nma Software

VSI OpenVMS Calling Standard

Document Number: DO-DCALLST-01A

Publication Date: January 2021

This standard defines the requirements, mechanisms, and conventions that support
procedure-to-procedure calls for OpenVMS x86-64, OpenVMS Industry Standard 64,
OpenVMS Alpha, and OpenVMS VAX. The standard defines the run-time data
structures, constants, algorithms, conventions, methods, and functional interfaces
that enable a 32-bit or 64-bit native user-mode procedure to operate correctly in a
multilanguage and multithreaded environment on x86-64, Intel® 164, Alpha, and VAX
processors.

Revision Update Information: This is a new manual.
Operating System and Version: VS| OpenVMS x86-64 Version 9.0 EAK

VS| OpenVMS 164 Version 8.4-1H1
VSI OpenVMS Alpha 8.4-2L1

VMS Software, Inc. (VSI)
Burlington, Massachusetts, USA

VSI OpenVMS Calling Standard

nma Software

Copyright © 2021 VMS Software, Inc. (VSl), Burlington, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSl required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Datafor Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Theinformation contained herein is subject to change without notice. The only warranties for VS| products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VS| shall not beliable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

Information regarding OpenVMS VAX corresponds to the HPE OpenVMS VAX operating system. That information is included for
technical consistency and historical reasons and does not imply any support or warranty of any kind regarding OpenVMS VAX on the part
of VMS Software, Inc. Contact Hewlett Packard Enterprise for any and all matters regarding OpenVMS VAX.

Intel, Itanium and | A-64 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

UNIX isaregistered trademark of The Open Group.

The VS| OpenVMS documentation set is available on CD.

VSI OpenVMS Calling Standard

PrEface couienuinieenninnninnnennneniennnessnssssnssssnsssnssssnssssssssnssssssssssssssssassssasssssssssssssssssassssssssasssasss xiii
Lo ADOUL VST oottt e e e et e e e e e e e Xiii
2. Intended AUGIEIICEoceeiiiiiiiiiiiiiiee ittt e e e e e e e Xiii
3. DOCUMENT STIUCTULEvutiiiiiiiiiiiiiiiiitii e Xiii
4. Related DOCUMEILS ...oeeeviiiuiiiiiiiiiieeiiiiit et e ettt e e e e e e ree e e e e e e s xiv
5. VSI Encourages YOur COMMENTSc.coiriiiiiiiiiiiiiiiiiiiiiiiiiieiiieieieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees XV
6. How to Order Additional Documentationeeeeiiiiiiiiiiiiiiieeeiniiieeeee e XV
7. Typographical CONVENTIONScceiiiuutiiiiiiieeiiiiiiiiiiteee ettt e e e ettt e e e e eeeeas XV

Chapter 1. INtroduCtionueeieeivennieensenssennsnnssnessnssssesssessssssssssssnsssssssassssssssssssssssssssssasssns 1
O BN 7o o7 1031 1 PP 2
1.2. Architectural Levelccoooiiiiiiiiiiiiiiiie ettt e 2
L.30 G08LS ettt ettt e e e et eeeeas 2
L4, DETINITIONS eeeeieiiiiiiiiitee e e ettt e e e e ettt e e e e s ettt et e e e e e s sabbtbaeeeeeeeaaaaaaes 4

Chapter 2. OpenVMS VAX CONVENLIONS ..cuueereerrenssnnsssnnssnesssnssssessasssssssssesssssssassssssssassssses 9
2.1 REGISTET USAZE ..eeeeeieiiiiiiiiiiiteie e ettt e e ettt e e e e ettt et e e e e e e eibeeeee 9

2.1.1. Scalar RegiSter USAZEccccettiiiumiiiiiiiieiiiiiiiiieeee ettt e e 9
2.1.2. Vector REIStEr USAZEceieiiiiiiiiiiiiiiieee ittt et e e e e 9

2.2, StACK USAEZE ..vveeeiiiiiiiiiiiitee ettt et e e et e e e e 10
2.3, CalliNg SEQUEIICE .eeeeieiiiiiiiiiiiiet ettt e e e e ettt e e e e ettt e e e e e e e naibeaeee 10
2.4, ATGUMENE LIS ..o an 11
2.4.1. Argument List FOrmatcccooeiiiiiiiiiieeieeeeeeeeeee e 11
2.4.2. Argument Lists and High-Level Languagesccoooeeeeeeieieiiieieieieeeeeeeeeeeeeeeeennn 12
2.4.2.1. Order of Argument Evaluationcccccccovviiiiiiiiiiiiiiniiiiicee i 12

2.4.2.2. Language Extensions for Argument TranSmisSioneeeeevevennns 13

2.5. Function Value REUINSooouiiiiiiiiiiiiiiiiiiiceee et 14
2.5.1. Returning a Function Value on Top of the Stackcccccccceiiiiiicinn, 14
2.5.1.1. Returning a Fixed-Length or Varying String Function Value 15

2.6. Vector and Scalar Processor Synchronizationcccceeeieiiiiniiiiiiceieieiiniiiieeceeeennn 15
2.6.1. Memory Synchronizationcoeoireuieiieeeeeimiiiiiiiieee e et e e e e 16
2.6.2. Exception Synchronizationccceiiiiiiiiiiiiiiiiieiiiiiiiiieeee e e 16

Chapter 3. OpenVMS Alpha ConVentionseecceineeiecscssssecsssssssscssssssessssssssssssssssssssnss 17

3.1 REZISTET USAZE ooeiiiiiiiiiiiiee ettt ettt e e e ettt e e e e e e et eeeeeens 17
T I B 01 1S NS 4 R 1<) - R 17
3.1.2. Floating-Point REGISIETScceeviiiiiiiiiiiiiiiiie e, 18

3.2, Address REPIESENTALIONuuuuuuuerriiriiiiitiiiiitiettaeeteateeaeaeseseseaesesessseseeesesssssessssnesesenenes 19

3.3. Procedure RepreSentationceeeeeeereeereeeeeeeeeeeeeeee e ee e 19

T o (e 11T a L 7 TSR 19
3.4.1. Stack Frame Procedurescccoovviiiiiiiiiiiiiiiiicceeeee e 20
3.4.2. Procedure Descriptor for Procedures with a Stack Framec..cccccccinni. 20
3.4.3. Stack Frame FOrmatooooiiiiiiiiiiiiiiiiie e 25

3.4.3.1. Fixed-Size Stack Frameccccoiiiiiiiiiiiiii e 25
3.4.3.2. Variable-Size Stack FTameccoocoiiiiiiiiiiiiiiiiicece e 26
3.4.3.3. Fixed Temporary Locations for All Stack Framesccccccoooviiiiiiiinnn. 27
3.4.3.4. Register Save Area for All Stack Framescccoovcvviiieiiiiiinnnniiieenenn, 28
3.4.4. Register Frame Procedureccceevviiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee e 30
3.4.5. Procedure Descriptor for Procedures with a Register Frame 31
3.4.6. Null Frame Procedurescceeiiiimiiiiiiiieiiiiiiiiiteceee et 35
3.4.7. Procedure Descriptor for Null Frame Proceduresccccvevueeiiviiiiieeiernnnnnns 35

3.5. Procedure Call Stackooooueeiiiiiiiiiiiiie e 37

3.5.1. Current PrOCEAUIEccoooiiiiiiiiiiiiieiiiiiiee et 38

iii

VSI OpenVMS Calling Standard

3.5.2. Procedure Call TraCingcouuuiieieeeiiiiiiiiiiieeeeeeeeeeiiiee e e e e e e eeevrie e e e e e eeeesaaennnns 39
3.5.2.1. Referring to a Procedure Invocation from a Data Structure 39

3.5.2.2. Invocation Context Block ... 40

3.5.2.3. Getting a Procedure Invocation Context with a Routine 42

3.5.2.4. Walking the Call Stackccooiiiiiiiiiiiiiiii e, 42

3.5.3. Invocation Context Access ROULINESccoeeeveiiiiiiiiiiiiiiiiieeeee e, 43
3.5.3.1. LIBSGET INVO_CONTEXT ...cccocttiiiiiiiiieeeniiieeeeiiee et 43

3.5.3.2. LIBSGET _CURR INVO _CONTEXTcceeiiiiiiiiiieeeee et 44

3.5.3.3. LIBSGET PREV _INVO CONTEXTcccccvvvimiiiiieeiiiiieeeiiiieeeeiieee e 44

3.5.3.4. LIBSGET INVO HANDLE ...ttt 44

3.5.3.5. LIBSGET PREV _INVO HANDLEcccceettiiiiiieaiiiiieeeiiee e 45

3.5.3.6. LIBSPUT _INVO REGISTERScccoiiiiiiiiiiiiiee e 45

3.6. Transfer of Control ... 46
3.6.1. Call CONVENTIONS ... 46
3.6.2. LinKage SECLIONcvvuuuiiieeieiiiiiiiiiee e e e e ettt e e e e e e ettt e e e e e e eeeaasbaaeeeeeeeeassennns 48
3.6.3. Calling Computed AdAIESSESceeviiiiiiiiiiieeeeeiiiiiiiieee et e e e e v 50
3.6.4. Simple and Bound Proceduresccooeeeiiiiiiiiiiiiiiee e 50
3.6.4.1. Bound Procedure DesCIiptorsuuuiieeeeeiiiiiiiiiieeeeeeeeeiiiiieeeeeeeeeeevaeennns 50

3.6.4.2. Bound Procedure Valueccccoiiiiiiiiiiiii 52

3.6.5. Entry and EXit Code SEqUENCESceeiiiiiiiiiiiieeeeiiiiiiiiiie e e e e e eeeevieee e e e eeeeeeeeens 53
3.6.5.1. Entry Code SEQUENCEcvvvvunieeeeiiiiiiiiiiieeeeeeeeeiiiiiiaeeeeeeeerasiennaeeeeeeeeenes 53

3.6.5.2. EXit COde SEQUENCEccevvvriiiieeeiiiiiiiiiiieeeeeeeeiatieaeeeeeeeerarraeaeeeeeeeenens 55

3.7, Data PASSING 1ievvvviiiiiieeeeiiiiiiiiie e e e e e e ettt e e e e e e eeeabt e e e eeeeeeart e aeeeeeaaaba e aeaeaeearrananns 56
3.7.1. Argument Passing MechaniSmscccoeeeeiiiiiiiiiiiiiineeeeecceiieiee e 56
3.7.2. Argument List STrUCHUIEcovvuiiiiieeiiiiiiiiiiie e e e ee et e e e e e ee e e e e e e e eeeaasaeens 57
3.7.3. Argument Lists and High-Level Languagesccccccevvvviiiiiineeeiiiiiiiiiiiieeeeeeeeees 58
3.7.4. Unused Bits in Passed Dataccuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 58
3.7.5. Sending Datacovvuuiiiiiiiiiiiiiiie e e e e e e e e r b eeeaeaaaaaaaas 60
3.7.5.1. Sending MeChaniSmccoeeeeeiiiiiiiiiiiieeeeeeeiiiiieiee e e e e e eeeerineeeeeeeeeeaeees 60

3.7.5.2. Order of Argument Evaluationcccoeeeiiiiiiiiiiiiiinee e, 61

3.7.6. RECEIVING DALA ..uuuuieieiiiiiiiiiiii et e e e e e et e e e e e e e e aaaaen e e e 61
3.7.7. Returning Datacoovvvuiiiieiiiiiiiiiies e e e et e e e e e e e e e e e aaaaaaeas 61
3.7.7.1. Function Value Return by Immediate Valuecccceeeeeneeiiinnnninnnnn. 61

3.7.7.2. Function Value Return by Referenceccccceeeeveeeiiiiiiiiiiiinieeeeeeceeiiinen, 62

3.7.7.3. Function Value Return by DeScriptoruvveeieeeeiiiiiiiiiiiieeeeeeeeeeiieennn. 62

3.8. Data AlIOCAtION ...coeiiiiiiiiiiiiiii e 64
3.8.1. Data ALIGNMENTcoovvuiiiieeieiiiiiiiiee e e e e ee ettt eeeeeeeeaaaeeeeeeeeeeeassaneaeeeeeeeesseenns 64
3.8.2. Record Layout CONVENLIONSceevvivurenieeeeereeriiiiiiieeeeeeeeeernneneaeeeeseeessnnnnnaaaeaes 65
3.8.2.1. Aligned Record Layoutcoovviiiiiiiiiiiiiiiiiiiie e 65

3.8.2.2. OpenVMS VAX Compatible Record Layoutc....ceevvviviviiineeeennennnnne. 66

3.9. Multithreaded Execution ENVIFONMENTScooiiiiii s 67
3.9.1. Stack Limit ChecKingccoieiiiiiiiiiiiiiiiee e e e e 67
3.9.1.1. Methods for Stack Limit ChecKingccuuveeieieeiiiiiiiiiiiieeeeeeeeeeiiiennnn. 68

3.9.1.2. Stack Overflow Handlingcccoeeieieiiiiiiiiiiiiie e 70

Chapter 4. OpenVMS 164 CONVENLIONSceeerrererrrercsssencssnncssnes 71
4.1, T64 Re@IStEr USAZE ...ceeiiiiiiiiiiiiieeeeeieiiiiieeseeeeeeetetii s e e e e e e e eeabtaiaeeeeaeeeessannnnaaeeeeeessssnnnns 71
4.1.1. 164 ReZISTET CIASSES ..uuunieeeeiiiiiiiiiiiieeeeeeeeiiiiiiaeeeeeeeeeettteensaaeeeereessssennaeaeaeeerssnees 71
4.1.2. 164 General RegiSter USAZEcceiviviiiiiiieeeeiieiiiiiieieeeee e et e e e e e eeevviee e e 72
4.1.3. 164 Floating-Point RegiSter USAZEcceeeeiiiiiiiiiiieieeeiiiiiiiiiie e e e e eeeeviiee e e eeeeeeens 73
4.1.4. 164 Predicate RegiSter USAZEccevvvuiviiiieeiiiiiiiiiiiieeeeeeeeeeviee e e e e e eeevvrea e 74
4.1.5. 164 Branch RegiSter USAZEccevvviiiiiiieeeiiiiiiiiiiieeeeeeeeeviiene e e e e eeevvvinneeeeaaees 74
4.1.6. 164 Application RegiSter USAZEcevvriuiiiieeeeiiiiiiiiiiiieeeeeeeeeviiine e e e e e eevaaeeannns 75

VSI OpenVMS Calling Standard

4.1.7. Floating-Point Statlsccoeeeiiiiiiiiiiiiiiie e e e e e e e e e erarnaeeeeeaees 76
418 USCT MASK . 78
4.1.9. Additional Register Usage Informationccceeeeeiiiiiiiiiiiiiineeeeiiiiiiiiineeeeeees 79

4.2, Address REPreSeNtationcceiieiiiiuiiiieeeeiiiiiiiiiieeeeeeeeertiisreeeeeeeeesareeaeeeeseeesssennnnnnns 79
4.3. Procedure Representationccceeeeiieiiiiiiiieeeeisieiiiiiiseeeeeeeeeitiseeeeeeeeesaaaenaeeeeaeessneens 80
4.4, ProCeAUIE TYPES ..oeeiiiiiiiiiiiieeeeeieieiteie e e e e e e ettt e e e e e e eeeaaaa s aaeeeeeesssseanaaeeeeessssssnnnnaeens 80
4.5, MEMOTY STACK ..vvvuiiieiiiiiiiiiiiiie e e e et e e e e ettt e e e e e e e eeaab e e eeeeeaesssannnaeeeeeaessssnnnns 81
4.5.1. Procedure Frames ... 82
4.5.2. Stack OVerflow DEteCtioneuuuuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeieieeeeeeeeaeees 83
4.5.2.1. Stack Limit CheCKingcccciviiiiiiiieieeiiiiiiiciee e 84

4.6. REZISTET STACK .iiiiiiiiiiieeii i e e e e e ettt ee e e e e e e evabbaeeeeeaaeesseeens 86
4.6.1. Input and Local REZISEISuuuiiiieiiiiiiiiiiiieeeeee e e e e e e eeeaaees 86
4.6.2. OULPUL REGISTEIS ..oeiiiiiiiiiieeeeiiiieiiiciie e e e e e ettt e e e e e e eeeeaaeeeeeeeeerssrenaaaeeaaeeesssees 87
4.6.3. ROtating REGISTETS ...uvuuuniieiiiiiiiiiiiiee e e e e ettt e e e e e ettt e e e e e e e eevaae e e e eeeeesaseeenns 87
4.6.4. Frame Markerscooooiiiiiiiiiiiiiii 88
4.6.5. Backing Store for Register Stackcoiiviiiiiiiiiieeiiiiiiiiiciie e 88

4.7. Procedure LINKAZEcoouvuiiiiieiiiiiiiiiiie et e e e e et e e e e e e e eear e e e e e e e aeaaaeennnns 89
4.7.1. The GP REZISIET ...eivviiuiiiieeeeiiiiiiieiie e e e e e ettt e e e e e e e eear e e e e e eeeeasaaeaeeeeeaeesssennns 89
4.7.2. TYPES OF CallS ..coiiiiiiiiiiiie e et e e e e e e e e a b e e e e e e eesaaaees 89
4.7.3. Calling SEQUENCEccovvuiiieeeeeiieiiiiieiaeeeeeeeeitieaaeeeeeeeeasareeaaeeeeressssrenaaaaeesesrsnes 90
4.7.3.1. DITECt CallS ..euuuiriiiiiiiiiiiiiiiiiiiiiiit ittt 90

4.7.3.2. Indirect Callsccooiiiiiiiiiiiiiiii 92

4.7.4. Parameter PasSINGccouviiiiiiieiiiiiiiiiiiie e e e ee et e e e e e et e e e e e e er e 93
4.7.5. Parameter Passing MeEChaniSmMScceeeiiiiiiiiiiiieeeeiiiiiiiieiee e e e eeeevviien e e e eeeeeaaes 94
4.7.5.1. Allocation of Parameter SIOtSuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiees 95

4.7.5.2. Normal Register Parametersueeeieeeeiiiiiiiiiiiieeeeeeeeeiiiceneeeeeeeenenns 96

4.7.5.3. Argument Information (AI) RegISterccovvvviiiiieieiiiiiiiiiiee e, 98

4.7.5.4. Memory Stack Parametersceeeeeeeiiiiiiiiiiiiieeeeeiceeiiiee e 99

4.7.5.5. Variable Argument LiStSuceiiiiiiiiiiiiiiiiiie e 99

4.7.5.6. Pointers to Formal Parametersccccccuuuueuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiies 99

4.7.5.7. Languages Other than Ccccooeeiiiiiiiiiiiiiiie e 99

4.7.5.8. Rounding Floating-point Valuescc.ccceevviviiiiiiineeeiiiiiiiiiiee e eee e 100

4.7.5.9. Order of Argument Evaluationcccoeeeeeiiiiiiiiiiiiineeeeieceiiceie e, 100

4.7.5.10. EXQAMPLES .ovvunnieeiiiiiiiiiiiee e ee ettt e e e e e e et e e e e e e e eeaareannas 100

4.7.6. RELUIN VAIUESvvtiiiiiiiiiiiiiiiiiiiiiiiiitttet ettt eeeeeeeeeee 101
4.7.7. Simple and Bound Proceduresccoeeiiiiiiiiiiiiieeieiiiiiicieee e 102

4.8. Procedure Call Stackcoooiiiiiiiiiiii 104
4.8.1. Current Procedurecooiiiiiiiiiiiiiiiiii 105
4.8.2. Procedure Call TracCinguueeieeeeiiiiiiiiiiiieeeeeeeeeiiicieeeeeeeeeeeviieeeeeeeeeeessennnns 105
4.8.2.1. Invocation Context Blockccooeiiiiiiiiiiiiiiiii 105

4.8.2.2. Invocation Context Handleccoooiiiiiiiiiii e 108

4.8.3. Invocation Context Block Access Routines ... 108
4.8.3.1. Initializing the Invocation Context Blockcccooeeeiiiiiiiiiiiiinneeeiinnnnne, 109

4.8.3.2. Walking the Call Stackccccoeeiiiiiiiiiiiiiieiiiiciee e 109

4.8.3.3. LIB$164 CREATE INVO _CONTEXTcccoiiiiiiiieeeeeieeeee e 110

4.8.3.4. LIB$164 FREE INVO _CONTEXTootiiiiiiiieeeiiiee e 111

4.8.3.5. LIB$164 INIT INVO CONTEXT ...ccoiviiieeiiiiieeeiiieee et 111

4.8.3.6. LIB$164 GET INVO CONTEXT ...oooeiiiiiiiieiiiiieeeiiiiee e e eeiiiee e 112

4.8.3.7. LIB$I64 GET CURR _INVO CONTEXTcceviiviireiiiiiieeeiiiieeeeiiennnn 112

4.8.3.8. LIBSI64 GET PREV_INVO CONTEXTcooeeiiiiiieeniiieeeiiiiieeeieeenn 113

4.8.3.9. LIB$164 GET INVO HANDLEcoooiiiiiiiieiiiiiee e 113

4.8.3.10. LIB$164 GET _CURR_INVO HANDLEccooiiiiieeiiiiieeeciieee e 114

VSI OpenVMS Calling Standard

4.8.3.11. LIB$164 GET PREV_INVO HANDLEcccociiiiiiiieeeeeieeeeee, 114

4.8.3.12. LIB$164 PREV INVO ENDcoooiiiiiiieiiiiiee e 115

4.8.3.13. LIB$I64 PUT INVO _REGISTERScooiiiiiiiiiiiiieeeeeieeee e 115

4.8.4. Supplemental Invocation Context Access ROUtinesceeeeeeeeiiiiviiieiineeennnns 117
4.8.4.1. LIBSI64 GET FR ..ottt 117

4.8.4.2. LIBSI64 SET FR ..oooiiiiiiiiiiiiiie ettt et 117

4.8.4.3. LIBSI64 GET GR ...ooviiiiiiiiiieeiiiee et 118

4.8.4.4. LIBSI64 SET GR ..ooiiiiiieiiiiiee ettt 118

4.8.4.5. LIBSIO64 SET PC ..ooiiiiiiiieiiiiee ettt 119

4.8.4.6. LIB$164 GET UNWIND LSDAoooiiiiiiieeiiiiee et 119

4.8.4.7. LIB$164 GET UNWIND OSSDootiiiiiiiieiiiiiieeeniieeeeeiieeeeeeiieee e 120

4.8.4.8. LIBSI64 GET UNWIND HANDLER FVcccooiiiiiiiiiiiiiieeiiieeees 120

4.8.4.9. LIB$164 IS EXC DISPATCH FRAMEccoiiiiiiiiiiiiieeieiieeeee e, 121

4.8.4.10. LIB$164 IS AST DISPATCH FRAMEccooevviiiiieiiiiieeeceee e 121

4.8.5. Invocation Context Callback ROULINESccoeveiiiiiiiiiiiii, 122
4.8.5.1. The Get Unwind Information Routinecccceoeiiiiiiiiiiiiiie 122

4.8.5.2. The Get Initial Context ROULINEceeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieieieieeeee 122

4.8.5.3. The Read Memory ROULINEcceeeeiiiiiiiiiiiieeeeiiciiiiciie e 123

4.8.5.4. The Write Memory ROULINEccceeiiiiiiiiiiiieeeiiiiiiiiiciin e 124

4.8.5.5. The Write Register ROULINGcceveeeiiiiiiiiiiiiiee e 124

4.8.5.6. The Memory Allocation ROULINGccoeeeieiiiiiiiiiiiiieeeeicccicie e, 125

4.8.5.7. The Memory Deallocation RoUtinecccoeeeeiiiiiiiiiiiieeeeeiiiiiiicnnnnn. 125

4.9. Data AlLOCAtION ...coiiiiiiiiiiiiiiiiii e 126
4.9.1. Data AIINIMENL ...oovviuiiieeeiiiiiiiiiieeeeeeeeeeeiieeeeeeeeeeerasteaaeeeeeessassnennaaaeeeasessseens 127
4.9.2. Global Datacoooiiiiiiiii 128
4.9.3. Local Static Datauuuiuimiiiiiiiiiiiiiiiiiiii e 128
4.9.4. Constants and Literalsccooiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee 128
4.9.5. Record Layout CONVENTIONSuvueuieeeeeriiiiiiiiiieeeeereeririiinaeeeeareessnnnnaaaeaaseenns 128
4.9.5.1. Aligned Record Layoutueeiiiieiiiiiiiiiiiieee e 128

4.9.5.2. OpenVMS VAX Compatible Record Layoutccovvveeeeeeeiiirenninnnnn. 129

4.9.6. Sample Code SEQUENCEScevvriuiieeeeeiiiiiiiiiiee e e e e eeeriiiereeeeeeeeeraraaaeeeeeaeeessnenns 130
4.9.6.1. Addressing Own Data in the Short Data Areaccceeeveeeeiriiiiiinnnnnnn. 130

4.9.6.2. Addressing External Data or Data in a Long Data Areac........... 130

4.9.6.3. Addressing Literals in the Text Segmentccceeeeeeiiiiiiiiiinieeeereeeninenen. 130

4.9.6.4. Materializing Function Pointersccooeeeeiiiiiiiiiiiieeeeieeiiiiiis e eeeeeees 131

4.9.6.5. JumMP TabIES ...ccoeviiiiiiiieeeieeeece e 131

Chapter 5. OpenVMS x86-64 Conventions 133
5.1, X86-64 REGISTET USAZE ...evvvvverneeeeeiiiiiiiiiiieeeeeeeeeitiiiieaeeeeeeeeesstataaeeeeeeessssennaaeeeeaeesssnnnns 133
5.1.1. X86-64 Re@IStEr ClaSSEScccevviiiiiiiieeeeiiiiiiiiiieeeeeeeeeeviiies e e e eeeeeerrateaeeeeeeaaannes 133
5.1.2. x86-64 General-Purpose Register Usageueeeeeeeiiiiiiiiiiiieeeeeeeeiiieieeeeeeeeens 133
5.1.3. x86-64 Floating-Point Register Usage (SSE)uvveiiiiiiiiiiiiiiiiieeeeeeeeice e, 134
5.1.4. x86-64 Floating-Point Register Usage (FPU)ccooviiiiiiiiiiieiiiiiiiciee e, 135
5.1.5. Floating-Point Status Management on OpenVMScoviiiiiiiieiiiriiiiiiienen. 136
5.1.6. x86-64 Segment RegiSter USAZEceeieiiiiiiiiiiiiiieeeeiecciiiciie e e eevvi e e eeeeeens 138
5.1.7. x86-64 Bound Register USAZEcoeeeeeiiiiiiiiiiiiieeeeeeeeiiiieeis e e e e eeeeviiien e e e eeeeenans 138
5.1.8. Legacy Pseudo-RegIStErSuuuuuiiieiiiiiiiiiiiiiee e et e e e e e evv s 138

5.2. Address and Pointer Representationcouuuviiiieeeeiiiiiiiiiiieeeeeeeeeviieee e e eeeeeevaeeens 139
5.3. Procedure ValUES ... s 139
5.4, PrOCEAUIE TYPES .uuuneiiiiiiiiiiiiieee e et e ettitiiee e e e e e e eeetbt s e eeeeeeeesasteaaeeeaeeessssannnaaeeeeesesssenns 139
5.4.1. Variable-Size Stack Proceduresccooeiiiiiiiii 140
5.4.2. Fixed-Size Stack Procedurescoooooioioioioioieeeeeeeeee e 141
5.4.3. Null Frame ProCedures ... 141

vi

VSI OpenVMS Calling Standard

5.5. Stack Overflow Detection on OpenVMS X86-64coovvvviiiiieeiiiiiiiiiiiiiee e 142
5.5.1. Stack Limit ChecKingceeiiiiiiiiiiiiiiiiiee e e e e 142
5.5.1.1. Methods for Stack Limit Checkingccccvvviieiiiiiiiiiiiiiieiie e, 142

5.6. Procedure Call and RETUINuuiieiiiiiiiiiiiieie e e e e eeaeeeees 144
5.6.1. Direct Local Calls to an Unbound Procedurec...ccooevviiiiieiineeeiiiiiiiicneeenn, 144
5.6.2. Direct Local Calls to a Bound Procedureccoeoeeiiiiiiiiiiiiieeiiiiiiiiicciee e 145
5.6.3. Direct Local Calls to a Non-Local Procedurecccvvveeiieiiiiiiiiiiiiiineeeeens 145
5.6.4. Indirect Calls to an Unbound Procedurecccooeeiiiiiiiiiiiiiiieeeeeeeeriiceee e, 145
5.6.5. Indirect Calls to a Bound Procedurecccoeeieiiiiiiiiiiiiinieeeiececiee e 145
5.6.6. RETUINIS .iiiiiiiiiiiii e e e it e et e e e e e e ettt e e e e e e eeaaat e e eeeeeeesssennnaaaaaaaeens 146
5.7. Parameter and Return Value Passingccoceeeiiiiiiiiiiiiiiieiiiiiiiiieie e eeeens 147
5.7.1. Scalar Argument TYPES ...ccevvviuiiiieeeeiiiiiiiciie e e e e ettt e e e e e e e rebre e e e e e eeeearaeannas 147
5.7.2. Aggregate ArgUmENt TYPESeeeeeiiiiiiiiiiiieeeeeeeeiiiiiiieeeeeeeeeeriieeeeeeeeeesrseennes 148
5.7.3. Unused Bits in Passed Dataceeiiiiiiiiiiiiiiiiiee e 151
5.7.4. Argument Information Register (Al)cooeeeeeiiiiiiiiiiiiieeeiiiciee e 153
5.7.5. Variable Argument LiStScccceeiiiiiiiiiiiiieieeieiiiiiiciee e ee e e e e e e e vaaae e 154
5.7.5.1. Standard Variable Argumentscceeeeeeeeiiiiiiiiiiieeeeeeeeiiiiineeeeeeeenanns 155
5.7.5.2. OpenVMS Variable Argument LiStScveeeieeeiiiiiiiiiiiineeeeeeeeeiiiiennn. 156
5.7.6. Procedure Return VAlUESuuoiiiiiiiiiiiiiiiiii e 157
5.7.7. Parameter Passing and Return Result Examplesccccccceeviiiiiiiiiiiiiiinnnneenn, 157
5.8. Procedure Call Stackoiiiiiiiiiiiiiiiii e 160
5.8.1. Current PrOCEAUIEccceeeiiiiiiiiiiiie et e e e e e e e e e e e e e eeaeaeens 161
5.8.2. Procedure Call TraCingccouuieuiiieeeiiiiiiiiiiiiieeeeeeeeeviieeseeeeeeeervriiineeeeaaeenens 161
5.8.2.1. Invocation Context BIOCKccceeiiiiiiiiiiiiiieiiiiiiiiieie e 161
5.8.2.2. Invocation Context Handlecoooeiiiiiiiiiiiiiiiieeeeeceee e, 163
5.8.3. Invocation Context Block Access ROULINESeveeeiiiiiiiiiiiiiieeeiiceciiieeee e, 164
5.8.3.1. Initializing the Invocation Context Blockceeeeiiiiiiiiiiiiiiiiinnnenn, 164
5.8.3.2. Walking the Call Stackceeiiiiiiiiiiiiiiiee e 164
5.8.3.3. LIB$X86 CREATE INVO _CONTEXTccccuiiiiiieaeeieiiiiiieeee e 165
5.8.3.4. LIB$X86 FREE INVO CONTEXTcccvtiiiiiieeiieiiiiiieeee e 166
5.8.3.5. LIB$X86 INIT INVO CONTEXT ...ccvvvveeiiiiieeeiiiie e 166
5.8.3.6. LIB$X86 GET INVO CONTEXTccooiiiiieiiiiieeeiiiiie e e eieee e 167
5.8.3.7. LIB$X86 GET CURR INVO CONTEXTcccccvviemiireeeiiieeeeiiieeeenns 167
5.8.3.8. LIB$X86 GET PREV _INVO CONTEXTcccevovvireeiiiiieeeniieee e 168
5.8.3.9. LIB$X86 GET INVO HANDLEccocviiiiiiiiiieeiiiiee et 168
5.8.3.10. LIB$X86_GET _CURR_INVO HANDLEccccvviriiiiiieeeeiieee e 169
5.8.3.11. LIB$X86_GET PREV _INVO HANDLEcccooiiiiiiiieiiiieeeeee. 169
5.8.3.12. LIB$X86 PREV INVO ENDcccoiiiiiiiiiiiiiieeiiiiiee et 170
5.8.3.13. LIB$X86 PUT INVO _REGISTERScooiiiiiiiiiieeeeeeee e 170
5.8.4. Supplemental Invocation Context Access RoOUtinescouveeeeeeeeeeeeevinennnnn.. 172
5.8.4.1. LIBSX86 GET GR ...ooiiiiiiiiiieiiiiiieeeciiiee ettt 172
5.8.4.2. LIBSX86 SET GR ...ooviiiiiiiiiiieeiiiiee ettt 173
5.8.4.3. LIBSX86 GET XXMMcccuiiiiiiiiiieeeiiiiieeeiiiee e eiieee e et e sineea e 173
5.8.4.4. LIBSX86 SET XXMMcoiiiiiiiiieeiiiiieeeiiiiieeesieeeeeeniieeeeesiiaeaessnneeeeenes 174
5.8.4.5. LIBSX86 GET YMM ...ccoiiiiiiiiiiiieeeiiiiee ettt 174
5.8.4.6. LIBSX86 SET YMMooiiiiiiiieeiiiiieeeiiiieeeeeiieeeeeieeeeeeiaeea e eiineee e 175
5.8.4.7. LIBSX86 GET ZMMceoviiiiiiiiieeeiiiieeeeiiee et e e eiaeee e 175
5.8.4.8. LIBSX86 SET ZMMccoiviiiiiiiiiieeaiiiieeeeiieeeeeeiaeeeeeneeeeesnraee e e 176
5.8.4.9. LIBSX86 SET TP ...ooiiiiiiiiiieeiiiiee e eiiiee ettt e e e e e e e nnaee s 177
5.8.4.10. LIB$X86 GET UNWIND LSDA ..ottt 177
5.8.4.11. LIB$X86 GET UNWIND OSSDcooeiiiiiiieeiiiiieeeiiiiee e e e 178
5.8.4.12. LIB$X86_GET UNWIND HANDLER PVcccccoviiiiiiiiiiiieeiiinnnnn 178

vii

VSI OpenVMS Calling Standard

5.8.4.13. LIB$X86 IS EXC DISPATCH FRAMEc.cooviiiiiieniiiiieeeiieeees 178

5.8.4.14. LIB$X86 IS AST DISPATCH FRAMEccoovviieiiiiieeeiiee e 179

5.8.5. Invocation Context Callback ROUINESuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 179

5.8.5.1. The Get Unwind Information ROUtiNgceeveiiriiiiiiiiiiiieiiiiiiiiieneees 180

5.8.5.2. The Get Initial Context ROUtineccoooviiiiiiiiii, 180

5.8.5.3. The Read Memory ROULINGoeeeiiiiiiiiiiiiiiieeeeeeceeieee e 181

5.8.5.4. The Write Memory ROULINGcoeveiiiiiiiiiiiiiiie e 181

5.8.5.5. The Write Register ROULINGuueiiieiiiiiiiiiiiiiie e 182

5.8.5.6. The Memory Allocation ROULINEGcoeeeeeiiiiiiiiiiiieeeeeecciiicieee e, 182

5.8.5.7. The Memory Deallocation Routingcccceeeeeeeeiiiiiiiiiiinnneeeeeeeeiiennn, 183

5.9. Data Alignment and LaYOULccceeeiiiiiiiiiiiiie e e e e e eeeeeeeearae e e e eeaeeees 183

5.9.1. SCalAIS iiiiiiiiiii 184

5.9.2. Record Layout CONVENLIONScceevviureiieeeerreiiiiiiiineeeerreerrariaeeeeesrerssnennaeeens 184

5.9.2.1. Aligned Record Layoutccoeviiiiiiiiieeeiiiiiiiiieiee e 185

5.9.2.2. OpenVMS VAX Compatible Record Layoutcccceeeeiviiiiiiciinneennnnnnn, 186

5,100 AQAIESSING ..vvunneeeeiiiiiiiiie e e e e ettt e e e e e e e eea e e e eeeeeeabaa e eeeeeaeasssenaaeeeeeessssnnnnnnns 186

5.10.1. MemOTY MOAEISuoeeeiiiiiiiiiiie e e e e et e e e e e e e e eaaa s 186

5.10.2. Inter-Segment AddIeSSINGuuuueieeeeeiiiiiiiiiiiieeeeeeeeriiierreeeeeeeerrrreeaaeaeeaaeeens 187
Chapter 6. Signature Information and Translated Images (Alpha and 164

SYSEEIMNIS) weeerrurrersanrsssanesssanesssasesssasesssssessassssnns 189

LT TR 0 1< o 1RO PPN 189

6.1.1. Translated VAX Images on Alpha SyStemsccoeveeiiiiiiiiiiiiineeeeeeeeiiiiceeeenn, 189

6.1.1.1. Direct Calls From Translated to Native Codecccoeevviiiiiiiiiiiiinnnnnn.. 190

6.1.1.2. Direct Calls From Native to Translated Codeccccccevviiiiiiiiiin. 190

6.1.1.3. Indirect Calls From Native to Translated Codeccoeeveieieiiiennnnnnnnn. 190

6.1.2. Translated Images on I64 SYSIEMSevieeiiiiiiiiiiiiiieeeeeeceiiieire e e e e e eevierr e e eeaees 191

6.1.2.1. Calls From Translated to Native 164 Codecooeeieiiiiiiin. 192

6.1.2.2. Direct Calls From Native 164 Code to Translated Code 192

6.1.2.3. Indirect Calls From Native to Translated Codeccoeeveiiieiiiennnnnnnnn. 193

6.1.3. Signature Information Fields in Function Descriptorscccoeeeeevvivivinnnneeennnes 193

6.2. Signature Information BIOCKScooeiiiiiiiiiiiiiiii e 194

6.2.1. Signature Information on Alpha SYStemSccoeeeeeiiiiiiiiiiiiieieeeiciiiciee e eee e, 194

6.2.2. Signature Information on I64 SYStEMSuuveeeeiiiiiiiiiiiiieee e e e e eeeeenaes 194

6.2.3. Signature Information Block Contentccceeiieiiiiiiiiiiiiiiineeeceeecee e, 195

6.2.4. Call Parameter PSIG CONVEISIONSuuuuueutiiiiiiiiiiiiiiiiiiiiiiiii e 198

6.2.4.1. Native-Alpha-to-Translated-VAX PSIG Conversionscccccvvvvnnn.. 198

6.2.4.2. Translated-VAX-to-Native-Alpha PSIG Conversionscccccvvvvnnn... 199

6.2.4.3. Native-164-to-Translated-Alpha PSIG Conversionsccceeeeeeeeerennns 200

6.2.4.4. Translated-Alpha-to-Native-164 PSIG Conversionscceeeeeeeeeeennns 200

6.2.5. Default Signature Informationcccceeeeiiiiiiiiiiiiiieeeiirece e 200

Chapter 7. OpenVMS Argument Data TYPeSccoveeevveririrnrcssnrcssnncsssnscssssssssssssssssssssnns 203

7.1, AtOmIC DAt TYPES ..uuneeeeiiiiiiiiiiiiee e e e e eeeiieee e e e e e e ettt ere e e e e e eeeataa e eeeeaeeesssanaaaaaaaaeees 203

7.2, StrING DAta TYPES tuvveueeeeiiiiiiiiiiie et e e ettt eee e e e e e e e eeat e eaaeeeeeaeeasasteaeeeeaeesssssnnnaaaeaaaeeens 205

7.3. Miscellaneous Data TYPES ...uuuueieeeeiiiiiiiiiiiieeeeee ettt e e e e e e e et e e e e e eeeevabaeneeeeeaaananes 206

7.4. Reserved Data-TyPe COAEScceeeiiiiiiiiiiiieieeeiiiiiiiiiee e e e e ettt e e e e e e eeeaaaeeeeeeeeeeasaeeens 207

7.4.1. Facility-Specific Data-Type Codescoeeeeiiiiiiiiiiiiiieeeeeieiiiiieee e 208

7.5. Varying Character String Data Type (DSCSK_DTYPE VT) ..oooiiiiiiiiiiiiiiiniiienieeens 208

Chapter 8. OpenVMS Argument Descriptors 211

8.1. DeSCIIPLtOr PrOtOLYPE ..ooviviiiiiiieieeiieiiiicie ettt e e e e e e ettt e e e e e e e e eearbaeeeeeeeeeaesnnnns 212

8.2. Fixed-Length Descriptor (CLASS S) oo e 214

8.3. Dynamic String Descriptor (CLASS D) .ooiiiiiiiiiieiiiieeiee e 215

viii

VSI OpenVMS Calling Standard

8.4. Array Descriptor (CLASS A) .oiiiiiiiiiiiie ettt e e e e e e e e evb e e e e e e aeeaaaaeens 216
8.5. Procedure Argument Descriptor (CLASS P) cooooiiiiiiiiiiiiiieceiee e 221
8.6. Decimal String Descriptor (CLASS SD) ..oovviiiiiiieiiiiieeieii e 222
8.7. Noncontiguous Array Descriptor (CLASS NCA) ..oovviiiiieeiiiiieiiiei e 223
8.8. Varying String Descriptor (CLASS VS) ..o 227
8.9. Varying String Array Descriptor (CLASS VSA) ..o 229
8.10. Unaligned Bit String Descriptor (CLASS UBS) ...oouiiiiiiiiiiiiicieie e 232
8.11. Unaligned Bit Array Descriptor (CLASS UBA) ...cooiiiiiiiiiiiiiiee e 233
8.12. String with Bounds Descriptor (CLASS SB)uuiiiiiiiiiiiiiiiieiee e 237
8.13. Unaligned Bit String with Bounds Descriptor (CLASS UBSB)covvvveieieeieiiiniinee. 239
8.14. Reserved Descriptor Class Codesoeiiviviiiiiiieieeiiiiiiiieiieeeeeeeeeiieee e e e e eeevraee e 241
8.14.1. Facility-Specific Descriptor Class Codesceeeeeeeiiiiiiiiiiiieeeeiieiiiiieiieeeeeees 241
Chapter 9. OpenVMS Conditionsccceevereesvnncsssercsssnrcssssnsssarsssssssssssssssssssssssssssasssssasssss 243
9.1. Condition ValUeScooiiiiiiiiiiiiiiiii 243
9.1.1. Interpretation of Severity Codesuueeiiiiiiiiiiiiiiiiie e 245
9.1.2. Use of Condition VAlUESccoiiiiiiiiiiiiiiiiiiiiiiiiii 247

9.2. Condition Handlerscooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeteeteeeeeeeeeeeee ettt 247
9.3. Condition Handler OPLiONScceeeeeeiiviiiiiiieeeeeriieiiiiiseeeeeeeeeviiieeeeeeeaeesrsenseeeeeaeenses 248
9.4. Operations Involving Condition Handlerseeeiieiiiiiiiiiiiiiiiee e 248
9.4.1. Establishing a Condition Handlercccvviiiiiiiiiiiiiiiiciiie e, 249
9.4.2. Reverting to the Caller's Handlingcceeiieiiiiiiiiiiiiiiiie e 249
9.4.3. Signaling a Conditionceeeeeeiiiiiiiiiiieeeeeee it e e e e e eeeire e e e e eeeeraree e as 250
9.4.4. Signaling a Condition Using GENTRAP (64-Bit Systems)cccceeeeevrvrrvvnnnnn. 250
9.4.5. Signaling a Condition Using BREAK (164 Only)cceeiiiiiiiiiiiiiiciiieeeeeeeen, 252
9.4.6. Condition Handler Searchccccccoiiiiiiiiiiiiiii 253

9.5. Properties of Condition HandIersccccceeiiiiiiiiiiiiineiiiiiiiicieee e 254
9.5.1. Condition Handler Parameters and Invocationccccccvviiiiiiiiiiiiiiiii. 254
9.5.1.1. Signal Argument VECIOTccccceeeiiiiiiiiiiiieeeeeeeiiiiiiiiieeeeeeeeveiriineeeeeeeeens 255

9.5.1.2. Mechanism Argument VECTOTuuueiieeeeriiiiiiiiiiieeeeereeeiiiiiieeeeeeeennnns 257

9.5.1.3. Mechanism Depthoooiiiiiiiiiiiiiiiiiiiee e 268

9.5.2. System Default Condition Handlerscccceoveiiiiiiiiiiiiiiinie e, 269
9.5.3. Coordinating the Handler and Establisherccccooooiiiiiiiiiiiiininiiin, 269
0.5.3.1. USE Of MEMOLY ..eevviviiieeeeeiiiiiiiiiieieeeeeeeeeeiaiees e e e e e eeertbaeseeeeeeeeesssnennnnnes 269

9.5.3.2. Exception Synchronization (Alpha Only)cccccveeeiiiiiiiiiiiiiiiieee e, 269

9.5.3.3. Continuation from Exceptions (Alpha Only)cccceeeeeeiiiiiiiiiiiiennenn, 270

9.5.3.4. Floating-Point Control Status (I64 and X86-64)cccceeeevviiriiiiiineennnnnns 270

9.6. Returning from a Condition Handlerccooeeiiiiiiiiiiiiiiii e 271
9.7. Request to Unwind from a Signaloooviiiiiiiiiiiiiiiiiiiiiie e 272
9.7.1. Signaler's REGISLEISuuvuuuniieiiiiiiiiiiiiee e e e e ettt e e e e e e e ettt e e e e e e e eeasaeeeeeeaeaeens 273
9.7.2. Unwind Completionouuuuiiiiiiiiiiiiiiiiiiiieeeeee et e e e e e e eeevbres e e eeeeeeensseennns 274

9.8. GOTO Unwind Operations (64-bit SYStEIMS)cceeeiiiiiiiiiiiiiieeeeieeiiiieie e e e ee e 275
9.8.1. Handler Invocation During a GOTO Unwindcoovvveiireeeiiiiiiiiiiineeeeeeenes 277
9.8.2. Unwind Completioncouuuiiiiiieiiiiiiiiiiiii e e e ee et e e e e e e eeerri e e eeeeeeeasseennns 278

