SPECIFIED
QUEUE_AUTOSTART
QUEUE_BATCH
QUEUE_CPU_DEFAULT
QUEUE_CPU_LIMIT
QUEUE_FILE_BURST
QUEUE_FILE_BURST_ONE
QUEUE_FILE_FLAG
QUEUE_FILE_FLAG_ONE
QUEUE_FILE_PAGINATE
QUEUE_FILE_TRAILER
QUEUE_FILE_TRAILER_ONE
QUEUE_GENERIC
QUEUE_GENERIC_SELECTION
QUEUE_JOB_BURST
QUEUE_JOB_FLAG
QUEUE_JOB_SIZE_SCHED
QUEUE_JOB_TRAILER
QUEUE_NO_INITIAL_FF
QUEUE_PRINTER
QUEUE_RECORD_BLOCKING
QUEUE_RETAIN_ALL
QUEUE_RETAIN_ERROR
QUEUE_SWAP
QUEUE_TERMINAL
QUEUE_WSDEFAULT
QUEUE_WSEXTENT
QUEUE_WSQUOTA

415

Lexical Functions

Item Return Type Information Returned
QUEUE_GENERIC String TRUE or FALSE to indicate whether the

queue is a generic queue.
QUEUE_GENERIC_SELECTION String TRUE or FALSE to indicate whether the

queue is an execution queue that can accept
work from a generic queue.

QUEUE_IDLE String TRUE or FALSE to indicate whether the
queue is not processing any jobs and is
capable of doing so or whether the generic
queue is capable of feeding executor queues.

QUEUE_JOB_BURST String TRUE or FALSE to indicate whether burst
and flag pages precede each job initiated
from the queue.

QUEUE_JOB_FLAG String TRUE or FALSE to indicate whether a flag
page precedes each job initiated from the
queue.

QUEUE_JOB_SIZE_SCHED String TRUE or FALSE to indicate whether jobs
initiated from the queue are scheduled
according to size with the smallest job of a
given priority processed first. (Meaningful
only for output queues.)

QUEUE_JOB_TRAILER String TRUE or FALSE to indicate whether a
trailer page follows each job initiated from
the queue.

QUEUE_LOWERCASE String TRUE or FALSE to indicate whether queue
is associated with a printer that can print
both uppercase and lowercase characters.

QUEUE_NAME1 String The name of the specified queue or the name
of the queue that contains the specified job.

QUEUE_PAUSED String TRUE or FALSE to indicate whether
execution of all current jobs in the queue is
temporarily halted.

QUEUE_PAUSING String TRUE or FALSE to indicate whether
the queue is temporarily halting
execution. Currently executing jobs are
completing;temporarily, no new jobs can
begin executing.

QUEUE_PRINTER String TRUE or FALSE to indicate whether the
queue is a printer queue.

QUEUE_RECORD_BLOCKING String TRUE or FALSE to indicate whether the
symbiont is permitted to concatenate, or
block together, the output records it sends to
the output device.

QUEUE_REMOTE String TRUE or FALSE to indicate whether the
queue is assigned to a physical device that is
not connected to the local node.

416

Lexical Functions

Item Return Type Information Returned
QUEUE_RESETTING String TRUE or FALSE to indicate whether the

queue is resetting and stopping.
QUEUE_RESUMING String TRUE or FALSE to indicate whether the

queue is restarting after pausing.
QUEUE_RETAIN_ALL String TRUE or FALSE to indicate whether all jobs

initiated from the queue remain in the queue
after they finish executing. Completed jobs
are marked with a completion status.

QUEUE_RETAIN_ERROR String TRUE or FALSE to indicate whether only
jobs that do not complete successfully are
retained in the queue.

QUEUE_SERVER String TRUE or FALSE to indicate whether queue
processing is directed to a server symbiont.

QUEUE_STALLED String TRUE or FALSE to indicate whether the
physical device to which the queue is
assigned is stalled; that is, the device has not
completed the last I/O request submitted to
it.

QUEUE_STARTING String TRUE or FALSE to indicate whether the
queue is starting.

QUEUE_STATUS Integer The specified queue's status flags. The
integer represents a bit field. To find
the settings of each bit in the field, use
one of the following items in place of
QUEUE_STATUS:

QUEUE_ALIGNING
QUEUE_AUTOSTART
QUEUE_AUTOSTART_INACTIVE
QUEUE_AVAILABLE
QUEUE_BUSY
QUEUE_CLOSED
QUEUE_IDLE
QUEUE_LOWERCASE
QUEUE_PAUSED
QUEUE_PAUSING
QUEUE_REMOTE
QUEUE_RESETTING
QUEUE_RESUMING
QUEUE_SERVER
QUEUE_STALLED
QUEUE_STARTING
QUEUE_STOP_PENDING
QUEUE_STOPPED
QUEUE_STOPPING
QUEUE_UNAVAILABLE

417

Lexical Functions

Item Return Type Information Returned
QUEUE_STOP_PENDING String TRUE or FALSE if queue will be stopped

when jobs currently in progress have
completed.

QUEUE_STOPPED String TRUE or FALSE to indicate whether the
queue is stopped.

QUEUE_STOPPING String TRUE or FALSE to indicate whether the
queue is stopping.

QUEUE_SWAP String TRUE or FALSE to indicate whether jobs
initiated from the queue can be swapped.

QUEUE_TERMINAL String TRUE or FALSE to indicate whether the
queue is a terminal queue.

QUEUE_UNAVAILABLE String TRUE or FALSE to indicate whether the
physical device to which queue is assigned
is not available.

QUEUE_WSDEFAULT String TRUE or FALSE to indicate whether a
default working set size is specified for each
job initiated from the queue.

QUEUE_WSEXTENT String TRUE or FALSE to indicate whether a
working set extent is specified for each job
initiated from the queue.

QUEUE_WSQUOTA String TRUE or FALSE to indicate whether a
working set quota is specified for each job
initiated from the queue.

RAD Integer Value of the RAD. A value of "-1" indicates
no RAD value is attributed to the queue.
RAD is supported on AlphaServer GS
series systems and starting from OpenVMS
Version 8.4, support is extended to NUMA
capable Integrity servers.

REQUEUE_QUEUE_NAME1 String The name of the queue to which the
specified job is reassigned.

RESTART_QUEUE_NAME1 String The name of the queue in which the job will
be placed if the job is restarted.

RETAINED_JOB_COUNT Integer The number of jobs in the queue retained
after successful completion plus those
retained on error.

SCSNODE_NAME String The 6-byte name of the VMS node on which
jobs initiated from the specified queue
execute. The node name matches the value
of the system parameter SCSNODE for the
target node.

SECURITY_INACCESSIBLE String TRUE or FALSE to indicate whether the
user has read access to the specified queue.

SUBMISSION_TIME1 String The time at which the specified job was
submitted to the queue.

418

Lexical Functions

Item Return Type Information Returned
TIMED_RELEASE_JOB_COUNT Integer The number of jobs in the queue on hold

until a specified time.
UIC1 String The user identification code (UIC) of the

owner of the specified job.
USERNAME1 String The user name of the owner of the specified

job.
WSDEFAULT1 Integer The default working set size specified

for the specified job or queue. This value
is meaningful only for batch jobs and
execution and output queues.

WSEXTENT1 Integer The working set extent specified for
the specified job or queue. This value
is meaningful only for batch jobs and
execution and output queues.

WSQUOTA1 Integer The working set quota for the specified job
or queue. This value is meaningful only for
batch jobs and execution and output queues.

1Requires Read (R) access if used with one of the function codes:DISPLAY_ENTRY, DISPLAY_JOB, or DISPLAY_FILE.

Examples
1. $ BLOCKS = F$GETQUI("DISPLAY_ENTRY" ,"JOB_SIZE", 1347)

In this example, the F$GETQUI lexical function is used to obtain the size in blocks of print job
1347. The value returned reflects the total number of blocks occupied by the files associated with
the job.

2. $ IF F$GETQUI("DISPLAY_QUEUE", "QUEUE_STOPPED", "VAX1_BATCH") .EQS.
"TRUE" THEN GOTO 500

In this example, the F$GETQUI lexical function is used to return a value of TRUE or FALSE
depending on whether the queue VAX1_BATCH is in a stopped state. If VAX1_BATCH is not in
the system, F$GETQUI returns a null string ("").

3. ! This command procedure shows all queues and the jobs in them.
$ TEMP = F$GETQUI("")
$ QLOOP:
$ QNAME = F$GETQUI("DISPLAY_QUEUE","QUEUE_NAME","*")
$ IF QNAME .EQS. "" THEN EXIT
$ WRITE SYS$OUTPUT ""
$ WRITE SYS$OUTPUT "QUEUE: ", QNAME
$ JLOOP:
$ NOACCESS = F$GETQUI("DISPLAY_JOB","JOB_INACCESSIBLE",,"ALL_JOBS")
$ IF NOACCESS .EQS. "TRUE" THEN GOTO JLOOP
$ IF NOACCESS .EQS. "" THEN GOTO QLOOP
$ JNAME = F$GETQUI("DISPLAY_JOB","JOB_NAME",,"FREEZE_CONTEXT")
$ WRITE SYS$OUTPUT " JOB: ", JNAME
$ GOTO JLOOP

This sample command procedure displays all the queues in the system and all the jobs to which
the user has read access in the system. In the outer loop a wildcard display queue operation is
performed. No call is made to establish the right to obtain information about the queue, because

419

Lexical Functions

all users have implicit read access to queue attributes. Because a wildcard queue name is specified
(“*”), wildcard queue context is maintained across calls to F$GETQUI.

In the inner loop, to obtain information about all jobs, we enter nested wildcard mode from
wildcard display queue mode. In this loop, a call is made toe stablish the right to obtain
information about these jobs because users do not have implicit read access to jobs. The
FREEZE_CONTEXT keyword is used in the request for a job name to prevent the advance of
the wildcard context to the next object. After the job name has been retrieved and displayed, the
procedure loops back up for the next job. The context is advanced because the procedure has not
used the FREEZE_CONTEXT keyword. The wildcard queue context is dissolved when the list of
matching queues is exhausted. Finally, F$GETQUI returns a null string ("") to denote that no more
objects match the specified search criteria.

4. $ THIS_NODE = F$EDIT(F$GETSYI("SCSNODE"),"COLLAPSE")
$ TEMP = F$GETQUI("CANCEL_OPERATION")
$ SET NOON
$LOOP:
$ QUEUE = F$GETQUI("DISPLAY_QUEUE","QUEUE_NAME","*","WILDCARD")
$ IF QUEUE .EQS. "" THEN GOTO ENDLOOP
$ IF THIS_NODE .EQS.-
F$GETQUI("DISPLAY_QUEUE","SCSNODE_NAME","*", -
"WILDCARD,FREEZE_CONTEXT")
$ THEN
$ IF .NOT.-
F
$GETQUI("DISPLAY_QUEUE","QUEUE_AUTOSTART","*","WILDCARD,FREEZE_CONTEXT")-
THEN START/QUEUE ’QUEUE’
$ ENDIF
$ GOTO LOOP
$ENDLOOP:
$ SET ON

This command procedure looks at all queues associated with the local cluster node and starts any
queue that is not marked as autostart.

The procedure starts by obtaining the node name of the local system and clearing the F$GETQUI
context. In addition, error handling is turned off for the loop so that, if a queue had been started
previously, the resulting error from the START QUEUE command does not abort the command
procedure.

Inside the loop, the F$GETQUI function gets the next queue name in the queue list. If the result is
empty, then it has reached the end of the list and it exits the loop.

The next IF statement checks to see if the queue runs on the local node. If it does, then the next
statement checks to see if the queue is marked as an autostart queue. If that is false, then the queue
is started with the start command. The loop is then repeated.

The final command of the procedure restores DCL error handling to the previous setting.

5. $ IF p1.EQS."" THEN INQUIRE p1 "Queue name"
$ TEMP = F$GETQUI("")
$ QLOOP:
$ QNAME = F$GETQUI("DISPLAY_QUEUE","QUEUE_NAME",p1,"WILDCARD")
$ IF QNAME .EQS. "" THEN EXIT
$ WRITE SYS$OUTPUT ""
$ WRITE SYS$OUTPUT "QUEUE: ", QNAME

420

Lexical Functions

$ JLOOP:
$ RETAINED = F$GETQUI("DISPLAY_JOB","JOB_RETAINED",,"ALL_JOBS")
$ IF RETAINED .EQS. "" THEN GOTO QLOOP
$ Entry = F$GETQUI("DISPLAY_JOB","ENTRY_NUMBER",, -
"FREEZE_CONTEXT,ALL_JOBS")
$ WRITE SYS$OUTPUT " Entry: ’’Entry’ Retained: ’’RETAINED’"
$ IF RETAINED.EQS."TRUE" THEN DELETE/ENTRY=’Entry’
$ GOTO JLOOP

This command procedure deletes all retained entries from a nominated queue or queues.
Wildcards are allowed.

6. $ WRITE SYS$OUTPUT F$GETQUI("DISPLAY_QUEUE","RAD","BATCHQ1")
 -1

This example returns the value of the RAD. A value of "-1" indicates no RAD value is attributed
to the queue.

F$GETSYI
F$GETSYI — Returns status and identification information about the local system (or about a node
in the local mixed-architecture OpenVMS Cluster system, if your system is part of an OpenVMS
Cluster).

Format
F$GETSYI(item [,node-name] [,cluster-id])

Return Value
Either an integer or a character string, depending on the item you request.