9.9. Multiple ACtIVE SIZNALSuuuiieiiiiiiiiiiiiiie e e e et e e e e e e e et e e e e e e eeaaaeananns 278
9.10. Multiple Active Unwind OPErationsccceeeeeeeeeirrieieeeeeereeriiiiiinaeeeereeersnenseaaeaeeeeens 280
Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164 281
AL Unwinding the Stackoooviiiiiiiiiiieee e e e e e e e aeens 282
WO O TR 0 V] 0311« A 282
A.1.2. Step to Previous Frameccoevieiiiiiiiiiiiii e 282

A.2. Exception Handling Frameworkcccooeeiiiiiiiiiiiiiiii e 283
A.3. Coding Conventions for Reliable Unwindingccoeeeeeiiiiiiiiiiiiieeeeiieeiiicceeeeeeeeees 284

ix

VSI OpenVMS Calling Standard

A.3.1. Requirements for Unwinding the Stackcccooeeiiiiiiiiiiiiiiniiiiicieeee e 284
A.3.2. Conventions for Prologue RegIONScoovviiiiiiiiiiiiiiiiiiiiiee e 284
A.3.3. Conventions for Body RegiOnsuueiiieiiiiiiiiiiiiiieeeeeceeeiee e, 286
A.3.4. Conventions for EPIlOZUESvieeeiiiiiiiiiiiiieee e e e e e 287
A.3.5. Conventions for the Spill Area in the Memory Stack Frame 287

A4 Data SIUCTUIES .o e e 288
A.4.1. Unwind Table and Unwind Information Block ..., 288
A4.1.1. Unwind DeSCriptor ATCauuuuiieeeeiiiiiiiiiiiieeeeeeeiiiiiiieeeeeeeevrrriinaeeaaaaens 290

A.4.1.2. Region Header ReCOIdSccoeeeeiiiiiiiiiiiiieieiiiieiiicceie e 291

A.4.1.3. Descriptor Records for Prologue Regionsccceeeveiiiiiiiiiiiiiineennnnn, 292

A.4.1.4. Descriptor Records for Body Regionscceeeeeeiiiiiiiiiiiiineeeeieciiieennn, 297

A.4.1.5. Descriptor Records for Body or Prologue Regionsccccceeeeeeeennnnn, 298

A.4.1.6. Rules for Using Unwind DeSCIIPtOrsueeuieeeeerieiiiiiiiiieeeeeeeeiviiinnnnnns 299

A.4.1.7. Processing Unwind DesCriptorsuuueeeeeeeiiiiiiiiiiiieeeeeieeiiiieneeeeeeeeens 300

A.4.2. Condition Handlerccooioiiioie e 301
A.4.3. Operating System-Specific Data Areaccevvvviiieeeriiiiiiiiiiiieeeeeeeeeiiene e 301
A.4.3.1. General Information SEZMENLteeveeeeeeiiiiiiiiiiieeeeeeeeiiiiieneeeeeeeeenns 302

A.4.3.2. Caller Spill Register INformationceeevveviiiiiineeeeiiiiiiiicieeeeeeeeenens 304

A.4.4. Language-Specific Data AT€aueieeiiiiiiiiiiiiiie e eeeeeeeiee e e e e 305

A.5. Unwind Descriptor Record FOrmatccooeiiiiiiiiiiiiiiiee e 306
A.5.1. Region Header ReCOIdScvieiiiiiiiiiiiiiiie e 307

A5 L1 FOrmat R Loueiiiiiiiiiiiiiiiiiiiiiiie et 307

A5 1.2, FOrmat R2 ..oouiiiiiiiiiiiiiiiiiiiiiiiteieee et 308

A5 1.3, FOrmat R3 oottt 308

A.5.2. Descriptor Records for Prologue Regionscceeeevieiiiiiiiiiiineeeeeeeeiiinen, 309
AS5.2.1 Format PL oottt 309

A5.2.2. Format P2 ..ottt 309

A5.2.3. Format P3 oo 309

A5.2.4. Format P4 Lot 310

A5.2.5. Format PS5 oottt 310

A5.2.6. FOrmat POooooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitteeeteeeee e 311

AS5.2.7. FOrmat P7 .oooiiiiiiiiiiiiiiiiiiiiiiiiiitiieeetetteeeeeeeeeee e 311

A5.2.8. Format P8 ..ooiiiiiiiiiiiiiiiiiiiiiiiiiiiitteeeeeeeeeee e 312

A5.2.9. Format PO ..ooiiiiiiiiiiiiiiiiiiiiiiieteeeeeee e 313

A.5.2.10. Format P10 .ooooiiiiii 314

A.5.3. Descriptor Records for Body Regionsccoeveiiiiiiiiiiiiiiiieeeiiccciicceee e 314
AS53.1. FOrmat B Louuiiiiiiiiiiiiiiiiiiiiiit e 314

A5.3.2. FOrmat B2 ..ooiiiiiiiiiiiiiiiiiiiiiiiiieiee e 314

A5.3.3. FOrmat B3 oottt 315

A5.3.4. FOrmat B4ooiiiiiiiiiiiiiiiiiiiiiie et 315

A.5.4. Descriptor Records for Body or Prologue Regionscccoeeeeeiiiiiiiiiinenennnnnns 315
AS54.1 Format X1 oo 316

AS54.2. FOrmat X2 .ooiiiiiiiiiiiiiiiiiiiee e 317

A543, Format X3 oo 317

AS54.4. Format X4 ..o 318

A.6. Default Unwind Informationciiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeee e 318
A.7. System Unwind ROULINESceeeiiiiiiiiiiiiiieeeiiiiiiiiie e e et e e e e e e e e e e e e e eeevarennnns 319
Appendix B. Stack Unwinding and Exception Handling on OpenVMS x86-64 321
B.1. Unwinding the StacCKccccceeiiiiiiiiiiiiiiieiiiiiciis e e e e e e e e e e eeaaa e 321
B.1.1. Initial ConteXt ...oooeiiiiiiiiiiiiiii 321
B.1.2. Step to Previous Framecccooviiiiiiiiiiiiiiiiiiee e 321

B.2. Exception Handling Frameworkccooiiiiiiiiiieiiiiiiiiiiciee e 322

VSI OpenVMS Calling Standard

B.3. Data SIUCUIES ...oceiiiiiiiiiiiiiiiii i 323
B.3.1. Unwind Dispatch Tableccoveiiiiiiiiiiiiiiiie e 324
B.3.2. DWARF Unwind DesCIIPLOrsccuuuueiiiieeeeiiiiiiiiiiieeeeeeeeevviiene e e e eeeeeevneenn s 326

B.3.2.1. 32-bit vs 64-bit DWARF Formatscooeeeiiiiiiiii, 327

B.3.2.2. Common Information Entryc.c..coooiiiiiiiiiiiieeiiiiiceee e 328

B.3.2.3. Frame Description Entrycccooeeiiiiiiiiiiiiiee e 330

B.3.2.4. Address/Pointer ENCodingsccooeeeeiiiiiiiiiiiieieeiiiiiiiiciie e 331

B.3.2.5. Call Frame INStrUCHIONSuuuuuuuuuuuiiiiiiiiiiiiiiiiiiieiiiiiiieiiiiiieeeeeeeeeeeeeeees 331

B.3.2.6. Call Frame Instruction USagecceevririiiiiieeeriiiiiiiiiieeeeeeeeeeviiiinnnns 335

B.3.2.7. Call Frame Encodingcceeeiiiiiiiiiiiiiiiie e 336

B.3.2.8. DWARF Register Number Mappingc.cuveeeereeeereeiiiniiineeeeeeennennens 337

B.3.2.9. Related Assembler Directives and Implementation Notes 338

B.3.3. Compact Unwind DeSCIiPtiONuuuueiieeeeiiiiiiiiiiiieeeeeeeeeiiiiineeeeeeeeeeniennnnnes 339

B.3.3.1. Compact Unwind ENcodingccceeereeiiiiiiiiiiiiinieeeeeeeeiiiee e eee e 339

B.3.3.2. Preserved Register ENUMErationc...cceevvvviiiiiiineeeeiiieiiiiiineeeeeeeenans 340

B.3.3.3. Variable-Size Frame (MODE=1)cccooiviiiiiiiiiiiiieieeeeeceeiceee e, 341

B.3.3.4. Fixed-Size Frame (MODE=2)cccovvtiiiiiiieieiiiieeiciee e 341

B.3.3.5. Large Fixed-Size Frame (MODE=3)ccccccceiiiiiiiiiiiiieeeiiieiceeie e, 342

B.3.3.6. DWARF Escape (MODE=4)cccccciiiiiiiiiiiiiieeeeeeeeciee e 342

B.3.3.7. Register Permutation Encodingccccoeeeiiiiiiiiiiiiineiiiiiiiiciin e, 343

B.3.3.8. Operating System Specific Extensions for OpenVMScccoeeeeeees 343

B.3.4. Compact Unwind Descriptor StruCtUIeuuveeiereeeriiiiiiiiiiieeeeeeeeveiiinneeenn 344

B.4. Default Unwind Informationooooeeiiiiiiii i 345

B.5. System Unwind ROULINESouuiiiiiiiiiiiiiiiiiie e e e et eeeeeeevvvaieeeeeaaeees 345
Appendix C. Summary of Differences from Related Industry Software

CONVENLIONS ...oeeeeeeeeeeeeeecrssssnnnsereececssssssnsssseesesssssssnssssssssssssssssssnssssssssssssssassssssssssssssssssasssssssss 347

C.1. Differences from Intel Itanium Software COnventionscceeeeeeeeereeeieeeeeneeeeeeeeeeeennn 347
C.1.1. Changes from Intel Itanium Software Conventionscccceeeeveeviviveiereeenennnns 347
C.1.2. Extensions to Intel [tanium Software Conventionsccccceeveeiiiiiiiiinnnnnnnn... 348

C.2. Differences from Industry x86-64 Software Conventionscceeeeeeeeerreervvennnnnnnn. 349
C.2.1. Changes from Industry x86-64 Software Conventionscccccvvveeeeeeerrennnns 349
C.2.2. Extensions to Industry x86-64 Software Conventionsccceeeeeeereeervvennnnnnnn. 350

Xi

VS| OpenVMS Calling Standard

xii

Preface

nma Software

The VSI OpenVMS Calling Standard defines the requirements, mechanisms, and conventions that
support procedure-to-procedure calls for OpenVMS VAX, OpenVMS Alpha, OpenVMS Industry
Standard 64 (164), and OpenVMS x86-64. The standard defines the run-time data structures,
constants, algorithms, conventions, methods, and functional interfaces that enable a native user-mode
procedure to operate correctly in a multilanguage environment on VAX, Alpha, Itanium®, and x86-64
systems. Properties of the run-time environment that must apply at various points during program
execution are also defined.

The 32-bit user mode of OpenVMS Alpha provides a high degree of compatibility with programs
written for OpenVMS VAX.

The 64-bit user mode of OpenVMS Alpha is a compatible superset of the OpenVMS Alpha 32-bit
user mode.

The 32-bit and 64-bit user modes of OpenVMS 164 and x86-64 are highly compatible with OpenVMS
Alpha.

The interfaces, methods, and conventions specified in this manual are primarily intended for use by
implementers of compilers, debuggers, and other run-time tools, run-time libraries, and base operating
systems. These specifications may or may not be appropriate for use by higher level system software
and applications.

This standard is under engineering change order (ECO) control. ECOs are approved by VSI's
OpenVMS Calling Standard committee.

1. About VSI

VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard
Enterprise to develop and support the OpenVMS operating system.

VSI seeks to continue the legendary development prowess and customer-first priorities that are so
closely associated with the OpenVMS operating system and its original author, Digital Equipment
Corporation.

2. Intended Audience

This manual primarily defines requirements for developers of compilers and debuggers, but the
information can apply to procedure calling for all programmers.

3. Document Structure

This manual contains the following chapters and appendixes:
Chapter 1 provides an overview of the standard, defines goals, and defines terms used in the text.

Chapter 2 describes the primary conventions in calling a procedure in an OpenVMS VAX
environment. It defines register usage and addressing as well as vector and scalar processor
synchronization.

xiii

Preface

Chapter 3 describes the fundamental concepts and conventions in calling a procedure in an OpenVMS
Alpha environment. The chapter defines register usage and addressing, and focuses on aspects of the
calling standard that pertain to procedure-to-procedure flow of control.

Chapter 4 describes the fundamental concepts and conventions in calling a procedure in an OpenVMS
164 environment. The chapter defines register usage and addressing, and focuses on aspects of the
calling standard that pertain to procedure-to-procedure flow of control.

Chapter 5 describes the fundamental concepts and conventions in calling a procedure in an OpenVMS
x86-64 environment. The chapter defines register usage and addressing, and focuses on aspects of the
calling standard that pertain to procedure-to-procedure flow of control.

Chapter 6 describes signature information and its role in interfacing with translated OpenVMS VAX
and Alpha images on Alpha and 164 systems.

Chapter 7 defines the argument-passing data types used in calling a procedure for all OpenVMS
environments.

Chapter 8 defines the argument descriptors used in calling a procedure for all OpenVMS
environments.

Chapter 9 describes the OpenVMS condition and exception handling requirements for all OpenVMS
environments.

Appendix A describes stack unwinding and exception handling for OpenVMS 164 environments.
Appendix B describes stack unwinding and exception handling for OpenVMS x86-64 environments.

Appendix C contains a brief summary of the differences of this calling standard from Intel Itanium
and industry x86-64 software conventions.

4. Related Documents

The following manuals contain related information:

* VAX Architecture Reference Manual

* Alpha Architecture Reference Manual

e OpenVMS Programming Interfaces: Calling a System Routine

* Guide to the POSIX Threads Library

* VAX/VMS Internals and Data Structures

o OpenVMS AXP Internals and Data Structures

o [tanium® Software Conventions and Runtime Architecture Guide
o Intel IA-64 Architecture Software Developer's Manual

o Intel 64 and I4-32 Architectures Software Developer Manuals

o System V Application Binary Interface, AMDG64 Architecture Processor Supplement, Version 1.0

e Linux Standard Base, Version 5.0

Xiv

Preface

5. VSI Encourages Your Comments

You may send comments or suggestions regarding this manual or any VSI document by sending email
to the following Internet address: <doci nf o@nssof t war e. conp.

6. How to Order Additional Documentation

For information about how to order additional documentation, email the VSI OpenVMS information
account: <i nf o@nssof t war e. cont. We will be posting links to documentation on our

corporate website soon.

7. Typographical Conventions

The following conventions are used in this manual:

Convention

Meaning

Ctrl/x

A sequence such as Ctrl/x indicates that you must hold down the key
labeled Ctrl while you press another key or a pointing device button.

PF1 x

A sequence such as PF1 x indicates that you must first press and release the
key labeled PF1 and then press and release another key (X) or a pointing
device button.

A horizontal ellipsis in examples indicates one of the following
possibilities:

* Additional optional arguments in a statement have been omitted.
* The preceding item or items can be repeated one or more times.

* Additional parameters, values, or other information can be entered.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to
the topic being discussed.

0

In command format descriptions, parentheses indicate that you must
enclose choices in parentheses if you specify more than one.

[]

In command format descriptions, brackets indicate optional choices. You
can choose one or more items or no items. Do not type the brackets on the
command line. However, you must include the brackets in the syntax for
directory specifications and for a substring specification in an assignment
statement.

In command format descriptions, vertical bars separate choices within
brackets or braces. Within brackets, the choices are optional; within
braces, at least one choice is required. Do not type the vertical bars on the
command line.

)

In command format descriptions, braces indicate required choices; you
must choose at least one of the items listed. Do not type the braces on the
command line.

bold type

Bold type represents the name of an argument, an attribute, or a reason.
Bold type also represents the introduction of a new term.

XV

Preface

Convention

Meaning

italic type

Italic type indicates important information, complete titles of manuals,

or variables. Variables include information that varies in system output
(Internal error number), in command lines (/PRODUCER=name), and in
command parameters in text (where dd represents the predefined code for
the device type).

UPPERCASE TYPE

Uppercase type indicates a command, the name of a routine, the name of a
file, or the abbreviation for a system privilege.

Exanpl e

This typeface indicates code examples, command examples, and interactive
screen displays. In text, this type also identifies website addresses, UNIX
commands and pathnames, PC-based commands and folders, and certain
elements of the C programming language.

A hyphen at the end of a command format description, command line,
or code line indicates that the command or statement continues on the
following line.

numbers

All numbers in text are assumed to be decimal unless otherwise noted.
Nondecimal radixes—binary, octal, or hexadecimal—are explicitly
indicated.

xvi

Chapter 1. Introduction

This standard defines properties such as the run-time data structures, constants, algorithms,
conventions, methods, and functional interfaces that enable a native user-mode procedure to operate
correctly in a multilanguage and multithreaded environment on OpenVMS VAX, OpenVMS Alpha,
OpenVMS 164, and OpenVMS x86-64 systems. These properties include the contents of key registers,
format and contents of certain data structures, and actions that procedures must perform under certain
circumstances.

This standard also defines properties of the run-time environment that must apply at various points
during program execution. These properties vary in scope and applicability. Some properties apply

at all points throughout the execution of standard-conforming user-mode code and must, therefore,

be held constant at all times. Examples of such properties include those defined for the stack pointer
and various properties of the call stack navigation mechanism. Other properties apply only at certain
points, such as call conventions that apply only at the point of transfer of control to another procedure.

Furthermore, some properties are optional depending on circumstances. For example, compilers are
not obligated to follow the argument list conventions when a procedure and all of its callers are in the
same module, have been analyzed by an interprocedural analyzer, or have private interfaces (such as
language-support routines).

Note

In many cases, significant performance gains can be realized by selective use of nonstandard calls
when the safety of such calls is known. Developers of compilers and other tools are encouraged to
make full use of such optimizations.

The procedure call mechanism depends on agreement between the calling and called procedures

to interpret the argument list. The argument list does not fully describe itself. This standard
requires language extensions to permit a calling program to generate some of the argument-passing
mechanisms expected by called procedures.

This standard specifies the following attributes of the interfaces between modules:
* Calling sequence—instructions at the call site, entry point, and returns
* Argument list—structure of the list describing the arguments to the called procedure

¢ Function value return—form and conventions for the return of the function value as a value or as a
condition value to indicate success or failure

* Register usage—which registers are preserved and who is responsible for preserving them
* Stack usage—rules governing the use of the stack

* Argument data types—data types of arguments that can be passed

* Argument descriptor formats—how descriptors are passed for the more complex arguments

* Condition handling—how exception conditions are signaled and how they are handled in a
modular fashion

» Stack unwinding—how the current thread of execution is aborted efficiently.

Chapter 1. Introduction

1.1. Applicability

This standard defines the rules and conventions that govern the native user-mode run-time
environment on OpenVMS VAX, Alpha, 164, and x86-64 systems. It is applicable to all software that
executes in OpenVMS native user mode.

Uses of this standard include:
* All externally callable interfaces in OpenVMS supported, standard system software
* All intermodule calls to major software components

» All external procedure calls generated by OpenVMS language processors without interprocedural
analysis or permanent private conventions (such as those used for language-support run-time
library [RTL] routines).

1.2. Architectural Level

This standard defines an implementation-level run-time software architecture for OpenVMS
operating systems.

The interfaces, methods, and conventions specified in this document are primarily intended for use by
implementers of compilers, debuggers, and other run-time tools, run-time libraries, and base operating
systems. These specifications may or may not be appropriate for use by higher-level system software
and applications.

Compilers and run-time libraries may provide additional support of these capabilities via interfaces
that are more suited for compiler and application use. This specification neither prohibits nor requires
such additional interfaces.

1.3. Goals

Generally, this calling standard promotes the highest degree of performance, portability, efficiency,
and consistency in the interface between called procedures of a common OpenVMS environment.
Specifically, the calling standard:

» Applies to all intermodule callable interfaces in the native software system. Specifically, the
standard considers the requirements of important compiled languages including Ada, BASIC,
BLISS, C, C++, COBOL, Fortran, Pascal, LISP, PL/I, and calls to the operating system and library
procedures. The needs of other languages that the OpenVMS operating system may support in the
future must be met by the standard or by compatible revisions to it.

* Excludes capabilities for lower-level components (such as assembler routines) that cannot be
invoked from the high-level languages.

* Allows the calling program and called procedure to be written in different languages. The standard
reduces the need for using language extensions in mixed-language programs.

* Contributes to the writing of error-free, modular, and maintainable software, and promotes
effective sharing and reuse of software modules.

* Provides the programmer with control over fixing, reporting, and flow of control when various
types of exception conditions occur.

Chapter 1. Introduction

Provides subsystem and application writers with the ability to override system messages toward a
more suitable application-oriented interface.

Adds no space or time overhead to procedure calls and returns that do not establish exception
handlers, and minimizes time overhead for establishing handlers at the cost of increased time
overhead when exceptions occur.

The portion of this standard specific to OpenVMS Alpha:

Supports a 32-bit user-mode environment that provides a high degree of compatibility with the
OpenVMS VAX environment.

Supports a 64-bit user-mode environment that is a compatible superset of the OpenVMS Alpha
32-bit environment.

Simplifies coexistence with OpenVMS VAX procedures that execute under the translated image
environment.

Simplifies the compilation of OpenVMS VAX assembler source to native OpenVMS Alpha object
code.

Supports a multilanguage, multithreaded execution environment, including efficient, effective
support for the implementation of the multithreaded architecture.

Provides an efficient mechanism for calling lightweight procedures that do not need or cannot
expend the overhead of setting up a stack call frame.

Provides for the use of a common calling sequence to invoke lightweight procedures that maintain
only a register call frame and heavyweight procedures that maintain a stack call frame. This
calling sequence allows a compiler to determine whether to use a stack frame based on the
complexity of the procedure being compiled. A recompilation of a called routine that causes a
change in stack frame usage does not require a recompilation of its callers.

Provides condition handling, traceback, and debugging for lightweight procedures that do not have
a stack frame.

Makes efficient use of the Alpha architecture, including effectively using a larger number of
registers than is contained in a conventional VAX processor.

Minimizes the cost of procedure calls.

The portion of this standard specific to OpenVMS 164:

Extends all of the goals listed above for the OpenVMS Alpha environment to the OpenVMS 164
environment.

Supports a 64-bit user mode environment that is highly compatible with the OpenVMS Alpha 64-
bit user mode environment.

Makes efficient use of the Itanium architecture, including using a larger number of registers than
is contained in a conventional Alpha processor, as well as additional 164 architecture features.

Follows conventions established for Intel Itanium processor software generally except where
required to preserve compatibility with OpenVMS VAX and Alpha environments.

The portion of this standard specific to OpenVMS x86-64:

Extends all of the goals of the earlier OpenVMS environments to x86-64 compatible systems.

Chapter 1. Introduction

Follows industry conventions established for the Intel and AMD compatible x86-64 processor
software generally except where required to preserve compatibility with OpenVMS for earlier
environments.

The OpenVMS procedure calling mechanisms of this standard do not provide:

Checking of argument data types, data structures, and parameter access. The OpenVMS protection
and memory management systems do not depend on correct interactions between user-level
calling and called procedures. Such extended checking might be desirable in some circumstances,
but system integrity does not depend on it.

Information for an interpretive OpenVMS Debugger. The definition of the debugger includes a
debug symbol table (DST) that contains the required descriptive information.

1.4. Definitions

The following terms are used in this standard:

L]

Address: On OpenVMS VAX systems, a 32-bit value used to denote a position in memory. On
OpenVMS Alpha, OpenVMS 164, and OpenVMS x86-64 systems (collectively referred to as

the 64-bit systems), a 64-bit value used to denote a position in memory. However, many 64-bit
applications and user-mode facilities operate in such a manner that addresses are restricted only to
values that are representable in 32 bits. This allows addresses on 64-bit systems often to be stored
and manipulated as 32-bit longword values. In such cases, the 32-bit address value is always
implicitly or explicitly sign-extended to form a 64-bit address for use by the hardware.

Argument list: A vector of entries (longwords on OpenVMS VAX, quadwords on 64-bit systems)
that represents a procedure parameter list and possibly a function value.

Asynchronous software interrupt: An asynchronous interruption of normal code flow caused
by some software event. This interruption shares many of the properties of hardware exceptions,
including forcing some out-of-line code to execute.

Bound procedure: A type of procedure that requires knowledge (at run-time) of a dynamically
determined larger enclosing scope to function correctly.

Call frame: The body of information that a procedure must save to allow it to properly return to
its caller. A call frame may exist on the stack or in registers. A call frame may optionally contain
additional information required by the called procedure.

Condition handler: A procedure designed to handle conditions (exceptions) when they occur
during the execution of a thread.

Condition value: A 32-bit value (sign-extended to a 64-bit value on 64-bit systems) used to
uniquely identify an exception condition. A condition value can be returned to a calling program
as a function value or it can be signaled using the OpenVMS signaling mechanism.

Descriptor: A mechanism for passing parameters where the address of a descriptor is an entry
in the argument list. The descriptor contains the address of the parameter, data type, size, and
additional information needed to describe fully the data passed.

Exception condition (or condition): An exceptional condition in the current hardware or
software state that should be noted or fixed. Its existence causes an interruption in program
flow and forces execution of out-of-line code. Such an event might be caused by an exceptional
hardware state, such as arithmetic overflows, memory access control violations, and so on, or

Chapter 1. Introduction

by actions performed by software, such as subscript range checking, assertion checking, or
asynchronous notification of one thread by another.

During the time the normal control flow is interrupted by an exception, that condition is termed
active.

Function: A procedure that returns a single value in accordance with the standard conventions for
value returning. Additional values may be returned by means of the argument list.

Function pointer: See Procedure value.

Function value: Depending on context, either 1) a value that is returned as a result of calling a
procedure, or 2) a procedure value (see below).

Hardware exception: A category of exceptions that reflect an exceptional condition in the current
hardware state that should be noted or fixed by the software. Hardware exceptions can occur
synchronously or asynchronously with respect to the normal program flow.

IP (164 platforms): Instruction pointer—a value that identifies a bundle of instructions in memory;
the address of the first (lowest addressed) byte of an aligned 16-byte sequence that encodes three
Itanium architecture instructions. See also PC.

IP (x86-64 platforms): Instruction pointer—an address that identifies an instruction in memory.
See also PC.

Immediate value: A mechanism for passing input parameters where the actual value is provided
in the argument list entry by the calling program.

Language-support procedure: A procedure called implicitly to implement high-level language
constructs. Such procedures are not intended to be explicitly called from user programs.

Leaf procedure: A procedure that makes no outbound calls. Conversely, a non-leaf procedure is
one that does make outbound calls.

Library procedure: A procedure explicitly called using the equivalent of a call statement or
function reference. Such procedures are usually language independent.

Natural alignment: An attribute of certain data types that refers to the placement of the data so
that the lowest addressed byte of the data has an address that is a multiple of the size of the data
in bytes. Natural alignment of an aggregate data type generally refers to an alignment in which all
members of the aggregate are naturally aligned.

This standard defines five natural alignments:

* Byte—Any byte address

* Word—Any byte address that is a multiple of 2

* Longword—Any byte address that is a multiple of 4
* Quadword—Any byte address that is a multiple of 8
* Octaword—Any byte address that is a multiple of 16

PC: A value that identifies an instruction in memory. On OpenVMS VAX, Alpha, and x86-64
systems, the address of the first (lowest addressed) byte of the sequence (unaligned on VAX and

Chapter 1. Introduction

x86-64, longword aligned on Alpha) that holds the instruction. On OpenVMS 164, the IP (see
above) of the bundle that contains the instruction added to the number of the slot (0, 1, or 2) for
that instruction within the bundle. Sometimes used as a synonym or generic alternative to IP.

Procedure: A closed sequence of instructions that is entered from and returns control to the
calling program.

Procedure value: An address value that represents a procedure. On OpenVMS VAX systems,
a procedure value is the address of the entry mask that is interpreted by the CALLX instruction
invoking the procedure. On OpenVMS Alpha systems, a procedure value is the address of the
procedure descriptor for the procedure. On OpenVMS 164 systems, a procedure value is the
address of a function descriptor for the procedure; it is also known as a function pointer. On
OpenVMS x86-64 systems, a procedure value is a 32-bit address for either the entry point of

a procedure or, if the entry point address is not representable in 32-bits, a 32-bit address for
trampoline code that jumps to the actual entry point; the trampoline code may be created by the
linker or be created dynamically in the case of a bound procedure value.

Process: An address space and at least one thread of execution. Selected security and quota checks
are done on a per-process basis.

This standard anticipates the possibility of the execution of multiple threads within a process.
An operating system that provides only a single thread of execution per process is considered a
special case of a multithreaded system where the maximum number of threads per process is one.

Reference: A mechanism for passing parameters where the address of the parameter is provided
in the argument list by the calling program.

Routine: Synonym for procedure or function.

Signal: A POSIX defined concept used to cause out-of-line execution of code. (This term should
not be confused with the OpenVMS usage of the word that more closely equates to exception as
used in this document).

Standard call: Any transfer of control to a procedure by any means that presents the called
procedure with the environment defined by this document and does not place additional
restrictions, not defined by this document, on the called procedure.

Standard-conforming procedure: A procedure that adheres to all the relevant rules set forth in
this document.

Thread of execution (or thread): An entity scheduled for execution on a processor. In language
terms, a thread is a computational entity used by a program unit. Such a program unit might be a
task, procedure, loop, or some other unit of computation.

All threads executing within the same process share the same address space and other process
contexts, but they have a unique per-thread hardware context that includes program counter,
processor status, stack pointer, and other machine registers.

This standard applies only to threads that execute within the context of a user-mode process and
are scheduled on one or more processors according to software priority. All subsequent uses of the
term thread in this standard refer only to such user-mode process threads.

Thread-safe code: Code that is compiled in such a way to ensure it will execute properly when
run in a threaded environment. Thread-safe code usually adds extra instructions to do certain run-
time checks and requires that thread local storage be accessed in a particular fashion.

Chapter 1. Introduction

Trampoline: A code fragment (often just one or a very few instructions) that forwards a jump or
call.

Undefined: Referring to operations or behavior for which there is no directing algorithm used
across all implementations that support this standard. Such operations may be well defined for
a particular implementation, but they still remain undefined with reference to this standard. The
actions of undefined operations may not be required by standard-conforming procedures.

Unpredictable: Referring to the results of an operation that cannot be guaranteed across

all implementations of this standard. These results may be well defined for a particular
implementation, but they remain unpredictable with reference to this standard. All results that are
not specified in this standard, but are caused by operations defined in this standard, are considered
unpredictable. A standard-conforming procedure cannot depend on unpredictable results.

Chapter 1. Introduction

Chapter 2. OpenVMS VAX
Conventions

This chapter describes the primary conventions in calling a procedure in an OpenVMS VAX
environment.

2.1. Register Usage

In the VAX architecture, there are fifteen 32-bit-wide, general-purpose hardware registers for use
with scalar and vector program operations. This section defines the rules of scalar and vector register
usage.

2.1.1. Scalar Register Usage

This standard defines several general-purpose VAX registers and their scalar use as listed in Table 2.1.

Table 2.1. VAX Register Usage

Register Use

PC Program counter.

Sp Stack pointer.

FP Current stack frame pointer. This register must always point at the current frame. No

modification is permitted within a procedure body.

AP Argument pointer. When a call occurs, AP must point to a valid argument list.
A procedure without parameters points to an argument list consisting of a single
longword containing the value 0.

R1 Environment value. When a procedure that needs an environment value is called, the
calling program must set R1 to the environment value. See bound procedure value in
Section 7.3.

RO, R1 Function value return registers. These registers are not to be preserved by any called

procedure. They are available as temporary registers to any called procedure.

Registers R2 through R11 are to be preserved across procedure calls. The called procedure can use
these registers, provided it saves and restores them using the procedure entry mask mechanism. The
entry mask mechanism must be used so that any stack unwinding done by the condition handling
mechanism restores all registers correctly. In addition, PC, FP, and AP are always preserved in

the stack frame (see Section 2.2) by the CALLS or CALLG instruction and restored by the RET
instruction. However, a called procedure can use AP as a temporary register.

If JSB routines are used, they must not save or modify any preserved registers (R2 through R11) not
already saved by the entry mask mechanism of the calling program.

2.1.2. Vector Register Usage

This calling standard does not specify conventions for preserved vector registers, vector argument
registers, or vector function value return registers. All such conventions are by agreement between
the calling and called procedures. In the absence of such an agreement, all vector registers, including
VO through V15, VLR, VCR, and VMR are scratch registers. Among cooperating procedures, a

Chapter 2. OpenVMS VAX Conventions

procedure that preserves or otherwise manipulates the vector registers by agreement with its callers
must provide an exception handler to restore them during an unwind.

2.2. Stack Usage

Figure 2.1 shows the contents of the stack frame created for the called procedure by the CALLG or
CALLS instruction.

Figure 2.1. Stack Frame Generated by CALLG or CALLS Instruction

31 0

Condition handler (none=0) (SP) :(FP)

SPA|S| 0| Register save mask Processor status word

Argument pointer (AP)

Frame pointer (FP)

Program counter (PC)

Saved register (R2)

b1
L

e
L
L{

Saved register (R11)

ZK-5249A-GE

FP always points to the call frame (the condition-handler longword) of the calling procedure.

Other uses of FP within a procedure are prohibited. The bottom of stack frame (end of call stack) is
indicated when the stack frame's preserved FP is 0. Unless the procedure has a condition handler,
the condition-handler longword contains all zeros. See Chapter 9 for more information on condition
handlers.

The contents of the stack located at addresses higher than the mask/PSW longword belong to the
calling program; they should not be read or written by the called procedure, except as specified in the
argument list. The contents of the stack located at addresses lower than SP belong to interrupt and
exception routines; they are modified continually and unpredictably.

The called procedure allocates local storage by subtracting the required number of bytes from the SP
provided on entry. This local storage is freed automatically by the return instruction (RET).

Bit <28> of the mask/PSW longword is reserved to OpenVMS for future extensions to the stack
frame.

2.3. Calling Sequence

At the option of the calling procedure, the called procedure is invoked using the CALLG or CALLS
instruction, as follows:

10

Chapter 2. OpenVMS VAX Conventions

CALLG argl st, proc
CALLS argcnt, proc

CALLS pushes the argument count ar gcnt onto the stack as a longword and sets the argument
pointer, AP, to the top of the stack. The complete sequence using CALLS follows:

push argn

push argl
CALLS #n, proc

If the called procedure returns control to the calling procedure, control must return to the instruction
immediately following the CALLG or CALLS instruction. Skip returns and GOTO returns are
allowed only during stack unwind operations.

The called procedure returns control to the calling procedure by executing the RET instruction.

2.4. Argument List

The argument list is the primary means of passing information to and receiving results from a
procedure.

2.4.1. Argument List Format

Figure 2.2 shows the argument list format.

Figure 2.2. Argument List Format

31 0
Must be 0 %rogm% -arglst

arg1i

arg2

argn
ZK-4648A-GE

The first longword is always present and contains the argument count as an unsigned integer in the
low byte. The 24 high-order bits are reserved and must be zero. To access the argument count, the

called procedure must ignore the reserved bits and access the count as an unsigned byte (for example,

MOVZBL, TSTB, or CMPB).
The remaining longwords can be one of the following:

* Anuninterpreted 32-bit value (by immediate value mechanism). If the called procedure expects
fewer than 32 bits, it accesses the low-order bits and ignores the high-order bits.

Chapter 2. OpenVMS VAX Conventions

e An address (by reference mechanism). It is typically a pointer to a scalar data item, array,
structure, record, or a procedure.

e An address of a descriptor (by descriptor mechanism). See Chapter 8 for descriptor formats.

The standard permits programs to call by immediate value, by reference, by descriptor, or by
combinations of these mechanisms. Interpretation of each argument list entry depends on agreement
between the calling and called procedures. High-level languages use the reference or descriptor
mechanisms for passing input parameters. OpenVMS system services and VAX BLISS, VAX C, VAX
C++, or VAX MACRO programs use all three mechanisms.

A procedure with no arguments is called with a list consisting of a 0 argument count longword, as
follows:

CALLS #0, proc

A missing or null argument—for example, CALL SUB(A,,B)—is represented by an argument list
entry consisting of a longword 0. Some procedures allow trailing null arguments to be omitted and
others require all arguments. See each procedure's specification for details.

The argument list must be treated as read-only data by the called procedure and might be allocated in
read-only memory at the option of the calling program.

2.4.2. Argument Lists and High-Level Languages

Functional notations for procedure calls in high-level languages are mapped into VAX argument lists
according to the following rules:

* Arguments are mapped from left to right to increasing argument list offsets. The leftmost (first)
argument has an address of ar gl st +4, the next has an address of ar gl st +8, and so on. The
only exception to this is when ar gl st +4 specifies where a function value is to be returned, in
which case the first argument has an address of ar gl st +8, the second argument has an address
of ar gl st +12, and so on. See Section 2.5 for more information.

* Each argument position corresponds to a single VAX argument list entry. For the C and C++
languages, a floating-point argument or a record St r uct that is larger than 32 bits may be passed
by value using more than one VAX argument list entry. In this case, the argument count in the
argument list reflects the actual number of argument list entries rather than the number of C or C+
+ language arguments.

2.4.2.1. Order of Argument Evaluation

Because most high-level languages do not specify the order of evaluation of arguments (with respect
to side effects), those language processors can evaluate arguments in any convenient order.

In constructing an argument list on the stack, a language processor can evaluate arguments from
right to left and push their values on the stack. If call-by-reference semantics are used, argument
expressions can be evaluated from left to right, with pointers to the expression values or descriptors
being pushed from right to left.

Note

The choice of argument evaluation order and code generation strategy is constrained only by the
definition of the particular language. Do not write programs that depend on the order of evaluation of
arguments.

12

Chapter 2. OpenVMS VAX Conventions

2.4.2.2. Language Extensions for Argument Transmission

This calling standard permits arguments to be passed by immediate value, by reference, or by
descriptor. By default, all language processors except VAX BLISS, VAX C, and VAX MACRO pass
arguments by reference or by descriptor.

Language extensions are needed to reconcile the different argument-passing mechanisms. In addition
to the default passing mechanism used, each language processor is required to give you explicit
control, in the calling program, of the argument-passing mechanism for the data types supported by
the language.

Table 2.2 lists various argument data-type groups. In the table, the value Yes means the language

processor is responsible for providing the user with explicit control of that argument-passing
mechanism group.

Table 2.2. Argument-Passing Mechanisms with User Explicit Control

Data Type Group Section Value Reference Descriptor
Atomic <= 32 bits 7.1 Yes Yes Yes
Atomic > 32 bits 7.1 No Yes Yes
String 7.2 No Yes Yes
Miscellaneous 7.3 No! No No
Array 8 No Yes Yes

For languages that support the bound procedure value data type, a language extension is required to pass it by immediate value in order to
be able to interface with OpenVMS system services and other software. See Section 7.3.

For example, VAX Fortran provides the following intrinsic compile-time functions:

%VAL(arg) By immediate value mechanism. Corresponding argument list entry is the value
of the argument ar g as defined in the language.

%REF(arg) By reference mechanism. Corresponding argument list entry contains the
address of the value of the argument ar g as defined in the language.

%DESCR(arg) By descriptor mechanism. Corresponding argument list entry contains the
address of a descriptor of the argument ar g as defined in Chapter 8 and in the
language.

Use these intrinsic functions in the syntax of a procedure call to control generation of the argument
list. For example:

CALL SUBL(W/AL(123), 9REF(X), YOESCR(A))
For more information, see the VAX Fortran language documentation.

In other languages, you can achieve the same effect by making appropriate attributes of the
declaration of SUBI in the calling program. Thus, you might write the following after making the
external declaration for SUB1:

CALL SUBL (123, X, A

Chapter 2. OpenVMS VAX Conventions

2.5. Function Value Returns

A function value is returned in register RO if its data type can be represented in 32 bits, or in registers
RO and R1 if its data type can be represented in 64 bits, provided the data type is not a string data type
(see Section 7.2).

If the data type requires fewer than 32 bits, then R1 and the high-order bits of R0 are undefined. If the
data type requires 32 or more bits but fewer than 64 bits, then the high-order bits of R1 are undefined.
Two separate 32-bit entities cannot be returned in RO and R1 because high-level languages cannot
process them.

In all other cases (the function value needs more than 64 bits, the data type is a string, the size of
the value can vary from call to call, and so on), the actual argument list and the formal argument list
are shifted one entry. The new first entry is reserved for the function value. In this case, one of the
following mechanisms is used to return the function value:

e If the maximum length of the function value is known (for example, octaword integer, H floating,
or fixed-length string), the calling program can allocate the required storage and pass the address
of the storage or a descriptor for the storage as the first argument.

e Ifthe maximum length of a string function value is not known to the calling program, the calling
program can allocate a dynamic string descriptor. The called procedure then allocates storage for
the function value and updates the contents of the dynamic string descriptor using OpenVMS Run-
Time Library procedures. For information about dynamic strings, see Section 8.3.

e Ifthe maximum length of a fixed-length string (see Section 8.2) or a varying string (see
Section 8.8) function value is not known to the calling program, the calling program can indicate
that it expects the string to be returned on top of the stack. For more information about the
function value return, see Section 2.5.1.

Some procedures, such as operating system calls and many library procedures, return a success or
failure value as a longword function value in R0. Bit <0> of the value is set (Boolean true) for a
success and clear (Boolean false) for a failure. The particular success or failure status is encoded in
the remaining 31 bits, as described in Section 9.1.

2.5.1. Returning a Function Value on Top of the Stack

If the maximum length of the function value is not known, the calling program can optionally allocate
certain descriptors with the POINTER field set to 0, indicating that no space has been allocated for the
value. If the called procedure finds POINTER 0, it fills in the POINTER, LENGTH, and other extent
fields to describe the actual size and placement of the function value. This function value is copied to
the top of the stack as control returns to the calling program.

This is an exception to the usual practice because the calling program regains control at the instruction
following the CALLG or CALLS sequence with the contents of SP restored to a value different from
the one it had at the beginning of its CALLG or CALLS calling sequence.

This technique applies only to the first argument in the argument list. Also, the called procedure
cannot assume that the calling program expects the function value to be returned on the stack. Instead,
the called procedure must check the CLASS field. If the descriptor is one that can be used to return

a value on the stack, the called procedure checks the POINTER field. If POINTER is not 0, the

called procedure returns the value using the semantics of the descriptor. If POINTER is 0, the called
procedure fills in the POINTER and LENGTH fields and returns the value to the top of the stack.

14

Chapter 2. OpenVMS VAX Conventions

Also, when POINTER is 0, the contents of RO and R1 are unspecified by the called procedure. Once
the called procedure fills in the POINTER field and other extent fields, the calling program may pass
the descriptor as an argument to other procedures.

2.5.1.1. Returning a Fixed-Length or Varying String Function
Value

If a called procedure can return its function value on the stack as a fixed-length (see Section 8.2) or
varying string (see Section 8.8), the called procedure must also take the following actions (determined
by the CLASS and POINTER fields of the first descriptor in the argument list):

CLASS POINTER Called Procedure's Action

S=1 Not 0 Copy the function value to the fixed-length area specified by the
descriptor and space fill (hex 20 if ASCII) or truncate on the right.
The entire area is always written according to Section 8.2.

S=1 0 Return the function value on top of the stack after filling in POINTER
with the first address of the string and LENGTH with the length of the
string to complete the descriptor according to Section 8.2.

VS=11 Not 0 Copy the function value to the varying area specified by the descriptor
and fill in CURLEN and BODY according to Section 8.8.
VS=11 0 Return the function value on top of the stack after filling in POINTER

with the address of CURLEN and MAXSTRLEN with the length of
the string in bytes (same value as contents of CURLEN) according to
Section 8.8.

Other — Error. A condition is signaled.

In both the fixed-length and varying string cases, the string is unaligned. Specifically, the function
value is allocated on top of the stack with no unused bytes between the stack pointer value contained
at the beginning of the CALLS or CALLG sequence and the last byte of the string.

2.6. Vector and Scalar Processor
Synchronization

There are two kinds of synchronization between a scalar and vector processor pair: memory
synchronization and exception synchronization.

Memory synchronization with the caller of a procedure that uses the vector processor is required
because scalar machine writes (to main memory) might still be pending at the time of entry to the
called procedure. The various forms of write-cache strategies allowed by the VAX architecture
combined with the possibly independent scalar and vector memory access paths imply that a scalar
store followed by a CALLX followed by a vector load is not safe without an intervening MSYNC.

Within a procedure that uses the vector processor, proper memory and exception synchronization
might require use of an MSYNC instruction, a SYNC instruction, or both, prior to calling or upon
being called by another procedure. Further, for calls to other procedures, the requirements can vary
from call to call, depending on details of actual vector usage.

An MSYNC instruction (without a SYNC) at procedure entry, at procedure exit, and prior to a call
provides proper synchronization in most cases. A SYNC instruction without an MSYNC prior to a

Chapter 2. OpenVMS VAX Conventions

CALLX (or RET) is sometimes appropriate. The remaining two cases, where both or neither MSYNC
and SYNC are needed, are rare.

Refer to the VAX MACRO and Instruction Set Reference Manual for the specific rules on what
exceptions are ensured to be reported by MSYNC and other MFVP instructions.

2.6.1. Memory Synchronization

Every procedure is responsible for synchronization of memory operations with the calling procedure
and with procedures it calls. If a procedure executes vector loads or stores, one of the following must
occur:

* An MSYNC instruction (a form of the MFVP instruction) must be executed before the first vector
load and store to synchronize with memory operations issued by the caller. While an MSYNC
instruction might typically occur in the entry code sequence of a procedure, exact placement might
also depend on a variety of optimization considerations.

* An MSYNC instruction must be executed after the last vector load or store to synchronize with
memory operations issued after return. While an MSYNC instruction might typically occur in
the return code sequence of a procedure, exact placement might also depend on a variety of
optimization considerations.

< An MSYNC instruction must be executed between each vector load and store and each standard
call to other procedures to synchronize with memory operations issued by those procedures.

Any procedure that executes vector loads or stores is responsible for synchronizing with potentially
conflicting memory operations in any other procedure. However, execution of an MSYNC instruction
to ensure scalar and vector memory synchronization can be omitted when it can be determined for
the current procedure that all possibly incomplete vector load and stores operate only on memory not
accessed by other procedures.

2.6.2. Exception Synchronization

Every procedure must ensure that no exception can be raised after the current frame is changed (as
aresult of a CALLX or RET). If a procedure executes any vector instruction that might raise an
exception, then a SYNC instruction (a form of the MFVP instruction) must be executed prior to any
subsequent CALLX or RET.

However, if the only exceptions that can occur are certain to be reported by an MSYNC instruction
that is otherwise needed for memory synchronization, then the SYNC is redundant and can be omitted
as an optimization.

Moreover, if the only exceptions that can occur are certain to be reported by one or more MFVP
instructions that read the vector control registers, then the SYNC is redundant and can be omitted as
an optimization.

16

Chapter 3. OpenVMS Alpha
Conventions

This chapter describes the fundamental concepts and conventions for calling a procedure in an Alpha
environment. The following sections identify register usage and addressing, and focus on aspects of
the calling standard that pertain to procedure-to-procedure flow control.

3.1. Register Usage

The 64-bit-wide, general-purpose Alpha hardware registers divide into two groups:
* Integer
* Floating-point

The first 32 general-purpose registers support integer processing and the second 32 support floating-
point operations.

3.1.1. Integer Registers

This standard defines the usage of the Alpha general-purpose integer registers as listed in Table 3.1.

Table 3.1. Alpha Integer Register Usage

Register Usage

RO Function value register. In a standard call that returns a nonfloating-point function
result in a register, the result must be returned in this register. In a standard call, this
register may be modified by the called procedure without being saved and restored.
This register is not to be preserved by any called procedure.

R1 Conventional scratch register. In a standard call, this register may be modified by

the called procedure without being saved and restored. This register is not to be
preserved by any called procedure. In addition, R1 is the preferred and recommended
register to use for passing the environment value when calling a bound procedure.
(See Section 3.6.4 and Section 6.1.2).

R2—R15 Conventional saved registers. If a standard-conforming procedure modifies one of
these registers, it must save and restore it.

R16—R21 Argument registers. In a standard call, up to six nonfloating-point items of the
argument list are passed in these registers. In a standard call, these registers may be
modified by the called procedure without being saved and restored.

R22—R24 Conventional scratch registers. In a standard call, these registers may be modified by
the called procedure without being saved and restored.

R25 Argument information (Al) register. In a standard call, this register describes the
argument list. (See Section 3.6.1 for a detailed description). In a standard call, this
register may be modified by the called procedure without being saved and restored.

R26 Return address (RA) register. In a standard call, the return address must be passed in
this register. In a standard call, this register may be modified by the called procedure
without being saved and restored.

Chapter 3. OpenVMS Alpha Conventions

Register

Usage

R27

Procedure value (PV) register. In a standard call, the procedure value of the procedure
being called is passed in this register. In a standard call, this register may be modified
by the called procedure without being saved and restored.

R28

Volatile scratch register. The contents of this register are always unpredictable after
any external transfer of control either to or from a procedure. This applies to both
standard and nonstandard calls. This register may be used by the operating system
for external call fixup, autoloading, and exit sequences.

R29

Frame pointer (FP). The contents of this register define, among other things, which
procedure is considered current. Details of usage and alignment are defined in
Section 3.5.

R30

Stack pointer (SP). This register contains a pointer to the top of the current operating
stack. Aspects of its usage and alignment are defined by the hardware architecture.
Various software aspects of its usage and alignment are defined in Section 3.6.1.

R31

ReadAsZero/Sink (RZ). Hardware defines binary 0 as a source operand and sink (no
effect) as a result operand.

3.1.2. Floating-Point Registers

This standard defines the usage of the Alpha general-purpose floating-point registers as listed in

Table 3.2.

Table 3.2. Alpha Floating-Point Register Usage

Register

Usage

FO

Floating-point function value register. In a standard call that returns a floating-
point result in a register, this register is used to return the real part of the result. In
a standard call, this register may be modified by the called procedure without being
saved and restored.

F1

Floating-point function value register. In a standard call that returns a complex
floating-point result in registers, this register is used to return the imaginary part of
the result. In a standard call, this register may be modified by the called procedure
without being saved and restored.

F2—F9

Conventional saved registers. If a standard-conforming procedure modifies one of
these registers, it must save and restore it.

F10—F15

Conventional scratch registers. In a standard call, these registers may be modified by
the called procedure without being saved and restored.

Fl6—F21

Argument registers. In a standard call, up to six floating-point arguments may be
passed by value in these registers. In a standard call, these registers may be modified
by the called procedure without being saved and restored.

F22—F30

Conventional scratch registers. In a standard call, these registers may be modified by
the called procedure without being saved and restored.

F31

ReadAsZero/Sink. Hardware defines binary 0 as a source operand and sink (no effect)
as a result operand.

18

Chapter 3. OpenVMS Alpha Conventions

3.2. Address Representation

An address is a 64-bit value used to denote a position in memory. However, for compatibility with
OpenVMS VAX, many Alpha applications and user-mode facilities operate in such a manner that
addresses are restricted only to values that are representable in 32 bits. This allows Alpha addresses
often to be stored and manipulated as 32-bit longword values. In such cases, the 32-bit address
value is always implicitly or explicitly sign-extended to form a 64-bit address for use by the Alpha
hardware.

3.3. Procedure Representation

One distinguishing characteristic of any calling standard is how procedures are represented. The
term used to denote the value that uniquely identifies a procedure is a procedure value. If the value
identifies a bound procedure, it is called a bound procedure value.

In the Alpha portion of this calling standard, a// procedure values are defined to be the address of the
data structure (a procedure descriptor) that describes that procedure. So, any procedure can be invoked
by calling the address stored at offset 8 from the address represented by the procedure value.

Note that a simple (unbound) procedure value is defined as the address of that procedure's descriptor
(see Section 3.4). This provides slightly different conventions than would be used if the address of the
procedure's code were used as it is in many calling standards.

A bound procedure value is defined as the address of a bound procedure descriptor that provides the
necessary information for the bound procedure to be called (see Section 3.6.4).

3.4. Procedure Types

This standard defines the following basic types of procedures:
* Stack frame procedure—Maintains its caller's context on the stack.
* Register frame procedure—Maintains its caller's context in registers.

e Null frame procedure—Does not establish a context and, therefore, executes in the context of its
caller.

A compiler can choose which type of procedure to generate based on the requirements of the
procedure in question. A calling procedure does not need to know what type of procedure it is calling.

Every procedure must have an associated structure that describes which type of procedure it is

and other procedure characteristics. This structure, called a procedure descriptor, is a quadword-
aligned data structure that provides basic information about a procedure. This data structure is used
to interpret the call stack at any point in a thread's execution. It is typically built at compile time and
usually is not accessed at run-time except to support exception processing or other rarely executed
code.

Read access to procedure descriptors is done through a procedure interface described in Section 3.5.2.
This allows for future compatible extensions to these structures.

The purpose of defining a procedure descriptor for a procedure and making that procedure descriptor
accessible to the run-time system is twofold:

Chapter 3. OpenVMS Alpha Conventions

» To make invocations of that procedure visible to and interpretable by facilities such as the
debugger, exception handling system, and the unwinder.

* To ensure that the context of the caller saved by the called procedure can be restored if an unwind
occurs. (For a description of unwinding, see Section 9.7).

3.4.1. Stack Frame Procedures

The stack frame of a procedure consists of a fixed part (the size of which is known at compile time)
and an optional variable part. Certain optimizations can be done if the optional variable part is not
present. Compilers must also recognize unusual situations, such as the following, that can effectively
cause a variable part of the stack to exist:

* A called routine may use the stack as a means to return certain types of function values (see
Section 3.7.7 for more information).

* A called routine that allocates stack space may take an exception in its routine prologue before it
becomes current. This situation must be considered because the stack expansion happens in the
context of the caller (see Section 3.5 and Section 3.6.5 for more information).

For this reason, a fixed-stack usage version of this procedure type cannot make standard calls.

The variable-stack usage version of this type of procedure is referred to as full function and can make
standard calls to other procedures.

3.4.2. Procedure Descriptor for Procedures with a
Stack Frame

A stack frame procedure descriptor (PDSC) built by a compiler provides information about a
procedure with a stack frame. The minimum size of the descriptor is 32 bytes defined by constant C.
An optional PDSC extension in 8-byte increments supports exception handling requirements.

The fields defined in the stack frame descriptor are illustrated in Figure 3.1 and described in Table 3.3.

20

Chapter 3. OpenVMS Alpha Conventions

Figure 3.1. Stack Frame Procedure Descriptor (PDSC)

PDSC quadword aligned
RSA OFFSET FLAGS 0
EM | FRET 4

SIGNATURE_OFFSET A A Reserved

ENTRY -8
SIZE 116
ENTRY_LENGTH Reserved 20
IREG_MASK 24
FREG MASK 128

PDSCSK_MIN_STACK_SIZE = 32
End of required part of procedure descriptor

STACK_HANDLER 32
STACK_HANDLER_DATA 40
PDSC$K_MAX_STACK_SIZE = 48
FRET = PDSC8V_FUNC_RETURN
EM =PDSC$V_EXCEPTION_MODE
ZK-4649A-GE
Table 3.3. Contents of Stack Frame Procedure Descriptor (PDSC)
Field Name Contents
PDSC$SW_FLAGS The PDSC descriptor flag bits <15:0> are defined as follows:
PDSC$V_KIND A 4-bit field <3:0> that identifies

the type of procedure descriptor.
For a procedure with a stack
frame, this field must specify

a value 9 (defined by constant
PDSC$K KIND FP STACK).

PDSC$V_HANDLER VALID If set to 1, this descriptor has an
extension for the stack handler
(PDSC$Q_STACK HANDLER)

information.
PDSC$V_HANDLER _ If set to 1, the handler can be
REINVOKABLE reinvoked, allowing an occurrence of

another exception while the handler

21

Chapter 3. OpenVMS Alpha Conventions

Field Name

Contents

is already active. If this bit is set to

0, the exception handler cannot be
reinvoked. Note that this bit must be 0
when PDSC$V_HANDLER_VALID is
0.

PDSC$V_HANDLER DATA
VALID

If set to 1, the HANDLER VALID
bit must be 1, the PDSC extension
STACK_HANDLER_DATA field
contains valid data for the exception
handler, and the address of PDSC$Q _
STACK_HANDLER_DATA will be
passed to the exception handler as
defined in Section 9.2.

PDSC$V_BASE REG IS_FP

If this bit is set to 0, the SP is the base
register to which PDSCSL_SIZE is
added during an unwind. A fixed
amount of storage is allocated in the
procedure entry sequence, and SP is
modified by this procedure only in the
entry and exit code sequence. In this
case, FP typically contains the address
of the procedure descriptor for the
procedure. A procedure for which this
bit is 0 cannot make standard calls.

If this bit is set to 1, FP is the base
address and the procedure has a
minimum amount of stack storage
specified by PDSCSL_SIZE. A
variable amount of stack storage can be
allocated by modifying SP in the entry
and exit code of this procedure.

PDSC$V_REI RETURN

If set to 1, the procedure expects the
stack at entry to be set, so an REI
instruction correctly returns from the
procedure. Also, if set, the contents of
the RSA$Q SAVED RETURN field in
the register save area are unpredictable
and the return address is found on the
stack (see Figure 3.4).

Bit9

Must be 0 (reserved).

PDSC$V_BASE FRAME

For compiled code, this bit must be

set to 0. If set to 1, this bit indicates
the logical base frame of a stack that
precedes all frames corresponding to
user code. The interpretation and use
of this frame and whether there are any
predecessor frames is system software
defined (and subject to change).

22

Chapter 3. OpenVMS Alpha Conventions

Field Name

Contents

PDSC$V_TARGET INVO If set to 1, the exception handler for
this procedure is invoked when this
procedure is the target invocation of
an unwind. Note that a procedure is
the target invocation of an unwind if
it is the procedure in which execution
resumes following completion of the
unwind. For more information, see

Chapter 9.

If set to 0, the exception handler for
this procedure is not invoked. Note that
when PDSC$V_HANDLER_VALID is
0, this bit must be 0.

PDSCS$V_NATIVE For compiled code, this bit must be set

to 1.

PDSC$V_NO JACKET For compiled code, this bit must be set

to 1.

PDSC$V_TIE FRAME For compiled code, this bit must be 0.

Reserved for use by system software.

Bit 15 Must be 0 (reserved).

PDSC$W_RSA
OFFSET

Signed offset in bytes between the stack frame base (SP or FP as indicated
by PDSC$V_BASE REG IS FP) and the register save area. This field
must be a multiple of 8, so that PDSC$W_RSA OFFSET added to the
contents of SP or FP (PDSC$V_BASE REG IS FP) yields a quadword-
aligned address.

PDSC$V_FUNC_

A 4-bit field <11:8> that describes which registers are used for the function

RETURN value return (if there is one) and what format is used for those registers.
Table 6.4 lists and describes the possible encoded values of
PDSC$V_FUNC RETURN.

PDSCS$V _ A 3-bit field <14:12> that encodes the caller's desired exception-reporting

EXCEPTION _MODE

behavior when calling certain mathematically oriented library routines.
These routines generally search up the call stack to find the desired
exception behavior whenever an error is detected. This search is performed
independent of the setting of the Alpha FPCR. The possible values for this
field are defined as follows:

Value |Name Meaning
0 PDSCS$K_EXC Raise exceptions for all error
MODE_SIGNAL conditions except for underflows
producing a 0 result. This is the default
mode.
1 PDSC$K _EXC Raise exceptions for all error
MODE SIGNAL_ ALL |conditions (including underflow).
2 PDSCS$K_EXC Raise no exceptions. Create only finite
MODE_ SIGNAL values (no infinities, denormals, or
SILENT NaNs). In this mode, either the function

23

Chapter 3. OpenVMS Alpha Conventions

Field Name Contents
result or the C language er r no
variable must be examined for any
error indication.
3 PDSC$K _EXC Raise no exceptions except as
MODE FULL IEEE |controlled by separate IEEE exception
enable bits. Create infinities,
denormals, or NaN values according to
the IEEE floating-point standard.
4 PDSC$K _EXC Perform the exception-mode behavior
MODE CALLER specified by this procedure's caller.
PDSCS$W _ A 16-bit signed byte offset from the start of the procedure descriptor. This
SIGNATURE offset designates the start of the procedure signature block (if any). A 0
OFFSET in this field indicates that no signature information is present. Note that

in a bound procedure descriptor (as described in Section 3.6.4), signature
information might be present in the related procedure descriptor. A 1 in
this field indicates a standard default signature. An offset value of 1 is not
otherwise a valid offset because both procedure descriptors and signature
blocks must be quadword aligned.

PDSC$Q_ENTRY

Absolute address of the first instruction of the entry code sequence for the
procedure.

PDSCSL _SIZE

Unsigned size, in bytes, of the fixed portion of the stack frame for this
procedure. The size must be a multiple of 16 bytes to maintain the
minimum stack alignment required by the Alpha hardware architecture and
stack alignment during a call (defined in Section 3.6.1). PDSCSL_SIZE
cannot be 0 for a stack-frame type procedure, because the stack frame must
include space for the register save area.

The value of SP at entry to this procedure can be calculated by
adding PDSCSL_SIZE to the value SP or FP, as indicated by
PDSC$V_BASE REG IS FP.

PDSC$W_ENTRY
LENGTH

Unsigned offset, in bytes, from the entry point to the first instruction in
the procedure code segment following the procedure prologue (that is,
following the instruction that updates FP to establish this procedure as the
current procedure).

PDSCS$L IREG MASK

Bit vector (0-31) specifying the integer registers that are saved in the
register save area on entry to the procedure. The least significant bit
corresponds to register RO. Never set bits 31, 30, 28, 1, and 0 of this mask,
because R31 is the integer read-as-zero register, R30 is the stack pointer,
R28 is always assumed to be destroyed during a procedure call or return,
and R1 and RO are never preserved registers. In this calling standard, bit 29
(corresponding to the FP) must always be set.

PDSC$L_FREG_MASK

Bit vector (0-31) specifying the floating-point registers saved in the register
save area on entry to the procedure. The least significant bit corresponds

to register FO. Never set bit 31 of this mask, because it corresponds to the
floating-point read-as-zero register.

PDSCS$Q STACK
HANDLER

Absolute address to the procedure descriptor for a run-time static
exception handling procedure. This part of the procedure descriptor is
optional. It must be supplied if either PDSC§V_HANDLER VALID

24

Chapter 3. OpenVMS Alpha Conventions

Field Name Contents

is 1 or PDSC$V_HANDLER DATA VALID is 1 (which requires that
PDSC$V_HANDLER VALID be 1).

If PDSC$V_HANDLER VALID is 0, then the contents or existence of
PDSC$Q STACK HANDLER is unpredictable.

PDSC$Q_STACK Data (quadword) for the exception handler. This is an optional quadword
HANDLER DATA and needs to be supplied only if PDSC$V_HANDLER DATA VALID is
1.

If PDSC$SV_HANDLER DATA VALID is 0, then the contents or
existence of PDSC$Q_STACK HANDLER DATA is unpredictable.

3.4.3. Stack Frame Format

The stack of a stack frame procedure consists of a fixed part (the size of which is known at compile
time) and an optional variable part. There are two basic types of stack frames:

¢ Fixed size
¢ Variable size

Even though the exact contents of a stack frame are determined by the compiler, all stack frames have
common characteristics.

Various combinations of PDSC$V_BASE REG IS FP and PDSCS$L_SIZE can be used as follows:

* When PDSC$V_BASE REG IS FPis 0 and PDSCSL_SIZE is 0, then the procedure utilizes no
stack storage and SP contains the value of SP at entry to the procedure. (Such a procedure must be
a register frame procedure).

* When PDSC$V_BASE REG IS FP is 0 and PDSCSL_SIZE is a nonzero value, then the
procedure has a fixed amount of stack storage specified by PDSC$L_SIZE, all of which is
allocated in the procedure entry sequence, and SP is modified by this procedure only in the entry
and exit code sequences. (Such a procedure may not make standard calls).

* When PDSC$V_BASE REG IS FPis 1 and PDSCSL _SIZE is a nonzero value, then the
procedure has a fixed amount of stack storage specified by PDSC$L_SIZE, and may have a
variable amount of stack storage allocated by modifying SP in the body of the procedure. (Such a
procedure must be a stack frame procedure).

* The combination when PDSC$V_BASE REG IS FPis | and PDSCSL_SIZE is 0 is illegal
because it violates the rules for R29 (FP) usage that requires R29 to be saved (on the stack) and
restored.

3.4.3.1. Fixed-Size Stack Frame

Figure 3.2 illustrates the format of the stack frame for a procedure with a fixed amount of stack that
uses the SP register as the stack base pointer (when PDSC$V_BASE REG IS FP is 0). In this case,
R29 (FP) typically contains the address of the procedure descriptor for the current procedure (see
Section 3.5.1).

Some parts of the stack frame are optional and occur only as required by the particular procedure. As
shown in the figure, the field names within brackets are optional fields. Use of the arguments passed
in memory field appending the end of the descriptor is described in Section 3.4.3.3 and Section 3.7.2.

25

Chapter 3. OpenVMS Alpha Conventions

For information describing the fixed temporary locations and register save area, see Section 3.4.3.3
and Section 3.4.3.4.

Figure 3.2. Fixed-Size Stack Frame Format

octaword aligned

:0 (from SP)

[Fixed temporary locations]

:RSA_OFFSET
(from SP)

Register save area

[Fixed temporary locations]

[Argument home area]

:SIZE (from SP)

[Arguments passed in memory]

ZK-4650A-GE

3.4.3.2. Variable-Size Stack Frame

Figure 3.3 illustrates the format of the stack frame for procedures with a varying amount of stack
when PDSC$V_BASE REG IS FPis 1. In this case, R29 (FP) contains the address that points to the
base of the stack frame on the stack. This frame-base quadword location contains the address of the
current procedure's descriptor.

26

Chapter 3. OpenVMS Alpha Conventions

Figure 3.3. Variable-Size Stack Frame Format

octaword aligned

:0 (from SP)
[Stack temporary area]
:0 (from FP)
Procedure descriptor address
:8 (from FP)
[Fixed temporary locations]

:RSA_OFFSET

(from FP)

Register save area

[Fixed temporary locations]

[Argument home area]

SIZE (from FP)

[Arguments passed in memory]

ZK-4651A-GE

Some parts of the stack frame are optional and occur only as required by the particular procedure. In
Figure 3.3, field names within brackets are optional fields. Use of the arguments passed in memory
field appending the end of the descriptor is described in Section 3.4.3.3 and Section 3.7.2.

For more information describing the fixed temporary locations and register save area, see
Section 3.4.3.3 and Section 3.4.3.4.

A compiler can use the stack temporary area pointed to by the SP base register for fixed local
variables, such as constant-sized data items and program state, as well as for dynamically sized local
variables. The stack temporary area may also be used for dynamically sized items with a limited
lifetime, for example, a dynamically sized function result or string concatenation that cannot be stored
directly in a target variable. When a procedure uses this area, the compiler must keep track of its base
and reset SP to the base to reclaim storage used by temporaries.

3.4.3.3. Fixed Temporary Locations for All Stack Frames

The fixed temporary locations are optional sections of any stack frame that contain language-
specific locations required by the procedure context of some high-level languages. This may include,

27

Chapter 3. OpenVMS Alpha Conventions

for example, register spill area, language-specific exception handling context (such as language-
dynamic exception handling information), fixed temporaries, and so on.

The argument home area (if allocated by the compiler) can be found with the PDSCSL_SIZE offset
in the last fixed temporary locations at the end of the stack frame. It is adjacent to the arguments
passed in memory area to expedite the use of arguments passed (without copying). The argument
home area is a region of memory used by the called procedure for the purpose of assembling in
contiguous memory the arguments passed in registers, adjacent to the arguments passed in memory,
so all arguments can be addressed as a contiguous array. This area can also be used to store arguments
passed in registers if an address for such an argument must be generated. Generally, 6 * 8 bytes of
stack storage is allocated for this purpose by the called procedure.

If a procedure needs to reference its arguments as a longword array or construct a structure that looks
like an in-memory longword argument list, then it might allocate enough longwords in this area to
hold all of the argument list and, optionally, an argument count. In that case, argument items passed in
memory must be copied to this longword array.

The high-address end of the stack frame is defined by the value stored in PDSC$L_SIZE plus the
contents of SP or FP, as indicated by PDSC$V_BASE REG IS _FP. The high-address end is used to
determine the value of SP for the predecessor procedure in the calling chain.

3.4.3.4. Register Save Area for All Stack Frames

The register save area is a set of consecutive quadwords in which registers saved and restored by
the current procedure are stored (see Figure 3.4). The register save area begins at the location pointed
to by the offset PDSC$W_RSA_ OFFSET from the frame base register (SP or FP as indicated by
PDSC$V_BASE REG IS FP), which must yield a quadword-aligned address. The set of registers
saved in this area contain the return address followed by the registers specified in the procedure
descriptor by PDSC$L_IREG_MASK and PDSCSL_FREG MASK.

All registers saved in the register save area (other than the saved return address) must have the
corresponding bit set in the appropriate procedure descriptor register save mask even if the register is
not a member of the set of registers required to be saved across a standard call. Failure to do so will
prevent the correct calculation of offsets within the save area.

Figure 3.4 illustrates the fields in the register save area (field names within brackets are optional
fields). Quadword RSA$Q SAVED RETURN is the first field in the save area and it contains the
contents of the return address register. The optional fields vary in size (8-byte increments) to preserve,
as required, the contents of the integer and floating-point hardware registers used in the procedure.

Figure 3.4. Register Save Area (RSA) Layout

RSA quadword aligned
SAVED_RETURN 0 [om PDSoS-
(R26 in a standard call) - 7
:8
[Preserved integer registers]
[Preserved floating—point registers]
ZK-4652A-GE

28

Chapter 3. OpenVMS Alpha Conventions

The algorithm for packing saved registers in the quadword-aligned register save area is:
1. The return address is saved at the lowest address of the register save area (offset 0).

2. All saved integer registers (as indicated by the corresponding bit in PDSC$L IREG MASK being
set to 1) are stored, in register-number order, in consecutive quadwords, beginning at offset 8 of
the register save area.

3. All saved floating-point registers (as indicated by the corresponding bit in
PDSCSL_FREG_MASK being set to 1) are stored, in register-number order, in consecutive
quadwords, following the saved integer registers.

Note

Floating-point registers saved in the register save area are stored as a 64-bit exact image of the register
(for example, no reordering of bits is done on the way to or from memory). Compilers must use an
STT instruction to store the register regardless of floating-point type.

The preserved register set must a/ways include R29 (FP), because it will always be used.

If the return address register is not to be preserved (as is the case for a standard call), then it must be
stored at offset 0 in the register save area and the corresponding bit in the register save mask must not
be set.

However, if a nonstandard call is made that requires the return address register to be saved and
restored, then it must be stored in both the location at offset 0 in the register save area and at the
appropriate location within the variable part of the save area. In addition, the appropriate bit of
PDSCSL _IREG_MASK must be set to 1.

The example register save area shown in Figure 3.5 illustrates the register packing when registers
R10, R11, R15, FP, F2, and F3 are being saved for a procedure called with a standard call.

29

Chapter 3. OpenVMS Alpha Conventions

Figure 3.5. Register Save Area (RSA) Example

RSA quadword aligned
R26 0
R10 -8
R11 16
R15 24
R29 (FP) 32
F2 :40
F3 :48
ZK-4653A-GE

3.4.4. Register Frame Procedure

A register frame procedure does not maintain a call frame on the stack and must, therefore, save
its caller's context in registers. This type of procedure is sometimes referred to as a lightweight
procedure, referring to the expedient way of saving the call context.

Such a procedure cannot save and restore nonscratch registers. Because a procedure without a stack
frame must use scratch registers to maintain the caller's context, such a procedure cannot make a
standard call to any other procedure.

A procedure with a register frame can have an exception handler and can handle exceptions in the
normal way. Such a procedure can also allocate local stack storage in the normal way, although it
might not necessarily do so.

Note

Lightweight procedures have more freedom than might be apparent. By using appropriate agreements
with callers of the lightweight procedure, with procedures that the lightweight procedure calls, and
by the use of unwind handlers, a lightweight procedure can modify nonscratch registers and can call
other procedures.

Such agreements may be by convention (as in the case of language-support routines in the RTL) or by
interprocedural analysis. However, calls employing such agreements are not standard calls and might

30

Chapter 3. OpenVMS Alpha Conventions

not be fully supported by a debugger; for example, the debugger might not be able to find the contents
of the preserved registers.

Because such agreements must be permanent (for upwards compatibility of object code), lightweight
procedures should, in general, follow the normal restrictions.

3.4.5. Procedure Descriptor for Procedures with a
Register Frame

A register frame procedure descriptor built by a compiler provides information about a
procedure with a register frame. The minimum size of the descriptor is 24 bytes (defined by
PDSC$K_MIN REGISTER SIZE). An optional PDSC extension in 8-byte increments supports
exception handling requirements.

The fields defined in the register frame procedure descriptor are illustrated in Figure 3.6 and described
in Table 3.4.

Figure 3.6. Register Frame Procedure Descriptor (PDSC)

PDSC quadword aligned
SAVE_RA SAVE_FP FLAGS -0
SIGNATURE_OFFSET EM FRET Reserved 4
<14:12>| <11:8>

ENTRY -8
SIZE 116
20

ENTRY_LENGTH Reserved

PDSC$K_MIN_REGISTER_SIZE = 24
End of required part of procedure descriptor

REG_HANDLER 24

REG_HANDLER_DATA 32
PDSC$K_MAX_REGISTER_SIZE = 40
FRET = PDSCSV_ FUNC_RETURN
EM = PDSC$V_EXCEPTION_MODE
ZK-4654A-GE

Table 3.4. Contents of Register Frame Procedure Descriptor (PDSC)

Field Name Contents

PDSC$W_FLAGS The PDSC descriptor flag bits <15:0> are defined as follows:

31

Chapter 3. OpenVMS Alpha Conventions

Field Name

Contents

PDSC$V_KIND

A 4-bit field <3:0> that identifies
the type of procedure descriptor.
For a procedure with a register
frame, this field must specify a
value 10 (defined by constant
PDSC$K_KIND FP REGISTER).

PDSC$V_HANDLER VALID

If set to 1, this descriptor has an
extension for the stack handler
(PDSC$Q REG _HANDLER)
information.

PDSC$V_HANDLER _
REINVOKABLE

If set to 1, the handler can be
reinvoked, allowing an occurrence of
another exception while the handler
is already active. If this bit is set to

0, the exception handler cannot be
reinvoked. This bit must be 0 when
PDSC$V_HANDLER_VALID is 0.

PDSC$V_HANDLER
DATA_VALID

If set to 1, the HANDLER VALID

bit must be 1 and the PDSC extension
STACK HANDLER DATA

field contains valid data for the
exception handler, and the address

of PDSC$Q_STACK HANDLER
_DATA will be passed to the exception
handler as defined in Section 9.2.

PDSC$V_BASE REG IS_FP

If this bit is set to 0, the SP is the base
register to which PDSCSL_SIZE is
added during an unwind. A fixed
amount of storage is allocated in the
procedure entry sequence, and SP is
modified by this procedure only in the
entry and exit code sequence. In this
case, FP typically contains the address
of the procedure descriptor for the
procedure. Note that a procedure that
sets this bit to 0 cannot make standard
calls.

If this bit is set to 1, FP is the base
address and the procedure has a fixed
amount of stack storage specified by
PDSCS$L_SIZE. A variable amount

of stack storage can be allocated by
modifying SP in the entry and exit code
of this procedure.

PDSC$V_REI RETURN

If set to 1, the procedure expects the
stack at entry to be set, so an REI
instruction correctly returns from the
procedure. Also, if set, the contents

32

Chapter 3. OpenVMS Alpha Conventions

Field Name Contents
of the PDSC$B_SAVE RA field are
unpredictable and the return address is
found on the stack.
Bit 9 Must be 0 (reserved).
PDSC$V_BASE FRAME For compiled code, this bit must be 0.

If set to 1, this bit indicates the logical
base frame of a stack that precedes all
frames corresponding to user code.

The interpretation and use of this frame
and whether there are any predecessor
frames is system software defined (and
subject to change).

PDSC$V_TARGET_INVO If set to 1, the exception handler for
this procedure is invoked when this
procedure is the target invocation of
an unwind. Note that a procedure is
the target invocation of an unwind if
it is the procedure in which execution
resumes following completion of the
unwind. For more information, see
Chapter 9.

If set to 0, the exception handler for
this procedure is not invoked. Note that
when PDSC$V_HANDLER_VALID is
0, this bit must be 0.

PDSCS$V_NATIVE For compiled code, this bit must be set
to 1.

PDSC$V_NO JACKET For compiled code, this bit must be set
to 1.

PDSC$V_TIE FRAME For compiled code, this bit must be 0.
Reserved for use by system software.

Bit 15 Must be 0 (reserved).

PDSC$B_SAVE_FP

Specifies the number of the register that contains the saved value of the
frame pointer (FP) register.

In a standard procedure, this field must specify a scratch register so as not
to violate the rules for procedure entry code as specified in Section 3.6.5.

PDSC$B_SAVE RA

Specifies the number of the register that contains the return address. If this
procedure uses standard call conventions and does not modify R26, then
this field can specify R26.

In a standard procedure, this field must specify a scratch register so as not
to violate the rules for procedure entry code as specified in Section 3.6.5.

PDSC$V_FUNC_
RETURN

A 4-bit field <11:8> that describes which registers are used for the function
value return (if there is one) and what format is used for those registers.

33

Chapter 3. OpenVMS Alpha Conventions

Field Name Contents
Table 6.4 lists and describes the possible encoded values of
PDSC$V_FUNC RETURN.

PDSCS$V_ A 3-bit field <14:12> that encodes the caller's desired exception-reporting

EXCEPTION _MODE

behavior when calling certain mathematically oriented library routines.
These routines generally search up the call stack to find the desired
exception behavior whenever an error is detected. This search is performed
independent of the setting of the Alpha FPCR. The possible values for this
field are defined as follows:

Value |Name Meaning
0 PDSCS$K_EXC Raise exceptions for all error
MODE SIGNAL conditions except for underflows
producing a 0 result. This is the default
mode.
1 PDSC$K _EXC Raise exceptions for all error
MODE SIGNAL_ALL |conditions (including underflows).
2 PDSC$K _EXC Raise no exceptions. Create only finite
MODE SIGNAL values (no infinities, denormals, or
SILENT NaNs). In this mode, either the function
result or the C language er r no
variable must be examined for any
error indication.
3 PDSC$K _EXC Raise no exceptions except as
MODE FULL IEEE |controlled by separate IEEE exception
enable bits. Create infinities,
denormals, or NaN values according to
the IEEE floating-point standard.
4 PDSCS$K_EXC Perform the exception-mode behavior
MODE CALLER specified by this procedure's caller.

PDSC$W _
SIGNATURE_OFFSET

A 16-bit signed byte offset from the start of the procedure descriptor. This
offset designates the start of the procedure signature block (if any). A 0

in this field indicates no signature information is present. Note that in

a bound procedure descriptor (as described in Section 3.6.4), signature
information might be present in the related procedure descriptor. A 1 in
this field indicates a standard default signature. An offset value of 1 is not
otherwise a valid offset because both procedure descriptors and signature
blocks must be quadword aligned.

PDSC$Q ENTRY

Absolute address of the first instruction of the entry code sequence for the
procedure.

PDSCSL_SIZE

Unsigned size in bytes of the fixed portion of the stack frame for this
procedure. The size must be a multiple of 16 bytes to maintain the
minimum stack alignment required by the Alpha hardware architecture and
stack alignment during a call (defined in Section 3.6.1).

PDSC$W_ENTRY _
LENGTH

Unsigned offset in bytes from the entry point to the first instruction in

the procedure code segment following the procedure prologue (that is,
following the instruction that updates FP to establish this procedure as the
current procedure).

34

Chapter 3. OpenVMS Alpha Conventions

Field Name Contents
PDSC$Q_REG_ Absolute address to the procedure descriptor for a run-time static
HANDLER exception handling procedure. This part of the procedure descriptor is

optional. It must be supplied if either PDSC$V_HANDLER VALID
is 1 or PDSC$V_HANDLER DATA VALID is 1 (which requires that
PDSC$V_HANDLER VALID be 1).

If PDSC$V_HANDLER VALID is 0, then the contents or existence of
PDSC$Q_REG_HANDLER is unpredictable.

PDSCS$Q REG Data (quadword) for the exception handler. This is an optional quadword
HANDLER DATA and needs to be supplied only if PDSC$V_HANDLER DATA VALID is
1.

If PDSC$V_HANDLER DATA VALID is 0, then the contents or
existence of PDSC$Q REG _HANDLER DATA is unpredictable.

3.4.6. Null Frame Procedures

A procedure may conform to this standard even if it does not establish its own context if, in a//
circumstances, invocations of that procedure do not need to be visible or debuggable. This is

termed executing in the context of the caller and is similar in concept to a conventional VAX JSB
procedure. For the purposes of stack tracing or unwinding, such a procedure is never considered to be
current.

For example, if a procedure does not establish an exception handler or does not save and restore
registers, and does not extend the stack, then that procedure might not need to establish a context.
Likewise, if that procedure does extend the stack, it still might not need to establish a context if the
immediate caller either cannot be the target of an unwind or is prepared to reset the stack if it is the
target of an unwind.

The circumstances under which procedures can run in the context of the caller are complex and are
not fully specified by this standard.

As with the other procedure types previously described, the choice of whether to establish a context

belongs to the called procedure. By defining a null procedure descriptor format, the same invocation
code sequence can be used by the caller for all procedure types.

3.4.7. Procedure Descriptor for Null Frame Procedures

The null frame procedure descriptor built by a compiler provides information about a procedure
with no frame. The size of the descriptor is 16 bytes (defined by PDSC$K_NULL_SIZE).

The fields defined in the null frame descriptor are illustrated in Figure 3.7 and described in Table 3.5.

35

Chapter 3. OpenVMS Alpha Conventions

Figure 3.7. Null Frame Procedure Descriptor (PDSC) Format

PDSC quadword aligned
Must be zero FLAGS 0
SIGNATURE_OFFSET MBZ *FRET Reserved 4
<15:12> | <11:8>
ENTRY 8
PDSC$K_NULL_SIZE = 16
*FRET = PDSC$V_FUNC_RETURN
ZK-4655A-GE

Table 3.5. Contents of Null Frame Procedure Descriptor (PDSC)

Field Name

Contents

PDSC$W_FLAGS

The PDSC descriptor flag bits <15:0> are defined as follows:

PDSC$V_KIND

A 4-bit field <3:0> that identifies the
type of procedure descriptor. For a
null frame procedure, this field must

specify a value 8 (defined by constant
PDSC$K _KIND NULL).

Bits 4—7

Must be 0.

PDSCS$V_REI_
RETURN

Bit 8. If set to 1, the procedure expects the
stack at entry to be set, so an REI instruction
correctly returns from the procedure. Also, if
set, the contents of the PDSC$B_SAVE RA
field are unpredictable and the return address
is found on the stack.

Bit9

Must be 0 (reserved).

PDSC$V_BASE
FRAME

For compiled code, this bit must be 0. If set
to 1, indicates the logical base frame of a
stack that precedes all frames corresponding
to user code. The interpretation and use

of this frame and whether there are any
predecessor frames is system software
defined (and subject to change).

Bit 11

Must be 0 (reserved).

PDSC$V_NATIVE

For compiled code, this bit must be set to 1.

PDSC$V_NO_JACKET

For compiled code, this bit must be set to 1.

PDSC$V_TIE FRAME

For compiled code, this bit must be 0.
Reserved for use by system software.

Bit 15

Must be 0 (reserved).

PDSC$V_FUNC RETURN

A 4-bit field <11:8> that describes which registers are used for the
function value return (if there is one) and what format is used for

those registers.

36

Chapter 3. OpenVMS Alpha Conventions

Field Name Contents

Table 6.4 lists and describes the possible encoded values of
PDSC$V_FUNC RETURN.

PDSC$W_SIGNATURE | A 16-bit signed byte offset from the start of the procedure descriptor.
OFFSET This offset designates the start of the procedure signature block

(if any). A 0 in this field indicates that no signature information is
present. Note that in a bound procedure descriptor (as described in
Section 3.6.4), signature information might be present in the related
procedure descriptor. A 1 in this field indicates a standard default
signature. An offset value of 1 is not otherwise a valid offset because
both procedure descriptors and signature blocks must be quadword
aligned.

PDSC$Q_ENTRY The absolute address of the first instruction of the entry code sequence
for the procedure.

3.5. Procedure Call Stack

Except for null-frame procedures, a procedure is an active procedure while its body is executing,
including while any procedure it calls is executing. When a procedure is active, it may handle an
exception that is signaled during its execution.

Associated with each active procedure is an invocation context, which consists of the set of registers
and space in memory that is allocated and that may be accessed during execution for a particular call
of that procedure.

When a procedure begins to execute, it has no invocation context. The initial instructions that allocate
and initiallize its context, which may include saving information from the invocation context of its
caller, are termed the procedure prologue. Once execution of the prologue is complete, the procedure
is said to be active.

When a procedure is ready to return to its caller, the instructions that deallocate and discard the
procedure's invocation context (which may include restoring state of the caller's invocation context
that was saved during the prologue), are termed a procedure epilogue. A procedure ceases to be
active when execution of its epilogue begins.

A procedure may have more than one prologue if there are multiple entry points. A procedure may
also have more than one epilogue if there are multiple return points. One of each will be executed
during any given invocation of the procedure.

Some procedures, notably null frame procedures (see Section Section 3.4.6), never have an
invocation context of their own and are said to execute in the body of their caller. A null frame
procedure has no prologue or epilogue, and consists solely of body instructions. Such a procedure
never becomes current or active in the sense that its handler may be invoked.

A call stack (for a thread) consists of the stack of invocation contexts that exists at any point in time.
New invocation contexts are pushed on that stack as procedures are called and invocations are popped
from the call stack as procedures return.

The invocation context of a procedure that calls another procedure is said to precede or be previous to
the invocation context of the called procedure.

37

Chapter 3. OpenVMS Alpha Conventions

3.5.1. Current Procedure

The current procedure is the active procedure whose execution began most recently; its invocation
context is at the top of the call stack. Note that a procedure executing in its prologue or epilogue is
not active, and hence cannot be the current procedure. Similarly, a null frame procedure cannot be the
current procedure.

In this calling standard, R29 is the frame pointer (FP) register that defines the current procedure.
Therefore, the current procedure must a/ways maintain in FP one of the following pointer values:
* Pointer to the procedure descriptor for that procedure.

* Pointer to a naturally aligned quadword containing the address of the procedure descriptor for
that procedure. For purposes of finding a procedure's procedure descriptor, no assumptions must
be made about the quadword location. As long as all other requirements of this standard are met,
a compiler is free to use FP as a base register for any arbitrary storage, including a stack frame,
provided that while the procedure is current, the quadword pointed to by the value in FP contains
the address of that procedure's descriptor.

At any point in time, the FP value can be interpreted to find the procedure descriptor for the current
procedure by examining the value at O(FP) as follows:

* If O(FP)<2:0> = 0, then FP points to a quadword that contains a pointer to the procedure descriptor
for the current procedure.

e IfO(FP)<2:0> # 0, then FP points to the procedure descriptor for the current procedure.

By examining the first quadword of the procedure descriptor, the procedure type can be determined
from the PDSC$V_KIND field.

The following code is an example of how the current procedure descriptor and procedure type can be
found:

LDQ RO, O(FP) ; Fetch quadword at FP

AND RO, #7, R28 ; Mask alignnent bits

BNEQ R28, 20% ;1's procedure descriptor pointer

LDQ RO, 0(RO) ; Was pointer to procedure descriptor
10%: AND RO, #7, R28 ; Do sanity check

BNEQ R28, 20% ;AL is well

;EBrror - Invalid FP
20%: AND RO, #15, RO ;Get kind bits

; Procedure KIND is nowin RO
IF PDSC$V_KIND is equal to PDSC$K_KIND FP STACK, the current procedure has a stack frame.

If PDSC$V_KIND is equal to PDSCSK _KIND FP REGISTER, the current procedure is a register
frame procedure.

Either type of procedure can use either type of mechanism to point to the procedure descriptor.
Compilers may choose the appropriate mechanism to use based on the needs of the procedure
involved.

38

Chapter 3. OpenVMS Alpha Conventions

3.5.2. Procedure Call Tracing

Mechanisms for each of the following functions are needed to support procedure call tracing:
* To provide the context of a procedure invocation

* To walk (navigate) the procedure call stack

* To refer to a given procedure invocation

This section describes the data structure mechanisms. The routines that support these functions are
described in Section 3.5.3.

3.5.2.1. Referring to a Procedure Invocation from a Data Structure

When referring to a specific procedure invocation at run-time, an invocation context handle, shown
in Figure 3.8, can be used. Defined by constant LIBICB$SK INVO HANDLE SIZE, the structure is a
single-field longword called HANDLE. HANDLE describes the invocation handle of the procedure.

Figure 3.8. Invocation Context Handle Format

longword aligned

HANDLE 0

INVO_HANDLE_SIZE = 4
ZK-4656A-GE

To encode an invocation context handle, follow these steps:

1. IfPDSC$V_BASE REG IS FPis set to 1 in the corresponding procedure descriptor, then set
INVO_HANDLE to the contents of the FP register in that invocation.

If PDSC$V_BASE REG IS FPis setto 0, set INVO _HANDLE to the contents of the SP register
in that invocation. (That is, start with the base register value for the frame).

2. Shift the INVO_HANDLE contents left one bit. Because this value is initially known to be
octaword aligned (see Section 3.6.1), the result is a value whose 5 low-order bits are 0.

3. If PDSCS$V_KIND =PDSCS$K KIND FP STACK, perform a logical OR on the contents of
INVO_HANDLE with the value 1F ¢, and then set INVO_HANDLE to the value that results.

If PDSC$V_KIND =PDSCS$K _KIND FP REGISTER, perform a logical OR on the contents of
INVO_HANDLE with the contents of PDSC$B_SAVE RA, and then set INVO_HANDLE to the

value that results.

Note that an invocation context handle is not defined for a null frame procedure.

Note

So you can distinguish an invocation of a register frame procedure that calls another register frame
procedure (where the called procedure uses no stack space and therefore has the same base register

39

Chapter 3. OpenVMS Alpha Conventions

value as the caller), the register number that saved the return address is included in the invocation
handle of a register frame procedure. Similarly, the number 31 in the invocation handle of a stack
frame procedure is included to distinguish an invocation of a stack frame procedure that calls a
register frame procedure where the called procedure uses no stack space.

3.5.2.2. Invocation Context Block

The context of a specific procedure invocation is provided through the use of a data structure
called an invocation context block. The minimum size of the block is 528 bytes and is system
defined using the constant LIBICBSK INVO CONTEXT BLK SIZE. The size of the last field
(LIBICB$Q_SYSTEM_DEFINED[#]) defined by the host system determines the total size of the
block.

The fields defined in the invocation context block are illustrated in the following figure and described
in Table 3.6.

40

Cha|

pter 3. OpenVMS Alpha Conventions

Figure 3.9. Invocation Context Block Format

INVO_CONTEXT_BLK

quadword aligned

0
CONTEXT_LENGTH
4
BLOCK_VERSION FRAME FLAGS
8
PROCEDURE_DESCRIPTOR
16
PROGRAM_COUNTER
24
PROCESSOR_STATUS
132
IREG[0]
40
IREG[1]
164
IREG[30]
72
FREG[0]
280
FREG[1]
:504
FREG|[30]
512
SYSTEM_DEFINED
LIBICB$K_INVO_CONTEXT_BLK_SIZE is defined by the system.
ZK-4657TA-GE

Table 3.6. Contents of the Invocation Context Block

Field Name

Contents

LIBICBSL CONTEXT LENGTH

Unsigned count of the total length in bytes of the context block;
this represents the sum of the lengths of the standard-defined
portion and the system-defined section.