Arguments
item

Indicates the type of information to be reported about the local node (or about another node in your
OpenVMS Cluster, if your system is part of an OpenVMS Cluster). Specify the item as a character
string expression.

You can also specify any system parameter as the item to return the current value of this parameter
for the node. For a list and description of all system parameters, refer to the VSI OpenVMS System
Manager's Manual.

node-name

Specifies the node in your OpenVMS Cluster system for which information is to be returned. Specify
the node as a character string expression. You cannot use the asterisk (*) and the percent sign (%)
wildcard characters to specify the node-name argument.

cluster-id

Specifies the cluster node identification number for which the information is to be returned.

421

Lexical Functions

To get information for all the nodes in a cluster, use the F$CSID lexical function to obtain each
cluster system identification number, and use the cluster-id argument of F$GETSYI to gather
information about each node.

Description
The F$GETSYI lexical function invokes the $GETSYI system service to return status and
identification information about the local system (or about a node in the local OpenVMS Cluster, if
your system is part of a cluster). The F$GETSYI function returns information on the items that can
be specified with the $GETSYI system service. For more information about the $GETSYI system
service, see the VSI OpenVMS System Services Reference Manual.

You can specify the node for which you want information by supplying either the node-name or the
cluster-id argument, but not both.

Table 11 lists the items you can specify with the F$GETSYI lexical function.

Table 11. F$GETSYI Items

Item Return Type Information Returned
ACTIVE_CPU_BITMAP String A bitmap with a bit indicating a member of the

instance's active set—those currently participating in
the OpenVMS SMP scheduling activities.

The size of the returned bitmap is determined by
the number of supported CPUs on the system. To
compute the number of bytes needed for the bitmap,
use the F$GETSYI function with the MAX_CPUS
item to find the minimum number of bits needed,
round this number up to a multiple of 64, and divide
the result by 8.

ACTIVE_CPU_MASK Integer Note that this item is becoming obsolete; VSI
recommends that you not use it because it represents
only up to 64 CPUs. The service continues
to return the correct data for systems with up
to 64 CPUs but fails for systems with more
than 64 CPUs. For greater flexibility, use item
ACTIVE_CPU_BITMAP instead.

On Alpha and Integrity server systems, returns
a value that represents a CPU-indexed bitvector.
When a particular bit position is set, the processor
with that CPU ID value is a member of the
instance's active set—those currently participating in
the OpenVMS SMP scheduling activities.

ACTIVECPU_CNT Integer Count of CPUs actively participating in the current
boot of a symmetric multiprocessing (SMP) system.

ARCHFLAG Integer Architecture flags for the system.
ARCH_NAME String Name of CPU architecture on which the process is

executing: "IA64" for Integrity servers, "Alpha" for
OpenVMS Alpha, and "VAX" for OpenVMS VAX.

422

Lexical Functions

Item Return Type Information Returned
ARCH_TYPE Integer Type of CPU architecture on which the process is

executing: 3 for Integrity servers, 2 for Alpha, and 1
for VAX.

AVAIL_CPU_BITMAP String A bitmap with a bit indicating a member of the
instance's configure set—those owned by the
partition and controlled by the issuing instance.

The size of the returned bitmap is determined by
the number of supported CPUs on the system. To
compute the number of bytes needed for the bitmap,
use the F$GETSYI function with the MAX_CPUS
item to find the minimum number of bits needed,
round this number up to a multiple of 64, and divide
the result by 8.

AVAIL_CPU_MASK Integer Note that this item code is becoming obsolete; VSI
recommends that you not use it because it represents
only up to 64 CPUs. The service continues to return
the correct data for systems with up to 64 CPUs
but fails for systems with more than 64 CPUs. For
greater flexibility, use item AVAIL_CPU_BITMAP
instead.

On Alpha and Integrity server systems, returns
a value that represents a CPU-indexed bitvector.
When a particular bit position is set, the processor
with that CPU ID value is a member of the
instance's configure set—those owned by the
partition and controlled by the issuing instance.

AVAILCPU_CNT Integer Number of CPUs available in the current boot of the
symmetric multiprocessing (SMP) system.

BOOT_DEVICE String Name of the device from which the system was
booted. For a system with a shadowed system disk,
BOOT_DEVICE returns the name of the member
device from which the shadow set was formed.

BOOTTIME String The time the system was booted.
CHARACTER_EMULATED String TRUE if the character string instructions are

emulated on the CPU and FALSE if they are not.
CLUSTER_EVOTES Integer Number of votes expected to be found in the

OpenVMS Cluster system. The cluster determines
this value by selecting the highest number from
all of the following: each node's system parameter
EXPECTED_VOTES, the sum of the votes
currently in the cluster, and the previous value for
the number of expected votes.

CLUSTER_FSYSID String System identification of the founding node, which
is the first node in the OpenVMS Cluster system to
boot.

423

Lexical Functions

Item Return Type Information Returned
The cluster management software assigns this
system identification to the node. You can obtain
this information by using the DCL command
SHOW CLUSTER.

CLUSTER_FTIME String The time when the founding node is booted. The
founding node is the first node in the OpenVMS
Cluster system to boot.

CLUSTER_MEMBER String TRUE if the node is a member of the local cluster
and FALSE if it is not.

CLUSTER_NODES Integer Number of nodes currently in the OpenVMS Cluster
system.

CLUSTER_QUORUM Integer The number that is the total of the quorum values
held by all nodes in the OpenVMS Cluster system.
Each node's quorum value is derived from its system
parameter EXPECTED_VOTES.

CLUSTER_VOTES Integer Total number of votes held by all nodes in the
OpenVMS Cluster system. The number of votes
held by any one node is determined by that node's
system parameter VOTES.

1CONSOLE_VERSION String On Alpha systems, returns the console firmware
version.

COMMUNITY_ID Integer Hardware community ID for the issuing instance
within the hard partition.

Supported only on AlphaServer systems that support
partitioning.

CONTIG_GBLPAGES Integer Total number of free, contiguous global CPU-
specific pages. This number is the largest size global
section that can be created.

CPU Integer CPU processor type of the node.

For information about extended processor types, see
the description for the XCPU item.

CPU_AUTOSTART String List of zeroes and ones, separated by commas and
indexed by CPU ID. Any entry with a value of one
indicates that specific CPU will be brought into
the OpenVMS active set if it transitions into the
current instance from outside, or is powered up
while already owned.

CPU_FAILOVER String List of numeric partition IDs, separated by commas
and indexed by CPU ID, that define the destination
of the processor if the current instance should crash.

Supported only on AlphaServer systems that support
partitioning.

CPUCAP_MASK String Array of quadword user capability masks for all
CPUs in the system. This array is indexed by CPU

424

Lexical Functions

Item Return Type Information Returned
ID and contains as many elements as the amount of
space specified by the buffer length field in the item
descriptor.

To minimize wasted space, a prior call to
F$GETSYI with MAX_CPUS will provide
the number of CPUs that need to be retrieved.
Multiplying that value by 8 bytes for each quadword
provides the value to be written in the buffer length
field of the item descriptor.

CPUCONF Integer Note that this item is becoming obsolete; VSI
recommends that you not use it because it represents
only up to 64 CPUs. The service continues to return
the correct data for systems with up to 64 CPUs
but fails for systems with more than 64 CPUs. For
greater flexibility, use the AVAIL_CPU_BITMAP
item instead.

On Alpha and Integrity server systems, returns
a value that represents a CPU-indexed bitvector.
When a particular bit position is set, the processor
with that CPU ID value is a member of the
instance's configure set—those owned by the
partition and controlled by the issuing instance.
Processor type, as stored in the hardware restart
parameter block (HWRPB).

For example, the value of 2 represents a DECchip
21064 processor. Because this number is a
longword, the buffer length field in the item
descriptor should specify 4 (bytes).

The following table shows the processor codes and
processors:
Processor
Code

Processor

2 21064
4 21066, 21068, 21066A, 21068A
5 21164
6 21064A
7 21164A
8 21264
11 21264A
12 21264C
13 21264B
14 21264D

CPUTYPE Integer

15 21364

425

Lexical Functions

Item Return Type Information Returned
16 21364
 .
 .
 .

31 Itanium 2
32 Itanium 3

CWLOGICALS String TRUE if the clusterwide logical name database has
been initialized on the CPU and FALSE if it has not
been initialized.

DAY_OVERRIDE String TRUE if the SET DAY command has been used
to override the default primary and secondary
day types in the user authorization file that are
used to control user logins. FALSE if no override
is currently in effect, and the contents of user
authorization file records for each user are being
honored.

DAY_SECONDARY String TRUE if any override with the SET DAY command
has been used to specify that the current day is
to be considered a Secondary day for user login
purposes. FALSE if any override with the SET DAY
command has been used to specify that the current
day is to be considered a Primary day for user login
purposes.

If F$GETSYI returns FALSE for
DAY_OVERRIDE, the number returned for
DAY_SECONDARY is meaningless.

DECIMAL_EMULATED String TRUE if the decimal string instructions are
emulated on the CPU and FALSE if they are not.

DECNET_FULLNAME String The node name of a DECnet Phase IV system or the
node full name of a DECnet-Plus system.

DECNET_VERSION String The information on the particular version and ECO
level of the DECnet package installed on the local
system. This item returns a string containing a
hexadecimal number, using the following format:

• Byte 0 = Customer ECO

• Byte 1 = DECnet ECO

• Byte 2 = DECnet phase (4 for Phase IV, 5 for
DECnet-Plus for OpenVMS)

• Byte 3 = Reserved

To distinguish Phase IV from DECnet-Plus for
OpenVMS, use the byte containing the DECnet
version (byte 2).

426

Lexical Functions

Item Return Type Information Returned
For additional information on interpreting byte
0 and byte 1, see the current DECnet-Plus for
OpenVMS Release Notes documentation.

D_FLOAT_EMULATED String TRUE if the D_floating instructions are emulated on
the CPU and FALSE if they are not.

DEF_PRIO_MAX Integer The maximum priority for the default scheduling
policy.

DEF_PRIO_MIN Integer The minimum priority for the default scheduling
policy.

ERLBUFFERPAGES Integer Number of pagelets on Alpha and Integrity servers
used for each S0 error log buffer.

ERLBUFFERPAG_S2 Integer Number of system pagelets (on Alpha and Integrity
servers used for each S2 error log buffer.)

ERRORLOGBUFFERS Integer Number of S0 error log buffers.
ERRORLOGBUFF_S2 Integer Number of S2 error log buffers.
F_FLOAT_EMULATED String TRUE if the F_floating instructions are emulated on

the CPU and FALSE if they are not.
FREE_GBLPAGES Integer The current count of free global pages.
FREE_GBLSECTS Integer The current count of free global section table

entries.
FREE_PAGES Integer Total number of free pages.
G_FLOAT_EMULATED String TRUE if the G_floating instructions are emulated on

the CPU and FALSE if they are not.
1GALAXY_ID Integer The 128-bit Galaxy ID.

Supported only on AlphaServer GS series systems.
1GALAXY_MEMBER Integer 1 if you are member of a Galaxy sharing

community, 0 if not.

Supported only on AlphaServer GS series systems.
1GALAXY_PLATFORM Integer 1 if you are running on a Galaxy platform, 0 if not.

Supported only on AlphaServer GS series systems.
1GALAXY_SHMEMSIZE Integer Number of shared memory pages. If the current

instance is not a member of a Galaxy, no shared
memory is reported.

Supported only on AlphaServer GS series systems.
GH_RSRVPGCNT Integer Number of pages covered by granularity hints to

reserve for use by the Install utility after system
startup has completed.

1GLX_FORMATION String A time-stamp string when the Galaxy configuration,
of which this instance is a member, was created.

Supported only on AlphaServer GS series systems.

427

Lexical Functions

Item Return Type Information Returned
1GLX_MAX_MEMBERS Integer The maximum count of instances that may join the

current Galaxy configuration.

Supported only on AlphaServer GS series systems.
1GLX_MBR_MEMBER Integer A 64-byte integer. Each 8 bytes represents a Galaxy

member number, listed from 7 to 0. The value is
1 if the instance is currently a member, 0 if not a
member.

Supported only on AlphaServer GS series systems.
1GLX_MBR_NAME String A string indicating the names which are known in

the Galaxy membership.

Supported only on AlphaServer GS series systems.
1GLX_TERMINATION String A time-stamp string when the Galaxy configuration,

of which this instance last was a member, was
terminated.

Supported only on AlphaServer GS series systems.
H_FLOAT_EMULATED String TRUE if the H_floating instructions are emulated on

the CPU and FALSE if they are not.
HP_ACTIVE_CPU_CNT Integer Count of CPUs in the hard partition that are not

currently in firmware console mode. For OpenVMS,
this implies that the CPU is in, or in the process of
joining, the active set in one of the instances in the
hard partition.

Supported only on AlphaServer systems that support
partitioning.

HP_ACTIVE_SP_CNT Integer Count of active operating system instances currently
executing within the hard partition.

Supported only on AlphaServer systems that support
partitioning.

HP_CONFIG_SBB_CNT Integer Count of the existing system building blocks within
the current hard partition.

Supported only on AlphaServer systems that support
partitioning.

HP_CONFIG_SP_CNT Integer The maximum count of soft partitions within the
current hard partition. This count does not imply
that an operating system instance is currently
running within any given soft partition.

Supported only on AlphaServer systems that support
partitioning.

HW_MODEL Integer A small integer that can be used to identify the
model type of the node.