LIBICB$SR_FRAME _FLAGS

The procedure frame flag bits <23:0> are defined as follows:

41

Chapter 3. OpenVMS Alpha Conventions

Field Name Contents
LIBICB$V_EXCEPTION _ Bit 0. If set to 1, the
FRAME invocation context

corresponds to an exception
frame.

LIBICB$V_AST FRAME Bit 1. If set to 1, the
invocation context
corresponds to an

asynchronous trap.

LIBICB$V_BOTTOM _OF _
STACK

Bit 2. If set to 1, the
invocation context
corresponds to a frame that
has no predecessor.

LIBICB$V_BASE FRAME Bit 3. If set to 1, the
BASE FRAME bit is set
in the FLAGS field of
the associated procedure

descriptor.

LIBICB$B BLOCK VERSION

A byte that defines the version of the context block. Because this
block is currently the first version, the value is set to 1.

LIBICB$PH_PROCEDURE
DESCRIPTOR

Address of the procedure descriptor for this context.

LIBICB$Q PROGRAM _
COUNTER

Quadword that contains the current value of the procedure's
program counter. For interrupted procedures, this is the same as
the continuation program counter; for active procedures, this is
the return address back into that procedure.

LIBICBSQ PROCESSOR _
STATUS

Contains the current value of the processor status.

LIBICB$Q IREG[n]

Quadword that contains the current value of the integer register
in the procedure (where n is the number of the register).

LIBICB$Q FREG[n]

Quadword that contains the current value of the floating-point
register in the procedure (where n is the number of the register).

LIBICB$Q SYSTEM
DEFINED[n]

A variable-sized area with locations defined in quadword
increments by the host environment that contains procedure
context information. These locations are not defined by this
standard.

3.5.2.3. Getting a Procedure Invocation Context with a Routine

A thread can obtain its own context or the current context of any procedure invocation in the
current stack call (given an invocation handle) by calling the run-time library functions defined in

Section 3.5.3.

3.5.2.4. Walking the Call Stack

During the course of program execution, it is sometimes necessary to walk the call stack. Frame-based
exception handling is one case where this is done. Call stack navigation is possible only in the reverse
direction (in a latest-to-earliest or top-to-bottom sequence).

42

Chapter 3. OpenVMS Alpha Conventions

To walk the call stack, perform the following steps:
1. Given a program state (which contains a register set), build an invocation context block.

For the current routine, an initial invocation context block can be obtained by calling the
LIBSGET CURR INVO CONTEXT routine. See Section 3.5.3.2.

2. Repeatedly call the LIBSGET PREV INVO CONTEXT routine until the end of the chain has
been reached (as signified by 0 being returned). See Section 3.5.3.3.

The bottom of stack frame (end of the call chain) is indicated
(LIBICB$V_BOTTOM_OF_STACK) when the target frame's saved FP value is 0.

Compilers are allowed to optimize high-level language procedure calls in such a way that they do not
appear in the invocation chain. For example, inline procedures never appear in the invocation chain.

Make no assumptions about the relative positions of any memory used for procedure frame
information. There is no guarantee that successive stack frames will always appear at higher
addresses.

3.5.3. Invocation Context Access Routines

A thread can manipulate the invocation context of any procedure in the thread's virtual address space
by calling the following run-time library functions.

3.5.3.1. LIBSGET_INVO_CONTEXT

A thread can obtain the invocation context of any active procedure by using the following function
format:

LI B$GET_I NVO_CONTEXT(i nvo_handl e, i nvo_cont ext)

Argument OpenVMS Usage Type Access Mechanism

invo_handle invo_handle longword read by value
(unsigned)

invo_context invo_context blk structure write by reference

Arguments:

i nvo_handl e Handle for the desired invocation.

i nvo_cont ext Address of an invocation context block into which the procedure context of the
frame specified by i nvo_handl e will be written.

Function Value Returned:

st at us Status value. A value of 1 indicates success; a value of 0 indicates failure.

Note

If the invocation handle that was passed does not represent any procedure context in the active call
stack, the value of the new contents of the context block is unpredictable.

43

Chapter 3. OpenVMS Alpha Conventions

3.5.3.2. LIBSGET_CURR_INVO_CONTEXT

A thread can obtain the invocation context of a current procedure by using the following function
format:

LI BSGET_CURR_| NVO_CONTEXT(i nvo_cont ext)

Argument OpenVMS Usage Type Access Mechanism
invo_context invo_context blk structure write by reference
Argument:

i nvo_cont ext Address of an invocation context block into which the procedure context of the
caller will be written.

Function Value Returned:

Zero This is to facilitate use in the implementation of the C language unwind
setj nmp or | ongj np function (only).

3.5.3.3. LIBSGET_PREV_INVO_CONTEXT

A thread can obtain the invocation context of the procedure context preceding any other procedure
context by using the following function format:

LI BSGET_PREV_| NVO_CONTEXT(i nvo_cont ext)

Argument OpenVMS Usage Type Access Mechanism
invo_context invo_context blk structure modify by reference
Argument:

i nvo_cont ext Address of an invocation context block. The given invocation context block
is updated to represent the context of the previous (calling) frame. The
LIBICB$V_BOTTOM_OF STACK flag of the invocation context block is
set if the target frame represents the end of the invocation call chain or if stack
corruption is detected.

Function Value Returned:

st at us Status value. A value of 1 indicates success. When the initial context represents
the bottom of the call stack, a value of 0 is returned. If the current operation
completed without error, but a stack corruption was detected at the next level
down, a value of 3 is returned.

3.5.3.4. LIBSGET_INVO_HANDLE

A thread can obtain an invocation handle corresponding to any invocation context block by using the
following function format:

LI BSGET_I NVO_HANDLE(i nvo_cont ext)

Argument OpenVMS Usage Type Access Mechanism
invo_context invo_context blk structure read by reference
Argument:

44

Chapter 3. OpenVMS Alpha Conventions

i nvo_cont ext Address of an invocation context block. Here, only the frame pointer and stack
pointer fields of an invocation context block must be defined.

Function Value Returned:

i nvo_handl e Invocation handle of the invocation context that was passed. If the returned
value is LIBSK_INVO HANDLE NULL, the invocation context that was
passed was invalid.

3.5.3.5. LIBSGET_PREV_INVO_HANDLE

A thread can obtain an invocation handle of the procedure context preceding that of a specified
procedure context by using the following function format:

LI B$GET_PREV_| N\VO_HANDLE(i nvo_handl e)

Argument OpenVMS Usage Type Access Mechanism

invo_handle invo_handle longword read by value
(unsigned)

Argument:

i nvo_handl e An invocation handle that represents a target invocation context.
Function Value Returned:

i nvo_handl e An invocation handle for the invocation context that is previous to that which
was specified as the target.

3.5.3.6. LIBSPUT_INVO_REGISTERS

A given procedure invocation context's fields can be updated with new register contents by calling a
system library function in following format:

LI B$PUT_I NVO_REQ STERS(i nvo_handl e, invo_context, invo_mask)

Argument OpenVMS Usage Type Access Mechanism

invo_handle invo_handle longword read by value
(unsigned)

invo_context invo_context blk structure read by reference

invo_mask mask quadword quadword read by reference
(unsigned)

Arguments:

i nvo_handl e Handle for the invocation to be updated.

i nvo_cont ext Address of an invocation context block that contains new register contents.

Each register that is set in the i nvo_rmask parameter, except SP, is updated
using the value found in the corresponding IREG or FREG field. The program
counter and processor status can also be updated in this way. (The SP register
cannot be updated using this routine). No other fields of the invocation context
block are used.

Chapter 3. OpenVMS Alpha Conventions

i nvo_mask Address of a 64-bit bit vector, where each bit corresponds to a register field
in the passed i nvo_cont ext . Bits 0 through 30 correspond to IREG[0]
through IREG[30], bit 31 corresponds to PROGRAM_COUNTER, bits 32
through 62 correspond to FREG[0] through FREG[30], and bit 63 corresponds
to PROCESSOR_STATUS. (If bit 30, which corresponds to SP, is set, then no
changes are made).

Function Value Returned:

st at us Status value. A value of 1 indicates success. When the initial context represents
the bottom of the call stack or when bit 30 of the i nvo_mask argument is set, a
value of 0 is returned (and nothing is changed).

Caution

While this routine can be used to update the frame pointer (FP), great care must be taken to assure
that a valid stack frame and execution environment result; otherwise, execution may become
unpredictable.

3.6. Transfer of Control

This standard states that a standard call (see Section 1.4) may be accomplished in any way that
presents the called routine with the required environment. However, typically, most standard-
conforming external calls are implemented with a common sequence of instructions and conventions.
Because a common set of call conventions is so pervasive, these conventions are included for
reference as part of this standard.

One important feature of the calling standard is that the same instruction sequence can be used to call
each of the different types of procedure. Specifically, the caller does not have to know which type of
procedure is being called.

3.6.1. Call Conventions

The call conventions describe the rules and methods used to communicate certain information
between the caller and the called procedure during invocation and return. For a standard call, these
conventions include the following:

¢ Procedure value

The calling procedure must pass to the called procedure its procedure value. This value can be a
statically or dynamically bound procedure value. This is accomplished by loading R27 with the
procedure value before control is transferred to the called procedure.

¢ Return address

The calling procedure must pass to the called procedure the address to which control must be
returned during a normal return from the called procedure. In most cases, the return address is the
address of the instruction following the one that transferred control to the called procedure. For a
standard call, this address is passed in the return address register (R26).

* Argument list

The argument list is an ordered set of zero or more argument items that together constitute a
logically contiguous structure known as an argument item sequence. This logically contiguous

46

Chapter 3. OpenVMS Alpha Conventions

sequence is typically mapped to registers and memory in a way that produces a physically
discontiguous argument list. In a standard call, the first six items are passed in registers R16—
21 or registers F16—21. (See Section 3.7.2 for details of argument-to-register correspondence).
The remaining items are collected in a memory argument list that is a naturally aligned array of
quadwords. In a standard call, this list (if present) must be passed at O(SP).

* Argument information

The calling procedure must pass to the called procedure information about the argument

list. This information is passed in the argument information (Al) register (R25). Defined by
AISK Al SIZE, the structure is a quadword as shown in Figure 3.10 with the fields described in
Table 3.7.

Figure 3.10. Argument Information Register (R25) Format

31 0
ARG REG INFO ARG COUNT
<31:26> <25:8> <7:0>
Must be 0
Al SIZE=8
ZK-4659A-GE

Table 3.7. Contents of the Argument Information Register (R25)

Field Name Contents

AI$B_ ARG COUNT |Unsigned byte <7:0> that specifies the number of 64-bit argument items in
the argument list (known as the “argument count”).

AI$V_ARG REG An 18-bit vector field <25:8> divided into six groups of 3 bits that

INFO correspond to the six arguments passed in registers. These groups describe
how each of the first six arguments are passed in registers with the first
group <10:8> describing the first argument. The encoding for each group
for the argument register usage follows:

Value |Name Meaning

0 AISK AR 164 64-bit or 32-bit sign-extended to 64-bit
argument passed in an integer register
(including addresses).
or
Argument is not present.

1 AI$SK AR FF F_floating argument passed in a floating
register.

2 AI$SK AR FD D_floating argument passed in a floating
register.

3 AI$SK AR FG G_floating argument passed in a floating
register.

4 AI$K AR FS S floating argument passed in a floating
register.

5 AI$SK_ AR FT T floating argument passed in a floating
register.

6,7 — Reserved.

47

Chapter 3. OpenVMS Alpha Conventions

Field Name Contents

Bits 26—63 Reserved and must be 0.

¢ Function result

If a standard-conforming procedure is a function and the function result is returned in a register,
then the result is returned in RO, FO, or FO and F1. Otherwise, the function result is returned via
the first argument item or dynamically as defined in Section 3.7.7.

* Stack usage

Whenever control is transferred to another procedure, the stack pointer (SP) must be octaword
aligned; at other times there is no stack alignment requirement. (A side effect of this is that the
in-memory portion of the argument list will start on an octaword boundary). During a procedure
invocation, the SP (R30) can never be set to a value higher than the SP at entry to that procedure
invocation.

The contents of the stack located above the portion of the argument list that is passed in memory
(if any) belongs to the calling procedure and is, therefore, not to be read or written by the called
procedure, except as specified by indirect arguments or language-controlled up-level references.

Because SP is used by the hardware in raising exceptions and asynchronous interrupts, the
contents of the next 2048 bytes below the current SP value are continually and unpredictably
modified. Software that conforms to this standard must not depend on the contents of the 2048
stack locations below O(SP).

Note

One implication of the stack alignment requirement is that low-level interrupt and exception-fielding
software must be prepared to handle and correct the alignment before calling handler routines, in case
the stack pointer is not octaword aligned at the time of an interrupt or exception.

3.6.2. Linkage Section

Because the Alpha hardware architecture has the property of instructions that cannot contain full
virtual addresses, it is sometimes referred to as a base register architecture. In a base register
architecture, normal memory references within a limited range from a given address are expressed by
using displacements relative to the contents of a register containing that address (base register). Base
registers for external program segments, either data or code, are usually loaded indirectly through a
program segment of address constants.

The fundamental program section containing address constants that a procedure uses to access other
static storage, external procedures, and variables is termed a linkage section. Any register used to
access the contents of the linkage section is termed a linkage pointer.

A procedure's linkage section includes the procedure descriptor for the procedure, addresses of all
external variables and procedures referenced by the procedure, and other constants a compiler may
choose to reference using a linkage pointer.

When a standard procedure is called, the caller must provide the procedure value for that procedure
in R27. Static procedure values are defined to be the address of the procedure's descriptor. Because
the procedure descriptor is part of the linkage section, calling this type of procedure value provides
a pointer into the linkage section for that procedure in R27. This linkage pointer can then be used

48

Chapter 3. OpenVMS Alpha Conventions

by the called procedure as a base register to address locations in its linkage section. For this reason,
most compilers generate references to items in the linkage section as offsets from a pointer to the
procedure's descriptor.

Compilers usually arrange (as part of the environment setup) to have the environment setup code
(for bound procedures) load R27 with the address of the procedure's descriptor so it can be used as a
linkage pointer as previously described. For an example, see Section 3.6.4.

Although not required, linkages to external procedures are typically represented in the calling
procedure's linkage section as a linkage pair. As shown in Figure 3.11 and described in Table 3.8, a
linkage pair (LKP) block with two fields should be octaword aligned and defined by LKP$K SIZE as
16 bytes.

Figure 3.11. Linkage Pair Block Format

LKP octaword aligned

ENTRY

PROC_VALUE

LKPSK_SIZE = 16

ZK-4660A-GE
Table 3.8. Contents of the Linkage Pair Block
Field Name Contents
LKP$Q ENTRY Absolute address of the first instruction of the called procedure's entry

code sequence.

LKP$SQ PROC VALUE Contains the procedure value of the procedure to be called. Normally,
this field is the absolute address of a procedure descriptor for the
procedure to be called, but in certain cases, it could be a bound
procedure value (such as for procedures that are called through certain
types of transfer vectors).

In general, an object module contains a procedure descriptor for each entry point in the module. The
descriptors are allocated in a linkage section. For each external procedure Q that is referenced in a
module, the module's linkage section also contains a linkage pair denoting Q (which is a pointer to Q's
procedure descriptor and entry code address).

The following code example calls an external procedure Q as represented by a linkage pair. In this
example, R4 is the register that currently contains the address of the current procedure's descriptor.

LDQ R26, Q DESC- MY_DESC(R4) ;@ s entry address into R26

LDQ R27,Q DESC- M¥_DESC+8(R4) ;Q s procedure value into R27

MOVQ #Al LI TERAL, R25 ; Load Argunment Information register
JSR R26, (R26) ;Call to Q Return address in R26

Because Q's procedure descriptor (statically defined procedure value) is in Q's linkage section, Q can
use the value in R27 as a base address for accessing data in its linkage section. Q accesses external

49

Chapter 3. OpenVMS Alpha Conventions

procedures and data in other program sections through pointers in its linkage section. Therefore, R27
serves as the root pointer through which all data can be referenced.

3.6.3. Calling Computed Addresses

Most calls are made to a fixed address whose value is determined by the time the program starts
execution. However, certain cases are possible that cause the exact address to be unknown until the
code is finally executed. In this case, the procedure value representing the procedure to be called is
computed in a register.

The following code example illustrates a call to a computed procedure value (simple or bound) that is
contained in R4:

LDQ R26, 8(R4) ; Entry address to scratch register
MOV R4, R27 ; Procedure value to R27

MOV #Al LI TERAL, R25 ; Load Argunent Information register
JSR R26, (R26) ;Call entry address.

For interoperation with translated images, see Chapter 6.

3.6.4. Simple and Bound Procedures

There are two distinct classes of procedures:
» Simple procedure
* Bound procedure

A simple procedure is a procedure that does not need direct access to the stack of its execution
environment. A bound procedure is a procedure that does need direct access to the stack of its
execution environment, typically to reference an up-level variable or to perform a nonlocal GOTO
operation. Both a simple procedure and a bound procedure have an associated procedure descriptor, as
described in previous sections.

When a bound procedure is called, the caller must pass some kind of pointer to the called code that
allows it to reference its up-level environment. Typically, this pointer is the frame pointer for that
environment, but many variations are possible. When the caller is executing its program within
that outer environment, it can usually make such a call directly to the code for the nested procedure
without recourse to any additional procedure descriptors. However, when a procedure value for the
nested procedure must be passed outside of that environment to a call site that has no knowledge
of the target procedure, a bound procedure descriptor is created so that the nested procedure can be
called just like a simple procedure.

Bound procedure values, as defined by this standard, are designed for multilanguage use and utilize
the properties of procedure descriptors to allow callers of procedures to use common code to call both
bound and simple procedures.

3.6.4.1. Bound Procedure Descriptors

Bound procedure descriptors provide a mechanism to interpose special processing between a call
and the called routine without modifying either. The descriptor may contain (or reference) data used
as part of that processing. Between native and translated images, the OpenVMS Alpha operating
system uses linker and image-activator created bound procedure descriptors to mediate the handling

50

Chapter 3. OpenVMS Alpha Conventions

of parameter and result passing (see Section 6.2). Language processors on OpenVMS Alpha systems
use bound procedure descriptors to implement bound procedure values (see Section 3.6.4.2). Other
uses are possible.

The minimum size of the descriptor is 24 bytes (defined by PDSC$K_MIN BOUND SIZE). An
optional PDSC extension in 8-byte increments provides the specific environment values as defined by

the implementation.

The fields defined in the bound procedure descriptor are illustrated in Figure 3.12 and described in
Table 3.9.

Figure 3.12. Bound Procedure Descriptor (PDSC)

PDSC quadword aligned
Must be zero FLAGS :0
SIGNATURE_OFFSET MBZ “FRET Reserved 4
<15:12> | <11:8>
:8
ENTRY
16
PROC_VALUE
PDSC$K_MIN_BOUND_SIZE = 24
End of required part of procedure descriptor
24
ENVIRONMENT
“FRET = PDSC$V_FUNC_RETURN
ZK-4662A-GE
Table 3.9. Contents of the Bound Procedure Descriptor (PDSC)
Field Name Contents
PDSC$W_FLAGS Vector of flag bits <15:0> that must be a copy of the flag

bits (except for KIND bits) contained in the quadword
pointed to by PDSC$Q PROC VALUE.

PDSCS$V_KIND | A 4-bit field <3:0> that identifies the
type of procedure descriptor. For a
procedure with bound values, this field
must specify a value of 0.

PDSC$V_FUNC _RETURN A 4-bit field <11:8> that describes which registers are
used for the function value return (if there is one) and what
format is used for those registers.

PDSCS$V_FUNC RETURN in a bound

procedure descriptor must be the same as the
PDSCS$V_FUNC_ RETURN of the procedure descriptor for
the procedure for which the environment is established.

51

Chapter 3. OpenVMS Alpha Conventions

Field Name Contents

Table 6.4 lists and describes the possible encoding values of
PDSC$V_FUNC RETURN.

Bits 12—15 Reserved and must be 0.

PDSC$W_SIGNATURE OFFSET A 16-bit signed byte offset from the start of the procedure
descriptor. This offset designates the start of the procedure
signature block (if any). In a bound procedure, a 0 in

this field indicates the actual signature block must be
sought in the procedure descriptor indicated by the
PDSC$Q _PROC VALUE field. A 1 in this field indicates

a standard default signature. (An offset value of 1 is not

a valid offset because both procedure descriptors and
signature blocks must be quadword aligned. See Section 6.2
for details of the procedure signature block).

Note that a nonzero signature offset in a bound procedure
value normally occurs only in the case of bound procedures
used as part of the implementation of calls from native
OpenVMS Alpha code to translated OpenVMS VAX
images. In any case, if a nonzero offset is present, it takes
precedence over signature information that might occur in
any related procedure descriptor.

PDSC$Q_ENTRY Address of the transfer code sequence.

PDSC$Q PROC VALUE Value of the procedure to be called by the transfer code. The
value can be either the address of a procedure descriptor for
the procedure or possibly another bound procedure value.

PDSC$Q_ENVIRONMENT An environment value to pass to the procedure. The choice
of environment value is system implementation specific.
For more information, see Section 3.6.4.2.

3.6.4.2. Bound Procedure Value

The procedure value for a bound procedure is a pointer to a bound procedure descriptor that, like all
other procedure descriptors, contains the address to which the calling procedure must transfer control
at offset 8 (see Figure 3.12). This transfer code is responsible for setting up the dynamic environment
needed by the target nested procedure and then completing the transfer of control to the code for

that procedure. The transfer code receives in R27 a pointer to its corresponding bound procedure
descriptor and thus can fetch any required environment information from that descriptor. A bound
procedure descriptor also contains a procedure value for the target procedure that is used to complete
the transfer of control.

When the transfer code sequence addressed by PDSC$Q ENTRY of a bound procedure descriptor is
called (by a call sequence such as the one given in Section 3.6.3), the procedure value will be in R27,
and the transfer code must finish setting up the environment for the target procedure. The preferred
location for this transfer code is directly preceding the code for the target procedure. This saves a
memory fetch and a branching instruction and optimizes instruction caches and paging.

The following is an example of such a transfer code sequence. It is an example of a target procedure Q
that expects the environment value to be passed in R1 and a linkage pointer in R27.

52

Chapter 3. OpenVMS Alpha Conventions

Q_TRANSFER
LDQ R1, 24(R27) ; Environnent value to Rl
LDQ R27, 16(R27) ; Procedure descriptor address to R27
Q _ENTRY: : ; Normal procedure entry code starts here

After the transfer code has been executed and control is transferred to Q's entry address, R27 contains
the address of Q's procedure descriptor, R26 (unmodified by transfer code) contains the return
address, and R1 contains the environment value.

When a bound procedure value such as this is needed, the bound procedure descriptor is usually
allocated on the parent procedure's stack.

3.6.5. Entry and Exit Code Sequences

To ensure that the stack can be interpreted at any point during thread execution, all procedures must
adhere to certain conventions for entry and exit as defined in this section.

3.6.5.1. Entry Code Sequence

Because the value of FP defines the current procedure, all properties of the environment specified
by a procedure's descriptor must be valid before the FP is modified to make that procedure current.
In addition, none of the properties specified in the calling procedure's descriptor may be invalidated
before the called procedure becomes current. So, until the FP has been modified to make the
procedure current, all entry code must adhere to the following rules:

» All registers specified by this standard as saved across a standard call must contain their original
(at entry) contents.

* No standard calls may be made.

Note

If an exception is raised or if an exception occurs in the entry code of a procedure, that procedure's
exception handler (if any) will not be invoked because the procedure is not current yet. Therefore, if
a procedure has an exception handler, compilers may not move code into the procedure prologue that
might cause an exception that would be handled by that handler.

When a procedure is called, the code at the entry address must synchronize (as needed) any pending
exceptions caused by instructions issued by the caller, must save the caller's context, and must make
the called procedure current by modifying the value of FP as described in the following steps:

1. If PDSCS$L_SIZE is not 0, set register SP = SP — PDSCSL_SIZE.
2. IfPDSCS$V_BASE REG IS FPis 1, store the address of the procedure descriptor at O(SP).

If PDSC$V_KIND =PDSC$K_KIND FP REGISTER, copy the return address to the register
specified by PDSC$B_SAVE RA, if it is not already there, and copy the FP register to the register
specified by PDSC$B_SAVE FP.

If PDSC$V_KIND =PDSC$K_KIND FP_STACK, copy the return address to the

quadword at the RSA$SQ_SAVED_ RETURN offset in the register save area denoted by
PDSC$W_ RSA OFFSET, and store the registers specified by PDSC$L_IREG MASK and
PDSCSL FREG MASK in the register save area denoted by PDSC$W RSA OFFSET. (This
step includes saving the value in FP).

53

Chapter 3. OpenVMS Alpha Conventions

Execute TRAPB if required (see Section 9.5.3.2 for details).

3. IfPDSC$V_BASE REG IS FP is 0, load register FP with the address of the procedure descriptor
or the address of a quadword that contains the address of the procedure descriptor.

If PDSC$V_BASE REG IS FPis 1, copy register SP to register FP.

The ENTRY LENGTH value in the procedure descriptor provides information that is redundant
with the setting of a new frame pointer register value. That is, the value could be derived by

starting at the entry address and scanning the instruction stream to find the one that updates FP. The
ENTRY LENGTH value included in the procedure descriptor supports the debugger or PCA facility
so that such a scan is not required.

Entry Code Example for a Stack Frame Procedure

Example 3.1 is an entry code example for a stack frame. The example assumes that:

* This is a stack frame procedure

* Registers R2—4 and F2—3 are saved and restored

« PDSC$W_RSA OFFSET =16

* The procedure has a static exception handler that does not reraise arithmetic traps
* The procedure uses a variable amount of stack

If the code sequence in Example 3.1 is interrupted by an asynchronous software interrupt, SP will
have a different value than it did at entry, but the calling procedure will still be current.

After an interrupt, it would not be possible to determine the original value of SP by the register frame
conventions. If actions by an exception handler result in a nonlocal GOTO call to a location in the
immediate caller, then it will not be possible to restore SP to the correct value in that caller. Therefore,
any procedure that contains a label that can be the target of a nonlocal GOTO by immediately called
procedures must be prepared to reset or otherwise manage the SP at that label.

Example 3.1. Entry Code for a Stack Frame Procedure

LDA SP,-SI ZE(SP) ;Allocate space for new stack frame

STQ R27, (SP) ; Set up address of procedure descriptor

STQ R26, 16(SP) ; Save return address

STQ R2, 24(SP) ; Save first integer register

STQ R3, 32(SP) ; Save next integer register

STQ R4, 40(SP) ; Save next integer register

STQ FP, 48(SP) ; Save caller's franme pointer

STT F2, 56(SP) ; Save first floating-point register

STT F3, 64(SP) ; Save | ast floating-point register

TRAPB ; Force any pendi ng hardware exceptions to
be raised

MoV SP, FP ; Call ed procedure is now the current procedure

Entry Code Example for a Register Frame

Example 3.2 assumes that the called procedure has no static exception handler and utilizes no
stack storage, PDSC$B_SAVE RA specifies R26, PDSC$B_SAVE_FP specifies R22, and
PDSC$V_BASE REG IS FPis0:

54

Chapter 3. OpenVMS Alpha Conventions

Example 3.2. Entry Code for a Register Frame Procedure

MoV FP, R22 ; Save caller's FP.

MoV R27, FP ; Set FP to address of called procedure's
; descriptor. Called procedure is now the
; current procedure.

3.6.5.2. Exit Code Sequence

When a procedure returns, the exit code must restore the caller's context, synchronize any pending
exceptions, and make the caller current by modifying the value of FP. The exit code sequence must
perform the following steps:

1. IfPDSC$V_BASE REG IS FPis 1, then copy FP to SP.
If PDSC$V_KIND =PDSC$K KIND FP STACK, and this procedure saves or restores any
registers other than FP and SP, reload those registers from the register save area as specified by

PDSC$W_RSA_OFFSET.

If PDSC$V_KIND =PDSC$K _KIND FP STACK, load a scratch register with the return

address from the register save area as specified by PDSC$W_RSA_ OFFSET. (If PDSC$V_KIND

=PDSCS$K KIND FP REGISTER, the return address is already in scratch register
PDSCS$B_SAVE RA).

Execute TRAPB if required (see Section 9.5.3.2 for details).

2. IfPDSC$V_KIND =PDSCS$K KIND FP REGISTER, copy the register specified by
PDSC$B_SAVE FP to register FP.

3. IfPDSC$V_KIND =PDSC$K_KIND FP_STACK, reload FP from the saved FP in the register
save area.

4. If a function value is not being returned using the stack (PDSC$V_STACK RETURN_ VALUE
is 0), then restore SP to the value it had at procedure entry by adding the value that was stored in
PDSCSL_SIZE to SP. (In some cases, the returning procedure will leave SP pointing to a lower
stack address than it had on entry to the procedure, as specified in Section 3.7.7).

5. Jump to the return address (which is in a scratch register).

The called routine does not adjust the stack to remove any arguments passed in memory. This

responsibility falls to the calling routine that may choose to defer their removal because of

optimizations or other considerations.

Exit Code Example for a Stack Frame

Example 3.3 shows the return code sequence for the stack frame.

Example 3.3. Exit Code Sequence for a Stack Frame

MOV FP, SP ; Chop the stack back

LDQ R28, 16(FP) ; Get return address

LDQ R2, 24(FP) ; Restore first integer register

LDQ R3, 32(FP) ; Restore next integer register

LDQ R4, 40(FP) ; Restore next integer register

LDT F2, 56(FP) ; Restore first floating-point register

55

Chapter 3. OpenVMS Alpha Conventions

LDT F3, 64(FP) ; Restore | ast floating-point register
TRAPB ; Force any pendi ng hardware exceptions to
; be raised
LDQ FP, 48(FP) ; Restore caller's frane pointer
LDA SP, SI ZE(SP) ; Restore SP (SIZE is conpiled into PDSC$L_SI ZE)
RET R31, (R28) ;Return to caller's code

Interruption of the code sequence in Example 3.3 by an asynchronous software interrupt can result
in the calling procedure being the current procedure, but with SP not yet restored to its value in that
procedure. The discussion of that situation in entry code sequences applies here as well.

Exit Code Example for a Register Frame

Example 3.4 contains the return code sequence for the register frame.

Example 3.4. Exit Code Sequence for a Register Frame

MoV R22, FP ; Restore caller's FP val ue
; Caller is once again the current procedure.
RET R31, (R26) ;Return to caller's code

3.7. Data Passing

This section defines the OpenVMS Alpha calling standard conventions of passing data between
procedures in a call stack. An argument item represents one unit of data being passed between
procedures.

3.7.1. Argument Passing Mechanisms

This OpenVMS Alpha calling standard defines three classes of argument items according to the
mechanism used to pass the argument:

e Immediate value
e Reference
* Descriptor

Argument items are not self-defining; interpretation of each argument item depends on agreement
between the calling and called procedures.

This standard does not dictate which passing mechanism must be used by a given language compiler.
Language semantics and interoperability considerations might require different mechanisms in
different situations.

Immediate value

An immediate value argument item contains the value of the data item. The argument item, or the
value contained in it, is directly associated with the parameter.

Reference

A reference argument item contains the address of a data item such as a scalar, string, array, record, or
procedure. This data item is associated with the parameter.

56

Chapter 3. OpenVMS Alpha Conventions

Descriptor

A descriptor argument item contains the address of a descriptor, which contains structural
information about the argument's type (such as array bounds) and the address of a data item. This data
item is associated with the parameter.

3.7.2. Argument List Structure

The argument list in an OpenVMS Alpha call is an ordered set of zero or more argument items,
which together comprise a logically contiguous structure known as the argument item sequence. An
argument item is specified using up to 64 bits.

A 64-bit argument item can be used to pass arguments by immediate value, by reference, and by
descriptor. Any combination of these mechanisms in an argument list is permitted.

Although the argument items form a logically contiguous sequence, they are in practice mapped

to integer and floating-point registers and to memory in a method that can produce a physically
discontiguous argument list. Registers R16—21 and F16—21 are used to pass the first six items of the
argument item sequence. Additional argument items must be passed in a memory argument list that
must be located at O(SP) at the time of the call.

Table 3.10 specifies the standard locations in which argument items can be passed.

Table 3.10. Argument Item Locations

Item Integer Floating- Stack
Register Point
Register

1 R16 F16

2 R17 F17

3 R18 F18

4 R19 F19

5 R20 F20

6 R21 F21

T—n O(SP) - (n-7)*8(SP)

The following list summarizes the general requirements that determine the location of any specific
argument:

* All argument items are passed in the integer registers or on the stack, except for argument items
that are floating-point data passed by immediate value.

» Floating-point data passed by immediate value is passed in the floating-point registers or on the
stack.

* Only one location (across an item row in Table 3.10) can be used by any given argument item
in a list. For example, if argument item 3 is an integer passed by value, and argument item 4 is a
single-precision floating-point number passed by value, then argument item 3 is assigned to R18
and argument item 4 is assigned to F19.

* A single- or double-precision complex value is treated as two arguments for the purpose of
argument-item sequence rules. In particular, the real part of a complex value might be passed as

57

Chapter 3. OpenVMS Alpha Conventions

the sixth argument item in register F21, in which case the imaginary part is then passed as the
seventh argument item in memory.

An extended precision complex value is passed by reference using a single integer or stack
argument item. (An extended precision complex value is not passed by immediate value
because the component extended precision floating values are not passed by value. See also
Section 3.7.5.1).

The argument list that includes both the in-memory portion and the portion passed in registers can be
read from and written to by the called procedure. Therefore, the calling procedure must not make any
assumptions about the validity of any part of the argument list after the completion of a call.

3.7.3. Argument Lists and High-Level Languages

High-level language functional notations for procedure call arguments are mapped into argument item
sequences according to the following requirements:

* Arguments are mapped from left to right to increasing offsets in the argument item sequence. R16
or F16 is allocated to the first argument, and the last quadword of the memory argument list (if
any) is allocated to the last argument.

* Each source language argument corresponds to one or more contiguous Alpha calling standard
argument items.

* Each argument item consists of 64 bits.

* A null or omitted argument—for example, CALL SUB(A,,B)—is represented by an argument
item containing the value 0.

Arguments passed by immediate value cannot be omitted unless a default value is supplied by the
language. (This is to enable called procedures to distinguish an omitted immediate argument from
an immediate value argument with the value 0).

Trailing null or omitted arguments—for example, CALL SUB(A,,)—are passed by the same rules
as for embedded null or omitted arguments.

3.7.4. Unused Bits in Passed Data

Whenever data is passed by value between two procedures in registers (for the first six input
arguments and return values), or in memory (for arguments after the first six), the bits not used by the
data are sign-extended or zero-extended as appropriate.

Table 3.11 lists and defines the various data-type requirements for size and their extensions to set or
clear unused bits.

Table 3.11. Unused Bits in Passed Data

Data Type Type Data Size Register Memory
Designator |(bytes) Extension Type |Extension Type

Byte logical BU 1 Zero64 Zero64

Word logical wu 2 Zero64 Zero64

Longword logical LU 4 Sign64 Sign64

Quadword logical QU 8 Data64 Data64

Byte integer B 1 Sign64 Sign64

58

Chapter 3. OpenVMS Alpha Conventions

Data Type Type Data Size Register Memory
Designator |(bytes) Extension Type |Extension Type

Word integer W 2 Sign64 Sign64

Longword integer L 4 Sign64 Sign64

Quadword integer Q 8 Data64 Data64

F floating F 4 Hard Data32

D_floating D 8 Hard Data64

G_floating G 8 Hard Data64

F_floating complex FC 2%4 2*Hard 2*Data32

D _floating complex DC 2*8 2*Hard 2*Data64

G _floating complex GC 2%8 2*Hard 2*Data64

S floating FS 4 Hard Data32

T floating FT 8 Hard Data64

X floating FX 16 N/A N/A

S floating complex FSC 2%4 2*Hard 2*Data32

T floating complex FTC 2*%8 2*Hard 2*Data64

X _floating complex FXC 2*16 N/A N/A

Small structures of 8 bytes or |N/A <8 Nostd Nostd

less

Small arrays of 8 bytes or N/A <8 Nostd Nostd

less

32-bit address N/A 4 Sign64 Sign64

64-bit address N/A Data64 Data64

Table 3.12 contains the defined meanings for the extension type symbols used in Table 3.11.

Table 3.12. Extension Type Codes

Sign Extension Defined Function

Type

Sign64 Sign-extended to 64 bits.

Zero64 Zero-extended to 64 bits.

Data32 Data is 32 bits. The state of bits <63:32> is unpredictable.

2*Data32 Two single-precision parts of the complex value are stored in memory as
independent floating-point values (each handled as Data32).

Data64 Data is 64 bits.

2*Data64 Two double-precision parts of the complex value are stored in memory as
independent floating-point values (each handled as Data64).

Hard Passed in the layout defined by the hardware SRM.

2*Hard Two floating-point parts of the complex value are stored in a pair of registers as
independent floating-point values (each handled as Hard).

Nostd State of all high-order bits not occupied by the data is unpredictable across a call
or return.

59

Chapter 3. OpenVMS Alpha Conventions

Because of the varied rules for sign extension of data when passed as arguments, both calling and
called routines must agree on the data type of each argument. No implicit data-type conversions can
be assumed between the calling procedure and the called procedure.

3.7.5. Sending Data

This section defines the OpenVMS Alpha calling standard requirements for mechanisms to send data
and the order of argument evaluation.

3.7.5.1. Sending Mechanism

As previously defined, the argument-passing mechanisms allowed are immediate value, reference, and
descriptor. Requirements for using these mechanisms follow:

By immediate value. An argument may be passed by immediate value only if the argument is one
of the following:

* One of the noncomplex scalar data types with a size known (at compile time) to be < 64 bits
» Either single or double precision complex

e A record with a known size (at compile time)

* A set, implemented as a bit vector, with a size known (at compile time) to be < 64 bits

No form of string or array data type may be passed by immediate value in a standard call.

Unused high-order bits must be zero or sign-extended, as appropriate depending on the date type,
to fill all bits of each argument list item (as specified in Table 3.11).

A single- or double- precision complex value is passed as two single or double precision floating-
point values, respectively. Note that the argument count reflects that two argument positions are
used rather than just one actual argument.

A record value, which may be larger than 64 bits, is passed by immediate value as follows:

* Allocate as many fully occupied argument item positions to the argument value as are needed
to represent the argument.

* The value of the unoccupied bits is undefined in a final, partially occupied argument item
position, if any.

» If an argument position is passed in one of the registers, it can only be passed in an integer
register (never in a floating-point register).

Other argument values that are larger than 64 bits can be passed by immediate value using
nonstandard conventions, typically using a method similar to those for passing records. Thus, for
example, a 26-byte string can be passed by value in four integer registers.

By reference. Nonparametric arguments (arguments for which associated information such as
string size and array bounds are not required) can be passed by reference in a standard call. This
includes extended precision floating and extended precision complex values.

By descriptor. Parametric arguments (arguments for which associated information such as string
size and array bounds must be passed to the caller) are passed by a single descriptor in a standard
call.

60

Chapter 3. OpenVMS Alpha Conventions

Note that extended floating values are not passed using the immediate value mechanism; rather, they
are passed using the by reference mechanism. (However, when by value semantics is required, it may
be necessary to make a copy of the actual parameter and pass a reference to that copy in order to avoid
improper alias effects).

Also note that when a record is passed by immediate value, the component types are not material to
how the argument is aligned; the record will always be quadword aligned.

3.7.5.2. Order of Argument Evaluation
Because most high-level languages do not specify the order of evaluation (with respect to side effects)
of arguments, those language processors can evaluate arguments in any convenient order. The choice

of argument evaluation order and code generation strategy is constrained only by the definition of the
particular language. Programs should not depend on the order of evaluation of arguments.

3.7.6. Receiving Data

When it cannot be determined at compile time whether a given in-register argument item is passed in
a floating-point register or an integer register, the argument information register can be interpreted at
run-time to establish where the argument was passed. (See Section 3.6.1 for details).

3.7.7. Returning Data

A standard function must return its function value by one of the following mechanisms:

* Immediate value

* Reference

* Descriptor

These mechanisms are the only standard means available for returning function values, and they

support the important language-independent data types. Functions that return values by any
mechanism other than those specified here are nonstandard, language-specific functions.

3.7.7.1. Function Value Return by Immediate Value

This standard defines the following two types of function returns by immediate value:
* Nonfloating function value return

* Floating function value return

Nonfloating Function Value Return by Immediate Value

A function value is returned by immediate value in register RO only if the type of function value is one
of the following:

* Nonfloating-point scalar data type with size known to be < 64 bits
* Record with size known to be < 64 bits

* Set, implemented as a bit vector, with size known to be < 64 bits

61

Chapter 3. OpenVMS Alpha Conventions

No form of string or array can be returned by immediate value, and two separate 32-bit entities cannot
be combined and returned in RO.

A function value of less than 64 bits returned in RO must be zero-extended or sign-extended as
appropriate, depending on the data type (see Table 3.11), to a full quadword.

Floating Function Value Return by Immediate Value

A function value is returned by immediate value in register FO on/y if it is a noncomplex single- or
double-precision floating-point value (F, D, G, S, or T).

A function value is returned by immediate value in registers FO and F1 only if it is a complex single or
double-precision floating-point value (complex F, D, G, S, or T).

Note that extended floating-point and extended complex values are returned by reference as described
next.

3.7.7.2. Function Value Return by Reference

A function value is returned by reference only if the function value satisfies both of the following
criteria:

» Its size is known to both the calling procedure and the called procedure, but the value cannot be
returned by immediate value. (Because the function value requires more than 64 bits, the data type
is a string or an array type).

» It can be returned in a contiguous region of storage.

The actual-argument list and the formal-argument list are shifted to the right by one argument item.
The new, first argument item is reserved for the function value. This hidden first argument is included
in the count and register usage information that is passed in the argument information register (see
Section 3.6.1 for details).

The calling procedure must provide the required contiguous storage and pass the address of the
storage as the first argument. This address must specify storage naturally aligned according to the data
type of the function value.

The called function must write the function value to the storage described by the first argument.

The t hi s Pointer

For C++, when the t hi S pointer is passed as an implicit first parameter and a pointer to a return
value buffer is also required, then the t hi S pointer becomes the first parameter, the buffer pointer
becomes the second parameter, and the remaining normal parameters are shifted two slots to make this
possible.

3.7.7.3. Function Value Return by Descriptor

A function value is returned by descriptor only if the function value satisfies all of the following
criteria:

» It cannot be returned by immediate value. (Because the function value requires more than 64 bits,
the data type is a string or an array type, and so on).

» Its size is not known to either the calling procedure or the called procedure.

62

Chapter 3. OpenVMS Alpha Conventions

* [t can be returned in a contiguous region of storage.

Noncontiguous function values are language specific and cannot be returned as a standard-conforming
return value.

Records, noncontiguous arrays, and arrays with more than one dimension cannot be returned by
descriptor in a standard call.

Both 32-bit and 64-bit descriptor forms can be used for function values returned by descriptor. See
Chapter 8, for details of the descriptor forms.

The use of descriptors for function value return divides into three major cases with return values
involving:

* Dynamic text—Heap-managed strings of arbitrary and dynamically changeable length

* Return objects created by the calling routine—Function values that are to be returned in an object
allocated by and having attributes (bounds, lengths, and so on) specified by the calling routine

* Return objects created by the called routine—Function values that are returned in an object
allocated by and having attributes (bounds, lengths, and so on) specified by the called routine

For correct results to be obtained from this type of function return, the calling and called routines must
agree by prior arrangement which of these three major cases applies, and whether 64-bit descriptor
forms may be used.

The following paragraphs describe the specialized requirements for each major case:
Dynamic Text

For dynamic text return by descriptor, the calling routine passes a valid (completely initialized)
dynamic string descriptor (DSC$B_CLASS = DSC$K_CLASS D). The called routine must assign a
value to the variable represented by this descriptor using the same rules that apply to a dynamic text
descriptor used as an ordinary parameter.

Return Object Created by Calling Routine

For a return object created by the calling routine, the calling routine passes a descriptor in which all
fields are completely loaded.

The called routine must supply a return value that satisfies that description. In particular, the called
routine must truncate or pad the returned value to satisfy the requirements of the descriptor according
to the semantics of the language in which the called routine is written.

The calling and called routines must agree by prior arrangement on the DSC$B_CLASS and
DSC$B_DTYPE of descriptor to be used.

Return Object Created by Called Routine

For a return object created by the called routine, the calling and called routines must agree by prior
arrangement on the DSC$B_CLASS and DSC$B_DTYPE of descriptor to be used. The calling
routine passes a descriptor in which:

+ DSCS$A POINTER field is set to 0.

* DSC$B_CLASS field is loaded.

63

Chapter 3. OpenVMS Alpha Conventions

+ DSC$B_DTYPE field is loaded.

* DSC$B_DIMCT field is loaded and the DSC$B_AFLAGS field is set to 0 if the descriptor is an
array descriptor.

» All other fields are unpredictable.

If the passed descriptor is an array descriptor, it must contain space for bounds information to be
returned even though the DSC$B_AFLAGS field is set to 0.

The called routine must return the function value using stack return conventions and load the
DSCS$A_POINTER field to point to the returned data. Other descriptor information, such as origin,
bounds (if supplied), and DSC$B_AFLAGS fields must be filled in appropriately to correspond to the
returned data.

An important implication of a call that uses this kind of value return is that the stack pointer normally
is not restored to its value prior to the call as part of the return from the called procedure. The returned
value typically (but not necessarily) is left by the called routine somewhere on the stack. For that
reason, this mechanism is sometimes known as the stack return mechanism.