428

Lexical Functions

Item Return Type Information Returned
An integer greater than 1023 indicates an Alpha and
Integrity servers node.

An integer less than or equal to 1023 indicates a
VAX node.

HW_NAME String The model name string of the node. The model
name is a character string that describes the model
of the node. The model name usually corresponds
to the nameplate that appears on the outside of the
CPU cabinet.

IO_PRCPU_BITMAP String A bitmap with a bit indicating a preferred CPU—
one available for Fast Path operations.

The size of the returned bitmap is determined by
the number of supported CPUs on the system. To
compute the number of bytes needed for the bitmap,
use the F$GETSYI function with the MAX_CPUS
item to find the minimum number of bits needed,
round this number up to a multiple of 64, and divide
the result by 8.

ITB_ENTRIES Integer Number of instruction stream translation buffer
entries that support granularity hints to be allocated
for resident code.

MAX_CPUS Integer The maximum number of CPUs that could be
recognized by this instance.

MAX_PFN Integer The highest numbered PFN in use by the
operating system. The highest numbered
PFN used by OpenVMS is influenced by the
PHYSICAL_MEMORY system parameter.

MEMSIZE Integer Number of pages of memory in the system
configuration.

MODIFIED_PAGES Integer Total number of modified pages.
MULTITHREAD Integer Value of the MULTITHREAD system parameter.
NODENAME String The Node name. It does not include the following

double colon (::).
NODE_AREA Integer The DECnet area for the target node.
NODE_CSID String The the OpenVMS Cluster system ID (CSID) of the

node, as a string containing a hexadecimal number.
The CSID is a form of system identification.

NODE_EVOTES Integer Number of votes the node expects to find in
the OpenVMS Cluster system. This number
is determined by the system parameter
EXPECTED_VOTES.

NODE_HWVERS String Hardware version of the node.
NODE_NUMBER Integer The DECnet number of the node.

429

Lexical Functions

Item Return Type Information Returned
NODE_QUORUM Integer Value of the quorum held by the node. This number

is derived from the node's system parameter
EXPECTED_VOTES.

NODE_SWINCARN String Software incarnation number for the node. This
number is returned as a string containing a
hexadecimal number.

NODE_SWTYPE String Type of operating system software used by the
node. The operating system software type indicates
whether the node is an Alpha or Integrity servers
system, or an HSC storage controller.

NODE_SWVERS String Software version of the node.
NODE_SYSTEMID String System identification number of the node. This

number is returned as a string containing a
hexadecimal number.

NODE_VOTES Integer Number of votes the node expects to find in
the OpenVMS Cluster system. This number
is determined by the system parameter
EXPECTED_VOTES.

1NPAGED_FREE Integer Number of free bytes in nonpaged pool.
1NPAGED_INUSE Integer Total number of bytes currently being used in

nonpaged pool.
1NPAGED_LARGEST Integer Size of the largest contiguous area of free memory

in nonpaged pool.
1NPAGED_TOTAL Integer Total size (in bytes) of nonpaged pool.
1PAGED_FREE Integer Number of free bytes in paged pool.
1PAGED_INUSE Integer Total number of bytes currently being used in paged

pool.
1PAGED_LARGEST Integer Size of the largest contiguous area of free memory

in paged pool.
1PAGED_TOTAL Integer Total size (in bytes) of paged pool.
PAGEFILE_FREE Integer Number of free pages in the currently installed

paging files.
PAGEFILE_PAGE Integer Number of pages in the currently installed paging

files.
PAGE_SIZE Integer Number of CPU-specific bytes per page in the

system.

On Alpha and Integrity server systems, CPU page
size varies from system to system.

1PALCODE_VERSION String Version of the PALCODE (privileged architectural
library) on your Alpha system.

PARTITION_ID Integer The soft partition ID.

Supported only on AlphaServer systems that support
partitioning.

430

Lexical Functions

Item Return Type Information Returned
1PFN_MEMORY_MAP String A map describing the system's use of physical

memory.
PFN_MEMORY_MAP_64 String A map describing the system's use of physical

memory on 64-bit systems.
PHYSICALPAGES Integer Total number of PFNs that exist between the first

PFN (typically PFN 0) and the highest numbered
PFN.

PMD_COUNT Integer Total number of physical memory descriptors
defined by the system. The return value of this
parameter can be used to determine the buffer size
to use when specifying the PFN_MEMORY_MAP
item.

POTENTIAL_CPU_BITMAP String A bitmap with a bit indicating a member of the
instance's potential set. A CPU in the potential set
implies that it could actively join the OpenVMS
active set for this instance if it is ever owned by it.
To meet this rule the CPU's characteristics must
match hardware and software compatibility rules
defined particularly for that instance.

The size of the returned bitmap is determined by
the number of supported CPUs on the system. To
compute the number of bytes needed for the bitmap,
use the F$GETSYI function with the MAX_CPUS
item to find the minimum number of bits needed,
round this number up to a multiple of 64, and divide
the result by 8.

POTENTIAL_CPU_MASK Integer Note that this item is becoming obsolete; VSI
recommends that you not use it because it represents
only up to 64 CPUs. The service continues
to return the correct data for systems with up
to 64 CPUs but fails for systems with more
than 64 CPUs. For greater flexibility, use item
POTENTIAL_CPU_BITMAP instead.

On Alpha and Integrity server systems, returns a
value that represents a CPU-indexed bit vector.
When a particular bit position is set, the processor
with that CPU ID value is a member of the
instance's potential set. A CPU in the potential set
implies that it could actively join the OpenVMS
active set for this instance if it is ever owned by it.
To meet this rule, the CPU's characteristics must
match hardware and software compatibility rules
defined particularly for that instance.

POTENTIALCPU_CNT Integer Count of CPUs in the hard partition that are
members of the potential set for this instance.
A CPU in the potential set implies that it could
actively joint he OpenVMS active set for this

431

Lexical Functions

Item Return Type Information Returned
instance if it is ever owned by it. To meet this rule
the CPU's characteristics must match hardware and
software compatibility rules defined particularly for
that instance.

POWERED_CPU_BITMAP String A bitmap with a bit indicating a member of the
instance's powered set—those CPUs physically
existing within the hard partition and powered up
for operation.

The size of the returned bitmap is determined by
the number of supported CPUs on the system.
To compute the number of bytes needed for the
bitmap, use the F$GETSYI function with an the
MAX_CPUS item to find the minimum number of
bits needed, round this number up to a multiple of
64, and divide the result by 8.

POWERED_CPU_MASK Integer Note that this item is becoming obsolete; VSI
recommends that you not use it because it represents
only up to 64 CPUs. The service continues
to return the correct data for systems with up
to 64 CPUs but fails for systems with more
than 64 CPUs. For greater flexibility, use item
POWERED_CPU_BITMAP instead.

On Alpha and Integrity server systems, returns
a value that represents a CPU-indexed bitvector.
When a particular bit position is set, the processor
with that CPU ID value is a member of the
instance's powered set—those CPUs physically
existing within the hard partition and powered up
for operation.

POWEREDCPU_CNT Integer Count of CPUs in the hard partition that are
physically powered up.

PRESENT_CPU_BITMAP String A bitmap with a bit indicating a member of the
instance's present set—those CPUs physically
existing within the hard partition. Being in the
present set does not imply that it is part of the
powered set.

The size of the returned bitmap is determined by
the number of supported CPUs on the system.
To compute the number of bytes needed for the
bitmap, use the F$GETSYI system service with the
MAX_CPUS item to find the minimum number of
bits needed, round this number up to a multiple of
64, and divide the result by 8.

PRESENT_CPU_MASK Integer Note that this item is becoming obsolete, and
VSI recommends that you not use it because
it represents only up to 64 CPUs. The service
continues to return the correct data for systems

432

Lexical Functions

Item Return Type Information Returned
with up to 64 CPUs but fails for systems with
more than 64 CPUs. For greater flexibility, use the
PRESENT_CPU_BITMAP item instead.

On Alpha and Integrity server systems, returns
a value that represents a CPU-indexed bitvector.
When a particular bit position is set, the processor
with that CPU ID value is a member of the
instance's present set—those CPUs physically
existing within the hard partition. Being in the
present set does not imply that it is part of the
powered set.

PRESENTCPU_CNT Integer Count of CPUs in the hard partition that physically
reside in a hardware slot.

PRIMARY_CPUID Integer The CPU ID of the primary processor for this
OpenVMS instance.

PROCESS_SPACE_LIMIT String The 64-bit virtual address succeeding the last
available process private address. The value
returned is the upper bound on the process private
address space. The value returned is the same for
every process on the system.

PSXFIFO_PRIO_MAX Integer The maximum priority for the POSIX FIFO
scheduling policy.

PSXFIFO_PRIO_MIN Integer The minimum priority for the POSIX FIFO
scheduling policy.

PSXRR_PRIO_MAX Integer The maximum priority for the POSIX round-robin
scheduling policy.

PSXRR_PRIO_MIN Integer The minimum priority for the POSIX round-robin
scheduling policy.

PT_BASE String The 64-bit virtual address of the base of the page
tables. The value returned is the same for every
process on the system.

PTES_PER_PAGE Integer The maximum number of CPU-specific pages that
can be mapped by one page table page.

QUANTUM Integer The maximum amount of processor time a process
can receive while other processes are waiting.

RAD_CPUS String A longword array of RAD/CPU pairs that can
potentially be in this operating system instance. If
there is no RAD support, all potential CPUs are in
RAD 0. The array is terminated with a -1,-1 pair.

RAD is supported on AlphaServer GS series
systems and starting from OpenVMS Version 8.4,
support is extended to NUMA capable Integrity
servers.

RAD_MEMSIZE String A longword array of RAD/page count pairs. The
number of pages of private memory is returned. If

433

Lexical Functions

Item Return Type Information Returned
there is no RAD support, all memory is reported in
RAD 0. The array is terminated with a -1,-1 pair.

RAD is supported on AlphaServer GS series
systems and starting from OpenVMS Version 8.4,
support is extended to NUMA capable Integrity
servers.

RAD_MAX_RADS Integer The maximum number of RADS possible on this
platform. If there is no RAD support, 1 is returned.

RAD is supported on AlphaServer GS series
systems and starting from OpenVMS Version 8.4,
support is extended to NUMA capable Integrity
servers.

RAD_SHMEMSIZE String A longword array of RAD/page count pairs. The
number of pages of shared memory is returned.
If there is no RAD support, all shared memory is
reported in RAD 0. If the current instance is not a
member of a Galaxy, no shared memory is reported.
The array is terminated with a -1,-1 pair.

RAD is supported on AlphaServer GS series
systems and starting from OpenVMS Version 8.4,
support is extended to NUMA capable Integrity
servers.

REAL_CPUTYPE Integer The actual CPU type of the primary CPU of the
system.

SCSNODE String The Galaxy instance name.

Supported only on AlphaServer systems that support
partitioning.

SCS_EXISTS String TRUE if the System Communication Subsystem
(SCS) is currently loaded on the node and FALSE if
the SCS is not currently loaded.

SERIAL_NUMBER String System serial number from the Hardware Restart
Parameter Block (HWRPB).

SHARED_VA_PTES String The 64-bit virtual address of the PTE that marks
the boundary between process-private PTEs and
system-shared PTEs. The value returned is the same
for every process on the system.

SID Integer System identification register. On Alpha and
Integrity server systems, SID returns a value where
all fields are zero except the CPU-type field, which
always contains the value of 256.

SWAPFILE_FREE Integer Number of free pages in the currently installed
swapping files.

SWAPFILE_PAGE Integer Number of pages in the currently installed swapping
files.

434

Lexical Functions

Item Return Type Information Returned
SYSTEM_RIGHTS String The contents of the system rights list on the local

system. If you specify a remote system, a null string
("") is returned. This item returns a list of identifier
names separated by commas (,).

2SYSTEM_UUID Integer The 128-bit Universal Unique Identifier (UUID) for
the system.

SYSTYPE Integer The name of the family or system hardware
platform. For example, the integer 2 represents a
DEC 4000 processor, the integer 3 represents a DEC
7000 or DEC 10000 processor, and the integer 4
represents a DEC 3000 processor.

TOTAL_PAGES Integer Total number of physical memory pages.
USED_GBLPAGCNT Integer Number of pages currently in use in the global page

table.
USED_GBLPAGMAX Integer The maximum number of pages ever in use in the

global page table.
USED_PAGES Integer Total number of used pages.
VERSION String Software version number of the OpenVMS

operating system running on the node.
VECTOR_EMULATOR Integer A byte, the low-order bit of which, when set,

indicates the presence of the Vector Instruction
Emulator facility (VVIEF) in the system.

VP_MASK Integer A longword mask, the bits of which, when set,
indicate which processors in the system have vector
coprocessors.

VP_NUMBER Integer Number of vector processors in the system.
XCPU Integer The extended CPU processor type of the node. You

should obtain the general processor type value first
by using the CPU item.

For some of the general processor types, extended
processor type information is provided by the XCPU
item.

For other general processor types, the value returned
by the XCPU item is currently undefined.

XSID Integer Processor-specific information.

For the MicroVAX II system, this information is
the contents of the system type register of the node.
The system type register contains the full extended
information used in determining the extended
system type codes.

For other processors, the data returned by XSID is
currently undefined.

435

Lexical Functions

Item Return Type Information Returned
<SYSTEM_PARAMETER> Integer

or string,
depending on
the system
parameter you
request

The current value of the system parameter that
you specify as the item for the F$GETSYI lexical
function. For a list and description of all system
parameters, refer to the VSI OpenVMS System
Manager's Manual.