After a return of this type, the calling routine must assume that the stack has been extended by some
unknown amount (or possibly none) by the called procedure. In particular, the stack cannot be cut
back until the returned value is no longer needed (which may be ensured by copying it to another
location).

However, this type of return does not imply that the actual storage used by the called routine to hold
the returned value must be at the address pointed to by the stack pointer; it need not even be on the
stack. It could be in some read-only, static memory. (This latter case might arise when the returned
value is constant or is obtained from some constant structure). For this reason, the calling routine must
not assume that the data described by the return descriptor is writable.

3.8. Data Allocation

This section describes the standard static data requirements that define the Alpha alignment of
data structures, record formats, and record layout. These conventions help to ensure proper data
compatibility with all OpenVMS Alpha and VAX languages.

3.8.1. Data Alignment

In the Alpha environment, memory references to data that is not naturally aligned can result in
alignment faults, which can severely degrade the performance of all procedures that reference the
unaligned data.

To avoid such performance degradation, all data values on Alpha systems should be naturally aligned.
Table 3.13 contains information on data alignment.

Table 3.13. Natural Alignment Requirements

Data Type Alignment Starting Position

8-bit character string Byte boundary

16-bit integer Address that is a multiple of 2 (word alignment)
32-bit integer Address that is a multiple of 4 (longword alignment)

64

Chapter 3. OpenVMS Alpha Conventions

Data Type Alignment Starting Position
64-bit integer Address that is a multiple of 8 (quadword alignment)
F floating Address that is a multiple of 4 (longword)

F_floating complex

D floating Address that is a multiple of 8 (quadword)
D_floating complex

G_floating Address that is a multiple of 8 (quadword)
G_floating complex

S floating Address that is a multiple of 4 (longword)
S floating complex

T floating Address that is a multiple of 8 (quadword)
T floating complex

X floating Address that is a multiple of 16 (octaword)
X _floating complex

For aggregates such as strings, arrays, and records, the data type to be considered for purposes of
alignment is not the aggregate itself, but rather the elements of which the aggregate is composed. The
alignment requirement of an aggregate is that all elements of the aggregate be naturally aligned. For
example, varying 8-bit character strings must start at addresses that are a multiple of at least 2 (word
alignment) because of the 16-bit count at the beginning of the string; 32-bit integer arrays start at a
longword boundary, irrespective of the extent of the array.

The rules for passing a record in an argument that is passed by immediate value (see Section 3.7.5.1)
always provide quadword alignment of the record value independent of the normal alignment
requirement of the record. If deemed appropriate by an implementation, normal alignment can be
established within the called procedure by making a copy of the record argument at a suitably aligned
location.

3.8.2. Record Layout Conventions

The OpenVMS Alpha calling standard rules for record layout are designed to provide good run-time
performance on all implementations of the Alpha architecture and to provide the required level of
compatibility with conventional VAX operating environments.

Therefore, this standard defines two record layout conventions:
* Those optimized for optimal access characteristics (referred to as aligned record layouts)

* Those compatible with conventions that are traditionally used by VAX languages (referred to as
VAX compatible record layouts)

Only these two record layouts may be used across standard interfaces or between languages.
Languages can support other language-specific record layout conventions, but such layouts are
nonstandard.

The aligned record layout conventions should be used unless interchange is required with
conventional VAX applications that use the OpenVMS VAX compatible record layouts.

3.8.2.1. Aligned Record Layout

The aligned record layout conventions ensure that:

65

Chapter 3. OpenVMS Alpha Conventions

All components of a record or subrecord are naturally aligned.

Layout and alignment of record elements and subrecords are independent of any record or
subrecord in which they are embedded.

Layout and alignment of a subrecord is the same as if it were a top-level record.

Declaration in high-level languages of standard records for interlanguage use is straightforward
and obvious, and meets the requirements for source-level compatibility between Alpha and VAX
languages.

The aligned record layout is defined by the following conventions:

The components of a record must be laid out in memory corresponding to the lexical order of their
appearance in the high-level language declaration of the record.

The first bit of a record or subrecord must be directly addressable (byte aligned).

Records and subrecords must be aligned according to the largest natural alignment requirements of
the contained elements and subrecords.

Bit fields (packed subranges of integers) are characterized by an underlying integer type that is a
byte, word, longword, or quadword in size together with an allocation size in bits. A bit field is
allocated at the next available bit boundary, provided that the resulting allocation does not cross
an alignment boundary of the underlying type. Otherwise, the field is allocated at the next byte
boundary that is aligned as required for the underlying type. (In the later case, the space skipped
over is left permanently not allocated). In addition, if necessary, the alignment of the record as a
whole is increased to that of the underlying integer type.

Unaligned bit strings, unaligned bit arrays, and elements of unaligned bit arrays must start at
the next available bit in the record. No fill is ever supplied preceding an unaligned bit string,
unaligned bit array, or unaligned bit array element.

All other components of a record must start at the next available naturally aligned address for the
data type.

The length of a record must be a multiple of its alignment. (This includes the case when a record is
a component of another record).

Strings and arrays must be aligned according to the natural alignment requirements of the data
type of which the string or array is composed.

The length of an array element is a multiple of its alignment, even if this leaves unused space at its
end. The length of the whole array is the sum of the lengths of its elements.

3.8.2.2. OpenVMS VAX Compatible Record Layout

The OpenVMS VAX compatible record layout is defined by the following conventions:

The components of a record must be laid out in memory corresponding to the lexical order of their
appearance in the high-level language declaration of the record.

Unaligned bit strings, unaligned bit arrays, and elements of unaligned bit arrays must start at
the next available bit in the record. No fill is ever supplied preceding an unaligned bit string,
unaligned bit array, or unaligned bit array element.

66

Chapter 3. OpenVMS Alpha Conventions

* All other components of a record must start at the next available byte in the record. Any unused
bits following the last-used bit in the last-used byte of each component must be filled out to the
next byte boundary so that any following data starts on a byte boundary.

* Subrecords must be aligned according to the largest alignment of the contained elements and
subrecords. A subrecord always starts at the next available byte unless it consists entirely of
unaligned bit data and it immediately follows an unaligned bit string, unaligned bit array, or a
subrecord consisting entirely of unaligned bit data.

* Records must be aligned on byte boundaries.

3.9. Multithreaded Execution Environments

This section defines the conventions to support the execution of multiple threads in a multilanguage
Alpha environment. Specifically defined is how compiled code must perform stack limit checking.
While this standard is compatible with a multithreaded execution environment, the detailed
mechanisms, data structures, and procedures that support this capability are not specified in this
manual.

For a multithread environment, the following characteristics are assumed:
» There can be one or more threads executing within a single process.
* The state of a thread is represented in a thread environment block (TEB).

* The TEB of a thread contains information that determines a stack limit below which the stack
pointer must not be decremented by the executing code (except for code that implements the
multithread mechanism itself).

* Exception handling is fully reentrant and multithreaded.

3.9.1. Stack Limit Checking

A program that is otherwise correct can fail because of stack overflow. Stack overflow occurs when
extension of the stack (by decrementing the stack pointer, SP) allocates addresses not currently
reserved for the current thread's stack.

Detection of a stack overflow situation is necessary because a thread, attempting to write into stack
storage, could modify data allocated in that memory for some other purpose. This would most likely
produce unpredictable and undesirable results or irreproducible application failures.

The requirements for procedures that can execute in a multithread environment include checking
for stack overflow. This section defines the conventions for stack limit checking in a multithreaded
program environment.

In the following sections, the term new stack region refers to the region of the stack from one less
than the old value of SP to the new value of the SP.

Stack Guard Region

In a multithread environment, the memory beyond the limit of each thread's stack is protected by
contiguous guard pages, which form the stack's guard region.

Stack Reserve Region

67

Chapter 3. OpenVMS Alpha Conventions

In some cases, it is desirable to maintain a stack reserve region, which is a minimum-sized region
that is immediately above a thread's guard region. A reserve region may be desirable to ensure that
exceptions or asynchronous system traps (ASTs) have stack space to execute on a thread's stack, or to
ensure that the exception dispatcher and any exception handler that it might call have stack space to
execute after detection of an invalid attempt to extend the stack.

This standard does not require a reserve region.

3.9.1.1. Methods for Stack Limit Checking

Because accessible memory may be available at addresses lower than those occupied by the guard
region, compilers must generate code that never extends the stack past the guard pages into accessible
memory that is not allocated to the thread's stack.

A general strategy is to access each page of memory down to and possibly including the page
corresponding to the intended new value for the SP. If the stack is to be extended by an amount larger
than the size of a memory page, then a series of accesses is required that works from higher to lower
addressed pages. If any access results in a memory access violation, then the code has made an invalid
attempt to extend the stack of the current thread.

Note

An access can be performed by using either a load or a store operation; however, be sure to use an
instruction that is guaranteed to make an access to memory. For example, do not use an LDQ R31, *
instruction, because the Alpha architecture does not allow any memory access, even a read access,
whose result is discarded because of the R31 destination.

This standard defines two methods for stack limit checking: implicit and explicit.
Implicit Stack Limit Checking
The following are two mutually exclusive strategies for implicit stack limit checking:

» If the lowest addressed byte of the new stack region is guaranteed to be accessed prior to any
further stack extension, then the stack can be extended by an increment that is equal in size to the
guard region (without any further accesses).

» If some byte (not necessarily the lowest) of the new stack region is guaranteed to be accessed prior
to any further stack extension, then the stack can be extended by an increment that is equal in size
to one-half the guard region (without any further accesses).

The stack frame format (see Section 3.4.3) and entry code rules (see Section 3.6.5) generally do not
ensure access to the lowest address of a new stack region without introducing an extra access solely
for that purpose. Consequently, this standard uses the second strategy. While the amount of implicit
stack extension that can be achieved is smaller, the check is achieved at no additional cost.

This standard requires that the minimum guard region size is 8192 bytes, the size of the smallest
memory protection granularity allowed by the Alpha architecture.

If the stack is being extended by an amount less than or equal to 4096 and a reserve region is not
required, then explicit stack limit checking is not required. However, because asynchronous interrupts
and calls to other procedures may also cause stack extension without explicit stack limit checking,
stack extension with implicit limit checking must adhere to a strict set of conventions as follows:

68

Chapter 3. OpenVMS Alpha Conventions

* Explicit stack limit checking must be performed unless the amount by which the SP is
decremented is known to be less than or equal to 4096 and a reserve region is not required.

* Some byte in the new stack region must be accessed before the SP can be decremented for a
subsequent stack extension.

This access can be performed either before or after the SP is decremented for this stack extension,
but it must be done before the SP can be decremented again.

» No standard procedure call can be made before some byte in the new stack region is accessed.

» The system exception dispatcher ensures that the lowest addressed byte in the new stack region is
accessed if any kind of asynchronous interrupt occurs after the SP is decremented, but before the
access in the new stack region occurs.

These conventions ensure that the stack pointer is not decremented so that it points to accessible
storage beyond the stack limit without this error being detected (either by the guard region being
accessed by the thread or by an explicit stack limit check failure).

As a matter of practice, the system can provide multiple guard pages in the guard region. When a
stack overflow is detected as a result of access to the guard region, one or more guard pages can

be unprotected for use by the exception handling facility, and one or more guard pages can remain
protected to provide implicit stack limit checking during exception processing. However, the size of
the guard region and the number of guard pages is system defined and is not defined by this standard.

Explicit Stack Limit Checking

If the stack is being extended by an amount of unknown size or by a known size greater than the
maximum implicit check size (4096), then a code sequence that follows the rules for implicit stack
limit checking can be executed in a loop to access the new stack region incrementally in segments
lesser than or equal to the minimum page size (8192 bytes). At least one access must occur in each
such segment.

The first access must occur between SP and SP-4096 because, in the absence of more specific
information, the previous guaranteed access relative to the current stack pointer may be as much as
4096 bytes greater than the current stack pointer address.

The last access must be within 4096 bytes of the intended new value of the stack pointer. These
accesses must occur in order, starting with the highest addressed segment and working toward the
lowest addressed segment.

A more optimal strategy is:

1. Perform a read access using the intended new value of the stack pointer. This is nondestructive,
even if the read is beyond the stack guard region, and may facilitate OS mapping of new stack
pages, if appropriate, in a single operation.

2. Proceed with sequential accesses as just described.

Note

A simple algorithm that is consistent with this requirement (but achieves up to twice the minimum
number of accesses) is to perform a sequence of accesses in a loop starting with the previous value of
SP, decrementing by the minimum no-check extension size (4096) to, but not including, the first value
that is less than the new value for the stack pointer.

69

Chapter 3. OpenVMS Alpha Conventions

The stack must not be extended incrementally in procedure prologues. A procedure prologue that
needs to extend the stack by an amount of unknown size or known size greater than the minimum
implicit check size must test new stack segments as just described in a loop that does not modify SP,
and then update the stack with one instruction that copies the new stack pointer value into the SP.

Note

An explicit stack limit check can be performed either by inline code that is part of a prologue or by a
run-time support routine that is tailored to be called from a procedure prologue.

Stack Reserve Region Checking

The size of the reserve region must be included in the increment size used for stack limit checks, after
which it is not included in the amount by which the stack is actually extended. (Depending on the size
of the reserve region, this may partially or even completely eliminate the ability to use implicit stack
limit checking).

3.9.1.2. Stack Overflow Handling

If a stack overflow is detected, one of the following results:
+ Exception SS§ ACCVIO may be raised.

* The system may transparently extend the thread's stack, reset the TEB stack limit value
appropriately, and continue execution of the thread.

Note that if a transparent stack extension is performed, a stack overflow that occurs in a called
procedure might cause the stack to be extended. Therefore, the TEB stack limit value must be
considered volatile and potentially modified by external procedure calls and by handling of
exceptions.

70

Chapter 4. OpenVMS 164 Conventions

This chapter describes the fundamental concepts and conventions for calling a procedure in an
OpenVMS 164 environment.

4.1. 164 Register Usage

This section describes the register conventions for OpenVMS 164. OpenVMS uses the following
register types:

General
Floating-point
Predicate
Branch

Application

4.1.1. 164 Register Classes

Registers are partitioned into the following classes that define the way a register can be used within a
procedure:

Scratch registers—may be modified by a procedure call; the caller must save these registers before
a call if needed (caller save).

Preserved registers—must not be modified by a procedure call; the callee must save and restore
these registers if used (callee save). A procedure using one of the preserved general registers must
save and restore the caller's original contents, including the NaT bits associated with the registers,
without generating a NaT consumption fault.

One way to preserve a register is not to use it at all.

Automatic registers—saved and restored automatically by the hardware call/return mechanism.
Constant or Read-only registers—contain a fixed value that cannot be changed by the program.
Special registers—used in the calling standard call/return mechanism.

Global registers—shared across a set of cooperating routines as global static storage that happens
to be allocated in a register. (Details regarding the dynamic lifetime of such storage are not
addressed here).

OpenVMS further defines the way that static registers can be used between routines:

Special registers—used in the calling standard call/return mechanism. (These are the same as the
set of special registers in the preceding list of registers used within a procedure).

Input registers—may be used to pass information into a procedure (in addition to the normal
stacked input registers).

Output registers—may be used to pass information back from a called procedure to its caller (in
addition to the normal return value registers).

71

Chapter 4. OpenVMS 164 Conventions

* Volatile registers—may be used as scratch registers within a procedure and are not preserved
across a call; may not be used to pass information between procedures either as input or output.

4.1.2. 164 General Register Usage

This standard defines the usage of the OpenVMS general registers as listed in Table 4.1. General
registers RO through R31 are termed the static general registers. General registers R32 through R127
are termed the stacked general registers.

Table 4.1. 164 General Register Usage

Register

Class

Usage

RO

Constant

Always 0.

R1

Special

Global data pointer (GP). Designated to hold the address of the
currently addressable global data segment. Its use is subject to the
following conventions:

1. On entry to a procedure, GP is guaranteed valid for that procedure.

2. At any direct procedure call, GP must be valid (for the caller).
This guarantees that an import stub (see Section 4.7.3) can access
the caller's linkage table.

3. Any procedure call (indirect or direct) may modify GP unless the
call is known to be local to the image.

4. At procedure return, GP must be valid (for the returning
procedure). This allows the compiler to optimize calls known to be
local (an exception to convention 3).

The effect of these rules is that GP must be treated as a scratch register
at a point of call (that is, it must be saved by the caller), and it must be
preserved from entry to exit.

R2

Volatile

May not be used to pass information between procedures, either as
inputs or outputs. See also Section 4.1.9.

R3

Scratch

May be used within and between procedures in any mutually
consistent combination of ways under explicit user control. See also
Section 4.1.9.

R4—R7

Preserved

General-purpose preserved registers. Used for any value that needs to
be preserved across a procedure call. May be used within and between
procedures in any mutually consistent combination of ways under
explicit user control. See also Section 4.1.9.

R8&—R9

Scratch

Return Value. Can also be used as input (whether or not the procedure
has a return value), but not in any additional ways. In addition, R9

is the preferred and recommended register to use when passing the
environment value when calling a bound procedure. (See Section 4.7.7
and Section 6.1.2).

R10—RI1

Scratch

May be used within and between procedures in any mutually
consistent combination of ways under explicit user control. See also
Section 4.1.9.

72

Chapter 4. OpenVMS 164 Conventions

Register

Class

Usage

R12

Special

Memory stack pointer (SP). Holds the lowest address of the current
stack frame. At a call, the stack pointer must point to a 0 mod 16
aligned area. The stack pointer is also used to access any memory
arguments upon entry to a function. Except in the case of dynamic
stack allocation, code can use the stack pointer to reference stack
items without having to set up a frame pointer for this purpose.

R13

Special

Reserved as a thread pointer (TP).

R14—R18

Volatile

May not be used to pass information between procedures, either as
inputs or outputs. See also Section 4.1.9.

R19—R24

Scratch

May be used within and between procedures in any mutually
consistent combination of ways under explicit user control. See also
Section 4.1.9.

R25

Special

Argument information (see Section 4.7.5.3).

R26—R31

Scratch

May be used within and between procedures in any mutually
consistent combination of ways under explicit user control. See also
Section 4.1.9.

INO—IN7

Automatic

Stacked input registers. Code may allocate a register stack frame

of up to 96 registers with the ALLOC instruction, and partition

this frame into three regions: input registers (INO, IN1, ...), local
registers (LOCO, LOCI1, ...), and output registers (OUTO0, OUTT1, ...).
R32—R39 (IN0O—IN?7) are used as incoming argument registers.
Arguments beyond these registers appear in memory, as explained in
Section 4.7.4.

LOCO—
LOC95

Automatic

Stacked local registers. Code may allocate a register stack frame

of up to 96 registers with the ALLOC instruction, and partition

this frame into three regions: input registers (INO, IN1, ...), local
registers (LOCO, LOCI1, ...), and output registers (OUTO0, OUTT1, ...).
LOCO0-LOC95 are used for local storage. See Section 4.7.4 for more
information.

ouT0—
ouT7

Scratch

Stacked output registers. Code may allocate a register stack frame
of up to 8 registers with the ALLOC instruction, and partition

this frame into three regions: input registers (INO, IN1, ...), local
registers (LOCO, LOCI, ...), and output registers (OUTO0, OUT1, ...).
OUTO0-OUTY7 are used to pass the first eight arguments in calls. See
Section 4.7.4 for more information.

4.1.3. 164 Floating-Point Register Usage

This standard defines the usage of the OpenVMS floating-point registers as listed in Table 4.2.
Floating-point registers FO through F31 are termed the static floating-point registers. Floating-point
registers F32 through F127 are termed the rotating floating-point registers.

Table 4.2. 164 Floating-Point Register Usage

Register Class Usage
FO Constant Always 0.0.
F1 Constant Always 1.0.

73

Chapter 4. OpenVMS 164 Conventions

Register Class Usage

F2-F5 Preserved Can be used for any value that needs to be preserved across a
procedure call. A procedure using one of the preserved floating-
point registers must save and restore the caller's original contents
without generating a NaT consumption fault.

F6—F7 Scratch May be used within and between procedures in any mutually
consistent combination of ways under explicit user control.

F8—F9 Scratch Argument/Return values. See Section 4.7.4 and Section 4.7.6 for
the OpenVMS specifications for use of these registers.

F10—F15 Scratch Argument values. See Section 4.7.4 for the OpenVMS
specifications for use of these registers.

F16—F31 Preserved Can be used for any value that needs to be preserved across a
procedure call. A procedure using one of the preserved floating-
point registers must save and restore the caller's original contents
without generating a NaT consumption fault.

F32—F127 Scratch Rotating registers or scratch registers.

Note

VAX floating-point data is never loaded or manipulated in the Itanium floating-point registers.
However, VAX floating-point values may be converted to IEEE floating-point values, which are then
manipulated in the 164 floating-point registers.

4.1.4. 164 Predicate Register Usage

Predicate registers are single-bit-wide registers used for controlling the execution of predicated
instructions. Predicate registers PO through P15 are termed the static predicate registers. Predicate
registers P16 through P127 are termed the rotating predicate registers. This standard defines the
usage of the OpenVMS predicate registers as listed in Table 4.3.

Table 4.3. 164 Predicate Register Usage

Register Class Usage

PO Constant Always 1.

P1—P5 Preserved Can be used for any predicate value that needs to be preserved
across a procedure call. A procedure using one of the preserved
predicate registers must save and restore the caller's original
contents.

P6—P13 Scratch Can be used within a procedure as a scratch register.

P14—P15 Volatile May not be used to pass information between procedures, either
as input or output. See also Section 4.1.9.

P16—P63 Preserved Rotating registers.

4.1.5. 164 Branch Register Usage

Branch registers are used for making indirect branches. This standard defines the usage of the
OpenVMS branch registers as listed in Table 4.4.

74

Chapter 4. OpenVMS 164 Conventions

Table 4.4. 164 Branch Register Usage

Register Class Usage

BO Scratch Contains the return address on entry to a procedure; otherwise a
scratch register.

B1—BS5 Preserved Can be used for branch target addresses that need to be preserved
across a procedure call.

B6—B7 Volatile May not be used to pass information between procedures, either
as input or output. See also Section 4.1.9.

4.1.6. 164 Application Register Usage

Application registers are special-purpose registers designated for application use. This standard
defines the usage of the OpenVMS application registers as listed in Table 4.5.

Table 4.5. 164 Application Register Usage

Register Class Usage
AR.FPSR See Usage Floating-point status register. This register is divided into the
following fields:

» Trap Disable Bits (bits 5-0)—Must be preserved by the
callee, except for procedures whose documented purpose is
to change these bits.

» Status Field 0—Must be preserved by the callee, except for
procedures whose documented purpose is to change these
bits. The flag bits are the IEEE floating-point standard sticky
bits and are part of the static state of the machine.

» Status Field 1—Dedicated for use by divide and square
root code, and must always be set to standard values at
any procedure call boundary (including entry to exception
handlers). These standard values are: trap disable set, round-
to-nearest mode, 80-bit (extended) precision, widest range
for exponent on, and flush-to-zero mode off. The flag bits are
scratch.

» Status Fields 2 and 3—At procedure calls and returns, the
control bits in these status fields must agree with the control
bits in status field 0 and the trap disable bits should always be
set. The flag bits are always available for scratch use.

See Section 4.1.7 for further usage and initial value information.

AR.RNAT Automatic RSE NaT collection register. Holds the NaT bits for values stored
by the register stack engine. These bits are saved automatically in
the register stack backing store.

AR.UNAT Preserved User NaT collection register. Holds the NaT bits for values

stored by the ST8.SPILL instruction. As a preserved register,
it must be saved before a procedure can issue any ST8.SPILL

instructions. The saved copy of AR.UNAT in a procedure's frame

75

Chapter 4. OpenVMS 164 Conventions

Register

Class

Usage

holds the NaT bits from the registers spilled by its caller; these
NaT bits are thus associated with values local to the caller's
caller.

AR.PFS

Special

Previous function state. Contains information that records the
state of the caller's register stack frame and epilogue counter.
It is overwritten on a procedure call; therefore, it must be
saved before issuing any procedure calls, and restored prior to
returning.

AR.BSP

Read-only

Backing store pointer. Contains the address in the backing store
corresponding to the base of the current frame. This register may
be modified only as a side effect of writing AR.BSPSTORE
while the Register Stack Engine (RSE) is in enforced lazy mode.

AR.BSPSTORE

Special

Backing store pointer. Contains the address of the next RSE
store operation. It may be read or written only while the RSE is
in enforced lazy mode. Under normal operation, this register is
managed by the RSE, and application code should not write to it,
except when performing a stack switching operation.

ARRSC

See Usage

RSE control; the register stack configuration register. This
register is divided into the following fields:

e Mode—Controls the RSE behavior, and has scratch behavior.
On a return, this field may be set to a standard value.

* Privilege level—Controls the privilege level at which the
RSE operates, and may not be changed by non-privileged
software.

* Endian mode—Controls the byte ordering used by the RSE,
and must never be changed by an application.

AR.LC

Preserved

Loop counter.

AR.EC

Automatic

Epilogue counter (preserved in AR.PFS).

AR.CCV

Scratch

Compare and exchange comparison value.

AR.ITC

Read-only

Interval time counter.

AR.K0—AR.K7

Read-only

Kernel registers.

AR.CSD

Scratch

Reserved for use as implicit operand registers in future
extensions to the Itanium architecture. To ensure forward
compatibility, OpenVMS considers these registers as part of the
thread and process state.

AR.SSD

Scratch

Reserved for use as implicit operand registers in future
extensions to the Itanium architecture. To ensure forward
compatibility, OpenVMS considers these registers as part of the
thread and process state.

4.1.7. Floating-Point Status

The floating-point status of a program consists of two parts:

* The AR.FPSR hardware register

76

Chapter 4. OpenVMS 164 Conventions

* A supplementary software register (a quadword)

The floating-point status is generally managed using three OpenVMS system services:
» SYSSIEEE SET FP_CONTROL

* SYSSIEEE SET PRECISION _MODE

+ SYSSIEEE SET ROUNDING MODE

The AR.FPSR hardware register is described in the Intel IA-64 Architecture Software Developer's
Manual. The supplementary software register is internal to OpenVMS and is not documented for
general use. This register holds information used by OpenVMS to implement the three system
services and floating-point exception handling generally. It can only be accessed indirectly using the
system services.

The floating-point status consists of two types of information:

* Floating-point control status bits are those bits or flags that control the operation of floating-
point arithmetic operations. These bits include the trap disable flags (traps.vd, .dd, .zd, .od, ud,
and .id) as well as the the ftz, wre, pc, rc, and td fields in each of the status fields (sf0, sfl, sf2, and
sf3) of the AR.FPSR hardware register.

* Floating-point information status bits are those bits or flags that record summary information
about the execution of previous floating-point arithmetic operations. These bits include the v, d, z,
0, u, and i flags in each of the status fields (sf0, sf1, sf2, and sf3).

Note

The floating-point control status is sometimes informally also called the floating-point mode or
IEEE mode.

Using a compiler or linker switch, you can associate a floating-point control status with the main
procedure of a program to set the floating-point state prior to the beginning of program execution. If
no control status is explicitly set, a default status appropriate for full IEEE computation is used.

Two floating-point control status settings are of particular interest:

» Full IEEE-format floating-point control status—the default, unless the status is explicitly set to
another value.

* VAX-format floating-point control status—can be set for programs that use VAX-format floating-
point processing.

Table 4.6 shows the values placed in the AR.FPSR hardware register when the Full IEEE-format
floating-point control status is used.

Table 4.6. Full IEEE-Format Floating-Point Status Register

Status Field Flags td rc pc wre ftz
sf0 000000 0 00 11 0

sfl 000000 1 00 11

sf2 and sf3 000000 1 00 11 0

77

Chapter 4. OpenVMS 164 Conventions

Status Field Flags td rc pc wre ftz

global trap disable 111111
bits: .id, .ud, .od, .zd, .dd, .vd

inherit floating-point mode on |0
thread creation

Table 4.7 shows the values placed in the AR.FPSR hardware register when the VAX-format floating-
point control status is used.

Table 4.7. VAX-Format Floating-Point Status Register

Status Field Flags td re pc wre ftz
sf0 000000 0 00 11 0

sfl 000000 1 00 11

sf2 and sf3 000000 1 00 11 0

global trap disable 110010

bits: .id, .ud, .od, .zd, .dd, .vd

inherit floating-point mode on |0

thread creation

For both IEEE-format and VAX-format floating-point processing, additional floating-point status
settings may be available. See your compiler documentation for other optional settings.

It is generally assumed that the initial floating-point control status will remain unchanged throughout
execution of the whole program. However, a procedure (or cooperating group of procedures) may
temporarily modify the floating-point control status provided the control status is restored to its value
on entry. The control status can be restored by one of three methods: a normal return, resignalling, or
unwinding for an exception. See Section 9.5.3.4 for additional information.

Because the floating-point control status can vary and can be changed dynamically (even if later
restored), the state of the floating-point control status is generally indeterminate when a routine
(especially a shared library routine) is called. Usually this is acceptable. For example, returning a
NaN or raising an exception are both valid ways to handle exceptional conditions. However, if correct
operation of a routine depends on a particular floating-point control setting, then the called routine
must save the control status on entry, set the needed control status, perform its operation, and restore
the control status when it exits. (Whether the informational status is similarly saved and restored is
unspecified).

4.1.8. User Mask

The User Mask register contains five bits that may be modified by an application program, subject to
the following conventions:

* BE (Big Endian Memory Access Enable) — This bit must never be set on OpenVMS.
e UP (User Performance Monitor Enable) — This bit is reserved.

* AC (Alignment Check) — The application may set or clear this bit as desired. If the AC bit
is clear, an unaligned memory reference may cause the system to deliver an exception to the
application, or the system may emulate the unaligned reference. If the AC bit is set, an unaligned
reference will always cause the system to deliver an exception to the application. At program start,
the value of this bit on OpenVMS is clear.

78

Chapter 4. OpenVMS 164 Conventions

« MFL/MFH (Lower/Upper floating-point registers written) — The application should not clear
either of these bits unless the values in the corresponding registers are no longer needed (for
example, it may clear the MFH bit when returning from a procedure, because the upper set of
floating-point registers is all scratch). Doing so otherwise may cause unpredictable behavior.

4.1.9. Additional Register Usage Information

As described in earlier sections, some registers are volatile and cannot be used to communicate
information between routines (see Tables 4.1, 4.3, and 4.4). For example, B6 is used by
OTS$JUMP_TO BPV (see Section 4.7.7).

Of the volatile registers, the following registers are reserved for use by compiled code to communicate
with specialized compiler support routines that require out of band information passing:

o Static general registers R17—R18

* Predicate register P15

* Branch register B7

For example, R17 and R18 are used by OTS$CALL PROC (see Section 6.1.2.3).

The following static general registers may be used within and between procedures in any mutually
consistent combination of ways:

* R3—R7

+ R10—RI11
» R19—R24
« R26—R31

The normal or default use for these registers is shown in the Class column of Table 4.1. However,
using suitable programming language features, it is valid for any of these registers to be used

as preserved, scratch, input, output, global or not used. Of course, the unwind information (see
Section A.4) for each procedure must accurately describe the actual usage.

Registers R8 and R9 may also be used as inputs (whether or not the procedure has a return value), but
not in any additional ways.

General registers whose class is described as constant, special, volatile or automatic in Section 4.1.1
cannot be used in any other way.

Floating-point, predicate, branch, and application registers can be used only according to the class
described in Sections 4.1.2 through 4.1.6.

4.2. Address Representation

An address is a 64-bit value used to denote a position in memory. However, for compatibility with
OpenVMS VAX and Alpha, many OpenVMS applications and user-mode facilities operate in such
a manner that addresses are restricted to values that are representable in 32 bits. This means that
OpenVMS addresses can often be stored and manipulated as 32-bit longword values. In such cases,

79

Chapter 4. OpenVMS 164 Conventions

the 32-bit address value is always implicitly or explicitly sign-extended to form a 64-bit address for
use by the Itanium hardware.

4.3. Procedure Representation

A procedure value, sometimes called a function pointer, is a value that uniquely identifies a
procedure and can be used to call it.

For OpenVMS, a procedure value is the address of a function descriptor, which consists of at least
two quadword fields: the address of the entry point and the GP value required by that procedure.

Every procedure whose address is taken, or might be taken, must have a unique official function
descriptor. The address of this function descriptor is used for the procedure value that is passed as a
parameter or when two procedure values are compared. For other purposes, additional local function
descriptors may be used for efficiency (notably in images other than the image that contains the
procedure).

An official function descriptor for any procedure which might be callable from a VAX or Alpha
translated image must include signature information. A local function descriptor used to call a
procedure that might be part of a VAX or Alpha translated image must also include additional fields to
facilitate the call. Both of these cases are described in Section 6.1.2.

A function descriptor for a bound procedure uses a special pseudo-GP value and includes an uplevel
frame pointer. Such function descriptors are described in Section 4.7.7.

The several kinds of function descriptors are summarized in Table 4.8.

Table 4.8. Summary of Function Descriptor Kinds

Kinds and Roles Size (Quadwords)
Local function descriptor without translated image support |2

Local function descriptor with translated image support 4

(jacket function descriptor)

Official function descriptor without translated image 3

support

Official function descriptor with translated image support |3

Bound function descriptor 6

Note that the different kinds of function descriptor are not self-identifying (that is, they do not contain
any form of tag or kind field).

4.4. Procedure Types

This calling standard defines the following basic types of procedures:

* Memory stack procedure—allocates a memory stack and may maintain part or all of its caller's
context on that stack.

» Register stack procedure—allocates only a register stack and maintains its caller's context in
registers.

* Null frame procedure—allocates neither a memory stack nor a register stack and therefore
preserves no context of its caller.

80

Chapter 4. OpenVMS 164 Conventions

Note

Unlike an Alpha null frame procedure (see Section 3.4 and Section 3.4.6), an 164 null frame procedure
does not execute in the context of its caller because the Intel® Itanium® call instruction (br.call)
changes the register set so that only the caller's output registers are accessible in the called routine.
The caller's input and local registers cannot be accessed at all. The call instruction also changes the
previous frame state (PFS) of the Itanium processor.

A compiler may choose which type of procedure to generate based on the requirements of the
procedure in question. A calling procedure does not need to know what type of procedure it is calling.

Every memory stack procedure or register stack procedure must have an associated unwind
description (see Appendix A) which describes what type of procedure it is and other procedure
characteristics. A null frame procedure may also have an associated unwind description. (A default
description applies if not). This data structure is used to interpret the call stack at any given point in a
thread's execution. It is typically built at compile time and usually is not accessed at run-time except
to support exception processing or other rarely executed code.

Read access to unwind descriptions is provided through the procedural interfaces described in
Section 4.8 and Section A.6.

An unwind description for a procedure is provided for the following reasons:

* To make invocations of that procedure visible to and interpretable by facilities such as the
debugger, exception handling system, and the unwinder.

* To ensure that the context of the caller saved by the called procedure can be restored if an unwind
occurs. (For a description of unwinding, see Section 9.7).

4.5. Memory Stack

The memory stack is used for local dynamic storage, spilled registers, and parameter passing. It is
organized as a stack of procedure frames, beginning with the main program's frame at the base of the
stack, and continuing towards the top of the stack with nested procedure calls. At the top of the stack
is the frame for the currently active procedure. (There may be some system-dependent frames at the
base of the stack, prior to the main program's frame, but an application program may not make any
assumptions about them).

The memory stack begins at an address determined by the operating system, and grows towards
lower addresses in memory. The stack pointer register (SP) always points to the lowest address in the
current, top-most, frame on the stack.

Each procedure creates its frame on entry by subtracting its frame size from the stack pointer, and
removes its frame from the stack on exit by restoring the previous value of SP (usually by adding its
frame size, but a procedure may save the original value of SP when its frame size may vary).

Because the register stack is also used for the same purposes as the memory stack, not all procedures
need a memory stack frame. However, every non-leaf procedure must save at least its return link and
the previous frame marker, either on the register stack or on the memory stack. This ensures that there
is an invocation context for every non-leaf procedure on one or both of the stacks.

81

Chapter 4. OpenVMS 164 Conventions

4.5.1. Procedure Frames

A memory stack procedure frame consists of five regions, as illustrated in Figure 4.1.

Figure 4.1. Procedure Frame

:0 (from SP)
scratch area (16 bytes)
outgoing parameters
frame marker frame size
dynamic allocation
local storage
previous SP

VM-0959A-Al

These regions are:

* Scratch area. This 16-byte region is provided as scratch storage for procedures that are called by
the current procedure. Leaf procedures need not allocate this region. A procedure may use the 16
bytes pointed to by the stack pointer (SP) as scratch memory, but the contents of this area are not
preserved by a procedure call.

* Outgoing parameters. Parameters in excess of those passed in registers are stored in this region of
the stack frame. A procedure accesses its incoming parameters in the outgoing parameter region of
its caller's stack frame.

* Frame marker (optional). This region may contain information required for unwinding through the
stack (for example, a copy of the previous stack pointer).

* Dynamic allocation. This variable-sized region (initially zero length) can be created as needed.

* Local storage. A procedure can store local variables, temporaries, and spilled registers in this
region. For conventions affecting the layout of this area for spilled registers, see Section A.3.

Whenever control is transferred to another procedure, the stack pointer must be octaword-aligned;
at other times there is no stack alignment requirement. (A side effect of this is that the in-memory
portion of the argument list will start on an octaword boundary). During a procedure invocation, the
SP can never be set to a value higher than the SP at entry to that procedure invocation.

Note

A stack pointer that is not octaword aligned is valid only in a variable-sized frame (see below)
because the unwind descriptor (MEM_STACK F, see Section A.4.1.3) for a fixed-size frame specifies
the size in 16-byte units.

An application may not write to memory addresses lower than the stack pointer, because this memory
area may be written to asynchronously (for example, as a result of exception processing).

Most procedures are expected to have a fixed-size frame, and the conventions are biased in favor of
this. A procedure with a fixed-size frame may reference all regions of the frame with a compile-time
constant offset relative to the stack pointer. Compilers should determine the total size required for

82

Chapter 4. OpenVMS 164 Conventions

each region, and pad the local storage area to make the total frame size a multiple of 16 bytes. The
procedure can then create the frame by subtracting an immediate constant from the stack pointer in
the prologue, and remove the frame by adding the same immediate constant to the stack pointer in the
epilogue.

If a procedure has a variable-size frame (for example, a C routine that calls the alloca built-in), it
should make a copy of SP to serve as a frame pointer before subtracting the initial frame size from the
stack pointer. The procedure can then restore the previous value of the stack pointer in the epilogue
without regard for how much dynamic storage has been allocated within the frame. It can also use the
frame pointer to access the local storage region, because offsets from SP will vary.

A frame pointer, as described above, is not required if both of the following conditions are true:

* The procedure uses an equivalent method of addressing the local storage region correctly before
and after dynamic allocation.

* The code satisfies the conditions imposed by the stack unwind mechanism.

To expand a stack frame dynamically, the scratch area, outgoing parameters, and frame marker
regions (which are always located relative to the current stack pointer), must be relocated to the new
top of stack. If the scratch area and outgoing parameter area are both clear of any live values, there is
no actual work involved in relocating these areas. For procedures with dynamically-sized frames, it is
recommended that the previous stack pointer value be stored in a local stacked general register instead
of the frame marker, so that the frame marker is also empty. If the previous stack pointer is stored

in the frame marker, the code must take care to ensure that the stack is always unwindable while the
stack is being expanded (see Appendix A).

Other issues depend on the compiler and the code being compiled. The standard calling sequence does
not define a maximum stack frame size, nor does it restrict how a language system uses any stack
frame region beyond those purposes described here. For example, the outgoing parameter region can
be used as scratch storage whenever it is not needed for passing parameters.

4.5.2. Stack Overflow Detection

This section defines the conventions to support the execution of multiple threads in a multilanguage
OpenVMS environment. Specifically defined is how compiled code must perform stack limit
checking. While this standard is compatible with a multithreaded execution environment, the detailed
mechanisms, data structures, and procedures that support this capability are not specified in this
manual.

For a multithreaded environment, the following characteristics are assumed:
» There can be one or more threads executing within a single process.
» The state of a thread is represented in a thread environment block (TEB).

* The TEB of a thread contains information that determines a stack limit below which the stack
pointer must not be decremented by the executing code (except for code that implements the
multithreaded mechanism itself).

» Exception handling is fully reentrant and multithreaded.

83

Chapter 4. OpenVMS 164 Conventions

4.5.2.1. Stack Limit Checking

A program that is otherwise correct can fail because of stack overflow. Stack overflow occurs when
extension of the stack (by decrementing the stack pointer, SP) allocates addresses not currently
reserved for the current thread's stack. This section defines the conventions for stack limit checking in
a multithreaded environment.

In the following sections, the term new stack region refers to the region of the stack from one less
than the old value of SP to the new value of SP.

Stack Guard Region

In a multithreaded environment, the address space beyond each thread's stack is protected by
contiguous guard pages, which trap on any access. These pages form the stack guard region.

Stack Reserve Region

In some cases, it is useful to maintain a stack reserve region, which is a minimum-sized region that is
between the current top of stack and the stack guard region. A stack reserve region can ensure that the
following conditions exist:

* Exceptions or asynchronous system traps (ASTs, analogous to asynchronous signals) have stack
space to execute on a thread's stack.

* The exception dispatcher and any exception handler that it might call have stack space to execute
after detection of an invalid attempt to extend the stack.

This calling standard does not require a stack reserve region, but it does allow a language (for
example, Ada) and its run-time system to implement one.

4.5.2.1.1. Methods for Stack Limit Checking

Because accessible memory may be available at addresses lower than those occupied by the stack
guard region, compilers must generate code that never extends the stack past the stack guard region
into accessible memory that is not allocated to the thread's stack.

A general strategy to prevent extending the stack past the stack guard region is to access each page
of memory down to and possibly including the page corresponding to the intended new value of the
SP. If the stack is to be extended by an amount larger than the size of a memory page, then a series

of accesses is required that works from higher to lower addressed pages. If any access results in a
memory access violation, then the code has made an invalid attempt to extend the stack of the current
thread.

This calling standard defines two methods for stack limit checking, implicit and explicit, which are
explained in the following sections.

Implicit Stack Limit Checking

If a byte (not necessarily the lowest) of the new stack region is guaranteed to be accessed prior to any
further stack extension, then the stack can be extended by an increment that is up to one-half the stack
guard region (without any additional accesses).

This standard requires that the minimum stack guard region size is 8192 bytes.

If the stack is being extended by 4096 bytes or less and the application does not use a stack reserve
region, then explicit checking is not required. However, because asynchronous interrupts and calls

84

Chapter 4. OpenVMS 164 Conventions

to other procedures may also cause stack extension without explicit checking, stack extension with
implicit checking must adhere to the following rules:

* Explicit stack limit checking must be performed unless the amount by which the SP is
decremented is known to be less than or equal to 4096 and the application does not use a stack
reserve region.

* Some byte in the new stack region must be accessed before the SP can be further decremented for
a subsequent stack extension.

This access can be performed either before or after the SP is decremented for this stack extension,
but it must be done before the SP can be decremented again.

* No standard procedure call can be made before some byte in the new stack region is accessed.

* The system exception dispatcher ensures that the lowest addressed byte in the new stack region is
accessed if any kind of asynchronous interrupt occurs both after the SP is decremented and before
the access in the new stack region occurs.

These conventions ensure that the stack pointer is not decremented so that it points to accessible
storage beyond the stack limit without this error being detected (either by the guard region being
accessed by the thread or by an explicit stack limit check failure).

As a matter of practice, the system can provide multiple guard pages in the stack guard region. When
a stack overflow is detected as a result of access to the stack guard region, one or more guard pages
can be unprotected for use by the exception handling facility, as long as one or more guard pages
remain protected to provide implicit stack limit checking during exception processing.

Explicit Stack Limit Checking

If the stack is being extended by an unknown amount or by a known amount that is greater than the
maximum implicit check size 4096, then a code sequence that follows the rules for implicit stack limit
checking can be executed in a loop to access the new stack region incrementally in segments that are
less than or equal to the minimum stack guard region size 8192. At least one access must occur in
each such segment.

The first access must occur between SP and SP-4096, because in the absence of more specific
information, the previous guaranteed access relative to the current stack may be as much as 4096
bytes greater than the current stack pointer address.

The last access must be within 4096 of the intended new value of the stack pointer. These accesses
must occur in order, starting with the highest addressed segment and working toward the lowest
addressed segment.

A more optimal strategy is:

1. Perform a read access using the intended new value of the stack pointer. This is nondestructive,
even if the read is beyond the stack guard region, and may facilitate OS mapping of new stack
pages, if appropriate, in a single operation.

2. Proceed with sequential accesses as just described.

Note

A simple algorithm that is consistent with this requirement (but achieves up to twice the minimum
number of accesses) is to perform a sequence of accesses in a loop starting with the previous value of

85

Chapter 4. OpenVMS 164 Conventions

SP, decrementing by the minimum no-check extension size (4096) to, but not including, the first value
that is less than the new value for the stack pointer.

The stack must not be extended incrementally in procedure prologues. A procedure prologue that
needs to extend the stack by an amount of unknown size or known size greater than the minimum
implicit check size must test new stack segments as just described in a loop that does not modify SP,
and then update the stack with one instruction that copies the new stack pointer value into the SP.

Note

An explicit stack limit check can be performed either by inline code that is part of a prologue or by a
run-time support routine that is tailored to be called from a procedure prologue.

Stack Reserve Region Checking

The size of the stack reserve region must be included in the increment size used for stack limit checks,
after which it is not included in the amount by which the stack is actually extended. (Depending on
the size of the stack reserve region, this may partially or even completely eliminate the ability to use
implicit stack limit checking).

4.6. Register Stack

General registers R32 through R127 form a register stack that is automatically managed across
procedure calls and returns. Each procedure frame on the register stack is divided into two
dynamically-sized regions: one for input parameters and local variables, and one for output
parameters.

On a procedure call, the registers are automatically renamed by the hardware so that the caller's output
registers form the base of the register stack frame of the callee. On return, the registers are restored to
the previous state, so that the input and local registers are preserved across the call.

The ALLOC instruction is used at the beginning of a procedure to allocate the input, local, and output
regions; the sizes of these regions are supplied as immediate operands. A procedure is not required

to issue an ALLOC instruction if it does not need to store any values in its register stack frame. It
may write to the first N stacked registers, where N is the value of the argument count passed in the
argument information (Al) register (see Section 4.7.5.3). It may not write to any other stack register
without first issuing an ALLOC instruction.

Figure 4.2 illustrates the operation of the register stack across an example procedure call. In this
example, the caller allocates eight input, twelve local, and four output registers; the callee allocates
four input, six local, and five output registers with the following instruction:

ALLOC R36=rspfs, 4, 6, 5 0

The actual registers to which the stacking registers are physically mapped are not directly addressable
by the application software.

4.6.1. Input and Local Registers

The hardware makes no distinction between input and local registers. The caller's output registers
automatically become the callee's register stack frame on a procedure call, with all registers initially
allocated as output registers. An ALLOC instruction may increase or decrease the total size of the
register stack frame, and may adjust the boundary between the input and local region and the output
region.

86

Chapter 4. OpenVMS 164 Conventions

The software conventions specify that up to eight general registers are used for parameter passing.
Any registers in the input and local region beyond those eight may be allocated for use as preserved
locals. Floating-point parameters may produce holes in the parameter list that is passed in the general
registers; those unused input registers may also be used for preserved locals.

The caller's output registers do not need to be preserved for the caller. Once an input parameter is no
longer needed, or has been copied elsewhere, that register may be reused for any other purpose within
the procedure.

Figure 4.2. Operation of the Register Stack

R32 R40 R52 R56
Input Local Output | Caller’s frame

INO LOCO ouTo

R32 R36
Callee’s frame before ALLOC Output
ouTo
R32 R36 R42 R47
Callee’s frame after ALLOC Input Local Output

INO LOCo ouTo

VM-0958A-Al

4.6.2. Output Registers

Up to eight output registers are used for passing parameters. If a procedure call requires fewer than
eight general registers for its parameters, the calling procedure does not need to allocate more than are
needed. If the called procedure expects more parameters, it will allocate extra input registers; these
registers will be uninitialized.

A procedure may also allocate more than eight registers in the output region. While the extra registers
may not be used for passing parameters, they can be used as extra scratch registers. On a procedure
call, they will show up in the called procedure's output area as excess registers, and may be modified
by that procedure. The called procedure may also allocate few enough total registers in its stack frame
that the top of the called procedure's frame is lower than the caller's top-of-frame, but those registers
will become available again when control returns to the caller.

4.6.3. Rotating Registers

A subset of the registers in the procedure frame may be designated as rotating registers. The rotating
register region always starts with R32, and may be any multiple of eight registers in number, up to a
maximum of 96 rotating registers. The renaming is under control of the Register Rename Base (RRB).

If the rotating registers include any or all of the output registers, software must be careful when using
the output registers for passing parameters, because a non-zero RRB will change the virtual register
numbers that are part of the output region. In general, software should ensure either that the rotating

87

Chapter 4. OpenVMS 164 Conventions

region does not overlap the output region, or that the RRB is cleared to zero before setting output
parameter registers.

4.6.4. Frame Markers

The current application-visible state of the register stack is stored in an architecturally inaccessible
register called the current frame marker. On a procedure call, this register is automatically saved by
copying it to an application register, the previous function state (AR.PFS). The current frame marker
is modified to describe a new stack frame whose input and local area is initially zero size, and whose
output area is equal in size to the previous output area. On return, the previous frame state register

is used to restore the current frame marker to its earlier value, and the base of the register stack is
adjusted accordingly.

It is the responsibility of a procedure to save the previous function state register before issuing any
procedure calls of its own, and to restore it before returning.

4.6.5. Backing Store for Register Stack

When the depth of the procedure call stack exceeds the capacity of the physical register file, the
hardware frees physical registers by saving them into a memory stack. This backing store is distinct
from the memory stack described in Section 4.5.

As returns unwind the procedure call stack, the hardware also restores previously-saved physical
registers from the backing store.

The operation of this register stack engine (RSE) is mostly transparent to application software. While
the RSE is running, application software may not examine the contents of the backing store, and may
not make any assumptions about how much of the register stack is still in physical registers or in

the backing store. In order to examine previous stack frames, application software must synchronize
the RSE with the FLUSHRS instruction. Synchronizing the RSE forces all stack frames up to, but
not including, the current frame to be saved in backing store, allowing the software to examine the
contents of the backing store without asynchronous operations modifying the memory. Modifications
to the backing store require setting the RSE to enforced lazy mode after synchronizing it, which
prevents the RSE from doing any operations other than those required by calls and returns. The
procedure for synchronizing the RSE and setting the mode is described in the ltanium® Software
Conventions and Runtime Architecture Guide.

The backing store grows towards higher addresses. The top of the stack, which corresponds to the top
of the previous procedure frame, is available in the Backing Store Pointer (BSP) application register.
The BSP must always point to a valid backing store address, because the operating system may need
to start the RSE to process an exception.

Backing store overflow is automatically detected by the OpenVMS operating system, which will
either extend the backing store to allow continued operation or will raise an exception. Unlike for the
memory stack (see Section 4.5), there are no specific rules or requirements that must be satisfied to
facilitate detection of backing store overflow.

A NaT collection register is stored into the backing store following each group of 63 physical
registers. The NaT bit of each register stored is shifted into the collection register. When the BSP
reaches the quadword just before a 64-quadword boundary, the RSE stores the collection register.
Software can determine the position of the NaT collection registers in the backing store by examining
the memory address. This process is described in greater detail in the Intel IA-64 Architecture
Software Developer Manual.

88

Chapter 4. OpenVMS 164 Conventions

4.7. Procedure Linkage

This calling standard states that a standard call (see Section 1.4) can be accomplished in any way
that presents the called routine with the required environment. However, typically, most standard-
conforming external calls are implemented with a common sequence of instructions and conventions.
Because a common set of call conventions is so pervasive, these conventions are included for
reference as part of this standard.

4.7.1. The GP Register

Every procedure that references statically-allocated data or calls another procedure requires a pointer
to an associated short data segment in the GP register, so that it can access its static data and its
linkage tables. Typically, an image has one such data segment, and the GP register must be set
correctly prior to calling any entry point within that image. Optionally, an image may be partitioned
into subcomponents called clusters in which case each cluster may have its own associated data
segment (clusters may also share a common data segment). For further information on images and
clusters, see the VSI OpenVMS Linker Utility Manual.

Throughout this chapter, rules regarding the use of the GP register are described in terms of images.
However, these same rules apply between clusters within an image (keeping in mind that clusters
within an image may share a common GP address and short data segment, while images cannot share
a common GP address and short data segment).

The linkage conventions require that each image (or cluster) define exactly one GP value to refer to
a location within its short data segment. This location should be chosen to maximize the usefulness
of short-displacement immediate instructions for addressing scalars and linkage table entries. The
image activator determines the absolute value of the GP register for each image after loading its data
segment into memory.

Because the GP register remains unchanged for calls within an image, calls known to be local can be
optimized accordingly. For calls between images, the GP register must be initialized with the correct
GP value for the new image, and the calling function must ensure that its own GP value is saved and
restored.

Note that there is a small set of compiler run-time support procedures that take a special pseudo-GP
value as a kind of input parameter. See Section 4.7.7 for more information about support for bound
function descriptors. See Section 6.1.2 for information about support for translated images.

4.7.2. Types of Calls

The following types of procedure calls are defined:

» Direct local calls. Direct calls within the same image can be made directly to the entry point of the
target procedure. In this case, the GP register does not need to be changed.

* Direct non-local calls. Calls made outside the same image are routed through an import stub
(which can be inlined at compile time if the call is known or suspected to be to another image).
The import stub obtains the address of the main entry point and the GP register value from the
linkage table. Although coded in source as a direct call, a dynamically-linked call therefore
becomes indirect.

* Indirect calls. A function pointer points to a descriptor that contains both the address of the
function entry point and the GP register value for the target function. The compiler must generate

89

Chapter 4. OpenVMS 164 Conventions

code for an indirect call that sets the new GP value before transferring control to the target

procedure.

Special calls. Other special calling conventions are allowed to the extent that the compiler and the
run-time library agree on the conventions, and provided that the stack can be unwound through
such a call. Such calls are outside the scope of this document. See Section A.3.1 for a discussion
of stack unwind requirements.

4.7.3. Calling Sequence

Direct and indirect procedure calls are described in the following sections. Because the compiler is not
required to know whether any given call is local or to a dynamically linked image, the two types of
direct calls are described together in Section 4.7.3.1.

4.7.3.1. Direct Calls

Direct procedure calls follow the sequence of steps shown in the following figure. The following

paragraphs describe these steps in detail.

Figure 4.3. Direct Procedure Calls

Caller

Y

Prepare call
+ setup args
+ save regs, GP

Call
+« BR.CALL

Import Stub

+ load entry addr
¢ load new GP

+« MOV B=

+« BR

After the call

+ restore regs, GP

Y

Caller's image

Callee's image

Callee

Entry

+ allocate reg frame
+ allocate mem frame
+ save rtn branch reg
+ save regs

procedure body

Exit
+ restore regs

« restore rtn branch reg

+ de-allocate mem
frame
+ BR.RET —

Caller: Prepare call. Values in scratch registers that must be kept live across the call must be
saved. They can be saved by copying them into local stacked registers, or by saving them on
the memory stack. If the NaT bits associated with any live scratch registers must be saved, the
compiler should use ST8.SPILL or STF.SPILL instructions. The User NaT collection register
itself is preserved by the call, so the NaT bits need no further treatment at this point.

If the call is not known (at compile time) to be within the same image, the GP register must be

saved.

The parameters must be set up in registers and memory as described in Section 4.7.4.

Caller: Call. All direct calls are made with a BR.CALL instruction, specifying BO for the return

link.

For direct local calls, the PC-relative displacement is computed at link time. Compilers may
assume that the standard displacement field in the BR.CALL instruction is sufficiently wide to

VM-0960A-Al

90

Chapter 4. OpenVMS 164 Conventions

reach the target of the call. If the displacement is too large, the linker must supply a branch stub
at some convenient point in the code; compilers must guarantee the existence of such a point by
ensuring that code sections in the relocatable object files are no larger than the maximum reach
of the BR.CALL instruction. With a 25-bit displacement, the maximum reach is 16 megabytes in
either direction from the point of call.

Because direct calls to other images cannot be statically bound at link time, the linker must supply
an import stub for the target procedure; the import stub obtains the address of the target procedure
from the linkage table. The BR.CALL instruction can then be statically bound to the import stub
using the PC-relative displacement.

The BR.CALL instruction performs the following actions:
* Saves the return link in the return branch register
» Saves the current frame marker in the AR.PFS register

» Sets the base of the new register stack frame to the beginning of the output region of the old
frame

Caller: Import stub (direct non-local calls only). The import stub is allocated in the image of the
caller, so that the BR.CALL instruction can be statically bound to the address of the import stub. It
must access the linkage table via the current GP (which means that GP must be valid at the point
of call), and obtain the address of the target procedure's entry point and its GP value. The import
stub then establishes the new GP value and branches to the target entry point.

If the compiler knows or suspects that the target of a call is in a separate image, it can generate
calling code that performs the functions of the import stub, which saves an extra branch.

When the target of a call is in the same image, an import stub is not used (which also means that
GP must be valid at the point of call).

Callee: Entry. The prologue code in the target procedure is responsible for allocating the register
stack frame. It is also responsible for allocating a frame on the memory stack when necessary. It
may use the 16 bytes at the top of its caller's stack frame as a scratch area.

A non-leaf procedure must save the return branch register and previous function state, either in the
memory stack frame or in a local stacked general register.

The prologue must also save any preserved registers to be used in this procedure. The NaT bits
for those registers must be preserved as well, by copying the NaT bits to local stacked general
registers, or by using ST8.SPILL or STF.SPILL instructions. However, the User NaT collection
register (AR.UNAT) must be saved first because it is guaranteed to be preserved by the call.

Callee: Exit. The epilogue code is responsible for restoring the return branch register and previous
function state, if necessary, and any preserved registers that were saved. The NaT bits must be
restored using the LD8.FILL or LDF.FILL instructions. The User NaT collection register must
also be restored if it was saved.

If a memory stack frame was allocated, the epilogue code must deallocate it.

Finally, the procedure exits by branching through the return branch register with the BR.RET
instruction.

Caller: After the call. Any saved values (including GP) should be restored.

91

Chapter 4. OpenVMS 164 Conventions

4.7.3.2. Indirect Calls

Indirect procedure calls follow nearly the same sequence as direct calls (see Section 4.7.3.1), except
that the branch target is established indirectly. This sequence is illustrated in Figure 4.4.

Figure 4.4. Indirect Procedure Calls

Caller Function
¢ Pointer
entry point Entry
Prepare call +allocate reg frame
« load func ptr GP value «allocate mem frame
+ load entry addr +save rtn branch reg
* setup args o +save regs
+ MOV B= g
¢ save regs, GP E procedure body
+ load new GP 2
= Exit
o « restore regs
Call + restore rtn branch reg
+ BR.CALL +de-allocate mem
frame
After the call +BR.RET

+ restore regs, GP

Y

VM-0961A-Al

Caller: Function Pointer. A function pointer is always the address of a function descriptor for the
target procedure (see Section 4.3). An indirect call loads the GP value into the GP register before
branching to the entry point address.

In order to guarantee the uniqueness of a function pointer, and because its value is determined at
program invocation time, code must materialize function pointers only by loading a pointer from
the data segment.

Caller: Prepare call. Indirect calls are made by first loading the function pointer into a general
register, loading the entry point address and the new GP value, and using the Move to Branch
Register operation to move the address of the procedure entry point into the branch register to be
used for the call.

Values in scratch registers that must be kept live across the call must be saved. They can be saved
by copying them into local stacked registers, or by saving them on the memory stack. If the NaT
bits associated with any live scratch registers must be saved, the compiler should use ST8.SPILL
or STE.SPILL instructions. The User NaT collection register itself is preserved by the call, so the
NaT bits need no further treatment at this point.

Unless the call is known (at compile time) to be within the same image, the GP register must be
saved before the new GP value is loaded.

The parameters must be set up in registers and memory as described in Section 4.7.4

Caller: Call. All indirect calls are made with the indirect form of the BR.CALL instruction,
specifying BO for the return link.

The BR.CALL instruction saves the return link in the return branch register, saves the current
frame marker in the AR.PFS register, and sets the base of the new register stack frame to the

92

Chapter 4. OpenVMS 164 Conventions

beginning of the output region of the old frame. Because the indirect call sequence obtains the
entry point address and new GP value from the function descriptor, control flows directly to the
target procedure, without the need for any intervening stubs.

* Callee: Entry; Exit. The remainder of the calling sequence is the same as for direct calls (see
Section 4.7.3.1).

4.7.4. Parameter Passing

Parameters are passed in a combination of general registers, floating-point registers, and memory, as
described below, and as illustrated in Figure 4.5.

The parameter list is formed by placing each individual parameter into fixed-size elements of the
parameter list, referred to as parameter slots. Each parameter slot is 64 bits wide; parameters larger
than 64 bits are placed in as many consecutive parameter slots as are needed to contain the entire
parameter. The rules for allocation and alignment of parameter slots are described in Section 4.7.5.1.

The contents of the first eight parameter slots are always passed in registers, while the remaining
parameters are always passed on the memory stack, beginning at the caller's stack pointer plus 16
bytes. The caller uses up to eight of the registers in the output region of its register stack for integer
and VAX floating-point parameters, and up to eight floating-point registers for IEEE floating-point
parameters. The maximum number of registers used is eight.

Figure 4.5. Parameter Passing in Registers and Memory

Parameter Slots

slotO0 |slot1 | slot2 | slot3 | slot4 | slot5 | slot6 | slot7 | slot8 | slot9 |slot 10 | slot 11

IEEEEARA

OUTOo | OUT1 | QUT2 | OUT3|0OUT4 |OUT5 |OUT6 | OUT7

INERERA

F8 Fo | F10 | F11 | F12 | F13 | F14 | F15

Memory Stack

SP +8 +16 +24 432 +40 +48

VM-0962A-Al

To accommodate variable argument lists in the C language, there is a fixed correspondence between
parameter slots; the first parameter slot is always in either the first general output register or the first
floating-point register (never both), the second parameter slot is always in the second general output
register or the second floating-point register (never both), and so on. This allows a procedure to spill
its register parameters easily to memory to form the argument home area before stepping through
the parameter list with a pointer. The Argument Information register (Al) makes this possible, as
explained in Section 4.7.5.3.

A procedure can assume that the NaT bits on its incoming general register arguments are clear, and
that the incoming floating-point register arguments are not NaT Vals. A procedure making a call must
ensure only that registers containing actual parameters are clear of NaT bits or NaT Vals; registers not
used for actual parameters are undefined.

93

Chapter 4. OpenVMS 164 Conventions

4.7.5. Parameter Passing Mechanisms

This OpenVMS calling standard defines three classes of argument items according to the mechanism
used to pass the argument:

e Immediate value
* Reference
* Descriptor

Argument items are not self-defining; interpretation of each argument item depends on agreement
between the calling and called procedures.

This standard does not dictate which passing mechanism must be used by a given language compiler.
Language semantics and interoperability considerations might require different mechanisms in
different situations.

Immediate value

An immediate value argument item contains the value of the data item. The argument item, or the
value contained in it, is directly associated with the parameter.

Reference

A reference argument item contains the address of a data item such as a scalar, string, array, record, or
procedure. This data item is associated with the parameter.

Descriptor

A descriptor argument item contains the address of a descriptor, which contains structural
information about the argument's type (such as array bounds) and the address of a data item. This data
item is associated with the parameter.

Requirements for using the argument passing mechanisms follow:

* By immediate value. An argument may be passed by immediate value only if the argument is one
of the following:

* One of the noncomplex scalar data types with a size known (at compile time) to be < 64 bits
» Either single or double precision complex

* A record with a known size (at compile time)

* A set, implemented as a bit vector, with a size known (at compile time) to be < 64 bits

No form of string or array data type may be passed by immediate value in a standard call.

Unused high-order bits must be zero or sign-extended, as appropriate depending on the date type,
to fill all bits of each argument list item (as specified in Table 4.10).

A single-precision or double-precision complex value is passed as two single- or double-precision
floating-point values, respectively. Note that the argument count reflects that two argument
positions are used rather than just one actual argument.

A record value, which may be larger than 64 bits, is passed by immediate value as follows:

94

Chapter 4. OpenVMS 164 Conventions

* Allocate as many fully occupied argument item positions to the argument value as are needed

to represent the argument.

« If'the final argument position is only partially occupied by the argument, the contents of the

remaining bits are undefined.

» If an argument position is passed in one of the registers, it can only be passed in an integer

register (never in a floating-point register).

Other argument values that are larger than 64 bits can be passed by immediate value using
nonstandard conventions, typically using a method similar to those for passing records. Thus, for
example, a 26-byte string can be passed by value in four integer registers.

* By reference. Nonparametric arguments (arguments for which associated information such as
string size and array bounds are not required) can be passed by reference in a standard call. This
includes extended precision floating and extended precision complex values.

* By descriptor. Parametric arguments (arguments for which associated information such as string
size and array bounds must be passed to the caller) are passed by a single descriptor in a standard

call.

Note that extended floating values are not passed using the immediate value mechanism; rather, they
are passed using the by reference mechanism. (However, when by value semantics is required, it may

be necessary to make a copy of the actual parameter and pass a reference to that copy in order to avoid

improper alias effects).

Also note that when a record is passed by immediate value, the component types are not material to
how the argument is aligned; the record will always be quadword aligned.

4.7.5.1. Allocation of Parameter Slots

Parameter slots are allocated for each parameter, based on the parameter passing mechanism, type,
and size, treating each parameter in sequence, from left to right. The rules for allocating parameter
slots and placing the contents within the slot are given in Table 4.9. The allocation column of the table
indicates how parameter slots are allocated to each type of parameter.

Table 4.9. Rules for Allocating Parameter Slots

Type Size (Bits) Number of
Slots

Integer, small set 1-64 1
Address/pointer (including all types passed by reference or 64 1
descriptor)

IEEE single-precision floating-point (S_floating) 32 1

IEEE single-precision floating-point complex (S_floating) 64 2

IEEE double-precision floating-point (T floating) 64 1

IEEE double-precision floating-point complex (T _floating) 128 2

IEEE quad-precision floating-point (X_floating) 64 (by reference) |1

IEEE quad-precision floating-point complex (X floating) 64 (by reference) |1
Aggregates (noncomplex) any (sizet+63)/64
VAX single-precision floating-point (F_floating) 32 1

95

Chapter 4. OpenVMS 164 Conventions

Type Size (Bits) Number of
Slots

VAX single-precision floating-point complex (F_floating) 64 2

VAX double-precision floating-point (D & G_floating) 64 1

VAX double-precision floating-point complex (D & G_floating) | 128 2

Note

These rules are applied based on the type of the parameter after any type-promotion rules specified by
the language have been applied. For example, a short integer passed without a function prototype in C
is promoted to the int type, and is then passed according to the rules for the int type.

OpenVMS does not support passing the Itanium double-precision extended floating-point type
(__f | oat 80), although that type may be used from time to time in code generation sequences.

This placement policy does not ensure that parameters greater than 64 bits in size will fall on a natural
alignment boundary if passed in memory. Such parameters may need to be copied by the called
procedure into an aligned temporary prior to use, or accessed in a way that does not depend on natural
alignment.

4.7.5.2. Normal Register Parameters

The first eight parameter slots (64 bytes) are passed in registers, according to the rules in this section.

* These eight argument slots are associated, one-to-one, with the stacked output general registers, as
shown in Figure 4.5.

» Integral scalar parameters, (including addresses and pointers), VAX floating-point parameters, and
aggregate parameters in these slots are passed only in the corresponding output general registers.

» Aggregate parameters in these slots are passed by value only in the corresponding output
general registers. The aggregate is treated as a sequence of 64-bit integral values, with each
value allocated into the next available slot in aggregate memory address order. If the size of the
aggregate is not an even multiple of 64 bits, then the unused bits in the last slot are undefined.

» Ifan aggregate or VAX floating-point complex parameter straddles the boundary between slot
7 and slot 8, the part that lies within the first eight slots is passed in general registers, and the
remainder is passed in memory, as described in Table 4.10.

Complex values (other than IEEE quad-precision floating-point complex), in those languages that
include complex types, are passed as a pair of floating-point values (either single-precision or
double-precision as appropriate). It is possible for the first of the two floating-point values in a
complex value to occupy the last output register slot; in this case, the second floating-point value
is passed in memory. IEEE quad-precision floating-point complex values are passed by reference.

* IEEE single-precision and double-precision floating-point scalar parameters are passed in the
corresponding floating-point register slot. IEEE quad-precision floating-point scalar parameters
are passed by reference in the corresponding output general registers.

When IEEE floating-point parameters are passed in floating-point registers, they are passed in the
register format, rounded to the appropriate precision. They are never passed in the general registers
unless part of an aggregate, in which case they are passed in the aggregate memory format. When
VAX floating-point parameters are passed in general registers, they are passed in memory format.

96

Chapter 4. OpenVMS 164 Conventions

Parameters allocated beyond the eighth parameter slot are never passed in registers.

Unsigned integral (except unsigned 32-bit), set, and VAX floating-point values passed in registers are

zero-filled; signed integral values as well as unsigned 32-bit integral values are sign-extended to 64

bits. For all other types passed in the general registers, unused bits are undefined.

Note

Bit 31 is replicated in bits 32—63, even for unsigned 32-bit integers.

The rules contained in this section are summarized in Tables 4.10 and 4.11.

Table 4.10. Unused Bits in Passed Data

Data Type Type Designator1 Data Register Memory
(OpenVMS Names) Size Extension Type |Extension
(bytes) Type
Byte logical DSC$K DTYPE BU |1 Zero64 Zero64
Word logical DSC$K DTYPE WU |2 Zero64 Zero64
Longword logical DSC$K DTYPE LU |4 Sign64 Sign64
Quadword logical DSC$K DTYPE QU |8 Data64 Data64
Byte integer DSC$K DTYPE B 1 Sign64 Sign64
Word integer DSC$K DTYPE W 2 Sign64 Sign64
Longword integer DSC$K DTYPE L 4 Sign64 Sign64
Quadword integer DSC$K _DTYPE Q 8 Data64 Data64
F_floating DSC$K DTYPE F 4 VAXF64 Data32
D floating DSC$K DTYPE D 8 VAXDG64 Data64
G_floating DSC$K DTYPE G 8 VAXDG64 Data64
F_floating complex DSC$K DTYPE FC |2*4 2*VAXF64 2*Data32
D_floating complex DSC$K DTYPE DC |2 *8 2*VAXDG64 2*Data64
G_floating complex DSC$K DTYPE GC |[2*8 2*VAXDG64 2*Data64
S floating DSC$K DTYPE FS |4 Hard Data32
T floating DSC$K DTYPE FT |8 Hard Data64
X floating DSC$K DTYPE FX |16 N/A N/A
S floating complex DSC$K DTYPE FSC (2 *4 2*Hard 2*Data32
T floating complex DSC$K DTYPE FTC |2 *8 2*Hard 2*Data64
X_floating complex DSC$K DTYPE FXC |2*16 |N/A N/A
Small structures of 8 bytes or |N/A <8 Nostd Nostd
less
Small arrays of 8 bytes or N/A <8 Nostd Nostd
less
32-bit address N/A 4 Sign64 Sign64
64-bit address N/A 8 Data64 Data64

1OpenVMS also provides symbols of the form DSC64$K_DTYPE_xxx for each type designator.

97

Chapter 4. OpenVMS 164 Conventions

Table 4.11 contains the defined meanings for the extension type symbols used in Table 4.10.

Table 4.11. Extension Type Codes

Sign Extension Defined Function

Type

Sign64 Sign-extended to 64 bits.

Zero64 Zero-extended to 64 bits.

Data32 Data is 32 bits. The state of bits <63:32> is unpredictable.

2*Data32 Two single-precision parts of the complex value are stored in memory as
independent floating-point values (each handled as Data32).

Data64 Data is 64 bits.

2*Data64 Two double-precision parts of the complex value are stored in memory as
independent floating-point values (each handled as Data64).

VAXF64 Data is 64 bits. Low-order 32 bits are the same as the F_floating memory format
and the high-order 32 bits are zero. (Used only in a general register, never in a
floating-point register).

VAXDG64 Data is 64 bits. Uses the corresponding D floating or G_floating memory
format. (Used only in a general register, never in a floating-point register).

2*VAXF64 Two single-precision parts of the complex value are stored in memory as
independent floating-point values (each handled as VAXF64).

2*VAXDG64 Two double-precision parts of the complex value are stored in memory as
independent floating-point values (each handled as VAXDG64).

Hard Passed in the layout defined by the hardware SRM.

2*Hard Two floating-point parts of the complex value are stored in a pair of registers as
independent floating-point values (each handled as Hard).

Nostd State of all high-order bits not occupied by the data is unpredictable across a call
or return.

4.7.5.3. Argument Information (Al) Register

In addition to the normal parameters, an implicit argument information value is passed in register R25,
the Argument Information (Al) register. This value is shown in Figure 4.6.

Figure 4.6. Argument Information Register Representation

. . Argument
Must Be Zero Argument Register Information Count
<63:32> <31:8> <7:0>

VM-1006A-Al

Argument Count is an unsigned byte that specifies the number of 64-bit argument slots used for the
argument list. (Note that single and double-precision complex values use two slots, which is reflected
in this count).

Argument Register Information is a contiguous group of eight 3-bit fields that correspond to the

eight arguments passed in registers. The first group, bits <10:8>, describes the first argument, the
second group, bits <13:11>, describes the second argument, and so on. The encoding for each group is
described in Table 4.12.

98

Chapter 4. OpenVMS 164 Conventions

Table 4.12. Argument Information Register Codes

Value OpenVMS Name Meaning

0 AI$K_AR 164 64-bit or 32-bit sign-extended to 64-bit argument passed in an
integer register (including addresses).
or
Argument is not present.

1 AI$SK AR FF F floating (also known as VAX single-precision floating-point)
argument passed in a general register.

2 AISK AR FD D floating (also known as VAX double-precision floating-point)
argument passed in a general register.

3 AI$K AR FG G _floating (also known as VAX double-precision floating-point)
argument passed in a general register.

4 AI$SK AR FS S_floating (also known as IEEE single-precision floating-point)
argument passed in a floating-point register.

5 AI$SK AR FT T floating (also known as IEEE double-precision floating-point)
argument passed in a floating-point register.

6,7 — Reserved.

4.7.5.4. Memory Stack Parameters

The remainder of the parameter list, beginning with slot 8, is passed in the outgoing parameter area
of the memory stack frame, as described in Section 4.5.1. Parameters are mapped directly to memory,
with slot 8 placed at location SP+16, slot 9 placed at location SP+24, and so on. Each argument is
stored in memory as a series of one or more 64-bit storage units, with unused bits in the last unit
undefined.

4.7.5.5. Variable Argument Lists

The rules above support variable-argument list functions in both the K&R and the ANSI dialects of
the C language. (Note that argument location is independent of whether a prototype is in scope).

The nth argument is in either Rz or Fn regardless of the type of parameter in the preceding register
slot. Therefore, a function with variable arguments may assume that the variable arguments that lie
within the first eight argument slots can be found in either the stacked input integer registers (INO-
IN7), or in the floating-point parameter registers (F8-F15). Using the information codes from the
Al (Argument Information) register (see Table 4.12), the function can then store these registers to
memory using the 16-byte scratch area for IN6/F14 and IN7/F15, and up to 48 bytes at the base of
its own stack frame for INO/F8-IN5/F13, as necessary. This arrangement places all of the variable
parameters in one contiguous block of memory.

4.7.5.6. Pointers to Formal Parameters

Whenever the address is formed of a formal parameter that is passed in a register, the compiler must
store the parameter to the stack, as it would for a variable argument list.

4.7.5.7. Languages Other than C

The placement of arguments in general registers versus floating-point registers does not depend on
any notion or concept of a prototype being in scope. It is therefore applicable to all languages at all
times.

99

Chapter 4. OpenVMS 164 Conventions

4.7.5.8. Rounding Floating-point Values

There must be no difference in behavior between a floating-point parameter passed directly in a
register and a floating-point parameter that has been stored to memory and reloaded. In either case,
the floating-point value must be the same. This implies that floating-point parameters passed in
floating-point registers must be explicitly rounded to the proper precision by the caller.

4.7.5.9. Order of Argument Evaluation

Because most high-level languages do not specify the order of evaluation (with respect to side effects)
of arguments, those language processors can evaluate arguments in any convenient order. The choice
of argument evaluation order and code generation strategy is constrained only by the definition of the
particular language. Programs should not depend on the order of evaluation of arguments.

4.7.5.10. Examples

The following examples illustrate the parameter passing conventions. Floating-point types are IEEE
floating-point representations.

Scalar Integers and Floats, With or Without Prototype

extern int func(int, double, double, int);
func(i, a, b, j);

The parameters are passed as follows:

Slot Variable Allocation Argument Register Information
0 i OuUTO AISK AR _164
1 F9 AISK AR _FT
2 b F10 AI$SK_ AR FT
3] OouT3 AISK AR _164

Aggregates Passed by Value

extern int func();
struct { int array[20]; } a;
func(i, a);

No padding is provided in the parameter list for the structure (independent of its external alignment).
The parameters are passed as follows:

Slot Variable Allocation Argument Register Information
0 i ouTo AI$SK AR 164
1-7 a.array[0—13] OUT1—OUT7? AI$SK AR 164 (all 7 slots)
8-24 a.array| 14—19] In memory, at SP+16 |Not applicable
through SP+39

extern int func();
struct { _ floatl28 x; int array[20]; } a;
func(i, a);

100

Chapter 4. OpenVMS 164 Conventions

The parameters are passed as follows:

Slot Variable Allocation Argument Register Information
0 i OouTo AISK AR 164
1-2 a.x OUT1—OUT2 AI$SK AR 164 (both slots)
3-7 a.array[0—9] OouUT3—O0UT7? AI$K AR 164 (all 5 slots)
8-21 a.array[10—19] In memory, at SP+16 |Not applicable
through SP+55

Floating-Point Aggregates, With or Without Prototype
struct s { float a, b, c¢; } x;

extern func();

func(x);

The parameters are passed as follows:

Slot Variable Allocation Argument Register Information
0 x.a&x.b ouTo AI$SK AR 164
1 X.C OUT1 AISK AR 164 (low 32 bits)

4.7.6. Return Values

Values up to 128 bits are returned directly in the registers, according to the rules in Table 4.13.

Integer, enumeration, record, and set values (bit vectors) smaller than 64 bits must be zero-filled
(unsigned integers, enumerations, records, sets) or sign-extended (signed integrals) to a full 64 bits.
However, for unsigned 32-bit integers, bit 31 is replicated in bits 32—63.

When floating-point values are returned in floating-point registers, they are returned in the register
format, rounded to the appropriate precision. When they are returned in the general registers (for
example, as part of a record), they are returned in their memory format.

OpenVMS does not support a general notion of homogeneous floating-point aggregates. However, the
special case of two single-precision or double-precision floating-point values implementing values of
a complex type are handled in an analogous manner.

Table 4.13. Rules for Return Values

Type Size (Bits) Location of |Alignment
Return Value

Integer/Pointer, small Record, Set 1—64 R8 LSB

IEEE single-precision floating-point (S_floating) 32 F8 N/A

IEEE double-precision floating-point (T_floating) 64 F8 N/A

IEEE single-precision complex (S_floating) 64 F8, F9 N/A

IEEE double-precision complex (T_floating) 128 F8, F9 N/A

VAX single-precision floating-point (F_floating) 32 RS N/A

VAX double-precision floating-point 64 R8 N/A
(D_and G_floating)

101

Chapter 4. OpenVMS 164 Conventions

Type Size (Bits) Location of |Alignment
Return Value

VAX single-precision floating-point complex 64 R&, R9 N/A

(F_floating)

VAX double-precision floating-point complex 128 R8&, R9 N/A

(D_and G_floating)

Note

X floating and X _floating complex are not included in this table because they are returned using the
hidden parameter method (see below).

The rules in Table 4.13 are expressed in more detail in Table 4.10. F_floating and F_floating complex
values in the general registers are zero-extended (Zero64), because this most closely approximates the
effect of using the Alpha register format.

Hidden Parameter

Return values other than those covered by Table 4.13 are returned in a buffer allocated by the caller.
A pointer to the buffer is passed to the called procedure as a hidden first parameter, and all normal
parameters are shifted one slot to make this possible. The return buffer must be aligned at a 16-byte
boundary.

4.7.7. Simple and Bound Procedures

There are two distinct classes of procedures:
e Simple procedure
* Bound procedure

A simple procedure is a procedure that does not need direct access to the stack of its execution
environment. In order to call a simple procedure, a simple function descriptor is created, as shown in
Figure 4.7, and described in Table 4.14.

Figure 4.7. Simple Function Descriptor

0
FDSC$Q_ENTRY
8
FDSC$Q_GP
VM-1088A-Al

Table 4.14. Simple Function Descriptor
FDSC$Q_ENTRY Entry code address for the procedure to be called.
FDSC$Q_GP GP value for the procedure to be called.

A bound procedure is a procedure that does need direct access to the stack of its execution
environment, typically to reference an up-level variable or to perform a nonlocal GOTO operation.

102

Chapter 4. OpenVMS 164 Conventions

When a bound procedure is called, the caller must pass some kind of pointer to the called code that
allows it to reference its up-level environment. Typically, this pointer is a frame pointer for that
environment, but many variations are possible. When the caller itself is executing within that outer
environment, it can usually make such a call directly to the code for the nested procedure without
recourse to any additional function descriptors. However, when a procedure value for the nested
procedure must be passed outside of that environment to a call site that has no knowledge of the target
procedure, a bound function descriptor is created so that the nested procedure can be called just like
a simple procedure.

Bound procedure values, as defined by this standard, are designed for multilanguage use and utilize
the properties of function descriptors to allow callers of procedures to use common code to call both
bound and simple procedures.

A bound function descriptor is similar to a simple function descriptor, with several additional fields as
shown in Figure 4.8 and described in Table 4.15.

Figure 4.8. Bound Function Descriptor

0
FDSC$Q_OTS_ENTRY
:8
FDSC$Q_OTS_PSEUDO_GP
116
FDSC$Q_SIGNATURE
24
FDSC$Q_TARGET_ENTRY
132
FDSC$Q_TARGET_GP
40
FDSC$Q_TARGET_ENVIR
FDSC$K_BOUND_SIZE = 48
VM-1080A-Al
Table 4.15. Contents of Bound Function Descriptor
Field Name Contents
FDSC$Q_OTS_ENTRY Code address for a suitable library helper routine, for example,

OTS$JUMP _TO BPV
FDSC$Q_OTS PSEUDO_GP Address of this bound function descriptor

FDSC$Q_SIGNATURE Signature information field (see Section 6.1.3)
FDSC$Q_TARGET_ENTRY Entry code address for the procedure to be called
FDSC$Q _TARGET GP GP value for the procedure to be called
FDSC$Q TARGET ENVIR Environment value for the procedure to be called

A bound procedure descriptor is inherently dynamic because the environment value must be
determined at runtime by code executing within the bound procedure environment. Therefore, when

103

Chapter 4. OpenVMS 164 Conventions

a bound procedure descriptor such as this is needed, it is usually allocated on the creating procedure's
stack.

When a procedure value that refers to a bound procedure descriptor is used to make a call, the routine
designated in the OTS ENTRY field (typically OTS$JUMP_TO BPV) receives control with the

GP register pointing to the bound procedure descriptor (instead of a global offset table). This routine
performs the following steps:

1. Load the "real" target entry address into a volatile branch register, for example, B6.

2. Load the dynamic environment value into the appropriate uplevel-addressing register for the target
function, for example, OTS$JUMP_TO_BPV uses R9.

3. Load the "real" target GP address into the GP register
4. Transfer control (branch, not call) to the target entry address.

Control arrives at the real target procedure address with both the GP and environment register values
established appropriately.

Support routine OTS$JUMP_TO BPV is included as a standard library routine. The operation of
OTS$JUMP_TO_BPV is logically equivalent to the following code:

OTS$JUMP_TO BPV: :

add gp=gp, 24 ; Adjust GP to point to entry address
| d8 r9=[gp], 16 ; Load target entry address

nov b6=r9

| d8 ro=[gpl,-8 ; Load target environnent val ue

| d8 ap=[gp] ; Load target GP

br b6 ; Transfer to target

Because the address of a bound function descriptor is a valid function pointer, it may be passed
to translated code which uses it to call back into native code; therefore, the value of the signature
information field must be the same as that in the official function descriptor for the real target
procedure (see Section 6.1.2).

Note that there can be multiple OTS$JUMP_TO BPV-like support routines, corresponding to
different target registers where the environment value should be placed. The code that creates the
bound function descriptor is also necessarily compiled by the same compiler that compiles the target
procedure, thus can correctly select an appropriate support routine.

4.8. Procedure Call Stack

A procedure is an active procedure while its body is executing, including while any procedure it calls
is executing. When a procedure is active, its designated condition handler may handle an exception
that is signaled during its execution.

Associated with each active procedure is an invocation context, informally called a frame, which
consists of the set of registers and space in memory that is allocated and that may be accessed during
execution for a particular call of that procedure.

When a procedure begins to execute, it has a limited invocation context that includes the output
registers of its caller (which have been "shifted" to start at register R32). The initial instructions may
allocate and initialize additional context, including possibly saving information from the invocation

104

Chapter 4. OpenVMS 164 Conventions

context of its caller. Such instructions, if any, are termed a procedure prologue. Once execution of
the prologue is complete, the procedure is said to be active.

When a procedure is ready to return to its caller, the procedure ceases to be active after it begins to
execute the instructions that deallocate and discard the procedure's invocation context (which may
include restoring state of the caller's invocation context that was saved during the prologue). These
instructions are termed a procedure epilogue.

A null frame procedure has no prologue and no epilogue, and consists solely of body instructions.
Such a procedure becomes active immediately.

A procedure may have more than one prologue if there are multiple entry points. A procedure may
also have more than one epilogue if there are multiple return points. One of each will be executed
during any given invocation of the procedure.

A procedure call stack (for a thread) consists of the stack of invocation contexts that exists at
any point in time. New invocation contexts are pushed on that stack as procedures are called and
invocations are popped from the call stack as procedures return.

The invocation context of a procedure that calls another procedure is said to precede or be previous to
the invocation context of the called procedure.

4.8.1. Current Procedure

The current procedure is the active procedure whose execution began most recently; its invocation
context is at the top of the call stack. Note that a procedure executing in its prologue or epilogue is not
active, and hence cannot be the current procedure.

For OpenVMS, the PC (instruction pointer) register in combination with associated unwind
information determines what procedure is current (for exception handling purposes). See Section A.4
for a description of the unwind information data structures.

A procedure is current at a given PC (when OpenVMS semantics apply, see Section A.4.1) if either:
* The PC is in a range described by any body region unwind descriptor but not in an epilogue

* The PC is in a range not described by any unwind descriptor, and therefore by default must be
within a null frame procedure (see Section A.4.1):

4.8.2. Procedure Call Tracing

Mechanisms for each of the following functions are needed to support procedure call tracing:
» To provide the context of a procedure invocation

* To walk (navigate) the procedure call stack

» To refer to a given procedure invocation

» To examine or modify the register context of an active procedure

This section describes the data structure mechanisms. The run-time library functions that support
these functions are described in Section 4.8.3

4.8.2.1. Invocation Context Block

105

Chapter 4. OpenVMS 164 Conventions

The context of a specific procedure invocation is provided through the use of a data structure called an
invocation context block (ICB). Table 4.16 describes the contents of the OpenVMS 164 invocation

context block.

Table 4.16. Contents of the Invocation Context Block

Field Size Description

LIBICBSL CONTEXT LENGTH|Longword Unsigned total length in bytes of the invocation
context block. See Section 4.8.3.1.

LIBICB$V_FRAME FLAGS 3 Bytes See Table 4.17.

LIBICB$B BLOCK VERSION |Byte ICB version; initial value of 2 for OpenVMS 164
(1 is for OpenVMS Alpha). See Section 4.8.3.1.

LIBICBS$IH IREG 128 Array of general registers (only those allocated;

Quadwords |unallocated registers are uninitialized).
LIBICBS$IH IREGIO0] is reserved.
IREG[1], the global data pointer, can be
referenced using the symbol LIBICBSIH_GP.
IREG[12], the memory stack pointer, can be
referenced using the symbol LIBICB$IH_SP.
IREG[13], the thread pointer, can be referenced
using the symbol LIBICBSIH_TP.
IREG[25], the argument information register, can
be referenced using the symbol LIBICB$IH_AL.

LIBICB$IH GRNAT 2 Quadwords |General register NaT collection.

LIBICB$FO F2 F31 30 Octawords |Floating-point registers F2-F31. Array of
floating-point register values in register format, as
saved by a SPILL instruction.

LIBICB$PH F32 F127 Quadword Pointer to array of floating-point values in
register format for registers F32-F127, as saved
by SPILL instruction. A pointer value of 0
indicates that the contents of registers F32-F127
are not defined.

LIBICB$IH BRANCH 8 Quadwords | Array of branch registers.

LIBICB$IH _RSC Quadword Register Stack Configuration register.

LIBICBSIH_BSP Quadword Backing store pointer.

LIBICB$IH BSPSTORE Quadword Backing store write pointer.

LIBICBSIH RNAT Quadword RSE NaT collection register.

LIBICB$IH_CCV Quadword Compare and Exchange Value register.

LIBICBSIH_UNAT Quadword User NaT collection register.

LIBICBSIH PFS Quadword Previous function state.

LIBICBSIH_LC Quadword |Loop count register.

LIBICBSIH_EC Quadword Epilogue Count register.

LIBICBS$IH_CSD Quadword Copy of the AR.CSD.

LIBICB$IH_SSD Quadword Copy of the AR.SSD.

106

Chapter 4. OpenVMS 164 Conventions

Field Size Description

LIBICB$Q _PRED Quadword Predicate collection register, P0—P63. This field
is a bitvector with bit 0 reserved.

LIBICB$IH_PC Quadword Current instruction pointer; the slot number
overlays <1:0>,

LIBICB$IH CFM Quadword Current Frame Marker.

LIBICB$IH UM Quadword User mask bits from PSR.

LIBICB$O GR_VALID Octaword General Register validity mask.”

LIBICBSL FR VALID Longword Floating-Point Register validity mask for registers
F2-F31.7

LIBICB$Q BR_VALID Quadword Branch Register validity mask.’

LIBICB$Q AR VALID Quadword Application Register validity mask.”

LIBICB$Q OTHER VALID Quadword PC and CFM validity mask.’

LIBICB$Q PR_VALID Quadword Predicate Register validity mask.

LIBICB$IH ORIGINAL Quadword Original address of the general register spill area

SPILL_ADDR (normally &icb->LIBICB$IH_IREG[0]).!

LIBICB$IH PSP Quadword Previous stack pointer.

LIBICB$IH RETURN PC Quadword Return PC.

LIBICB$IH PREV_BSP Quadword Previous BSP

LIBICB$PH _CHFCTX ADDR |Quadword Pointer to condition handler facility context
block.

LIBICB$IH OSSD Quadword Copy of OSSD from Unwind Information Block.

LIBICB$IH HANDLER FV Quadword Condition Handler Function Value.

LIBICB$PH_LSDA Quadword Address of the Language Specific Data Area of

the Unwind Information Block

Beginning of User Override Para

meters (offset LIBICBSR_UO_BASE)

LIBICB$SQ UO FLAGS

Quadword

Operational flags:

LIBICBSV_UO_FLAG CACHE UNWIND —
Cache unwind information during a walk of the
call stack. See Section 4.8.3.2.

LIBICBSIH_UO_IDENT

Quadword

User context variable; passed by value to the
callback routines. See Section 4.8.5.

LIBICB$SPH UO READ MEM

Quadword

Pointer to user read memory routine. See
Section 4.8.5.3.