1Alpha only
2Integrity servers only

Examples
1. $ SYSID = F$GETSYI("SID")

$ SHOW SYMBOL SYSID
 SYSID = 19923201 Hex = 01300101 Octal = 000401

This example shows how to use the F$GETSYI function to return the information in the system
identification register. Use quotation marks ("") around the argument SID because it is a string
literal. The value returned by F$GETSYI is assigned to the symbol SYSID. Because a node is not
specified, information about your current node is returned.

2. $ MEM = F$GETSYI("CLUSTER_MEMBER", "LONDON")
$ SHOW SYMBOL MEM
 MEM = "TRUE"

This example uses the F$GETSYI function to determine whether the node LONDON is a member
of the local cluster. The return value TRUE indicates that the remote node LONDON is a member
of the cluster.

3. $ LIM = F$GETSYI("IJOBLIM")
$ SHOW SYMBOL LIM
 LIM = 16 Hex = 00000010 Octal = 00000000020

This example uses the system parameter IJOBLIM as an argument for the F$GETSYI function.
This argument returns the batch job limit for the current system.

4. $ DECNETVERS = F$GETSYI("DECNET_VERSION")
$ SHOW SYMBOL DECNETVERS
 DECNETVERS = "00050D01"
$ DECNETPHASE = F$INTEGER(F$EXTRACT(2,2,DECNETVERS))
$ SHOW SYMBOL DECNETPHASE
 DECNETPHASE = 5 Hex = 00000005 Octal = 00000000005

This example shows how to use F$GETSYI to return the DECnet version, using the
DECNET_VERSION item.

5. $ RADCPU = F$GETSYI("RAD_CPUS")
$ SHOW SYMBOL RADCPU
 0,0,0,1,1,4,1,5

This example uses the system parameter RAD_CPUS as an argument for the F$GETSYI function.
This argument returns a list of RAD/CPU pairs, separated by commas. In this example, the first
RAD/CPU pair is 0,0 the second pair is 0,1 and so forth.

RAD is supported on AlphaServer GS series systems and starting from OpenVMS Version 8.4,
support is extended to NUMA capable Integrity servers.

436

Lexical Functions

F$IDENTIFIER
F$IDENTIFIER — Converts an alphanumeric identifier to its integer equivalent, or converts an
integer identifier to its alphanumeric equivalent. An identifier is a name or number that identifies a
category of users. The system uses identifiers to determine a user's access to a resource.

Format
F$IDENTIFIER(identifier,conversion-type)

Return Value
An integer value if you are converting an identifier from a name to an integer. The F$IDENTIFIER
function returns a string if you are converting an identifier from an integer to a name. If you specify
an identifier that is not valid, the F$IDENTIFIER function returns a null string ("") (if you are
converting from number to name) or a zero (if you are converting from name to number).

Arguments
identifier

Specifies the identifier to be converted. Specify the identifier as an integer expression if you are
converting an integer to a name. Specify the identifier as a character string expression if you are
converting a name to an integer.

Any identifier holding the Name Hidden attribute will cause the F$IDENTIFIER to return an error
when you do not hold the identifier in question or do not have access to the rights database. For
further information on the attribute, see the VSI OpenVMS Guide to System Security

conversion-type

Indicates the type of conversion to be performed. If the identifier argument is
alphanumeric, specify the conversion-type argument as a character string containing
“NAME_TO_NUMBER”. If the identifier argument is numeric, specify the conversion-
type argument as a character string containing “NUMBER_TO_NAME”.

Examples
1. $ UIC_INT= F$IDENTIFIER("SLOANE","NAME_TO_NUMBER")

$ SHOW SYMBOL UIC_INT
 UIC_INT = 15728665 Hex = 00F00019 Octal = 00074000031
$ UIC = F$FAO("!%U",UIC_INT)
$ SHOW SYMBOL UIC
 UIC = [360,031]

This example uses the F$IDENTIFIER to convert the member identifier from the UIC
[MANAGERS,SLOANE] to an integer. The F$IDENTIFIER function shows that the member
identifier SLOANE is equivalent to the integer 15728665. Note that you must specify the
identifier SLOANE using uppercase letters.

To convert this octal number to a standard numeric user identification code (UIC), use the F$FAO
function with the !%U directive. (This directive converts a longword to a UIC in named format.)
In this example, the member identifier SLOANE is equivalent to the numeric UIC [360,031].

437

Lexical Functions

2. $ UIC_INT = (%O31 + (%X10000 * %O360))
$ UIC_NAME = F$IDENTIFIER(UIC_INT,"NUMBER_TO_NAME")
$ SHOW SYMBOL UIC_NAME
 UIC_NAME = "ODONNELL"

This example obtains the alphanumeric identifier associated with the numeric UIC [360,031].
First, you must obtain the longword integer that corresponds to the UIC [360,031]. To do this,
place the member number into the low-order word. Place the group number into the high-order
word. Next, use the F$IDENTIFIER function to return the named identifier associated with the
integer.

F$INTEGER
F$INTEGER — Returns the integer equivalent of the result of the specified expression.

Format
F$INTEGER(expression)

Return Value
An integer value that is equivalent to the specified expression.

Arguments
expression

Specifies the expression to be evaluated. Specify either an integer or a character string expression.

If you specify an integer expression, the F$INTEGER function evaluates the expression and returns
the result. If you specify a string expression, the F$INTEGER function evaluates the expression,
converts the resulting string to an integer, and returns the result.

After evaluating a string expression, the F$INTEGER function converts the result to an integer in the
following way. If the resulting string contains characters that form a valid integer, the F$INTEGER
function returns the integer value. If the string contains characters that do not form a valid integer, the
F$INTEGER function returns the integer 1 if the string begins with T, t, Y, or y. The function returns
the integer 0 if the string begins with any other character.

Example
$ A = "23"
$ B = F$INTEGER("-9" + A)
$ SHOW SYMBOL B
 B = -923 Hex=FFFFFC65 Octal=176145

This example shows how to use the F$INTEGER function to equate a symbol to the integer value
returned by the function. In the example, the F$INTEGER function returns the integer equivalent
of the string expression (“-9” + A). First, the F$INTEGER function evaluates the string expression
by concatenating the string literal “-9” with the string literal “23”. Note that the value of the symbol

438

Lexical Functions

A is substituted automatically in a string expression. Also note that the plus sign (+) is a string
concatenation operator because both arguments are string literals.

After the string expression is evaluated, the F$INTEGER function converts the resulting character
string (“ –923”) to an integer, and returns the value – 923. This integer value is assigned to the symbol
B.

F$LENGTH
F$LENGTH — Returns the length of the specified character string.

Format
F$LENGTH(string)

Return Value
An integer value for the length of the string.

Arguments
string

Specifies the character string whose length is being determined. Specify the string argument as a
character string expression.

Example
$ MESSAGE = F$MESSAGE(%X1C)
$ SHOW SYMBOL MESSAGE
 MESSAGE = "%SYSTEM-F-EXQUOTA, exceeded quota"
$ STRING_LENGTH = F$LENGTH(MESSAGE)
$ SHOW SYMBOL STRING_LENGTH
 STRING_LENGTH = 33 Hex = 00000021 Octal = 000041

The first assignment statement uses the F$MESSAGE function to return the message that corresponds
to the hexadecimal value 1C. The message is returned as a character string and is assigned to the
symbol MESSAGE.

The F$LENGTH function is then used to return the length of the character string assigned to
the symbol MESSAGE. You do not need to use quotation marks (“ ”) when you use the symbol
MESSAGE as an argument for the F$LENGTH function. (Quotation marks are not used around
symbols in character string expressions.)

The F$LENGTH function returns the length of the character string and assigns it to the symbol
STRING_LENGTH. At the end of the example, the symbol STRING_LENGTH has a value equal to
the number of characters in the value of the symbol named MESSAGE, that is, 33.

F$LICENSE (Alpha/Integrity servers Only)
F$LICENSE — Checks whether the specified license is loaded on the system.

439

Lexical Functions

Format
F$LICENSE(license-name[,producer-name])

Return Value
A character string stating TRUE or FALSE.

Arguments
license-name

Specifies the name of the license for which you want to check the status.

producer-name

Specifies the name of the company that produced the license. By default, DEC is assumed to be the
producer on Alpha systems and HP is assumed to be the producer on Integrity server systems. To find
an exception, specify a different producer name.

Examples
1. $ SHOW LICENSE VMSCLUSTER*

Active licenses on node NODE1:
------- Product ID -------- ---- Rating ----- -- Version --
Product Producer Units Avail Activ Version Release
 Termination
VMSCLUSTER DEC 0 0 100 0.0 (none) 14-
MAY-2005
VMSCLUSTER-CLIENT DEC 0 0 100 0.0 (none) 14-
MAY-2005
$ WRITE SYS$OUTPUT F$LICENSE("VMSCLUSTER")
TRUE
$ WRITE SYS$OUTPUT F$LICENSE("NONEXISTENT_PAK")
FALSE

In this example, the F$LICENSE function returns TRUE, which verifies that the
VMSCLUSTER license is loaded on the system. In contrast, the status of hypothetical license
NONEXISTENT_PAK is shown to be FALSE, indicating that it is not loaded on the system.

2. $ WRITE SYS$OUTPUT F$LICENSE("ABC")
FALSE
$ WRITE SYS$OUTPUT F$LICENSE("ABC","XYZ")
TRUE

In the first instance, no license for product ABC is found from the default producer (DEC or HP).
In the second instance, an ABC PAK is found for producer XYZ.

F$LOCATE
F$LOCATE — Locates a specified portion of a character string and returns as an integer the offset of
the first character. (An offset is the position of a character or a substring relative to the beginning of

440

Lexical Functions

the string. The first character in a string is always offset position 0 from the beginning of the string).
If the substring is not found, F$LOCATE returns the length (the offset of the last character in the
character string plus one) of the searched string.

Format
F$LOCATE(substring,string)

Return Value
An integer value representing the offset of the substring argument. An offset is the position of a
character or a substring relative to the beginning of the string. The first character in a string is always
offset position 0 from the beginning of the string (which always begins at the leftmost character).

If the substring is not found, the F$LOCATE function returns an offset of the last character in the
character string plus 1. (This equals the length of the string.)

Arguments
substring

Specifies the character string that you want to locate within the string specified in the string
argument.

string

Specifies the character string to be edited by F$LOCATE.

Examples
1. $ FILE_SPEC = "MYFILE.DAT;1"

$ NAME_LENGTH = F$LOCATE(".",FILE_SPEC)

The F$LOCATE function in this example returns the position of the period (.) in the string with
respect to the beginning of the string. The period is in offset position 6, so the value 6 is assigned
to the symbol NAME_LENGTH. Note that NAME_LENGTH also equals the length of the file
name portion of the file specification MYFILE.DAT, that is, 6.

The substring argument, the period, is specified as a string literal and is therefore enclosed in
quotation marks (“ ”). The string argument FILE_SPEC is a symbol, so it should not be placed
within quotation marks. It is automatically replaced by its current value during the processing of
the function.

2. $ INQUIRE TIME "Enter time"
$ IF F$LOCATE(":",TIME) .EQ. F$LENGTH(TIME) THEN -
GOTO NO_COLON

This section of a command procedure compares the results of the F$LOCATE and F$LENGTH
functions to see if they are equal. This technique is commonly used to determine whether a
character or substring is contained in a string.

In the example, the INQUIRE command prompts for a time value and assigns the user-supplied
time to the symbol TIME. The IF command checks for the presence of a colon (:) in the string
entered in response to the prompt. If the value returned by the F$LOCATE function equals the

441

Lexical Functions

value returned by the F$LENGTH function, the colon is not present. You use the .EQ. operator
(rather than .EQS.) because the F$LOCATE and F$LENGTH functions return integer values.

Note that quotation marks are used around the substring argument, the colon,because it is a string
literal; however, the symbol TIME does not require quotation marks because it is automatically
evaluated as a string expression.

F$MATCH_WILD
F$MATCH_WILD — Performs a wildcard matching between a candidate and a pattern string. TRUE
is returned if the strings match.

Format
F$MATCH_WILD(candidate, pattern)

Arguments
candidate

A string to which the pattern string is compared.

pattern

A string on which a wildcard match is performed comparing the pattern to the candidate string.

Example
1. $ write sys$output f$match_wild ("This is a candidate","*c%%d*")

TRUE
$

This command performs a wildcard match between the candidate candidate and pattern *c%%d*
and found that the strings match.

2. $ write sys$output f$match_wild ("This is a candidate text", "*candi*)
TRUE
$

This command checks to see if the pattern candi appears in the candidate.

F$MESSAGE
F$MESSAGE — Returns as a character string the facility, severity, identification, and text associated
with the specified system status code.

Format
F$MESSAGE(status-code[,message-component-list])

442

Lexical Functions

Return Value
A character string containing the system message that corresponds to the argument you specify.

Note that, although each message in the system message file has a numeric value or range of values
associated with it, there are many possible numeric values that do not have corresponding messages.
If you specify an argument that has no corresponding message, the F$MESSAGE function returns a
string containing the NOMSG error message.

For more information on system error messages, see the OpenVMS System Messages: Companion
Guide for Help Message Users.

Arguments
status-code

Specifies the status code for which you are requesting error message text. You must specify the status
code as an integer expression.

message-component-list

Specifies the system message component for which information is to be returned. If this parameter is
null or unspecified, then all system message components are returned.

Table 12 describes the valid system message component keywords:

Table 12. F$MESSAGE Keywords

Component Keyword Information Returned
FACILITY Facility name
SEVERITY Severity level indicator
IDENT Abbreviation of message text
TEXT Explanation of message

Note that when the FACILITY, SEVERITY, and IDENT code keywords are specified (individually or
in combination), the resulting message code is prefaced with the percent (%) character. The individual
parts of the message code are separated by hyphens when multiple code keywords are specified.

When only the TEXT keyword is specified, the resulting text is not prefaced with any character.
When the TEXT keyword is specified with the FACILITY, SEVERITY, or IDENT code keyword, the
message code is separated from the text by a combination of a comma and a blank (,).

Example
1. $ ERROR_TEXT = F$MESSAGE(%X1C)

$ SHOW SYMBOL ERROR_TEXT
 ERROR_TEXT = "%SYSTEM-F-EXQUOTA, exceeded quota"

This example shows how to use the F$MESSAGE function to determine the message associated
with the status code %X1C. The F$MESSAGE function returns the message string, which is
assigned to the symbol ERROR_TEXT.

2. $ SUBMIT IMPORTANT.COM

443

Lexical Functions

$ SYNCHRONIZE /entry='$ENTRY'
$ IF $STATUS THEN EXIT
$!
$ JOB_STATUS = $STATUS
$!
$ IF "%JOBDELETE" .EQS. F$MESSAGE (JOB_STATUS, "IDENT")
$ THEN
 .
 .
 .
$ ELSE
$ IF "%JOBABORT" .EQS. F$MESSAGE (JOB_STATUS, "IDENT")
$ THEN
 .
 .
 .
$ ELSE
 .
 .
 .
$ ENDIF
$ ENDIF
 .
 .
 .

This command procedure submits a batch job and waits for it to complete. Upon successful
completion, the procedure exits. If the job completes unsuccessfully, more processing is done
based on the termination status of the batch job.

The first command submits the command procedure IMPORTANT.COM. In the second
command, the SYNCHRONIZE command tells the procedure to wait for the job to finish. The
third command determines if the job completed successfully and, if so, the procedure exits. The
next command saves the status in a symbol.

The first IF statement uses F$MESSAGE to determine whether the job was deleted before
execution. If so, it does some processing, possibly to resubmit the job or to inform a user via
MAIL.

The next IF statement uses F$MESSAGE to determine whether the job was deleted during
execution. As a result, some cleanup or human intervention may be required, which would be
done in the THEN block.

If neither IF statement was true, then some other unsuccessful status was returned. Other
processing, which would be done in the block following the ELSE statement, might be required.

F$MODE
F$MODE — Returns a character string showing the mode in which a process is executing. The
F$MODE function has no arguments, but must be followed by parentheses.

Format
F$MODE()

444

Lexical Functions

Return Value
The character string INTERACTIVE for interactive processes. If the process is noninteractive, the
character string BATCH, NETWORK, or OTHER is returned. Note that the return string always
contains uppercase letters.

Arguments
None.

Description
The lexical function F$MODE returns a character string showing the mode in which a process is
executing. The F$MODE function has no arguments, but must be followed by parentheses.

The F$MODE function is useful in command procedures that must operate differently when
executed interactively and noninteractively. You should include either the F$MODE function or
the F$ENVIRONMENT function in your login command file to execute different commands for
interactive terminal sessions and noninteractive sessions.

If you do not include the F$MODE function to test whether your login command file is being
executed from an interactive process, and the login command file is executed from a noninteractive
process (such as a batch job), the process may terminate if the login command file contains commands
that are appropriate only for interactive processing.

A command procedure can use the F$MODE function to test whether the procedure is being executed
during an interactive terminal session. It can direct the flow of execution according to the results of
this test.

Example
$ IF F$MODE() .NES. "INTERACTIVE" THEN GOTO NON_INT_DEF
$ INTDEF: ! Commands for interactive terminal sessions
 .
 .
 .
$ EXIT
$ NON_INT_DEF: !Commands for noninteractive processes
 .
 .
 .

This example shows the beginning of a login.com file that has two sets of initialization commands:
one for interactive mode and one for noninteractive mode (including batch and network jobs).
The IF command compares the character string returned by F$MODE with the character string
INTERACTIVE; if they are not equal, control branches to the label NON_INT_DEF. If the character
strings are equal, the statements following the label INTDEF are executed and the procedure exits
before the statements at NON_INT_DEF.

F$MULTIPATH (Alpha/Integrity servers Only)
F$MULTIPATH — Returns a specified item of information for a specific multipath-capable device.

445

Lexical Functions

Format
F$MULTIPATH(device-name,item,context-symbol)

Return Value
A character string containing the requested information.

Arguments
device-name

Specifies a physical device name or a logical name equated to a physical device name. Specify the
device name as a character string expression.

After the device-name argument is evaluated, the F$MULTIPATH function examines the first
character of the name. If the first character is an underscore (_), the name is considered a physical
device name; otherwise, a single level of logical name translation is performed and the equivalence
name, if any, is used.

item

Specifies the type of device information to be returned. The item argument must be specified as a
character string expression. Currently, the only valid item is MP_PATHNAME, which returns a string
with the path name for the specified multipath-capable device.

context-symbol

Prior to the first use of F$MULTIPATH with MP_PATHNAME, the context symbol must be
initialized to a value of 0. The F$MULTIPATH function is responsible for maintaining the value of the
context symbol.

Caution

Do not modify the context symbol value after it has been initialized to 0; doing so could result in
unpredictable behavior of F$MULTIPATH.

Description
Invokes the $DEVICE_PATH_SCAN system service to return a specified item of information for a
specific multipath-capable device.

The F$MULTIPATH lexical function also returns any error messages generated by the
$DEVICE_PATH_SCAN system service. For more information about the $DEVICE_PATH_SCAN
system service, see the VSI OpenVMS System Services Reference Manual.

Example
$ XYZ = 0
$
$LOOP:

446

Lexical Functions

$ PATH = F$MULTIPATH("$1$DGA12", "MP_PATHNAME", XYZ)
$ IF PATH .EQS. "" THEN GOTO EXIT
$ WRITE SYS$OUTPUT "PATH NAME = ’’PATH’"
$ GOTO LOOP
$
$EXIT:
$ EXIT

This example shows the use of F$MULTIPATH with the MP_PATHNAME item code. Note that the
context symbol XYZ has been initialized to 0 outside of the loop. The output from this command
procedure is shown below. When all paths for a given multipath device have been returned, the end of
the list is signaled by the return of a blank path name.

path name = PGA0.5000-1FE1-0001-5782
path name = PGA0.5000-1FE1-0001-5783
path name = PGA0.5000-1FE1-0001-5781
path name = PGA0.5000-1FE1-0001-5784
path name = MSCP

F$PARSE
F$PARSE — Parses a file specification and returns either the expanded file specification or the
particular file specification field that you request.

Format
F$PARSE(filespec [,default-spec] [,related-spec] [,field] [,parse-
type])

Return Value
A character string containing the expanded file specification or the field you specify. If you do
not provide a complete file specification for the filespec argument, the F$PARSE function
supplies defaults in the return string. For more information, see the Description section for this lexical
function.

In most cases, the F$PARSE function returns a null string ("") if an error is detected during the parse.
For example, a null string is returned if the file specification has incorrect syntax or if a disk or
directory does not exist, making the file specification logically incorrect. However, when you specify
a field name or the SYNTAX_ONLY parse type, F$PARSE returns the appropriate information.

Arguments
filespec

Specifies a character string containing the file specification to be parsed.

The file specification can contain the asterisk (*) and the percent sign (%) wildcard characters. If
you use a wildcard character, the file specification returned by the F$PARSE function contains the
wildcard.

default-spec

447

Lexical Functions

Specifies a character string containing the default file specification.

The fields in the default file specification are substituted in the output string if a particular field in the
filespec argument is missing. You can make further substitutions in the filespec argument by
using the related-spec argument.

related-spec

Specifies a character string containing the related file specification. The fields in the related file
specification are substituted in the output string if a particular field is missing from both the
filespec and default-spec arguments.

field

Specifies a character string containing the name of a field in a file specification. Specifying the
field argument causes the F$PARSE function to return a specific portion of a file specification.

Specify one of the following field names (do not abbreviate):

NODE Node name
DEVICE Device name
DIRECTORY Directory name
NAME File name
TYPE File type
VERSION File version number

parse-type

Specifies the type of parsing to be performed. By default, the F$PARSE function verifies that the
directory in the file specification exists on the device in the file specification; however, the existence
of the directory is not verified if you provide a field argument. Note that the device and directory
can be explicitly given in one of the arguments, or can be provided by default.

Also, by default the F$PARSE function translates logical names if they are provided in any of the
arguments. The F$PARSE function stops iterative translation when it encounters a logical name with
the CONCEALED attribute.

You can change how the F$PARSE function parses a file specification by using one of the following
keywords:

NO_CONCEAL Ignores the “conceal” attribute in the translation of a logical name as part of
the file specification; that is, logical name translation does not end when a
concealed logical name is encountered.

SYNTAX_ONLY The syntax of the file specification is checked without verifying that the
specified directory exists on the specified device.

Description
The F$PARSE function parses file specifications by using the RMS service $PARSE. For more
information on the $PARSE service, see the VSI OpenVMS Record Management Services Reference
Manual.

448

Lexical Functions

When you use the F$PARSE function, you can omit those optional arguments to the right of the last
argument you specify. However, you must include commas (,) as placeholders if you omit optional
arguments to the left of the last argument you specify.

If you omit the device and directory names in the filespec argument, the F$PARSE function
supplies defaults, first from the default-spec argument and second from the related-spec
argument. If names are not provided by these arguments, the F$PARSE function uses your current
default disk and directory.

If you omit the node name, the file name, the file type, or the version number, the F$PARSE function
supplies defaults, first from the default-spec argument and second from the related-spec
argument. (Note that the version number is not picked up from the related-spec argument.) If
names are not provided by these arguments, the F$PARSE function returns a null specification for
these fields.

The parse operation simply validates that the provided file specification is syntactically correct; it
does not enforce file specification semantics. For example, fields such as the version number are
verified to contain five or fewer numeric digits, optionally preceded by a hyphen (-), but are not range
checked. File specification semantics are enforced by services such as Open and Create.

Examples
1. $ SET DEF DISK2:[FIRST]

$ SPEC = F$PARSE("JAMES.MAR","[ROOT]",,,"SYNTAX_ONLY")
$ SHOW SYMBOL SPEC
 SPEC = "DISK2:[ROOT]JAMES.MAR;"

In this example, the F$PARSE function returns the expanded file specification for the file
JAMES.MAR. The example uses the SYNTAX_ONLY keyword to request that F$PARSE check
the syntax, but should not verify that the [ROOT] directory exists on DISK2.

The default device and directory are DISK2:[FIRST]. Because the directory name [ROOT] is
specified as the default-spec argument in the assignment statement, it is used as the directory
name in the output string. Note that the default device returned in the output string is DISK2, and
the default version number for the file is null. You must place quotation marks (“ ”) around the
arguments JAMES.MAR and ROOT because they are string literals.

If you had not specified syntax-only parsing, and [ROOT] were not on DISK2, a null string would
have been returned.

2. $ SET DEFAULT DB1:[VARGO]
$ SPEC = F$PARSE("INFO.COM",,,"DIRECTORY")
$ SHOW SYMBOL SPEC
 SPEC = "[VARGO]"

In this example the F$PARSE function returns the directory name of the file INFO.COM. Note
that because the default-spec and related-spec arguments are omitted from the
argument list, commas (,) must be inserted in their place.

3. $ SPEC= F$PARSE("DENVER::DB1:[PROD]RUN.DAT",,,"TYPE")
$ SHOW SYMBOL SPEC
 SPEC = ".DAT"

In this example, the F$PARSE function is used to parse a file specification containing a node
name. The F$PARSE function returns the file type .DAT for the file RUN.DAT at the remote node
DENVER.

449

Lexical Functions

F$PID
F$PID — Returns a process identification (PID) number and updates the context symbol to point to
the current position in the system's process list.

Format
F$PID(context-symbol)

Return Value
A character string containing the PID of a process in the system's list of processes.

Arguments
context-symbol

Specifies a symbol that DCL uses to store a pointer into the system's list of processes. The F$PID
function uses this pointer to return a PID.

Specify the context symbol by using a symbol. The first time you use the F$PID function in a
command procedure, you should use a symbol that is either undefined or equated to the null string ("")
or a context symbol that has been created by the F$CONTEXT function.

If the context symbol is undefined or equated to a null string, the F$PID function returns the first PID
in the system's process list that it has the privilege to access. That is, if you have GROUP privilege
and if the context symbol is null or undefined, the F$PID function returns the PID of the first process
in your group. If you have WORLD privilege, the F$PID function returns the PID of the first process
in the list. If you have neither GROUP nor WORLD privilege, the F$PID returns the first process that
you own. Subsequent calls to F$PID return the rest of the processes on the system you are accessing.

If the context symbol has been created by the F$CONTEXT function, the F$PID function returns the
first process name in the system's process list that fits the criteria specified in the F$CONTEXT calls.
Subsequent calls to F$PID return only the PIDs of those processes that meet the selection criteria set
up by the F$CONTEXT function and that are accessible to your current privileges.

Description
The F$PID function returns a process identification (PID) number and updates the context symbol
to point to the current position in the system's process list. You can step through all the processes
on a system, or use the lexical function F$CONTEXT to specify selection criteria. The function F
$CONTEXT is not required.