LIBICB$PH_UO_GETUEINFO

Quadword

Pointer to user get unwind entry information
routine. See Section 4.8.5.1.

LIBICB$PH UO_GETCONTEXT

Quadword

Pointer to user get initial context routine. See
Section 4.8.5.2.

LIBICB$PH UO_ WRITE MEM |Quadword Pointer to user write memory routine. See
Section 4.8.5.4.
LIBICB$PH_UO_WRITE REG |Quadword Pointer to user wrife register routine. See

Section 4.8.5.5.

107

Chapter 4. OpenVMS 164 Conventions

Field Size Description

LIBICB$PH UO_MALLOC Quadword Pointer to user memory allocate routine. See
Section 4.8.5.6.

LIBICB$PH _UO FREE Quadword Pointer to user memory free routine. See
Section 4.8.5.7.

End of user override parameters (length of LIBICBSK_UO_LENGTH)

LIBICBSL ALERT CODE Longword Stack walk detailed status. Alert codes are
enumerated in the LIBICB include files. See
Section 4.8.3.7.

LIBICB$IH _SYSTEM n Quadwords | Variable-sized area; unused and undefined at this
DEFINED[n] time.

IBits in the field LIBICB$IH_GRNAT represent the NaT bits for the general registers. The bit position for a given register is relative

to its original spill location, the base address of which is stored at LIBICB$IH_ORIGINAL_SPILL ADDR. The first quadword of
LIBICB$IH_GRNAT contains the NaT bits for R0-R63, the second quadword contains the NaT bits for R64-R127. The formula for the bit
corresponding to register Rn within each quadword is

uint64 * spill = (uint64 *)icb->LIBICBSIH_ORIGINAL SPILL_ADDR;

uint64 bitpos = (((uint64)&spill[n]) >> 3) & 63;

uint64 bitmask = 1LL << bitpos;

The valid bit mask indicates which registers have been realized for a given invocation context. Normally, scratch registers are not realizable
except for a context immediately preceding an exception or AST frame. Refer to the LIBICB include files to find the bit position for the
Application Registers, AR.RSC being bit 0.

Table 4.17. Flags in LIBICBSV_FRAME_FLAGS Field of the Invocation Context Block

Flag Description
LIBICB$V_BOTTOM_ OF STACK Set to 1 if this is the bottom of the stack and there is
absolutely no previous frame.
LIBICB$V_HANDLER PRESENT Set to 1 if this frame has a condition handler.
LIBICB$V_IN PROLOGUE Set to 1 if the PC is in a prologue region.
LIBICB$V_IN EPILOGUE Set to 1 if the PC is in an epilogue region.
LIBICB$V_HAS MEM STK FRAME |Setto 1 if this frame has a memory stack.
LIBICB$V_HAS REG STK FRAME |Setto 1 if this frame has a register stack.

Static scratch registers, unless saved and described in the unwind table information, are not realizable
except for an invocation context preceding an exception or AST frame.

4.8.2.2. Invocation Context Handle

To refer to a specific procedure invocation at run-time, an invocation context handle (ICH) can
be used. The invocation context handle is a quadword that uniquely identifies any one of the active
frames on a call stack, even when one or more of the frames correspond to procedures that have no
associated stack storage.

The characteristics of the caller are used to determine the invocation context handle. If the caller

has a register frame, then the RSE Backing Store Pointer (BSP) is used as the handle; otherwise, the
caller's Stack Pointer is used. (The caller's Stack Pointer is sometimes called Stack Pointer on Entry or
Previous Stack Pointer (PSP)).

4.8.3. Invocation Context Block Access Routines

A thread can manipulate the invocation context of any procedure in the thread's virtual address space
by calling the run-time library functions described in this section.

108

Chapter 4. OpenVMS 164 Conventions

Note

The OpenVMS 164 stack tracing routines use heap storage during the analysis of unwind descriptors.
The default heap storage mechanism uses a LIBRTL implementation of the C RTL function malloc,
the use of which may result in virtual memory being expanded using the SEXPREG system service.
See Section 4.8.5 on how to override the defaults. See also Section 4.8.3.12.

4.8.3.1. Initializing the Invocation Context Block

When allocating a new invocation context block, the user must perform the following steps prior to
calling any of the routines described in Section 4.8.3:

* Allocate the block on an octaword (16-byte) boundary.
* Clear (set to all zero bytes) the entire block.

« Initialize the LIBICBSL_CONTEXT LENGTH field to
LIBICB$SK_INVO CONTEXT BLK_SIZE and the LIBICB$SB_BLOCK_VERSION field to
LIBICB$SK_INVO _CONTEXT VERSION.

* Set any required parameters in the user override portion of the invocation context block.

* Setthe LIBICB$V_UO FLAG CACHE UNWIND flag if appropriate. See also Section 4.8.3.2
and Section 4.8.3.12 regarding subsequent use of LIB$164 PREV _INVO END.

Failure to do so will cause these routines to return an error status. Note that this is a change from
Alpha, where initialization was not necessary.

To simplify the initialization process, the following convenience routines are provided:
+ LIB$I64 CREATE INVO CONTEXT (see Section 4.8.3.3)
« LIB$I64 FREE INVO CONTEXT (see Section 4.8.3.4)

+ LIBSI64 INIT INVO_CONTEXT (see Section 4.8.3.5)

4.8.3.2. Walking the Call Stack

During the course of program execution, it is sometimes necessary to walk the call stack. Frame-based
exception handling is one case where this is done. Call stack navigation is possible only in the reverse
direction (in a latest-to-earliest or top-to-bottom sequence).

To walk the call stack, perform the following steps:
1. Given a program state (which contains a register set), build an invocation context.

For the current routine, an initial invocation context block can be obtained by calling the
LIB$I64 GET CURR_INVO_CONTEXT routine (see Section 4.8.3.7).

2. Repeatedly call the LIB$SI64 GET PREV _INVO CONTEXT routine (see Section 4.8.3.8) until
the desired invocation context, or the end of the call chain, has been reached.

LIB$164 GET PREV_INVO_CONTEXT indicates the end of the invocation call chain if either
of the following conditions is true:

109

Chapter 4. OpenVMS 164 Conventions

* The OSSD$V_BOTTOM_OF STACK flag is set for the target frame (see Table A.14).
* The return address (IP) of the target frame is zero.

To make the stack walk more efficient, you can set the LIBICBSV UO FLAG CACHE UNWIND
flag. This causes unwind information to be carried over from one call to

LIB$I64 GET PREV_INVO_CONTEXT to the next. At the conclusion of the stack walk, you must
call LIB$I64 PREV_INVO_END to free any cached unwind information. This is the recommended
practice, but not the default behavior.

Compilers are allowed to optimize high-level language procedure calls in such a way that they do not
appear in the invocation chain. For example, inline procedures never appear in the invocation chain.

Make no assumptions about the relative positions of any memory used for procedure frame
information. There is no guarantee that successive stack frames will always appear at higher
addresses.

4.8.3.3. LIB$I64_CREATE_INVO_CONTEXT

This convenience routine simplifies creating and properly initializing an invocation context
block. The routine allocates an invocation context block from heap storage and initializes

it according to the steps described in Section 4.8.3.1. Users of this routine should call
LIB$I64 FREE INVO_CONTEXT when the invocation context block is no longer required.

This routine sets the cache unwind flag LIBICB§V_UO FLAG _CACHE UNWIND in the
invocation context block to speed the stack walk. Do not use this routine in conjunction with
LIB$164 INIT INVO CONTEXT, as the same initialization is performed by both routines.

LI B$l 64_CREATE_| NVO_CONTEXT ([malloc] [, free] [, ident])

Argument OpenVMS Usage Type Access Mechanism
malloc function_value procedure read by value

free function_value procedure read by value

ident user_value quadword read by value
Arguments:

mal | oc A procedure reference for a user callback routine that allocates memory. See

Section 4.8.5.6 for details of this routine. This is an optional argument. The
default is to use an implementation of the C RTL routine malloc. If specified,
this routine is used to allocate the invocation context block and is also placed in
the invocation context block field LIBICB$SPH _UO_MALLOC for use during
the stack walk.

free A procedure reference for a user callback routine that deallocates memory. This
value is placed in the invocation context block field LIBICB$PH_UO FREE.
See Section 4.8.5.7 for details on this routine. This is an optional argument;
however, it must be specified if malloc is specified. The default is to use an
implementation of the C RTL routine free.

i dent Specifies a user ident value to be placed in the invocation context block
LIBICBS$IH UO _IDENT field. In turn, this value is passed to the malloc and
free routines, described in Section 4.8.5.6 and Section 4.8.5.7 respectively. This
is an optional argument; the default value is zero.

110

Chapter 4. OpenVMS 164 Conventions

Function Value Returned:

i nvo_cont ext A non-zero value represents the address of the invocation context block

allocated. A value of 0 indicates failure.

4.8.3.4. LIB$I64_FREE_INVO_CONTEXT

Deallocates an invocation context block that was previously allocated using

LIB$164 CREATE INVO_CONTEXT. This routine calls LIB$I64 PREV INVO END as a

convenience.

LI B$| 64_FREE_| N\VO_CONTEXT (i nvo_cont ext)

Argument OpenVMS Usage Type Access Mechanism
invo_context invo_context blk structure modify by reference
Argument:

i nvo_cont ext Address of an invocation context block.

Function Value Returned:

None.

4.8.3.5. LIB$I64_INIT_INVO_CONTEXT

Initializes an invocation context block that the user has already allocated (on the stack, or from
heap, or other storage) in accordance with Section 4.8.3.1. Use this routine as an alternative to
LIB$164 CREATE INVO_CONTEXT, which both allocates and initializes an invocation context

block.

LI B$1 64_1 NI T_I NVO_CONTEXT
(invo_context, invo_version [, cache_unw nd_flag])

Argument OpenVMS Usage Type Access Mechanism
invo_context invo_context blk structure modify by reference
invo_version version_number byte read by value

cache unwind flag|flag longword read by value
Arguments:

i nvo_cont ext Address of an invocation context block.

i nvo_version The value LIBICB$K INVO_ CONTEXT VERSION. This is used to

verify the operating environment.

cache_unwi nd_f | ag A flag indicating if the cache unwind flag,

LIBICB$V_UO_FLAG CACHE UNWIND, should be set in the
invocation context block. A value of zero clears the flag; a value of
one sets the flag. This is an optional argument. The default is zero.

Function Value Returned:

111

Chapter 4. OpenVMS 164 Conventions

st at us A value of 1 indicates success. A value of 0 indicates a version
number mismatch.

4.8.3.6. LIB$164_GET_INVO_CONTEXT

A thread can obtain the invocation context of any active procedure by using this function:

LI B$1 64_GET_I NVO _CONTEXT(i nvo_handl e, invo_context)

Argument OpenVMS Usage Type Access Mechanism
invo_handle invo_handle quadword read by reference
invo_context invo_context blk structure modify by reference
Arguments:

i nvo_handl e Address of the location that contains the handle for the desired invocation.

i nvo_cont ext Address of an invocation context block into which the procedure context of the
frame specified by i nvo_handl e will be written.

Note

The invocation context block must be properly initialized as described in Section 4.8.3.1 before
calling this routine.

Function Value Returned:

st at us Status value. A value of 1 indicates success; a value of 0 indicates failure.

Note

If the invocation handle that was passed does not represent any procedure context in the active call
stack, the new contents of the context block is unpredictable.

4.8.3.7. LIB$164_GET_CURR_INVO_CONTEXT

A thread can obtain the invocation context of a current procedure by using this function:

LI B$| 64_GET_CURR_| NVO_CONTEXT(i nvo_cont ext)

Argument OpenVMS Usage Type Access Mechanism
invo_context invo_context blk structure modify by reference
Argument:

i nvo_cont ext Address of an invocation context block into which the procedure context of the
caller will be written.

Note

The invocation context block must be properly initialized as described in Section 4.8.3.1 before
calling this routine.

112

Chapter 4. OpenVMS 164 Conventions

Function Value Returned:

Zero This facilitates use in the implementation of the C language unwind set j np
or | ongj np function. Check the LIBICBSL ALERT CODE field of the
invocation context block for further status indication.

4.8.3.8. LIB$I64_GET_PREV_INVO_CONTEXT

A thread can obtain the invocation context of the procedure context preceding any other procedure
context by using this function:

LI B$| 64_GET_PREV_| NVO_CONTEXT(i nvo_cont ext)

Argument OpenVMS Usage Type Access Mechanism
invo_context invo_context blk structure modify by reference
Argument:

i nvo_cont ext Address of a valid invocation context block. The given invocation context block
is updated to represent the context of the previous (calling) frame.

The LIBICB$V_BOTTOM_OF STACK flag of the invocation context block is
set if the target frame represents the end of the invocation call chain or if stack
corruption is detected.

Function Value Returned:

stat us Status value. A value of 1 indicates success. When the initial context represents
the bottom of the call stack, a value of 0 is returned.

4.8.3.9. LIB$164_GET_INVO_HANDLE

A thread can obtain an invocation handle corresponding to any invocation context block by using this
function:

LI B$1 64 _GET_|I NVO HANDLE(i nvo_cont ext, invo_handl e)

Argument OpenVMS Usage Type Access Mechanism
invo_context invo_context blk structure read by reference
invo_handle invo_handle quadword write by reference
Arguments:

i nvo_cont ext Address of a valid invocation context block.

i nvo_handl e Address of the location into which the invocation context handle is to
be written. If the call fails, the value of the invocation context handle is
LIB$K INVO HANDLE NULL.

Function Value Returned:

st at us A value of 1 indicates success. A value of 0 indicates failure.

113

Chapter 4. OpenVMS 164 Conventions

4.8.3.10. LIB$164_GET_CURR_INVO_HANDLE

A thread can obtain the invocation handle for the current procedure by using this function.

LI B$I 64_GET_CURR_I NVO_HANDLE(i nvo_handl e)

Argument OpenVMS Usage Type Access Mechanism
invo_handle invo_handle quadword write by reference
Arguments:

i nvo_handl e Address of a quadword into which the invocation handle of the caller will be
written.

Function Value Returned:

st at us A value of 1 indicates success. A value of 0 indicates failure.

4.8.3.11. LIB$I64_GET_PREV_INVO_HANDLE

A thread can obtain an invocation handle of the procedure context preceding that of a specified
procedure context by using this function:

LI B$1 64_GET_PREV_|I NVO HANDLE (i nvo_handl e_in, invo_handl e_out)

Argument OpenVMS Usage Type Access Mechanism
invo_handle in invo_handle quadword read by reference
invo_handle out |invo handle quadword write by reference
Argument:

i nvo_handl e_in The address of an invocation handle that represents a target invocation
context.

i nvo_handl e_out Address of the location into which the invocation context handle of the
previous context is to be written. If the call fails, the value of the previous
invocation context handle is LIBSK INVO _HANDLE NULL.

Function Value Returned:

st at us A value of 1 indicates success. A value of 0 indicates failure.

Note

Each call to this routine involves a stack walk from the top of the stack to find the procedure matching
the input handle. Consequently, using this routine repeatedly is an inefficient way to walk the stack,
compared to using LIB$I64 GET PREV INVO CONTEXT.

114

Chapter 4. OpenVMS 164 Conventions

4.8.3.12. LIB$164_PREV_INVO_END

This routine should be called at the conclusion of call tracing operations to free the memory used
to process unwind descriptors. The call tracing routines are LIB$§164 GET INVO_CONTEXT,
LIB$I64_GET PREV_INVO_CONTEXT, LIB$164_GET_CURR_INVO_CONTEXT.

To provide efficient call tracing, some unwind information is tracked in heap storage from one call to
the next. This heap storage should be freed before you release or reuse the invocation context block.

Calling this routine is necessary if the LIBICB$V_UO FLAG CACHE UNWIND flag is set in
the LIBICB$SQ UO FLAGS field of the invocation context block. If this flag is not set, unwind
information is released and recreated at each call, and calling this routine is not required.

LI B$1 64_PREV_| NVO END (i nvo_cont ext)

Argument OpenVMS Usage Type Access Mechanism
invo_context invo_context blk structure modify by reference
Arguments:

i nvo_cont ext Address of a valid invocation context block previously used for call tracing.
Function Value Returned:

st at us A value of 1 indicates success. A value of 0 indicates failure.

4.8.3.13. LIB$164_PUT_INVO_REGISTERS

The fields of a given procedure invocation context can be updated with new register contents by using
this function:

LI B$1 64_PUT_| N\VO REQ STERS
(invo_handl e, invo_context [,gr_mask] [,fr_mask] [, br_mask]
[,pr_mask] [, m sc_nmask])

Note that if user override routines are specified in the invocation context block, then they are used to
find and modify the invocation context.

Argument OpenVMS Usage Type Access Mechanism
invo_handle invo_handle quadword read by reference
invo_context invo_context blk structure read by reference
gr mask mask_octaword 128-bit vector read by reference
fr_mask mask octaword 128-bit vector read by reference
br _mask mask byte 8-bit vector read by reference
pr_mask mask quadword 64-bit vector read by reference
misc_mask mask quadword 64-bit vector read by reference
Arguments:

i nvo_handl e Handle for the invocation to be updated.

i nvo_cont ext Address of a valid invocation context block that contains new register contents.

115

Chapter 4. OpenVMS 164 Conventions

At least one of the following mask arguments (gr _mask, f r _mask, br _mask, pr _nmask, or
m sc_mask) must be specified; otherwise an error status is returned. Each register that is set in
the xx__mask argument (along with its NaT bit, if any) is updated using the value found in the
corresponding IREG[x], FREG[#n], BRANCH][#], or PRED[#] field. GP, TP, and Al can also be
updated in this way. No other fields of the invocation context block are used.

gr _mask

fr_mask

br _mask

pr_mask

m sc_mask

Address of a 128-bit bit vector, where each bit corresponds to a register field
inthe i Nnvo_cont ext argument. Bits 0 through 127 correspond to IREG[0]
through IREG[127].

Bit 0 corresponds to R0, which can not be written, and is ignored.
Bit 1 corresponds to the global data pointer (GP).

Bit 13 corresponds to the thread pointer (TP).

Bit 25 corresponds to the argument information register (Al).

If bit 12, which corresponds to SP, is set, then no changes are made.

Address of a 128-bit bit vector, where each bit corresponds to a register field

in the passed i Nnvo_cont ext . To update floating-point registers F32-F127,
provide a pointer to an array of 96 octawords in LIBICB$SPH_F32 F127. Bits 0
through 127 correspond to FREG[0] through FREG[127]. Bit O corresponds to
F0, which can not be written, and is ignored. Bit 1 corresponds to F1, which can
not be written, and is ignored.

Address of a 8-bit bit vector, where each bit corresponds to a register field in the
passed i nvo_cont ext . Bits 0 through 7 correspond to BRANCH][0] through
BRANCH][7].

Address of a 64-bit bit vector, where each bit corresponds to a register field in
the passed i nvo_cont ext . Bits 0 through 63 correspond to PRED[0] through
PRED[63].

Address of a 64-bit bit vector, where each bit corresponds to a register field in
the passed i nvo_cont ext as follows:

Bit 0=PC.
Bits 1—63 are reserved.

Note that PC can only be updated when the invocaton in question has been
interrupted (either by exception or by an interrupt) and is logically previous to an
invocation with the OSSD$V_EXCEPTION FRAME bit set.

Function Value Returned:

st at us A value of 1 indicates success. A value of 0 is returned (and nothing is changed)
in the following circumstances:
* When the invocation handle does not represent an active invocation context.
* When bit 12 of the gr _nmask argument is set
* When a scratch register has not been saved, or a register's save location or
status cannot be determined (valid bit clear).
Caution

Great care must be taken to assure that a valid stack frame and execution environment result;
otherwise, execution may become unpredictable.

116

Chapter 4. OpenVMS 164 Conventions

4.8.4. Supplemental Invocation Context Access
Routines

The routines described in this section can be used to perform some of the more common operations
involving invocation contexts.

4.8.4.1. LIB$I64_GET_FR

Given an invocation context block and floating-point register index such that 0 <=i ndex < 128,
copy the register value to f r _copy. For example, an i hdex value of 4 fetches the value, which
represents the contents of F4 for the context.

LIBS$164 GET FR returns failure status if the index represents a scratch register whose contents have
not been realized.

LI B$I 64_GET_FR (i nvo_context, index, fr_copy)

Argument OpenVMS Usage Type Access Mechanism
invo_context invo_context_blk structure read by reference
index index longword read by value
fr_copy floating-point value octaword write by reference
Arguments:

i nvo_cont ext Address of a valid invocation context block.

i ndex Floating-point register index.
fr_copy Address of an octaword to receive the contents of the specified floating-point
register.

Function Value Returned:

st at us A value of 1 indicates success. A value of 0 indicates failure.

4.8.4.2. LIB$I64_SET_FR

Given an invocation context block, a floating-point register index, and a floating-point register

value in f r _copy, writes the corresponding invocation context block FREG entry, and calls
LIB$I64 PUT INVO_REGISTERS to write the actual context. The invocation context block remains
unchanged if the routine fails.

LIBS$I64 SET FR fails if LIB$I64 PUT INVO REGISTERS fails.

LI B$I 64_SET_FR (i nvo_context, index, fr_copy)

Argument OpenVMS Usage Type Access Mechanism
invo_context invo_context_blk structure modify by reference
index index longword read by value
fr_copy floating-point value octaword read by reference
Arguments:

117

Chapter 4. OpenVMS 164 Conventions

i nvo_cont ext Address of a valid invocation context block.
i ndex Index into the FREG array of the invocation context block.

fr_copy Address of an octaword that contains the floating-point value to be written to the
invocation context block.

Function Value Returned:

st at us A value of 1 indicates success. A value of 0 indicates failure.

4.8.4.3. LIB$I64_GET_GR

Given an invocation context block and general register index such that 0 <=i ndex < 128, copy the
register value to gr _copy, for example, i ndex 4 fetches the invocation context block IREG[4]
value, which represents the contents of R4 for the context.

If the register represented by i ndex has its corresponding NaT bit set, the read succeeds and the
return status is set to 3. If the register represented by i hdex lies beyond the allocated general
registers, the read fails and gr _copy is unchanged. That is, the highest allowed i hdex is 32 +
ICB.CFM.SOF - 1.

LIBS$I64 GET GR fails if the index represents a scratch register whose contents have not been
realized.

LI B$1 64 GET_GR (invo_context, index, gr_copy)

Argument OpenVMS Usage Type Access Mechanism
invo_context invo_context blk structure read by reference
index index longword read by value

gr _copy integer value quadword write by reference
Arguments:

i nvo_cont ext Address of a valid invocation context block.
i ndex Index into the IREG array of the invocation context block.

gr _copy Address of a quadword to receive the value from the invocation context block.

Function Value Returned:
st at us A value of 3 indicates success, and the NaT bit was set.
A value of 1 indicates success, and the NaT bit was clear.

A value of 0 indicates failure.

4.8.4.4. LIB$I64_SET_GR

Given an invocation context block, a general register index such that 1 <=1 ndex <128, and a
quadword value gr _copy, writes the corresponding invocation context block general register, clears
the corresponding NaT bit and uses LIB§164 PUT INVO_REGISTERS to write to the actual context.
The invocation context block remains unchanged if the routine fails.

LIBSI64 SET GR fails if LIBSI64 PUT INVO REGISTERS fails.

118

Chapter 4. OpenVMS 164 Conventions

LI B$1 64_SET_GR (invo_context, index, gr_copy)

Argument OpenVMS Usage Type Access Mechanism
invo_context invo_context blk structure modify by reference
index index longword read by value
gr_copy integer value quadword read by reference
Arguments:

i nvo_cont ext
i ndex

gr_copy

Address of a valid invocation context block.

Index into the IREG array of the invocation context block.

Address of a quadword that contains the value to be written to the invocation

context block.

Function Value Returned:

st at us

A value of 1 indicates success. A value of 0 indicates failure.

4.8.4.5. LIB$164_SET_PC

Given an invocation context block and a quadword PC value in pc__copy, write the pc_copy value
to the invocation context block PC and then use LIB$164 PUT _INVO_REGISTERS to write to the
actual context. The invocation context block remains unchanged if the routine fails.

LIBSI64 SET PC fails if LIBSI64 PUT _INVO_REGISTERS fails.

LI B$1 64_SET_PC (i nvo_context, pc_copy)

Argument OpenVMS Usage Type Access Mechanism
invo_context invo_context blk structure modify by reference
pc_copy PC value quadword read by reference
Arguments:

i nvo_cont ext
pc_copy

Address of a valid invocation context block.

Address of a quadword that contains the PC value to be written to the invocation

context block.

Function Value Returned:

st at us

A value of 1 indicates success. A value of 0 indicates failure.

4.8.4.6. LIB$164_GET_UNWIND_LSDA

Given a pc_val ue, find the address of the unwind information block language specific data area

(LSDA), and write it to unwi nd_| sda_p. If not present, then write 0 to unwi nd_| sda_p.

LI B$! 64_GET_UNW ND_LSDA (pc_val ue,

unwi nd_| sda_p)

Argument

OpenVMS Usage

Type

Access

Mechanism

pc_value

PC value

quadword

read

by reference

119

Chapter 4. OpenVMS 164 Conventions

Argument

OpenVMS Usage Type Access Mechanism

unwind_lsda p

address quadword write by reference

Arguments:

pc_val ue

Address of a location that contains the PC value. pc_val ue is used to find the
unwind information block and the unwind information block language-specific
data area address.

unwi nd_| sda_p Address of a quadword to receive the address of the language-specific data area,

if there is one.

Function Value Returned:

st at us

A value of 1 indicates success. A value of 0 indicates failure.

4.8.4.7. LIB$I64_GET_UNWIND_OSSD

Given a pc_val ue, find the address of the unwind information block operating system-specific data
area, if present, and write it to unwi nd_ossd_p. If not present, then write 0 to unwi nd_ossd_p.

LI B$l 64_GET_UNW ND_OSSD (pc_val ue, unw nd_ossd_p)

Argument OpenVMS Usage Type Access Mechanism
pc_value PC value quadword read by reference
unwind_ossd_p address quadword write by reference
Arguments:

pc_val ue Address of a location that contains the PC value. pc_val ue is used to find

unwi nd_ossd _p

the unwind information block and the unwind information block operating
system-specific data area address.

Address of a quadword to receive the address of the operating system-
specific data area.

Function Value Returned:

stat us

A value of 1 indicates success. A value of 0 indicates failure.

4.8.4.8. LIB$I64_GET_UNWIND HANDLER_FV

Given a pc_val ue, find the function value (address of the procedure descriptor) for the condition
handler, if present, and write it to handl er _f v. If not present, then write 0 to handl er _fv.

LI B$l 64_GET_UNW ND_HANDLER _FV (pc_val ue, handl er_fv)

Argument OpenVMS Usage Type Access Mechanism
pc_value PC value quadword read by reference
handler fv address quadword write by reference
Arguments:

120

Chapter 4. OpenVMS 164 Conventions

pc_val ue Address of a location that contains the PC value. pc_val ue is used to find the
unwind information block and the unwind information block condition handler
pointer.

handl er _fv A quadword to receive the function value of the procedure descriptor for the

condition handler, if there is one.

Function Value Returned:
st at us A value of 1 indicates success. A value of 0 indicates failure.

4.8.4.9. LIB$164_IS_EXC_DISPATCH_FRAME

Used to determine whether a given PC value represents an exception dispatch frame.

LI B$I 64_1 S_EXC DI SPATCH_FRAME (pc_val ue)

Argument OpenVMS Usage Type Access Mechanism

pc_value PC value quadword read by reference

Arguments:

pc_val ue Address of a quadword that contains the PC value. The pc_val ue is used to
find the operating system-specific data area in the unwind information for this
routine.

Function Value Returned:

st at us Returns 1 if the operating system-specific data area is present and the
EXCEPTION_FRAME flag is set.

Returns 0 if the operating system-specific data area is present and the
EXCEPTION_FRAME flag is clear.

Returns 0 if the operating system-specific data area is not present.

4.8.4.10. LIB$I64_IS_AST_DISPATCH_FRAME

Used to determine whether a given PC value represents an AST dispatch frame.

LI B$I 64_I S_AST_DI SPATCH_FRAME (pc_val ue)

Argument OpenVMS Usage Type Access Mechanism
pc_value PC value quadword read by reference
Arguments:

pc_val ue Address of a quadword that contains the PC value. The pc_val ue is used to

find the operating system-specific data area in the unwind information block for
this routine.

Function Value Returned:

st atus Returns 1 if the operating system-specific data area is present and the
AST FRAME flag is set.

121

Chapter 4. OpenVMS 164 Conventions

Returns 0 if the operating system-specific data area is present and the
AST FRAME flag is clear.

Returns 0 if the operating system-specific data area is not present.

4.8.5. Invocation Context Callback Routines

Advanced users can override the way the call stack is traced by providing custom callback routines.
These routines can be used to perform the following functions:

* Perform a call trace on a process other than the current process.

* Override the heap storage mechanism used to allocate memory used during the analysis of unwind
descriptors.

The user override callback mechanism provides a user ident value that is passed to each callback
routine. The user ident value is stored in the LIBICB$IH _UO_IDENT field of the invocation context
block.

The routines described in this section must be provided to override the call stack walk.

Note

The callback routines cannot be used with the following routines, which are not passed a context
block:

. LIBS$I64 GET CURR INVO HANDLE

. LIB$I64 GET PREV_INVO HANDLE

4.8.5.1. The Get Unwind Information Routine

Place a function pointer for this routine in the LIBICBSPH_UO_GETUEINFO field of the invocation
context block.

int (* getueinfo) (uint64 pc, void *get ue _block, void *nane, ...);

This routine should mimic SYS$SGET UNWIND ENTRY INFO for the target process. See
Section A.7 for detailed argument descriptions and return status, with the following notes:

The name argument is not used, and can be ignored. If a read memory callback has been specified,
the contents of LIBICBSPH_UO READ_ MEM are passed as a fourth argument, and the contents of
LIBICB$PH_UO_IDENT are passed as a fifth argument, otherwise the routine is called with three
arguments.

4.8.5.2. The Get Initial Context Routine

Place a function pointer for this routine in the LIBICB§PH_UO_GETCONTEXT field of the
invocation context block.

The get initial context routine is used to seed the invocation context block from the target process.
This routine should initialize the invocation context block structure with the preserved general,
floating, branch, and predicate registers, as well as Application Registers such as AR.RSC,

122

Chapter 4. OpenVMS 164 Conventions

AR.BSP, and AR.PFS from the target process. This routine should set the valid bits corresponding

to the saved registers in the VALID fields. This routine must store the original spill address
corresponding to R0 in the ORIGINAL SPILL ADDR field. This callback routine is used
by LIB$I64 GET_CURR _INVO_CONTEXT and should be followed by at least one call to
LIB$164 GET PREV_INVO_CONTEXT to generate a working context.

int (* getcontext) (void *invo_context, uint64 ident);

Argument OpenVMS Usage Type Access Mechanism
invo_context invo_context_blk structure modify by reference
ident user_value quadword read by value
Arguments:

i nvo_cont ext
i dent

The address of the invocation context block.

Specifies a user ident value from the invocation context block.

Function Value Returned:

status

A value of 1 indicates success. A value of 0 indicates failure.

4.8.5.3. The Read Memory Routine

Place a function pointer for this routine in the LIBICBSPH_UO READ MEM field of the invocation

context block.

The read memory routine is used to transfer data from the target process.

int (* read_nmem) (void *dst, uint64 src, size_t length, uint64 ident);

Argument OpenVMS Usage Type Access Mechanism
dst memory_access byte array write by reference
src memory_address quadword read by value
length size t longword read by value
ident user_value quadword read by value
Arguments:

dst A local memory address and the destination for the read operation.

src An address in the target process to be read.

| engt h The length in bytes to be read.

i dent Specifies a user ident value from the invocation context block.

Function Value Returned:

st at us

A value of 1 indicates success. A value of 0 indicates failure.

123

Chapter 4. OpenVMS 164 Conventions

4.8.5.4. The Write Memory Routine

Place a function pointer for this routine in the LIBICBSPH_UO_WRITE MEM field of the
invocation context block.

The write memory routine is used to transfer data to the target process. It is used by
LIB$I64 PUT INVO_REGISTERS for a register that has been saved in memory.

int (* wite_mem) (void *src, uint64 dst, size_t length, uint64 ident);

Argument OpenVMS Usage Type Access Mechanism
src memory_access byte array read by value

dst memory_address quadword write by reference
length size t longword read by value
ident user_value quadword read by value
Arguments:

src A local memory address and the source for the write operation.

dst An address in the target process to be written.

| engt h The length in bytes to be written.

i dent Specifies a user ident value from the invocation context block.

Function Value Returned:

st at us A value of 1 indicates success. A value of 0 indicates failure.

4.8.5.5. The Write Register Routine

Place a function pointer for this routine in the LIBICB§PH_UO_WRITE REG field of the invocation
context block.

The write register routine is used to write a register in the target process. It is used by
LIB$164 PUT INVO_REGISTERS for a register that has not been saved in memory.

This routine is optional, or subset of registers can be implemented, in this case
LIB$164 PUT INVO_REGISTERS will return an error if this routine is not present, or is unable to
write the desired register.

int (* wite_reg)
(i nt whichReg, uint64 value_1, uint64 value_2, uint64 ident);

Argument OpenVMS Usage Type Access Mechanism
whichReg enumeration longword read by value
value 1 register value quadword read by value
value 2 register value quadword read by value
ident user_value quadword read by value
Arguments:

whi chReg Indicates the register to be written (see enum in libicb.h).

124

Chapter 4. OpenVMS 164 Conventions

val ue_1 Specifies the register contents, or lower quadword for a FR fill operation.
val ue_2 Specifies the NaT bit for GRs, or upper quadword for a FR fill.
i dent Specifies a user ident value from the invocation context block.

Function Value Returned:

st at us A value of 1 indicates success. A value of 0 indicates failure.

4.8.5.6. The Memory Allocation Routine

The memory allocation routine is used to allocate heap storage required during the analysis of unwind
descriptors. This routine should mimic the behavior of the C RTL routine malloc.

void * (* malloc) (size t size, uint64 ident);

Argument OpenVMS Usage Type Access Mechanism
length size t longword read by value
ident user_value quadword read by value
Arguments:

| engt h The length in bytes of memory to be allocated. The returned memory block

should be aligned on a 16-byte boundary.

i dent Specifies a user ident value from the invocation context block.
Function Value Returned:
ptr Address of the memory block allocated, or 0 for failure.

In the case where local memory is being read, that is, you have not overridden the read memory
routines, the malloc requests are reduced to:

* One Unwind Context block of size LIBICBSK _CONTEXT BLK SIZE

* One Unwind Descriptor block of size LIBICBSK DESCRIPTOR BLK SIZE

* Several Unwind region blocks of size LIBICB$K REGION BLK SIZE

» Several Unwind region label blocks of size LIBICB§K REGIONLABEL BLK SIZE

The number of the last two required depends on the complexity of the unwind descriptors for a given
procedure being traced.

4.8.5.7. The Memory Deallocation Routine

The memory deallocation routine is used to free heap storage allocated by the memory allocation
routine (see Section 4.8.5.6). This routine should mimic the behavior of the C RTL routine free.

void (* free) (void * ptr, uint64 ident);

125

Chapter 4. OpenVMS 164 Conventions

Argument OpenVMS Usage Type Access Mechanism

ptr address quadword read by value

ident user_value quadword read by value

Arguments:

ptr Address of a memory block previously allocated by a call to the user malloc
routine.

i dent Specifies a user ident value from the invocation context block.

Function Value Returned:

None.

4.9. Data Allocation

In order to make the most effective use of the addressing modes available to Intel Itanium processors,
each image's data is partitioned into one or two short data segments and some number of long data
segments. The short data segments, addressed by the GP register in each image, contain the following
areas:

* A linkage table, containing pointers to imported data and functions, and to data in the code
segments and long data segments. This area is generally protected by OpenVMS against being
written after image activation is complete.

* A read-only short data area, containing small initialized own data items. This area is generally
protected by OpenVMS against being written after image activation is complete. (This area is
optional).

* A read-write short data area, containing small initialized own data items.
* A read-write short bss area, containing small uninitialized own data items.
The long data segments contain either or both of the following areas:

* One or more long data areas, which contain large initialized data items, and initialized non-own
data items of any size.

* One or more long bss areas, which contain large uninitialized data items, and uninitialized non-
own data items of any size.

Own data items are those that are either local to an image, or are such that all references to these
items from the same image will always refer to these items. Because non-own variables cannot
be referenced directly, there is no benefit to placing them in the short data area or bss area. Small
own data items are placed in the short bss area or short data areas, and are guaranteed to be within
2 megabytes (in either direction) of the GP address; this allows compilers to use a short direct
addressing sequence (using the add with 22-bit immediate instruction) to access any data item
allocated in these areas.

The compiler should place all own data items that are 8 bytes or less in size (regardless of structure)
in one of the short data areas or the short bss area. All other data items, including items that are larger
than 8 bytes in size, must be placed in one of the long data areas or long bss areas. The compiler must

126

Chapter 4. OpenVMS 164 Conventions

address these items indirectly, using a linkage table entry. Linkage table entries are typically allocated
by the linker in response to a relocation request generated by the compiler; an entry in the linkage
table is either a pointer to a data item, or a function descriptor. A function descriptor placed in the
linkage table is a local copy of an official function descriptor that is generally allocated by the linker
or image activator.

This design allows for a maximum size of 4 megabytes for the short data segment, because everything
must be addressable via the GP register using the 22-bit add immediate instruction. This allows for

up to 256,000 individually-named variables and functions. If an image requires more than this, linker
options may be used to divide the image into multiple clusters (see Section 4.7.1).

4.9.1. Data Alignment

On Itanium hardware, memory references to data that is not naturally aligned can result in alignment
faults, which can severely degrade the performance of all procedures that reference the unaligned
data. To avoid such performance degradation, all data values should be naturally aligned, as shown in
Table 4.18.

In addition, common blocks, dynamically allocated (heap) regions (for example from mal | oc), and
global data items greater than 8 bytes must be aligned on a 16-byte boundary.

Table 4.18. Natural Alignment Requirements

Data Type Alignment Starting Position

8-bit character string Byte boundary

16-bit integer Address that is a multiple of 2 (word alignment)
32-bit integer Address that is a multiple of 4 (longword alignment)
64-bit integer Address that is a multiple of 8 (quadword alignment)
F_floating Address that is a multiple of 4 (longword)

F_floating complex

D floating Address that is a multiple of 8 (quadword)
D_floating complex

G_floating Address that is a multiple of 8 (quadword)
G_floating complex

S floating Address that is a multiple of 4 (longword)
S floating complex

T floating Address that is a multiple of 8 (quadword)
T floating complex

X floating Address that is a multiple of 16 (octaword)
X _floating complex

For aggregates such as strings, arrays, and records, the data type to be considered for purposes of
alignment is not the aggregate itself, but rather the elements of which the aggregate is composed. The
alignment requirement of an aggregate is that all elements of the aggregate be naturally aligned. For
example, varying 8-bit character strings must start at addresses that are a multiple of at least 2 (word
alignment) because of the 16-bit count at the beginning of the string; 32-bit integer arrays start at a
longword boundary, irrespective of the extent of the array.

The rules for passing a record in an argument that is passed by immediate value (see Section 4.7.4)
always provide quadword alignment of the record value independent of the normal alignment

127

Chapter 4. OpenVMS 164 Conventions

requirement of the record. If deemed appropriate by an implementation, normal alignment can be
established within the called procedure by making a copy of the record argument at a suitably aligned
location.

4.9.2. Global Data

Access to global variables that are not known (at compile time) to be defined in the same image
must be indirect. Each image has a linkage table in its data segment, pointed to by the GP register;
code must load a pointer to the global variable from the linkage table, then access the global variable
through the pointer. Access to global variables known to be defined in the same image or to static
locals that are placed in the short data area may be made with a GP-relative offset.

4.9.3. Local Static Data

Access to short local static data can be made with a GP-relative offset; access to long local static data
must be indirect.

4.9.4. Constants and Literals

Constants and literals may be placed in the text segment or in the data segment. If placed in the text
segment, the access must be PC-relative or indirect using a linkage table entry. Literals placed in the
data segment may be placed in the short initialized data area if they are 8 bytes or less in size. Larger
literals must be placed in the long initialized data area or in the text segment. Literals in the long
initialized data area require an indirect access using a linkage table entry.

4.9.5. Record Layout Conventions

The OpenVMS 164 calling standard rules for record layout are designed to provide good run-time
performance on all implementations of the Itanium architecture and to provide the required level of
compatibility with conventional VAX and Alpha operating environments.

Therefore, this standard defines the following record layout conventions:
* Those optimized for optimal access characteristics (referred to as aligned record layouts)

* Those compatible with conventions that are traditionally used by VAX languages (referred to as
VAX compatible record layouts)

Only these record layouts may be used across standard interfaces or between languages. Languages
can support other language-specific record layout conventions, but such layouts are nonstandard.

The aligned record layout conventions should be used unless interchange is required with
conventional VAX applications that use the OpenVMS VAX compatible record layouts.

4.9.5.1. Aligned Record Layout

The aligned record layout conventions ensure that:
* All components of a record or subrecord are naturally aligned.

» Layout and alignment of record elements and subrecords are independent of any record or
subrecord in which they are embedded.

128

Chapter 4. OpenVMS 164 Conventions

Layout and alignment of a subrecord is the same as if it were a top-level record.

Declaration in high-level languages of standard records for interlanguage use is straightforward
and obvious, and meets the requirements for source-level compatibility between OpenVMS 164
languages and OpenVMS Alpha and VAX languages.

The aligned record layout is defined by the following conventions:

The components of a record must be laid out in memory corresponding to the lexical order of their
appearance in the high-level language declaration of the record.

The first bit of a record or subrecord must be directly addressable (byte aligned).

Records and subrecords must be aligned according to the largest natural alignment requirements of
the contained elements and subrecords.

Bit fields (packed subranges of integers) are characterized by an underlying integer type that is a
byte, word, longword, or quadword in size together with an allocation size in bits. A bit field is
allocated at the next available bit boundary, provided that the resulting allocation does not cross
an alignment boundary of the underlying type. Otherwise, the field is allocated at the next byte
boundary that is aligned as required for the underlying type. (In the later case, the space skipped
over is left permanently not allocated). In addition, if necessary, the alignment of the record as a
whole is increased to that of the underlying integer type.

Unaligned bit strings, unaligned bit arrays, and elements of unaligned bit arrays must start at
the next available bit in the record. No fill is ever supplied preceding an unaligned bit string,
unaligned bit array, or unaligned bit array element.

All other components of a record must start at the next available naturally aligned address for the
data type.

The length of a record must be a multiple of its alignment. (This includes the case when a record is
a component of another record).

Strings and arrays must be aligned according to the natural alignment requirements of the data
type of which the string or array is composed.

The length of an array element is a multiple of its alignment, even if this leaves unused space at its
end. The length of the whole array is the sum of the lengths of its elements.

4.9.5.2. OpenVMS VAX Compatible Record Layout

The OpenVMS VAX compatible record layout is defined by the following conventions:

The components of a record must be laid out in memory corresponding to the lexical order of their
appearance in the high-level language declaration of the record.

Unaligned bit strings, unaligned bit arrays, and elements of unaligned bit arrays must start at
the next available bit in the record. No fill is ever supplied preceding an unaligned bit string,
unaligned bit array, or unaligned bit array element.

All other components of a record must start at the next available byte in the record. Any unused
bits following the last-used bit in the last-used byte of each component must be filled out to the
next byte boundary so that any following data starts on a byte boundary.

129

Chapter 4. OpenVMS 164 Conventions

* Subrecords must be aligned according to the largest alignment of the contained elements and
subrecords. A subrecord always starts at the next available byte unless it consists entirely of
unaligned bit data and it immediately follows an unaligned bit string, unaligned bit array, or a
subrecord consisting entirely of unaligned bit data.

* Records must be aligned on byte boundaries.

4.9.6. Sample Code Sequences

In the sample code sequences in this section, register names of the form t1, t2, and so on, are
temporary registers, and may be assigned to any available scratch register. The code sequences show
necessary cycle breaks, but no other scheduling considerations have been made. It is assumed that
these code sequences will be scheduled with surrounding code to make best use of the processor
resources.

4.9.6.1. Addressing Own Data in the Short Data Area

Own short data can be addressed with a simple direct reference relative to the GP register, as shown in
the following example:

addl t1=@prel (var),gp ;; /1 calc. address of var
| d8 [ocO=[t1] /1 load contents of var

Own long data can be addressed either via the linkage table, as shown in Section 4.9.6.2, or directly as
shown in the following example:

novl t1=@prel (var) ;; /1l formgp-relative offset of var
add t2=tl,gp ;; /1 calc. address of var
| d8 | ocO=[12] /1 load contents of var

4.9.6.2. Addressing External Data or Data in a Long Data Area

When data is not known to be defined in the current image (that is, it is not own), or if it is too large
for the short data region, it must be accessed indirectly through the linkage table, as shown in the
following example:

addl tl=@toff(var),gp ;; [/l calc. address of LT entry
| d8 t2=[t1] ;; /1 | oad address of var
| d8 ocO=[12] /1 load contents of var

4.9.6.3. Addressing Literals in the Text Segment

Literals in the text segment may be addressed either through the linkage table, as in Section 4.9.6.2, or
with PC-relative addressing, as shown in the following example:

L1: mov r3=ip ;; /1 get current IP
addl | ocO=litbase-L1,r3 ;; /1 calc. addr. of lit. area
adds t2=(lit-litbase),locO ;; // calc. address of Ilit.
| d8 locl=[12] /1 load value of literal
Note

The first two instructions can be moved towards the beginning of the procedure, and the base address
of the literal area (in LOCO) can be shared by other literal references in the same procedure.