The PIDs returned by the F$PID function depend on the privilege of your process. If you have
GROUP privilege, the F$PID function returns PIDs o processes in your group. If you have WORLD
privilege, the F$PID function returns PIDs of all processes on the system. If you lack GROUP or
WORLD privilege, the F$PID function returns only those processes that you own.

The F$CONTEXT function enables the F$PID function to retrieve processes from any node in a
mixed-architecture OpenVMS Cluster system.

The first time you use the F$PID function, use a symbol that is either undefined or equated to the null
string or to a context symbol that has been created by the F$CONTEXT function. This causes the F

450

Lexical Functions

$PID function to return the first PID in the system's process list that you have the privilege to access.
It also causes the F$PID function to initialize the context-symbol argument.

Once the context-symbol argument is initialized, each subsequent F$PID returns the next PID
in sequence, using the selection criteria set up by the F$CONTEXT function, if any, and updates the
context symbol. After the last PID in the process list is returned, the F$PID function returns a null
string.

Example
$ CONTEXT = ""
$ START:
$ PID = F$PID(CONTEXT)
$ IF PID .EQS. "" THEN EXIT
$ SHOW SYMBOL PID
$ GOTO START

This command procedure uses the F$PID function to display a list of PIDs. The assignment statement
declares the symbol CONTEXT, which is used as the context-symbol argument for the F$PID
function. Because CONTEXT is equated to a null string, the F$PID function returns the first PID in
the process list that it has the privilege to access.

The PIDs displayed by this command procedure depend on the privilege of your process. When run
with GROUP privilege, the PIDs of users in your group are displayed. When run with WORLD
privilege, the PIDs of all users on the system are displayed. Without GROUP or WORLD privilege,
only those processes that you own are displayed.

F$PRIVILEGE
F$PRIVILEGE — Returns a string value of either TRUE or FALSE, depending on whether your
current process privileges match those specified in the argument. You can specify either the positive
or negative version of a privilege.

Format
F$PRIVILEGE(priv-states)

Return Value
A character string containing the value TRUE or FALSE. The F$PRIVILEGE function returns the
string FALSE if any one of the privileges in the priv-states argument list is false.

Arguments
priv-states

Specifies a character string containing a privilege, or a list of privileges separated by commas (,). For
a list of process privileges, see the VSI OpenVMS Guide to System Security. Specify any one of the
process privileges except [NO]ALL.

Description
Use the F$PRIVILEGE function to identify your current process privileges.

451

Lexical Functions

If “NO” precedes the privilege, the privilege must be disabled in order for the function to return a
value of TRUE. The F$PRIVILEGE function checks each of the keywords in the specified list, and if
the result for any one is false, the string FALSE is returned.

Example
$ PROCPRIV = F$PRIVILEGE("OPER,GROUP,TMPMBX,NONETMBX")
$ SHOW SYMBOL PROCPRIV
 PROCPRIV = "FALSE"

The F$PRIVILEGE function is used to test whether the process has OPER, GROUP, and TMPMBX
privileges and if you do not have NETMBX privileges.

The process in this example has OPER (operator), GROUP, TMPMBX (temporary mailbox), and
NETMBX (network mailbox) privileges. Therefore, a value of FALSE is returned because the process
has NETMBX privilege, but NONETMBX was specified in the priv-states list. Although the Boolean
result for the other three keywords is true, the entire expression is declared false because the result for
NONETMBX was false.

F$PROCESS
F$PROCESS — Obtains the current process name string. The F$PROCESS function has no
arguments, but must be followed by parentheses.

Format
F$PROCESS()

Return Value
A character string containing the current process name.

Arguments
None.

Example
$ NAME = F$PROCESS()
$ SHOW SYMBOL NAME
 NAME = "MARTIN"

In this example, the F$PROCESS function returns the current process name and assigns it to the
symbol NAME.

F$SEARCH
F$SEARCH — Searches a directory file and returns the full file specification for a file you specify.

Format
F$SEARCH(filespec[,stream-id])

452

Lexical Functions

Return Value
A character string containing the expanded file specification for the filespec argument. If the F
$SEARCH function does not find the file in the directory, the function returns a null string ("").

Arguments
filespec

Specifies a character string containing the file specification to be searched for. If the device or
directory names are omitted, the defaults from your current default disk and directory are used. The
F$SEARCH function does not supply defaults for a file name or type. If the version is omitted, the
specification for the file with the highest version number is returned. If the filespec argument
contains the asterisk (*) or the percent sign (%) wildcard characters, each time F$SEARCH is called,
the next file specification that agrees with the filespec argument is returned. A null string is
returned after the last file specification that agrees with the filespec argument.

stream-id

Specifies a positive integer representing the search stream identification number.

The search stream identification number is used to maintain separate search contexts when you use
the F$SEARCH function more than once and when you supply different filespec arguments.
If you use the F$SEARCH function more than once in a command procedure and if you also use
different filespec arguments, specify stream-id arguments to identify each search separately.

If you omit the stream-id argument, the F$SEARCH function starts searching at the beginning of
the directory file each time you specify a different filespec argument.

Description
The lexical function F$SEARCH invokes the RMS service $SEARCH to search a directory file and
return the full file specification for a file you specify. The F$SEARCH function allows you to search
for files in a directory by using the RMS service $SEARCH. For more information on the $SEARCH
routine, see the VSI OpenVMS Record Management Services Reference Manual.

You can use the F$SEARCH function in a loop in a command procedure to return file specifications
for all files that match a filespec argument containing an asterisk (*) or a percent sign (%)
wildcard character. Each time the F$SEARCH function is executed, it returns the next file
specification that matches the file specification that contains a wildcard character. After the last
file specification is returned, the next F$SEARCH call returns a null string. When you use the F
$SEARCH function in a loop, you must include an asterisk (*) or the percent sign (%) wildcard
characters in the filespec argument; otherwise, the F$SEARCH always returns the same file
specification.

Note that you must maintain the context of the search stream in one of the following ways:

• Explicitly, by stating a stream-id argument

• Implicitly, by omitting the stream-id argument and by using the same filespec argument
each time you execute the F$SEARCH function

If you do not maintain the context of the search stream, you start a new search at the beginning of the
directory file each time you specify a different filespec argument.

453

Lexical Functions

Note

The lexical function F$SEARCH can return any file that matches the selection criteria you specify,
and that exists in the directory at some time between the beginning and the end of the search. Files
that are created, renamed, or deleted during the search may or may not be returned.

Examples
1. $ START:

$ FILE = F$SEARCH("SYS$SYSTEM:*.EXE")
$ IF FILE .EQS. "" THEN EXIT
$ SHOW SYMBOL FILE
$ GOTO START

This command procedure displays the file specifications of the latest version of all .EXE files in
the SYS$SYSTEM directory. (Only the latest version is returned because an asterisk (*) wildcard
character is not used as the version number.) The filespec argument SYS$SYSTEM:*.EXE is
surrounded by quotation marks (“ ”) because it is a character string expression.

Because no stream-id argument is specified, the F$SEARCH function uses a single search
stream. Each subsequent F$SEARCH call uses the same filespec argument to return the next
file specification of an .EXE file from SYS$SYSTEM:. After the latest version of each .EXE file
has been displayed, the F$SEARCH function returns a null string ("") and the procedure exits.

2. $ START:
$ COM = F$SEARCH ("*.COM;*",1)
$ DAT = F$SEARCH ("*.DAT;*",2)
$ SHOW SYMBOL COM
$ SHOW SYMBOL DAT
$ IF (COM.EQS. "") .AND. (DAT.EQS. "") THEN EXIT
$ GOTO START

This command procedure searches the default disk and directory for both .COM and .DAT files.
Note that the stream-id argument is specified for each F$SEARCH call so that the context for
each search is maintained.

The first F$SEARCH call starts searching from the top of the directory file for a file with a
type .COM. When it finds a .COM file, a pointer is set to maintain the search context. When the F
$SEARCH function is used the second time, it again starts searching from the top of the directory
file for a file with a type .DAT. When the procedure loops back to the label START, the stream-
id argument allows F$SEARCH to start searching in the correct place in the directory file. After
all versions of .COM and .DAT files are returned, the procedure exits.

3. $ FILESPEC = F$SEARCH("TRNTO""SMITH SALLY""::DKA1:[PROD]*.DAT")
$ SHOW SYMBOL FILESPEC
 FILESPEC = "TRNTO"smith password"::DKA1:[PROD]CARS.DAT"

This example uses the F$SEARCH function to return a file specification for a file at a remote
node. The access control string is enclosed in quotation marks because it is part of a character
string expression when it is an argument for the F$SEARCH function. To include quotation marks
in a character string expression, you must use two sets of quotation marks.

Note that, when the F$SEARCH function returns a node name containing an access control string,
it substitutes the word “password” for the actual user password.

454

Lexical Functions

F$SETPRV
F$SETPRV — Enables or disables specified user privileges. The F$SETPRV function returns a list
of keywords indicating user privileges; this list shows the status of the specified privileges before
F$SETPRV was executed.

Format
F$SETPRV(priv-states)

Return Value
A character string containing keywords for the current process privileges before they were changed by
the F$SETPRV function.

Arguments
priv-states

Specifies a character string defining a privilege, or a list of privileges separated by commas (,).

For a list of process privileges, see the VSI OpenVMS User's Manual.

Description
The lexical function F$SETPRV invokes the $SETPRV system service to enable or disable specified
user privileges. The F$SETPRV function returns a list of keywords indicating user privileges; this list
shows the status of the specified privileges before F$SETPRV was executed.

Note

Your process must be authorized to set the specified privilege.

For detailed information on privilege restrictions, see the description of the $SETPRV system service
in the VSI OpenVMS System Services Reference Manual.

The F$SETPRV function returns keywords for your current privileges, whether or not you are
authorized to change the privileges listed in the priv-states argument; however, the F$SETPRV
function enables or disables only the privileges you are authorized to change.

When you run programs or execute procedures that include the F$SETPRV function, be sure that
F$SETPRV restores your process to its proper privileged state. For additional information, see the
examples that follow.

Examples
1. $ OLDPRIV = F$SETPRV("OPER,NOTMPMBX")

$ SHOW SYMBOL OLDPRIV
 OLDPRIV = "NOOPER,TMPMBX"

In this example, the process is authorized to change the OPER (operator) and TMPMBX
(temporary mailbox) privileges. The F$SETPRV function enables the OPER privilege and
disables the TMPMBX privilege. In addition, the F$SETPRV function returns the keywords
NOOPER and TMPMBX, showing the state of these privileges before they were changed.

455

Lexical Functions

You must place quotation marks (“ ”) around the list of privilege keywords because it is a string
literal.

2. $ SHOW PROCESS/PRIVILEGE

05-JUN-2001 15:55:09.60 RTA1: User: HELRIEGEL

Process privileges:

Process rights identifiers:
 INTERACTIVE
 LOCAL

$ NEWPRIVS = F$SETPRV("ALL, NOOPER")
$ SHOW SYMBOL NEWPRIVS
 NEWPRIVS = "NOCMKRNL,NOCMEXEC,NOSYSNAM,NOGRPNAM,NOALLSPOOL,
 NOIMPERSONATE,NODIAGNOSE,NOLOG_IO,NOGROUP,NOACNT,NOPRMCEB,
 NOPRMMBX,NOPSWAPM,NOALTPRI,NOSETPRV,NOTMPMBX,NOWORLD,NOMOUNT,
 NOOPER,NOEXQUOTA,NONETMBX,NOVOLPRO,NOPHY_IO,NOBUGCHK,NOPRMGBL,
 NOSYSGBL,NOPFNMAP,NOSHMEM,NOSYSPRV,NOBYPASS,NOSYSLCK,NOSHARE,
 NOUPGRADE,NODOWNGRADE,NOGRPPRV,NOREADALL,NOSECURITY,OPER"
$ SHOW PROCESS/PRIVILEGE

05-JUN-2001 10:21:18.32 User: INAZU Process ID: 00000F24
 Node: TOKNOW Process name: "_FTA23:"

Authorized privileges:
 NETMBX SETPRV SYSPRV TMPMBX

Process privileges:
 ACNT may suppress accounting messages
 ALLSPOOL may allocate spooled device
 ALTPRI may set any priority value
 AUDIT may direct audit to system security audit log
 BUGCHK may make bug check log entries
 BYPASS may bypass all object access controls
 CMEXEC may change mode to exec
 CMKRNL may change mode to kernel
 DIAGNOSE may diagnose devices
 DOWNGRADE may downgrade object secrecy
 EXQUOTA may exceed disk quota
 GROUP may affect other processes in same group
 GRPNAM may insert in group logical name table
 GRPPRV may access group objects via system protection
 IMPERSONATE may impersonate another user
 IMPORT may set classification for unlabeled object
 LOG_IO may do logical i/o
 MOUNT may execute mount acp function
 NETMBX may create network device
 OPER may perform operator functions
 PFNMAP may map to specific physical pages
 PHY_IO may do physical i/o
 PRMCEB may create permanent common event clusters
 PRMGBL may create permanent global sections
 PRMMBX may create permanent mailbox
 PSWAPM may change process swap mode
 READALL may read anything as the owner

456

Lexical Functions

 SECURITY may perform security administration functions
 SETPRV may set any privilege bit
 SHARE may assign channels to non-shared devices
 SHMEM may create/delete objects in shared memory
 SYSGBL may create system wide global sections
 SYSLCK may lock system wide resources
 SYSNAM may insert in system logical name table
 SYSPRV may access objects via system protection
 TMPMBX may create temporary mailbox
 UPGRADE may upgrade object integrity
 VOLPRO may override volume protection
 WORLD may affect other processes in the world

Process rights:
 INTERACTIVE
 LOCAL

System rights:
 SYS$NODE_TOKNOW

$ NEWPRIVS = F$SETPRV(NEWPRIVS)
$ SHOW PROCESS/PRIVILEGE

05-JUN-2001 16:05:07.23 RTA1: User: JERROM

Process privileges:
 OPER operator privilege

Process rights identifiers:
 INTERACTIVE
 LOCAL

In this example, the DCL command SHOW PROCESS/PRIVILEGE is used to determine the
current process privileges. Note that the process has no privileges enabled.

The F$SETPRV function is then used to process the ALL keyword and enable all privileges
recording the previous state of each privilege in the symbol NEWPRIVS. Next, F$SETPRV
processes the NOOPER keyword and disables the OPER (operator) privilege, recording the
previous state of OPER in NEWPRIVS. Note that the OPER privilege appears in the returned
string twice: first as NOOPER and then as OPER.

Entering the command SHOW PROCESS/PRIVILEGE now shows that the current process has all
privileges enabled except OPER.

If the returned string is used as the parameter to F$SETPRV, the process has the OPER privilege
enabled. This occurs because the OPER command was present twice in the symbol NEWPRIVS.
As a result, F$SETPRV looked at the first keyword NOOPER and disabled the privilege.
Finally, after processing several other keywords in the NEWPRIVS string, the OPER keyword is
presented, allowing F$SETPRV to enable the OPER privilege.

If you are using the ALL or NOALL keywords to save your current privilege environment, VSI
recommends that you perform the following procedure to modify the process for a command
procedure:

$ CURRENT_PRIVS = F$SETPRV("ALL")

457

Lexical Functions

$ TEMP = F$SETPRV("NOOPER")

If you use this procedure, you can then specify the following command statement at the end of
your command procedure so that the original privilege environment is restored:

$ TEMP = F$SETPRV(CURRENT_PRIVS)

3. $ SAVPRIV = F$SETPRV("NOGROUP")
$ SHOW SYMBOL SAVPRIV
 SAVPRIV = "GROUP"
$ TEST = F$PRIVILEGE("GROUP")
$ SHOW SYMBOL TEST
 TEST = "TRUE"

In this example, the process is not authorized to change the GROUP privilege; however, the F
$SETPRV function still returns the current setting for the GROUP privilege.

The F$PRIVILEGE function is used to see whether the process has GROUP privilege. The return
string, TRUE, indicates that the process has GROUP privilege, even though the F$SETPRV
function attempted to disable the privilege.

F$STRING
F$STRING — Returns the string that is equivalent to the specified expression.

Format
F$STRING(expression)

Return Value
A character string equivalent to the specified expression.

Arguments
expression

The integer or string expression to be evaluated.

If you specify an integer expression, the F$STRING function evaluates the expression, converts the
resulting integer to a string, and returns the result. If you specify a string expression, the F$STRING
function evaluates the expression and returns the result.

When converting an integer to a string, the F$STRING function uses decimal representation and
omits leading zeros. When converting a negative integer, the F$STRING function places a minus sign
at the beginning string representation of the integer.

Example
$ A = 5
$ B = F$STRING(-2 + A)
$ SHOW SYMBOL B

458

Lexical Functions

 B = "3"

The F$STRING function in this example converts the result of the integer expression (-2 + A) to the
numeric string, “3”. First, the F$STRING function evaluates the expression (-2 + A). Note that 5, the
value of symbol A, is automatically substituted when the integer expression is evaluated.

After the integer expression is evaluated, the F$STRING function converts the resulting integer, 3, to
the string “3”. This string is assigned to the symbol B.

F$TIME
F$TIME — Returns the current date and time in absolute time format. The F$TIME function has no
arguments, but must be followed by parentheses.

Format
F$TIME()

Return Value
A character string containing the current date and time. The returned string has the following fixed,
23-character format:

dd-mmm-yyyy hh:mm:ss.cc

When the current day of the month is any of the values 1 to 9, the first character in the returned string
is a blank character. The time portion of the string is always in character position 13, at an offset of 12
characters from the beginning of the string.

Note that you must use the assignment operator (=) to preserve the blank character in the returned
string. If you use the string assignment operator (:=), the leading blank is dropped.

Arguments
None.

Example
$ OPEN/WRITE OUTFILE DATA.DAT
$ TIME_STAMP = F$TIME()
$ WRITE OUTFILE TIME_STAMP

This example shows how to use the F$TIME function to time-stamp a file that you create from a
command procedure. OUTFILE is the logical name for the file DATA.DAT, which is opened for
writing. The F$TIME function returns the current date and time string, and assigns this string to the
symbol TIME_STAMP. The WRITE command writes the date and time string to OUTFILE.

F$TRNLNM
F$TRNLNM — Translates a logical name and returns the equivalence name string or the requested
attributes of the logical name specified.

459

Lexical Functions

Format
F$TRNLNM(logical-name [,table] [,index] [,mode] [,case] [,item])

Return value
The equivalence name or attribute of the specified logical name. The return value can be a character
string or an integer, depending on the arguments you specify with the F$TRNLNM function. If no
match is found, a null string ("") is returned.

Arguments
logical-name

Specifies a character string containing the logical name to be translated.

table

Specifies a character string containing the logical name table or tables that the F$TRNLNM function
should search to translate the logical name. The table argument must be a logical name that translates
to a logical name table or to a list of table names.

A logical name for a logical name table must be defined in one of the following logical name tables:

• LNM$SYSTEM_DIRECTORY

• LNM$PROCESS_DIRECTORY

Note

If you subsequently create a table using the CREATE/NAME_TABLE command and want to make
your private table accessible for F$TRNLNM, you must redefine one of the table logical names to
include your private table. To see all the tables that are normally searched by F$TRNLNM, issue the
following command:

$ SHOW LOGICAL/STRUCTURE LNM$DCL_LOGICAL

For more information, see the CREATE/NAME_TABLE and SHOW LOGICAL commands.

If you do not specify a table, the default value is LNM$DCL_LOGICAL. That is, the F$TRNLNM
function searches the tables whose names are equated to the logical name LNM$DCL_LOGICAL.
Unless LNM$DCL_LOGICAL has been redefined for your process, the F$TRNLNM function
searches the process, job, group, and system logical name tables, in that order, and returns the
equivalence name of the first match found.

index

Specifies the number of the equivalence name to be returned if the logical name has more than one
translation. The index refers to the equivalence strings in he order the names were listed when the
logical name was defined.

The index begins with zero; that is, the first name in a list of equivalence names is referenced by the
index zero. If you do not specify the index argument, the default is zero.

mode

460

Lexical Functions

Specifies a character string containing one of the following access modes for the translation: USER
(default), SUPERVISOR, EXECUTIVE, or KERNEL.

The F$TRNLNM function starts by searching for a logical name created with the access mode
specified in the mode argument. If it does not find a match, the F$TRNLNM function searches for
the name created with each inner access mode and returns the first match found. For example, two
logical names can have the same name, but one name can be created with user access mode and the
other name with executive access mode. If the mode argument is USER, the F$TRNLNM function
returns the equivalence string for the user-mode, not the executive-mode, logical name.

case

Specifies the type of translation to be performed. The case argument controls both the case of the
translation and whether the translation is to be interlocked or noninterlocked.

You can specify the case argument as any combination of CASE_BLIND(default),
CASE_SENSITIVE, NONINTERLOCKED (default), and INTERLOCKED.

If the translation is case blind, the F$TRNLNM searches the logical name table for the first
occurrence of the logical name, regardless of the case, and returns the translation. If no match is found
for either case, the function returns a null string ("").

If the translation is case sensitive, the F$TRNLNM function searches only for a logical name with
characters of the same case as the logical-name argument. If no exact match is found, the
F$TRNLNM function returns a null string ("").

If the translation is interlocked, the F$TRNLNM function does not take effect until all clusterwide
logical name modifications in progress complete. Then, if a match is found, the result of the
translation is returned. If no match is found, the F$TRNLNM function returns a null string ("").

If the translation is noninterlocked, the F$TRNLNM function takes effect immediately. If a match is
found, the result of the translation is returned. If no match is found, the F$TRNLNM function returns
a null string ("").

item

Specifies a character string containing the type of information that F$TRNLNM should return about
the specified logical name. Specify one of the following items:

Item Return Type Information Returned
ACCESS_MODE String One of the following access modes associated with the

logical name: USER, SUPERVISOR, EXECUTIVE,
KERNEL.

CLUSTERWIDE String TRUE or FALSE to indicate whether the logical name
is in a clusterwide name table.

CONCEALED String TRUE or FALSE to indicate whether the
CONCEALED attribute was specified with
the /TRANSLATION_ATTRIBUTES qualifier when
the logical name was created. The CONCEALED
attribute is used to create a concealed logical name.

CONFINE String TRUE or FALSE to indicate whether the logical name
is confined. If the logical name is confined (TRUE),
then the name is not copied to subprocesses. If the

461

Lexical Functions

Item Return Type Information Returned
logical name is not confined (FALSE),then the name is
copied to subprocesses.

CRELOG String TRUE or FALSE to indicate whether the logical name
was created with the $CRELOG system service or with
the $CRELNM system service, using the CRELOG
attribute.

If the logical name was created with the $CRELOG
system service or with the $CRELNM system service,
using the CRELOG attribute, then TRUE is returned.
Otherwise, FALSE is returned.

LENGTH Integer Length of the equivalence name associated with the
specified logical name. If the logical name has more
than one equivalence name, the F$TRNLNM function
returns the length of the name specified by the index
argument.

MAX_INDEX Integer The largest index defined for the logical name. The
index shows how many equivalence names are
associated with a logical name. The index is zero
based; that is, the index zero refers to the first name in
a list of equivalence names.

NO_ALIAS String TRUE or FALSE to indicate whether the logical
name has the NO_ALIAS attribute. The NO_ALIAS
attribute means that a logical name must be unique
within outer access mode.

TABLE String TRUE or FALSE to indicate whether the logical name
is the name of a logical name table.

TABLE_NAME String Name of the table where the logical name was found.
TERMINAL String TRUE or FALSE to indicate whether the

TERMINAL attribute was specified with
the /TRANSLATION_ATTRIBUTES qualifier when
the logical name was created. The TERMINAL
attribute indicates that the logical name is not a
candidate for iterative translation.

VALUE String Default. The equivalence name associated with the
specified logical name. If the logical name has more
than one equivalence name, the F$TRNLNM function
returns the name specified by the index argument.

Description
The lexical function F$TRNLNM uses the $TRNLNM system service to translate a logical name
and return the equivalence name string, or the requested attributes of the logical name specified. The
translation is not iterative; the equivalence string is not checked to determine whether it is a logical
name.

When you use the F$TRNLNM function, you can omit optional arguments that can be used to the
right of the last argument you specify. However, you must include commas (,) as placeholders if you
omit optional arguments to the left of the last argument that you specify.

462

Lexical Functions

You can use the F$TRNLNM function in command procedures to save the current equivalence of a
logical name and later restore it. You can also use it to test whether logical names have been assigned.

Examples
1. $ SAVE_DIR = F$TRNLNM("SYS$DISK")+F$DIRECTORY()

 .
 .
 .
$ SET DEFAULT 'SAVE_DIR'

The assignment statement concatenates the values returned by the F$DIRECTORY and
F$TRNLNM functions, and assigns the resulting string to the symbol SAVE_DIR. The symbol
SAVE_DIR consists of a full device and directory name string.

The argument SYS$DISK is enclosed in quotation marks (“”) because it is a character string.
(The command interpreter treats all arguments that begin with alphabetic characters as symbols
or lexical functions, unless the arguments are enclosed in quotation marks.) None of the optional
arguments is specified, so the F$TRNLNM function uses the defaults.

At the end of the command procedure, the original default directory is reset. When you reset the
directory, you must place single quotation marks (' ') around the symbol SAVE_DIR to force
symbol substitution.

2. $ DEFINE/TABLE=LNM$GROUP TERMINAL 'F$TRNLNM("SYS$OUTPUT")'

This example shows a line from a command procedure that (1) uses the F$TRNLNM function to
determine the name of the current output device and (2) creates a group logical name table entry
based on the equivalence string.

You must enclose the argument SYS$OUTPUT in quotation marks because it is a character string.

Also, in this example you must enclose the F$TRNLNM function in single quotation marks to
force the lexical function to be evaluated; otherwise,the DEFINE command does not automatically
evaluate the lexical function.

3. $ RESULT= -
_$ F$TRNLNM("INFILE","LNM$PROCESS",0,"SUPERVISOR",,"NO_ALIAS")
$ SHOW SYMBOL RESULT
 RESULT = "FALSE"

In this example, the F$TRNLNM function searches the process logical name table for the logical
name INFILE. The function starts the search by looking for the logical name INFILE created in
supervisor mode. If no match is found, the function looks for INFILE created in executive mode.

When a match is found, the F$TRNLNM function determines whether the name INFILE was
created with the NO_ALIAS attribute. In this case, the NO_ALIAS attribute is not specified.

4. $ foo=f$trnlnm("FOO","LNM$SYSCLUSTER",,,"INTERLOCKED",)

In this example, logical name FOO is translated in the LNM$SYSCLUSTER table in an
interlocked manner; that is, all clusterwide logical name modifications in progress on this and
other nodes are completed before the translation occurs. This ensures that the translation is based
on the most recent definition of FOO.

Because the case translation is not specified, the translation is by default CASE_BLIND.

463

Lexical Functions

5. $ foo=f$trnlnm("FOO","LNM$SYSCLUSTER",,,"INTERLOCKED,CASE_SENSITIVE",)

This example specifies both case sensitive and interlocked translation.

F$TYPE
F$TYPE — Returns the data type of a symbol. The string INTEGER is returned if the symbol is
equated to an integer, or if the symbol is equated to a string whose characters form a valid integer. The
string STRING is returned if the symbol is equated to a character string whose characters do not form
a valid integer. If the symbol is undefined, a null string ("") is returned.

Format
F$TYPE(symbol-name)

Return Value
The string INTEGER is returned if the symbol is equated to an integer, or if the symbol is equated to a
string whose characters form a valid integer.

If the symbol has been produced by a call to the F$CONTEXT function with a context type of
PROCESS or by a call to the F$PID function, the string returned is PROCESS_CONTEXT. A symbol
retains this type until F$CONTEXT is called with the symbol and the CANCEL keyword, or until a
null string ("") is returned by a call to F$PID.

Similarly, the return value is the string CLUSTER_SYSTEM_CONTEXT for symbols created by the
F$CSID function.

If the symbol is a context symbol, then the return value will be one of the types shown in Table 13.

Table 13. Context Symbol Types

Symbol Type Lexical Creating Symbol
PROCESS_CONTEXT F$PID or F$CONTEXT (with PROCESS context type)
CLUSTER_SYSTEM_CONTEXT F$CSID

The string STRING is returned if the symbol is equated to a character string whose characters do not
form a valid integer or whose type is not a context.

If the symbol is undefined, a null string is returned.

Arguments
Specifies the name of the symbol to be evaluated.

Examples
1. $ NUM = "52"

$ TYPE = F$TYPE(NUM)
$ SHOW SYMBOL TYPE
 TYPE = "INTEGER"

464

Lexical Functions

This example uses the F$TYPE function to determine the data type of the symbol NUM. NUM is
equated to the character string “52”. Because the characters in the string form a valid integer, the
F$TYPE function returns the string INTEGER.

2. $ NUM = 52
$ TYPE = F$TYPE(NUM)
$ SHOW SYMBOL TYPE
 TYPE = "INTEGER"

In this example, the symbol NUM is equated to the integer 52. The F$TYPE function shows that
the symbol has an integer data type.

3. $ CHAR = "FIVE"
$ TYPE = F$TYPE(CHAR)
$ SHOW SYMBOL TYPE
 TYPE = "STRING"

In this example, the symbol CHAR is equated to the character string FIVE. Because the characters
in this string do not form a valid integer, the F$TYPE function shows that the symbol has a string
value.

4. $ x = F$CONTEXT("PROCESS",CTX,"USERNAME","SMITH")
$ TYPE = F$TYPE(CTX)
$ SHOW SYMBOL TYPE
 TYPE = "PROCESS_CONTEXT"
$ x = F$CONTEXT("PROCESS",CTX,"CANCEL")
$ TYPE = F$TYPE(CTX)
$ SHOW SYMBOL TYPE
 TYPE = ""

In this example, the F$TYPE function returns the string PROCESS_CONTEXT because
the symbol has been produced by a call to the F$CONTEXT function with a context type of
PROCESS. The symbol returns this type until F$CONTEXT is called with the symbol and the
selection-item argument value CANCEL.

F$UNIQUE (Alpha/Integrity servers Only)
F$UNIQUE — Generates a string that is suitable to be a file name and is guaranteed to be
unique across the cluster. Unique file names can be useful when creating temporary files. (See
CLOSEDISPOSITION for an example.) The F$UNIQUE function has no arguments, but must be
followed by a blank pair of parentheses.

Format
F$UNIQUE()

Return Value
A character string containing the unique string.

Arguments
None.

465

Lexical Functions

Examples
1. $ WRITE SYS$OUTPUT F$UNIQUE()

414853555241159711D7DF797CCF573F
$
$ WRITE SYS$OUTPUT F$UNIQUE()
414853555241509811D7DF797E3F2777
$

This example shows how a unique string is returned on subsequent WRITE commands.

2. $ OPEN/WRITE TEMP_FILE 'F$UNIQUE()
$ DIRECTORY
Directory WORK1:[TEST]
594B53554C421C9C11D75463D61F58B7.DAT;1
Total of 1 file.
$
$ CLOSE/DISPOSITION=DELETE TEMP_FILE
$ DIRECTORY
%DIRECT-W-NOFILES, no files found
$

The first command creates a temporary file and gives it a unique name, which is displayed by the
subsequent DIRECTORY command. After the file is later closed and deleted, it no longer shows
up in the directory.

F$USER
F$USER — Returns the current user identification code (UIC) in named format as a character string.
The F$USER function has no arguments, but must be followed by parentheses.

Format
F$USER()

Return Value
A character string containing the current UIC, including brackets ([]). The UIC is returned in the
format [group-identifier,member-identifier].

Arguments
None.

Example
$ UIC = F$USER()
$ SHOW SYMBOL UIC
 UIC = "[GROUP6,JENNIFER]"

In this example, the F$USER function returns the current user identification code and assigns it to the
symbol UIC.

466

Lexical Functions

F$VERIFY
F$VERIFY — Returns an integer value indicating whether the procedure verification setting is
currently on or off. If used with arguments, the F$VERIFY function can turn the procedure and
image verification settings on or off. You must include the parentheses after the F$VERIFY function
whether or not you specify arguments.

Format
F$VERIFY([procedure-value] [,image-value])

Return Value
The integer 0 if the procedure verification setting is off, or the integer 1 if the procedure verification
setting is on.

Arguments
procedure-value

Specifies an integer expression with a value of 1 to turn procedure verification on, or a value of 0 to
turn procedure verification off.

When procedure verification is on, each DCL command line in the command procedure is displayed
on the output device. Procedure verification allows you to verify that each command is executing
correctly.

If you use the procedure-value argument, the function first returns the current procedure
verification setting. Then the command interpreter turns the procedure verification on or off, as
specified by the argument.

image-value

Specifies an integer expression with a value of 1 to turn image verification on, or a value of 0 to turn
image verification off.

When image verification is on, data lines in the command procedure are displayed on the output
device.

Description
The lexical function F$VERIFY returns an integer value indicating whether the procedure verification
setting is currently on or off. If used with arguments, the F$VERIFY function can turn the procedure
and image verification settings on or off. You must include the parentheses after the F$VERIFY
function whether or not you specify arguments.

Using the F$VERIFY function in command procedures allows you to test the current procedure
verification setting. For example, a command procedure can save the current procedure verification
setting before changing it and then later restore the setting. In addition, you can construct a procedure
that does not display (or print) commands, regardless of the initial state of verification.

When you use the F$VERIFY function, you can specify zero, one, or two arguments. If you do
not specify any arguments, neither of the verification settings is changed. If you specify only the

467

Lexical Functions

procedure-value argument, both procedure and image verification are turned on (if the value is
1) or off (if the value is 0).

If you specify both arguments, procedure and image verification are turned on or off independently.
If you specify the image-value argument alone, only image verification is turned on or off. If you
specify the image-value argument alone, you must precede the argument with a comma (,).

You can also use the F$ENVIRONMENT function with VERIFY_PROCEDURE or
VERIFY_IMAGE as the argument. With the F$ENVIRONMENT function, you can determine either
the procedure or image verification setting; the F$VERIFY function determines only the procedure
verification setting.

DCL performs the F$VERIFY function even if it appears after a comment character, if it is enclosed
in single quotation marks (' '). This is the only processing that DCL performs within a comment.

Example
1. $ SAVE_PROC_VERIFY = F$ENVIRONMENT("VERIFY_PROCEDURE")

$ SAVE_IMAGE_VERIFY = F$ENVIRONMENT("VERIFY_IMAGE")
$ SET NOVERIFY
 .
 .
 .
$ TEMP = F$VERIFY(SAVE_PROC_VERIFY, SAVE_IMAGE_VERIFY)

This example shows an excerpt from a command procedure. The first assignment statement
assigns the current procedure verification setting to the symbol SAVE_PROC_VERIFY. The
second assignment statement assigns the current image verification setting to the symbol
SAVE_IMAGE_VERIFY.

Then, the SET NOVERIFY command disables procedure and image verification. Later, the
F$VERIFY function resets the verification settings, using the original values (equated to the
symbols SAVE_PROC_VERIFY and SAVE_IMAGE_VERIFY). The symbol TEMP contains
the procedure verification before it is changed with the F$VERIFY function. (In this example, the
value of TEMP is not used.)

2. $ VERIFY = F$VERIFY(0)
 .
 .
 .
$ IF VERIFY .EQ. 1 THEN SET VERIFY

This example shows an excerpt from a command procedure that uses the F$VERIFY function to
save the current procedure verification setting and to turn both procedure and image verification
off. At the end of the command procedure, if procedure verification was originally on, both the
procedure and image verification are turned on.

468

	DCL Dictionary: A—M
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Documents Structure
	4. Related Documents
	5. VSI Encourages Your Comments
	6. How to Order Additional Documentation
	7. Typographical Conventions

	DCL Commands
	! (Comment Delimiter)
	= (Assignment Statement)
	:= (String Assignment)
	@ (Execute Procedure)
	ACCOUNTING
	ALLOCATE
	ANALYZE/AUDIT
	ANALYZE/CRASH_DUMP
	ANALYZE/DISK_STRUCTURE
	ANALYZE/ERROR_LOG/ELV (Alpha/Integrity servers Only)
	ANALYZE/IMAGE
	ANALYZE/MEDIA
	ANALYZE/OBJECT
	ANALYZE/PROCESS_DUMP
	ANALYZE/RMS_FILE
	ANALYZE/SSLOG (Alpha/Integrity servers Only)
	ANALYZE/SYSTEM
	APPEND
	ASSIGN
	ASSIGN/MERGE
	ASSIGN/QUEUE
	ATTACH
	BACKUP
	CALL
	CANCEL
	CHECKSUM
	CLOSE
	CONNECT
	CONTINUE
	CONVERT
	CONVERT/DOCUMENT
	CONVERT/RECLAIM
	COPY
	COPY/FTP
	COPY/RCP
	COPY/RECORDABLE_MEDIA
	CREATE
	CREATE/DIRECTORY
	CREATE/FDL
	CREATE/MAILBOX (Alpha/Integrity servers Only)
	CREATE/NAME_TABLE
	CREATE/TERMINAL
	DEALLOCATE
	DEASSIGN
	DEASSIGN/ QUEUE
	DEBUG
	DECK
	DECRYPT
	DEFINE
	DEFINE/CHARACTERISTIC
	DEFINE/FORM
	DEFINE/KEY
	DELETE
	DELETE/BITMAP (Alpha/Integrity servers Only)
	DELETE/CHARACTERISTIC
	DELETE/ENTRY
	DELETE/FORM
	DELETE/INTRUSION_RECORD
	DELETE/KEY
	DELETE/MAILBOX (Alpha/Integrity servers Only)
	DELETE/QUEUE
	DELETE/QUEUE/MANAGER
	DELETE/SYMBOL
	DEPOSIT
	DIFFERENCES
	DIRECTORY
	DISABLE AUTOSTART
	DISCONNECT
	DISMOUNT
	DUMP
	EDIT/ACL
	EDIT/EDT
	EDIT/FDL
	EDIT/SUM
	EDIT/TECO
	EDIT/TPU
	ENABLE AUTOSTART
	ENCRYPT
	ENCRYPT /AUTHENTICATE
	ENCRYPT /CREATE_KEY
	ENCRYPT /REMOVE_KEY
	ENDSUBROUTINE
	EOD
	EOJ
	EXAMINE
	EXCHANGE
	EXCHANGE/NETWORK
	EXIT
	FONT
	GOSUB
	GOTO
	HELP
	HELP/MESSAGE
	IF
	INITIALIZE
	INITIALIZE/QUEUE
	INQUIRE
	INSTALL
	JAVA
	JOB
	LIBRARY
	LICENSE
	LINK
	LOGIN Procedure
	LOGOUT
	MACRO
	MAIL
	MERGE
	MESSAGE
	MONITOR
	MOUNT

	Lexical Functions
	Lexical Functions
	F$CONTEXT
	F$CSID
	F$CUNITS
	F$CVSI
	F$CVTIME
	F$CVUI
	F$DELTA_TIME
	F$DEVICE
	F$DIRECTORY
	F$EDIT
	F$ELEMENT
	F$ENVIRONMENT
	F$EXTRACT
	F$FAO
	F$FID_TO_NAME (Alpha/Integrity servers Only)
	F$FILE_ATTRIBUTES
	F$GETDVI
	F$GETENV
	F$GETJPI
	F$GETQUI
	F$GETSYI
	F$IDENTIFIER
	F$INTEGER
	F$LENGTH
	F$LICENSE (Alpha/Integrity servers Only)
	F$LOCATE
	F$MATCH_WILD
	F$MESSAGE
	F$MODE
	F$MULTIPATH (Alpha/Integrity servers Only)
	F$PARSE
	F$PID
	F$PRIVILEGE
	F$PROCESS
	F$SEARCH
	F$SETPRV
	F$STRING
	F$TIME
	F$TRNLNM
	F$TYPE
	F$UNIQUE (Alpha/Integrity servers Only)
	F$USER
	F$VERIFY