130

Chapter 4. OpenVMS 164 Conventions

4.9.6.4. Materializing Function Pointers

Function pointers must always be obtained from the data segment, either as an initialized quadword or
through the linkage table, as shown in the following examples:

Materializing function pointers through linkage table:

addl tl=@toff(@ptr(func)),gp ;; // calc address of LT entry
| d8 | ocO=[1t1] /1 load function pointer

Materializing function pointers in data:

fptr:
data8 @t pr(func) /1 initialize function ptr

4.9.6.5. Jump Tables

High-level language constructs such as case and switch statements, where there are several possible
local targets of a branch, may use a number of different code generation strategies, ranging from
sequential conditional branches to a direct-lookup branch table.

Two branch table methods are described: The first places the branch table in a read-only segment
separate from the code segment. The second places the branch table in the code segment. The
advantage of the first is that it allows the code segment to have execute-only access, while the second
may require the code segment to allow read access as well. The advantage of the second is that it does
not require addressing the branch table via the GP and hence may be slightly faster. Both methods
avoid the need for relocation during image activation.

The branch table method descriptions that follow include examples that use 64-bit entries. It is also
valid to use 32-bit, 16-bit or even 8-bit entries providing it is known that the smaller entry size is
sufficient to allow the required displacement to be represented (without overflow).

Preferred Method

If a branch table is placed in a data segment separate from the code, each entry should be a byte
displacement from a dispatch address located in the code segment to the branch target for that entry.

The following is a sample branch table and its associated code segment:

/1

/1 Assume case index in |ocO

/1
addl locl=@tof f ($DSPTBL1), gp // addr of GOT entry
| d8 l oc2=[1 oc1] /1 load addr of dsp table
shl add 1o0c3=lo0cO0, 3,10c2 /1 calc addr of dsp entry
| d8 | oc4=[1 oc3] /1 load dsp table entry

$DALl: nov | oc5=ip /1 get "dispatch address”
add | oc6=l ocb, | oc4 /1 calc target address
nov b6=l oc6
br.cond b6 /1 performdispatch

$L1: {target for case 1}
$L2: {target for case 2}

etc

131

Chapter 4. OpenVMS 164 Conventions

/1 The dispatch table is in the |inkage section. It consists
/1 of only constants (no relocations involved)
/1
$DSPTBL1:
.data8 $L1-$DAl
.data8 $L2-$DA1

Alternative Method

If a branch table is placed in the same segment as the code, each table entry should be a 64-bit byte
displacement from the base of the branch table to the branch target for that entry.

A sample indirect branch is shown below. The branch table is assumed to be an array of entries, each
of which is an offset relative to the beginning of the branch table to the branch target. The branch table
index is assumed to have been computed or loaded into register LOCO.

addl locl=@toff(brtab), gp /1 calc. address of

s /1 linkage table entry

| d8 | oc2=[1o0cl] ;; /1 load addr. of br. table

shl add | oc3=l ocO0, 3,1 0c2 ;; /1 calc. address of branch
/1 table entry

| d8 | oc4=[10c3] ;; /1 load branch table entry

add | oc5=l oc4,1o0c2 ;; /1 calc. target address

nov b6=l oc5 ;; /1 nove address to B6..

br.cond b6 ;; /1 ...and branch

132

Chapter 5. OpenVMS x86-64
Conventions

This chapter describes the fundamental concepts and conventions for calling a procedure in an
OpenVMS x86-64 environment. These conventions are based on industry standards with extensions to
be compatible with other OpenVMS systems. See Section C.2 for additional information.

5.1. x86-64 Register Usage

This section describes the register conventions for OpenVMS x86-64. OpenVMS uses the following
register types:

* General-purpose
* Floating-point and related control/status
* Segment

* Legacy pseudo-registers

5.1.1. x86-64 Register Classes

The x86-64 registers are partitioned into the following classes that define the way a register can be
used within a procedure:

» Scratch registers—may be modified by a procedure call; the caller must save these registers before
a call if needed (caller save).

* Preserved registers—must not be modified by a procedure call; the callee must save and restore
these registers if used (callee save). A procedure using one of the preserved general-purpose
registers must save and restore the original content of the caller.

One way to preserve a register is not to use it at all.
* Special registers—used in the calling standard call/return mechanism.

* Volatile registers—may be used as scratch registers within a procedure and are not preserved
across a call; may not be used to pass information between procedures either as input or output.

5.1.2. x86-64 General-Purpose Register Usage

This calling standard defines the usage of the OpenVMS x86-64 general-purpose registers as listed in
Table 5.1.

Table 5.1. x86-64 General-Purpose Register Usage

Register Class Usage

% ax %eax Y%ax Yal %ah Scratch Pass the argument information.
1st return value register.

% bx %ebx %bx %l %bh |Preserved Callee-saved registers.

133

Chapter 5. OpenVMS x86-64 Conventions

Register Class Usage

% cx Y%ecx Y%€x %l %h |Scratch Pass the 4th argument to procedures.

% dx %edx %ix %l %lh Scratch Pass the 3rd argument to procedures.
2nd return value register.

%si %esi Y%i Ysil Scratch Pass the 2nd argument to procedure.

%Wdi %di %i %lil Scratch Pass the 1st argument to procedures.

% bp %bp %p %pl Preserved Used as a frame pointer, if manifested in a
register.

% sp Yesp Y%sp Y%spl Special Stack pointer.

% 8 % 8d % 8w % 8l Scratch Pass the 5th argument to procedures.

%9 % 9d % 9w % 9l Scratch Pass the 6th argument to procedures.

% 10 % 10d 9% 10w 9% 10l |Scratch Pass the environment value when calling a bound
procedure.

% 11 9% 11d % 11w % 111 |Volatile Available for use in call stubs, trampolines, and

other constructs.

% 12 % 12d % 12w 9% 12| |Preserved Callee-saved registers.
% 13 % 13d % 13w % 13|
% 14 % 14d % 14w % 14|
% 15 % 15d % 15w % 15|

RFLAGS Preserved The Direction Flag (DF) bit must be zero at
procedure call and return.
Scratch All other bits.
%ip Special Instruction pointer, not directly addressable by
software.

5.1.3. x86-64 Floating-Point Register Usage (SSE)

The base x86-64 architecture provides 16 SSE floating-point registers, each 128 bits wide.

Intel AVX (Advanced Vector Extensions) option provides 16 256-bit wide AVX registers
(% M0—% nmL5). The lower 128 bits of Uy mMD—Uy niL5 are aliased to the respective 128-bit
SSE registers (%xnm0—¥x il 5 1).

Intel AVX-512 option provides 32 512-bit wide SIMD registers (% m0—% nB81). The lower 128
bits of %Z mD—% MB1 are aliased to the respective 128-bit SSE registers (¥ nmD—%xnmB1).
The lower 256 bits of %@ nm0—%z nMB1 are aliased to the respective 256-bit AVX registers

(Yy mTD—% nmB812).

In addition, Intel AVX-512 also provides 8 vector mask registers (¥k0—%K 7), each 64 bits wide.

For the purposes of parameter passing and function return, ¥ nmm\, %y i\, and % mN refer to the
same register. Only one of them can be used at a time.

Vector register is used to refer to either an SSE, AVX, or AVX-512 register (but not a vector mask
register). This document often uses the name SSE to refer collectively to the SSE registers together
with either the AVX or AVX-512 options.

lo Ml 5— %81 are only available with Intel AVX-512.
2°/Iym”rﬂ.5—°/§/mr81 are only available with Intel AVX-512.

134

Chapter 5. OpenVMS x86-64 Conventions

This calling standard defines the usage of the OpenVMS x86-64 SSE floating-point registers as listed

in Table 5.2.

Table 5.2. SSE (xmm, ymm, and zmm) Register Usage

Register Class Usage

%m0 %m0 %m0 Scratch Pass the 1st argument to procedures.
1st return value register.

%xmml %yl % nil Scratch Pass the 2nd argument to procedures.
2nd return value register.

WM WymP %ZmMmP Scratch Pass the 3rd argument to procedures.

WwmmB %ymB Y%zmB Scratch Pass the 4th argument to procedures.

%xmmd %ymmd Y%z nmi Scratch Pass the 5th argument to procedures.

%mb %mb %Znmb Scratch Pass the 6th argument to procedures.

WMt Wb %z b Scratch Pass the 7th argument to procedures.

WMV Yymi7 Y%z nmi/ Scratch Pass the 8th argument to procedures.

YxmB—9xmB1 Scratch Temporary registers.

%y mB—%ymB1

Y%zmB—9zmB1l

MXCSR Preserved The control flags (bits 6-15) are preserved.

Scratch The other bits are scratch.

This calling standard defines the usage of the OpenVMS x86-64 vector mask register as listed in
Table 5.3.

Table 5.3. Vector Mask Register Usage

Register Class Usage

UKO—-9K7 Scratch Temporary registers

5.1.4. x86-64 Floating-Point Register Usage (FPU)

OpenVMS x86-64 applications may use the x87 registers though there is little reason to do so.
Packed, single- and double-precision floating-point operations are usually performed in the SSE

registers, while the 80-bit extended-precision floating-point format is not supported by the OpenVMS

compilers or run-times.

This calling standard defines the usage of the OpenVMS x86-64 FPU floating-point registers as listed

in Table 5.4.

Table 5.4. x87 Register Usage

Register Class Usage

%t 0 Scratch 1st return value register.

%t 1 Scratch 2nd return value register.

st 2-9st 7 Scratch Temporary registers.

%m0/ Scratch The MMX registers. Overlay the x87 floating-point
(Y8t 09t 7) registers.

135

Chapter 5. OpenVMS x86-64 Conventions

Register Class Usage

Control Word Preserved Stores the value of the control word.
Status Word Scratch Stores the value of the status word.
Tag Word — Not used by applications.

Operand Pointer

Instruction Pointer

The CPU should be in x87 mode, not MMX mode, on procedure entry and exit.

5.1.5. Floating-Point Status Management on OpenVMS

The floating-point status of a program consists of two parts:

* The floating-point hardware registers

* A supplementary software register (a quadword)

The floating-point status is normally managed by three OpenVMS system services:
« SYSS$IEEE SET FP_CONTROL

« SYSSIEEE SET PRECISION MODE

« SYSS$IEEE SET ROUNDING MODE

The supplementary software register is internal to OpenVMS and is not documented for general use.
This register holds information that is used by OpenVMS to implement the three system services
and handle floating-point exceptions in general. It can only be accessed indirectly using the system
services.

The floating-point status consists of two types of information:

* Floating-point control status bits are bits or flags that control the floating-point arithmetic
operations.

* Floating-point information status bits are bits or flags that record summary information about
the execution of previous floating-point arithmetic operations.

Note

The floating-point control status is sometimes informally called the floating-point mode or IEEE
mode.

Two floating-point control status settings are of particular interest:

* Full IEEE-format floating-point control status is the default, unless the status is explicitly set to
another value.

* VAX-format floating-point control status can be set for programs that use VAX-format floating-
point processing.

At program startup, the SSE control/status register (MXCSR) is set as shown in Table 5.5.

136

Chapter 5. OpenVMS x86-64 Conventions

Table 5.5. MXCSR Values at Program Startup

Bit Field IEEE-format VAX-format
setting setting

0 Invalid Operation Flags 0 0

1 Denormal 0 0

2 Zero Divide 0 0

3 Overflow 0 0

4 Underflow 0 0

5 Inexact 0 0

6 Denormals are Zeros 0 0

7 Invalid Operation Masks 1 0

8 Denormal 1 1

9 Zero Divide 1 0

10 Overflow 1 0

11 Underflow 1 1

12 Inexact 1 1

14:13 Rounding Control 00 (nearest) 00

15 Flush to Zero 0

31:16 Reserved 0
Note

VAX floating-point data is never loaded or manipulated in the x86-64 floating-point registers.
However, VAX floating-point values may be converted to IEEE floating-point values, which are then
manipulated in the x86-64 floating-point registers.

At program startup, the x87 control word is set as shown in Table 5.6.

Table 5.6. x87 Control Word Values at Program Startup

Bit Field IEEE-format VAX-format
setting setting

0 Invalid Operation Masks 1 0

1 Denormal 1 1

2 Zero Divide 1 0

3 Overflow 1 0

4 Underflow 1 1

5 Inexact 1 1

7:6 Reserved 0 0

9:8 Precision Control 11 11
11:10 Rounding Control 00 (nearest) 00
15:13 Reserved 0 0

137

Chapter 5. OpenVMS x86-64 Conventions

Using a compiler or linker switch, you can associate a floating-point control status with the main
procedure of a program to set the floating-point state prior to the beginning of program execution. If
no control status is explicitly set, a default status appropriate for full IEEE computation is used.

5.1.6. x86-64 Segment Register Usage

This calling standard defines the usage of the OpenVMS x86-64 segment registers as listed in
Table 5.7.

Table 5.7. x86-64 Segment Register Usage

Register Class Usage

%s %s %s %es |— Managed by OpenVMS and implicitly used by applications
% s — Reserved to OpenVMS

%gs — Reserved to OpenVMS

5.1.7. x86-64 Bound Register Usage

Use of the x86-64 bound registers is deprecated on OpenVMS. The only support provided is to
context switch the contents of the bound registers as part of the normal application context; they are
otherwise unused and unsupported.

5.1.8. Legacy Pseudo-Registers

The OpenVMS MACRO compiler for x86-64 (XMACRO) generates code that uses a set of pseudo-
registers to emulate the Alpha register set. The pseudo-register set consists of 32 64-bit registers (RO
—R31). The contents of these pseudo-registers are well defined only at procedure calls and returns;
otherwise, XMACRO uses pseudo-registers at its discretion. No special semantics are associated with
the pseudo-registers, even for the registers that would otherwise be considered special or part of the
Alpha hardware.

The pseudo-registers are invisible to high-level languages, except for BLISS and VSI C. BLISS
linkage attributes and VSI C linkage pragmas may be used to access pseudo-registers on calls and
returns. See Chapter 3 for more information regarding Alpha register conventions and usage.

Use of such registers for other than legacy applications from other OpenVMS environments is
deprecated.

The pseudo-registers are stored as a per-thread vector of quadwords in memory.
al pha_reg vector _t* LIB$GET_ALPHA REG VECTOR ();

Arguments:

None.

Function Value Returned:

ptr Pointer to the Alpha pseudo-register vector for the current thread.

LIBSGET ALPHA REG VECTOR preserves all registers other than the return value register % ax.

138

Chapter 5. OpenVMS x86-64 Conventions

Any procedure that accesses the pseudo-registers must make its own call to
LIBSGET ALPHA REG_VECTOR to obtain the array address. Passing the array address to another
procedure by any means is an error that may result in undefined behavior.

5.2. Address and Pointer Representation

An address is a 64-bit value that is used to denote a position in memory. However, for compatibility
with OpenVMS VAX and Alpha, many OpenVMS applications and user-mode facilities operate in
such a manner that addresses are restricted to values that are representable in 32 bits. This means that
OpenVMS addresses can often be stored and manipulated as 32-bit longword values. In such cases,
the 32-bit address value is always implicitly or explicitly sign-extended to form a 64-bit address for
use by the x86-64 hardware.

The OpenVMS run-time environment supports a mix of 32- and 64-bit pointers. For backward
compatibility, the default pointer size is 32 bits. A 32-bit pointer is converted to a 64-bit pointer by
sign-extending its value. A 64-bit pointer can be converted to a valid 32-bit pointer only if the high-
order 33 bits are all zero or all one.

5.3. Procedure Values

An x86-64 procedure value (a function pointer) is a pointer to code. To call through a procedure
value, call through the value itself, not through a location in the memory pointed to by the value.

All procedure values must be representable in 32 bits. Because 32-bit addresses and

pointers are always sign-extended before use (see Section 5.2), this means that the code

they point to must reside in either the (hexadecimal) range 0..00000000 7FFFFFFF or

FFFFFFFF 80000000..FFFFFFFF FFFFFFFF (see the VSI OpenVMS Programming Concepts
Manual, Volume I for discussion of the structure of the OpenVMS address space). If the code is not in
either of these regions, the linker creates a 32-bit-addressable trampoline for it. The trampoline code
simply jumps to the procedure. The address of this trampoline becomes the value for that procedure.

Unbound procedures normally do not require an associated trampoline. They need a trampoline only
if code in the same image takes the address of the procedure, or if it is a universal symbol.

Bound procedure values always point to trampolines. These trampolines are created by the containing
procedure at the time it is called. When the bound procedure value trampolines pass control to the
procedure, they pass an environment pointer (a pointer to the containing procedure stack frame) as an
additional hidden parameter to the procedure. (See Section 5.6.5 regarding creation and deletion of
bound procedure values).

5.4. Procedure Types

This calling standard defines the following basic types of procedure:

* Variable-size stack procedure (sometimes known as a normal procedure in industry x86-64
documentation)—allocates a memory stack that is addressable using either % bp (the frame
pointer register) or % Sp (the stack pointer register). The size of the stack may vary during the
procedure execution. The called procedure may maintain a part or the whole context of its caller
on that stack.

* Fixed-size stack procedure (sometimes known as a framepointerless procedure in industry
x86-64 documentation)—allocates a memory stack that is addressable only using % sp (the
stack pointer register). The size of the stack is fixed during the procedure execution. The called
procedure may maintain a part or the whole context of its caller on that stack.

139

Chapter 5. OpenVMS x86-64 Conventions

* Null frame procedure (sometimes known as a frameless procedure in industry x86-64
documentation)—allocates no memory stack (other than the implicit saving of the caller return
address that is a part of the CALL instruction). No context of its caller is saved.

All types of procedures allow use of 128 bytes of temporary storage below the address given in the
stack pointer. This so-called red zone is not preserved across procedure calls, but is preserved by
signal and condition handlers. Outside of the kernel, procedures may use this for temporary storage.
Because hardware interrupts do not preserve the red zone, kernel code cannot use it. The use of the
red zone can be disabled with a compiler option or pragma.

The red zone is useful in frameless leaf procedures (that call no other procedures). It gives them 128
bytes of scratch storage without the performance overhead of setting up and taking down a stack
frame.

A compiler chooses which type of procedure to generate based on the requirements of the procedure
in question. A calling procedure does not need to know what type of procedure it is calling.

Every variable-size stack or fixed-size stack procedure must have an associated unwind description
(see Appendix B) that provides information on the procedure type and its characteristics. A null frame
procedure may also have an associated unwind description. (The default description applies if there

is no unwind description). This data structure is used to interpret the call stack at any given point in a
thread execution. It is built at compile time and usually is not accessed at run-time except to support
exception processing or other rarely executed code.

5.4.1. Variable-Size Stack Procedures

Variable-size stack procedures allocate the stack that grows towards lower addresses. The stack
pointer (SP) is contained in the % sp register. The frame pointer (FP) is contained in the % bp
register. The stack pointer is normally Omod16 aligned and must be Omod16 aligned when making
a call. Because the return address is pushed on the stack by the caller, the stack pointer is 8mod16
aligned on entry to a procedure. The % bp register is saved immediately below the return address.
The frame pointer points to the saved % bp.

The resulting stack frame layout is illustrated in Figure 5.1.

Figure 5.1. Stack Frame for Variable-Size Stack Procedures

lower addresses 63 0
Omod16 aligned (SP-128)
red zone
Omod16 aligned (SP)
[variable-sized storage] 1
=
] @
[fixed-size local storage] 2
(includes register save area) S
o
saved $rbp (FP) @
return address gr
=

[2™ memory argument slot]

[3 memaory argument slot]

higher addresses [n™ meamory argument slot]

140

Chapter 5. OpenVMS x86-64 Conventions

5.4.2. Fixed-Size Stack Procedures

Fixed-size stack procedures allocate the stack that grows towards lower addresses. The stack pointer

(SP) is contained in the % Sp register. No frame pointer (FP) is used, so that the % bp register is

available as an additional preserved register. The stack pointer is normally Omod16 aligned and must

be Omod16 aligned when making a call. Because the return address is pushed on the stack by the

caller, the stack pointer is 8mod16 aligned on entry to a procedure.

The resulting stack frame layout is illustrated in Figure 5.2.

Figure 5.2. Stack Frame for Fixed-Size Stack Procedures

lower addressas 63 0
Omod16 aligned ((SP-128)
red zone
Omod16 aligned {(SP)

[fixed-size local storage]
(includes register save area)

return address

Omod16 aligned [15 memory argument slot] :(previous SP)

[2™ memory argument slot]

[3 memory argument slof]

higher addresses [n™ memory argument slot]

5.4.3. Null Frame Procedures

®

umaoub oels Jo uonoalid

A null frame procedure is almost a special case of a fixed-size stack procedure. It is like a fixed-size
stack which has no local storage other than the return address that is pushed on the stack as a result of
the call. Because no additional stack is allocated it is unlike a fixed-size stack in that the alignment of

the stack pointer is 8mod16 (not 0mod16).

A null frame procedure is necessarily a leaf procedure because the stack pointer must be 0Omod16

aligned in order to make a call.

The resulting stack frame layout is illustrated in Figure 5.3.

Figure 5.3. Stack Frame for Null Frame Procedures

fower addresses 63 0
8mod16 aligned (SP-128)
red zone
B8mod16 aligned return address (SP)
Omod16 aligned [1# memory argument slot] :(previous SP)

[2™ memory argument slof]
[3 memory argument slof]

higher addresses [n'" memory argument slot]

ymoJB ¥oels Jo uonasl

141

Chapter 5. OpenVMS x86-64 Conventions

5.5. Stack Overflow Detection on OpenVMS
x86-64

This section defines the conventions to support the execution of multiple threads in a multilanguage
OpenVMS environment. Specifically defined is how compiled code must perform stack limit
checking. While this standard is compatible with a multithreaded execution environment, the detailed
mechanisms, data structures, and procedures that support this capability are not specified in this
manual.

For a multithreaded environment, the following characteristics are assumed:
* There can be one or more threads executing within a single process.
* The state of a thread is represented in a thread environment block (TEB).

* The TEB of a thread contains information that determines a stack limit below which the stack
pointer must not be decremented by the executing code (except for code that implements the
multithreaded mechanism itself).

» Exception handling is fully reentrant and multithreaded.

5.5.1. Stack Limit Checking

A program that is otherwise correct can fail because of stack overflow. Stack overflow occurs when
extension of the stack (by decrementing the stack pointer, SP) allocates addresses not currently
reserved for the current thread's stack. This section defines the conventions for stack limit checking in
a multithreaded environment.

In the following sections, the term new stack region refers to the region of the stack from one less
than the old value of SP to the new value of SP.

Stack Guard Region
In a multithreaded environment, the address space beyond each thread's stack is protected by
contiguous guard pages, which trap on any access. These pages form the stack guard region.

Stack Reserve Region

In some cases, it is useful to maintain a stack reserve region, which is a minimum-sized region that is
between the current top of stack and the stack guard region. A stack reserve region can ensure that the
following conditions exist:

» Exceptions or asynchronous system traps (ASTs, analogous to asynchronous signals) have stack
space to execute on a thread's stack.

* The exception dispatcher and any exception handler that it might call have stack space to execute
after detection of an invalid attempt to extend the stack.

This calling standard does not require a stack reserve region, but it does allow a language and its run-
time system to implement one.

5.5.1.1. Methods for Stack Limit Checking

Because accessible memory may be available at addresses lower than those occupied by the stack
guard region, compilers must generate code that never extends the stack past the stack guard region
into accessible memory that is not allocated to the thread's stack.

142

Chapter 5. OpenVMS x86-64 Conventions

A general strategy to prevent extending the stack past the stack guard region is to access each page

of memory down to and possibly including the page corresponding to the intended new value of

% sp. If the stack is to be extended by an amount larger than the size of a memory page, then a series
of accesses is required that works from higher to lower addressed pages. If any access results in a
memory access violation, then the code has made an invalid attempt to extend the stack of the current
thread.

For the purposes of this section, the amount by which the stack is to be extended must include the size
of the red zone in addition to the size of the needed stack extension for the executing procedure.

This calling standard defines two methods for stack limit checking, implicit and explicit, which are
explained in the following sections.

Implicit Stack Limit Checking

If a byte (not necessarily the lowest) of the new stack region is guaranteed to be accessed prior to any
further stack extension, then the stack can be extended by an increment that is up to one-half the stack
guard region (without any additional accesses).

This standard requires that the minimum stack guard region size is 8192 bytes.

If the stack is being extended by 4096 bytes or less and the application does not use a stack reserve
region, then explicit checking is not required. However, because asynchronous interrupts and calls
to other procedures may also cause stack extension without explicit checking, stack extension with
implicit checking must adhere to the following rules:

* Explicit stack limit checking must be performed unless the amount by which % sp is
decremented is known to be less than or equal to 4096 and the application does not use a stack
reserve region.

* Some byte in the new stack region must be accessed before % sp can be further decremented for
a subsequent stack extension.

» This access can be performed either before or after % Sp is decremented for this stack extension,
but it must be done before % Sp can be decremented again.

» No standard procedure call can be made before some byte in the new stack region is accessed.

* The system exception dispatcher ensures that the lowest addressed byte in the new stack region is
accessed if any kind of asynchronous interrupt occurs both after % sp is decremented and before
the access in the new stack region occurs.

These conventions ensure that the stack pointer is not decremented so that it points to accessible
storage beyond the stack limit without this error being detected (either by the guard region being
accessed by the thread or by an explicit stack limit check failure).

As a matter of practice, the system can provide multiple guard pages in the stack guard region. When
a stack overflow is detected as a result of access to the stack guard region, one or more guard pages
can be unprotected for use by the exception handling facility, as long as one or more guard pages
remain protected to provide implicit stack limit checking during exception processing.

Explicit Stack Limit Checking

If the stack is being extended by an unknown amount or by a known amount that is greater than the
maximum implicit check size 4096, then a code sequence that follows the rules for implicit stack limit
checking can be executed in a loop to access the new stack region incrementally in segments that are

143

Chapter 5. OpenVMS x86-64 Conventions

less than or equal to the minimum stack guard region size 8192. At least one access must occur in
each such segment.

The first access must occur between % Sp and % Sp-4096, because in the absence of more specific
information, the previous guaranteed access relative to the current stack may be as much as 4096
bytes greater than the current stack pointer address.

The last access must be within 4096 of the intended new value of the stack pointer. These accesses
must occur in order, starting with the highest addressed segment and working toward the lowest
addressed segment.

A more optimal strategy is:

1. Perform a read access using the intended new value of the stack pointer. This is nondestructive,
even if the read is beyond the stack guard region, and may facilitate OS mapping of new stack
pages, if appropriate, in a single operation.

2. Proceed with sequential accesses as just described.

Note

A simple algorithm that is consistent with this requirement (but achieves up to twice the minimum
number of accesses) is to perform a sequence of accesses in a loop starting with the previous value of
% sp, decrementing by the minimum no-check extension size (4096) to, but not including, the first
value that is less than the new value for the stack pointer.

The stack must not be extended incrementally in procedure prologues. A procedure prologue that
needs to extend the stack by an amount of unknown size or known size greater than the minimum
implicit check size must test new stack segments as just described in a loop that does not modify

% sp, and then update the stack with one instruction that copies the new stack pointer value into
% sp.

Note

An explicit stack limit check can be performed either by inline code that is part of a prologue or by a
run-time support routine that is tailored to be called from a procedure prologue.

5.6. Procedure Call and Return

Calls may be direct, which are performed directly to the entry point of a target procedure, or indirect,
which are performed through a procedure value. The target of a call may be either an unbound or a
bound procedure. Returns are the same for all types of calls.

From the perspective of a compiler or assembly language programmer, all calls are local, that is,

the call target is always assumed to be in the same segment as the caller. In case a call resolves to a
procedure in a different segment or image, the linker creates a local code stub that forwards that call to
the target.

5.6.1. Direct Local Calls to an Unbound Procedure

Within a single segment, direct local calls to an unbound procedure can be performed with a simple
CALL instruction using a 32-bit PC-relative displacement. This is sufficient in the small and medium
memory models (see Section 5.10.1).

144

Chapter 5. OpenVMS x86-64 Conventions

If the code in a single segment grows beyond 2GB, the segment can be broken up into multiple
segments.

5.6.2. Direct Local Calls to a Bound Procedure

Direct local calls to a bound procedure can only come from somewhere within the containing scope;
which is why this type of calls can be performed with the CALL instruction using a 32-bit PC-relative
displacement. The only difference between direct local calls to a bound procedure and direct local
calls to an unbound procedure is that a bound procedure requires an additional implicit parameter, the
procedure’s environment pointer, to be passed in % 10.

5.6.3. Direct Local Calls to a Non-Local Procedure

Calls between images, or between segments in a single image, are performed via an entry in the
Global Offset Table (GOT) that points to the target procedure. In most cases, compilers do not know
whether a call target is local or external to the image or segment, and so generate a local call. The
linker creates a trampoline and redirects this local call to it. The trampoline forwards the call to the
target procedure via an indirect jump through the GOT entry. In cases where a compiler knows that a
call target is external, it can generate an indirect call via a GOT entry itself.

5.6.4. Indirect Calls to an Unbound Procedure

Indirect calls to an unbound procedure transfer control to the address that is specified by a procedure
value.

5.6.5. Indirect Calls to a Bound Procedure

There is no distinction between the unbound and bound procedure values, so the caller does not
know whether the called procedure is bound or not. Therefore, the called side must make special
arrangements to pass the environment pointer to the called procedure.

When code takes the address of a bound procedure, the value is not the address of the procedure itself,
but a trampoline. This trampoline loads the environment pointer into % 10 and then jumps to the
actual procedure.

The trampoline is created when the value of the environment pointer becomes known during run-time.
Since a bound procedure value is specific to a particular activation of the containing scope, multiple
recursive invocations create multiple trampolines. This means that the storage for the bound procedure
trampolines must be dynamically allocated either on the stack or from the heap.

Allocating bound procedure trampolines on the stack is the common industry practice on x86-64, but
this is deprecated on OpenVMS because the stack is normally non-executable by default. To use this
method on OpenVMS, applications have to explicitly make stack memory executable either with a
flag in the object file that has a .note. GNU-stack option or with a run-time call.

The preferred method of creating and allocating bound procedure trampolines on OpenVMS is to
call a run-time routine. This routine dynamically allocates and manages a linked list of executable
memory pages where the trampolines reside. A second routine must be called to deallocate a bound
procedure trampoline. This should be done when the containing procedure exits.

A procedure may create a bound procedure value using LIB$X86 ALLOC BOUND PROC VALUE
as follows:

145

Chapter 5. OpenVMS x86-64 Conventions

voi d* LI B$X86_ALLOC_BOUND_PROC VALUE (size)

Argument OpenVMS Usage Type Access Mechanism
size integer quadword read by value
Argument:

Si ze Number of bytes needed to hold a bound procedure value.

Function Value Returned:

Pointer to a block of memory of the given size

The returned memory must be initialized by the caller to complete the creation of the bound procedure
value. Typically the contents will consist of an instruction to copy the appropriate invocation context
(which might be saved in the same block) into % 10 followed by an instruction to transfer control to
the entry point of the target procedure.

Storage for bound procedure values is local to the thread in which they are created.

Bound procedure values logically form a stack on which any newly allocated value is added and one
or more of the most recently added entries may be deleted (as a group).

When returning from a procedure in which a bound procedure was created, a procedure should call
LIB$X86 FREE BOUND PROC_VALUE as follows:

LI B$X86_DELETE_BOUND_PROC_VALUE (bpv)

Argument OpenVMS Usage Type Access Mechanism
bpv address quadword read by value
Argument:

bpv Pointer to a bound procedure value (created by

LIB$X86_ALLOC_BOUND PROC_VALUE).

Function Value Returned:

None.

The effect of calling LIB§X86 FREE BOUND_ PROC_ VALUES is to delete an existing bound
procedure value, as well as any additional bound procedure values that were created subsequent to it.

5.6.6. Returns

All calls push a 64-bit return address on the stack. When the called procedure returns, it uses the RET
instruction to pop the return address from the stack and jump to that address.

146

Chapter 5. OpenVMS x86-64 Conventions

5.7. Parameter and Return Value Passing

On OpenVMS x86-64, procedure parameters are passed in registers and/or on the stack. Procedures
can return results in registers or in a memory location designated by the caller.

All calls use % ax as an argument information register as described in Section 5.7.4.

5.7.1. Scalar Argument Types

The following memory locations are used for passing scalar argument types to procedures:
» the six general-purpose registers (% di , % si , % dx, % cx, % 8, and % 9)

* the eight XMM registers (Y& nm0—9&mv/)

* the stack.

Table 5.8. Memory Locations Used for Passing Scalar Argument Types and Return
Values

Nominal Type Argument Location Return Value Location
[OpenVMS Type Code]

(prefix DSCSK_DTYPE)

Pointer [Q] The next available general- General-purpose register
Boolean [B, BU] purpose register. Otherwise, in the | % ax

)) next argument slot on the stack.
Integers (size < 64 bits)

[B, W, L, Q,BU, WU, LU, QU]

Integers (64 < size < 128 bits) The next two available general- |General-purpose registers
[O, OU] purpose registers. Otherwise, in |% ax (low half) and % dx
the next two argument slots on the |(high half)
stack.
VAX float (F_floating, D_floating, | The next available general- General-purpose register
and G_floating) [F, D, G] purpose register. Otherwise, in the | % ax
next argument slot on the stack.
IEEE single-precision float Bits 31:0 of the next available Bits 31:0 of register %D
(S_floating) [FS] XMM register. Otherwise, in the
next argument slot on the stack.
IEEE double-precision float Bits 63:0 of the next available Bits 63:0 of register %m0
(T _floating) [FT] XMM register. Otherwise, in the

next argument slot on the stack.

IEEE quadruple-precision float The next available XMM register. |Register %m0
(X _floating) [FX] Otherwise, in the next two
argument slots on the stack.

VAX complex single-precision The next available general- General-purpose register
float (F_floating) [FC] purpose register. Otherwise, in the | % ax
next argument on the stack.

VAX complex double-precision | The next two available general- |Registers % ax (the real part
float (D_floating and G_floating) |purpose registers. Otherwise, in |of a value) and % dx (the
[DC, GC] the next two argument slots on the |imaginary part of a value)
stack.

147

Chapter 5. OpenVMS x86-64 Conventions

Nominal Type Argument Location Return Value Location

[OpenVMS Type Code]

(prefix DSCSK_DTYPE)

IEEE complex single-precision In the next available XMM Register %m0, the real part

float [FSC] register, real part in bits 31:0, of a value in bits 31:0, the
imaginary part in bits 63:32. imaginary part in bits 63:32

Otherwise, in the next argument
slot on the stack.

IEEE complex double-precision |In bits 63:0 of the next two Bits 63:0 of registers % nmmD
float [FTC] available XMM registers. (the real part of a value) and
Otherwise, the next two argument |9%&mmil (the imaginary part
slots on the stack. of a value)
IEEE complex quadruple- In the next four available In a caller-allocated memory
precision float [FXC] argument slots on the stack. buffer whose address is
passed as a hidden first
argument

An argument that requires two registers is never split so that the first part is in a register and the
second part is on the stack. Either both parts are in registers or both parts are on the stack.

For example, a procedure that takes ten integer scalar arguments will find the first six arguments in
the general-purpose registers, and the last four on the stack. A procedure that takes ten IEEE double-
precision floating-point scalars as arguments will find the first eight arguments in the XMM registers,
and the last two on the stack. And, a procedure that takes six integer arguments and eight floating-
point arguments, regardless of how the integer and floating-point arguments are intermixed, will find
all 14 arguments in registers.

5.7.2. Aggregate Argument Types

This section describes how the aggregate argument types are passed to procedures.

First, the argument types are assigned in the appropriate classes and then the registers are allocated for
passing them.

The following classes are defined:

* INTEGER class consists of integral types that fit in one of the general-purpose registers including
pointers.

» SSE class consists of types that fit in a floating-point register.

» SSEUP class consists of types that fit into a floating-point register and can be passed and returned
in the upper bytes of it.

e X87, X87UP, COMPLEX X87 classes consist of types that can be returned via the x87 FPU.

* NO_CLASS is used as initializer in the algorithms. It is used for padding as well as empty
structures and unions.

* MEMORY class consists of types that are passed and returned in memory via the stack.

The size of each argument is rounded up to a quadword (8 bytes). Therefore, the stack will always be
8-byte aligned.

148

Chapter 5. OpenVMS x86-64 Conventions

For purposes of the aggregate argument classification algorithm that follows below, the scalar
components of an aggregate are classified as shown in Table 5.9.

Table 5.9. Classification of Scalar Components of Aggregate Types

Integers (size < 64 bits)
[B, W, L, Q, BU, WU, LU, QU]

char, short, int, long
(signed and unsigned)

Nominal Type Equivalent C/C++ Argument Passing Class
[OpenVMS Type Code] Type(s)

(prefix DSCSK_DTYPE)

Pointer [Q] * INTEGER

Boolean [B, BU] _Bool (bool)

Integers (64 < size < 128 bits)

__int128

Split into two 8-byte chunks. Both

bits)
[FC]

[0, OU] (signed and unsigned) |belong to class INTEGER.
VAX floating-point types INTEGER

(up to 64 bits) [F, D, G]

VAX floating-point complex (64 INTEGER

VAX floating-point complex (128

Split into two 8-byte chunks. Both

(up to 64 bits) [FS, FT]

bits) belong to class INTEGER.
[DC, GC]
IEEE binary floating-point types float, double SSE

IEEE extended binary floating-point
type (128 bits) [FX]

__float128

Split into two halves. The first
(lower addressed) 64-bits belong
to class SSE and the second half to
class SSEUP.

IEEE binary floating-point complex
(64 bits) [FSC]

complex float

IEEE binary floating-point complex
(128 bits) [FTC]

complex double

IEEE binary floating-point complex
(256 bits) [FXC]

complex long double

Treat as two successive binary
floating-point values, each treated as
a scalar of half the size (see above).

Aggregate (structures, records and arrays) and union types are classified as follows:

1. Ifthe size of an object is larger than eight quadwords (64 bytes), or it contains unaligned fields, it

belongs to the MEMORY class.

2. Ifa C++ object is non-trivial for the purpose of calls, as specified in the C++ ABP, it is passed by
an invisible reference—that is, the object is replaced in the parameter list by a pointer that has the

INTEGER class.*

3A de/constructor is trivial if it is an implicitly-declared default de/constructor and if:

its class has no virtual functions and no virtual base classes, and

all the direct base classes of its class have trivial de/constructors, and

for all the nonstatic data members of its class that are of class type (or array thereof), each such class has a trivial de/constructor.
See the System V Application Binary Interface, AMDG64 Architecture Processor Supplement, Version 1.0 for further details on the C++ ABIL.

149

Chapter 5. OpenVMS x86-64 Conventions

3. If'the size of the aggregate exceeds a single quadword, each quadword is classified separately.
Each quadword is initialized to the NO_CLASS class.

4. Each field of an object is classified recursively so that always two fields are considered. The
two fields are the containing quadword as a whole and the lowest level field components of the
quadword, considered in order:

a. If both classes are equal, this is the resulting class.
b. If one of the classes is NO_CLASS, the resulting class is the other class.
c. Ifone of the classes is MEMORY, the result is the MEMORY class.
d. If one of the classes is INTEGER, the result is the INTEGER class.
e. If one of the classes is X87, X87UP, or COMPLEX X&87, the result is the MEMORY class.
f. Otherwise the result is the SSE class.
5. Then a post merger cleanup is done:
a. If one of the classes is MEMORY, the whole argument is passed in memory.
b. If X87UP is not preceded by X87, the whole argument is passed in memory.

c. Ifthe size of the aggregate exceeds two quadwords and the first quadword is not SSE or any
other quadword is not SSEUP, the whole argument is passed in memory.

d. If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
Once arguments are classified, the registers are assigned (in left-to-right order) for passing as follows:
1. If the class is MEMORY, the argument is passed on the stack.

2. Ifthe class is INTEGER, the next available register of the sequence % di , % si , % dx, % cX,
% 8, and % 9 is used.

3. If'the class is SSE, the argument is passed in the next available floating-point register. The
registers are taken in order from %m0 to YxMV.

4. If the class is SSEUP, the quadword is passed in the next available 8-byte chunk of the last used
floating-point register.

5. If'the class is X87, X87UP, or COMPLEX X87, the argument is passed in memory.

When a value of a boolean type is returned or passed in a register or on the stack, bit 0 contains the
truth value, bits 1 to 7 must be zero, and all other bits are left unspecified. A consumer of such values
can rely on it being 0 or 1 only when truncated to the low byte.

If there are no registers available for any quadword of an argument, the whole argument is passed
on the stack. If registers have already been assigned for some quadwords of such an argument, the
assignments are reverted.

‘An object whose type is non-trivial for the purpose of calls cannot be passed by value because such objects must have the same address in
the caller and the callee. Similar issues apply when returning an object from a function.

150

Chapter 5. OpenVMS x86-64 Conventions

Once registers are assigned, the arguments passed in memory are pushed on the stack in reversed
(right-to-lefts) order.

Certain arrays of IEEE floating-point components are given special case treatment to take advantage
of SSE/AVX floating-point features. These arrays must have both a size and an alignment that is one
of 64, 128, 256 or 512 bytes. Multiples of these sizes are also allowed. These are shown in Table 5.10.

Table 5.10. Classification of Special Floating-Point Array Components of Aggregate
Types

Nominal Type Equivalent C/C++|Argument Passing Class

[OpenVMS Type Code] Type(s)

(prefix DSCSK_DTYPE)

IEEE binary floating-point vector | m64 SSE

(up to 64 bits) [M64]

IEEE extended binary floating- | ml28 Split into two halves. The first (lower

point vector (128 bits) [M128] addressed) 64-bits belong to class SSE and
the second half to class SSEUP.

IEEE binary floating-point vector | m256 Split into four 8-byte chunks. The first

(256 bits) [M256] chunk belongs to class SSE and the rest to
class SSEUP.

IEEE binary floating-point vector | m512 Split into eight 8-byte chunks. The first

(512 bits) [M512] chunk belongs to class SSE and the rest to
class SSEUP.

When passing the __ nP56 or ___nb12 arguments to functions that use varargs or stdarg, function
prototypes must be provided. Otherwise, the run-time behavior is undefined.

5.7.3. Unused Bits in Passed Data

Whenever data is passed by value between two procedures in registers or in memory, the bits not
used by the data elements are sign-extended or zero-extended as appropriate to the type. Unsigned
integral (except unsigned 32-bit), set, and VAX floating-point values passed in general-purpose
registers are zero-extended, while signed integral values as well as unsigned 32-bit integral values are
sign-extended to 64 bits. For all other types passed in the general-purpose registers, unused bits are
undefined.

Note

Bit 31 is replicated in bits 32—63, even for unsigned 32-bit integers.

This rule applies to the argument types described in Section 5.7.1 as well as the individual elements of
aggregate types passed in general-purpose registers as described in Section 5.7.2.

The rules contained in this section are summarized in Tables 5.11 and 5.12.

5Right-to-left order on the stack makes the handling of functions that take a variable number of arguments simpler. The location of the first
argument can always be computed statically, based on the type of that argument. It would be difficult to compute the address of the first
argument if the arguments were pushed in left-to-right order.

151

Chapter 5. OpenVMS x86-64 Conventions

Table 5.11. Unused Bits in Passed Data

Data Type Type Designator1 Data Register Memory
(OpenVMS Names) Size Extension Type |Extension
(bytes) Type
Byte logical DSC$K DTYPE BU |1 Zero64 Zero64
Word logical DSC$K DTYPE WU |2 Zero64 Zero64
Longword logical DSC$K DTYPE LU |4 Sign64 Sign64
Quadword logical DSC$K DTYPE QU |8 Data64 Data64
Byte integer DSC$K DTYPE B 1 Sign64 Sign64
Word integer DSC$K _DTYPE W 2 Sign64 Sign64
Longword integer DSC$K DTYPE L 4 Sign64 Sign64
Quadword integer DSC$K DTYPE Q 8 Data64 Data64
F floating DSC$K _DTYPE F 4 VAXF64 Data32
D floating DSC$K _DTYPE D 8 VAXDG64 Data64
G_floating DSC$K DTYPE G 8 VAXDG64 Data64
F floating complex DSC$K DTYPE FC |2*4 2*VAXFo64 2*Data32
D_floating complex DSC$K DTYPE DC |2*8 2*VAXDG64 2*Data64
G_floating complex DSC$K DTYPE GC |[2*8 2*VAXDG64 2*Data64
S floating DSC$K DTYPE FS |4 Hard Data32
T floating DSC$K DTYPE FT |8 Hard Data64
X_floating DSC$K DTYPE FX |16 N/A N/A
S floating complex DSC$K DTYPE FSC (2 *4 Hard? 2*Data32
T floating complex DSC$K DTYPE FTC (2 *8 2*Hard 2*Data64
X floating complex DSC$K DTYPE FXC |2*16 |N/A N/A
Small structures of 8 bytes or |N/A <8 Nostd Nostd
less
Small arrays of 8 bytes or N/A <8 Nostd Nostd
less
32-bit address N/A 4 Sign64 Sign64
64-bit address N/A 8 Data64 Data64

1OpenVMS also provides symbols of the form DSC64$K_DTYPE xxx for each type designator.
2This consists of both real and imaginary parts in the same register.

Table 5.12 contains the defined meanings for the extension type symbols used in Table 5.11.

Table 5.12. Extension Type Codes

Sign Extension Defined Function

Type

Sign64 Sign-extended to 64 bits.

Zero64 Zero-extended to 64 bits.

Data32 Data is 32 bits. The state of bits <63:32> is unpredictable.

152

Chapter 5. OpenVMS x86-64 Conventions

Sign Extension

Defined Function

Type

2*Data32 Two single-precision parts of the complex value are stored in memory as
independent floating-point values (each handled as Data32).

Data64 Data is 64 bits.

2*Data64 Two double-precision parts of the complex value are stored in memory as
independent floating-point values (each handled as Data64).

VAXF64 Data is 64 bits. Low-order 32 bits are the same as the F_floating memory format
and the high-order 32 bits are zero. (Used only in a general register, never in a
floating-point register).

VAXDG64 Data is 64 bits. Uses the corresponding D _floating or G_floating memory
format. (Used only in a general register, never in a floating-point register).

2*VAXF64 Two single-precision parts of the complex value are stored in memory as
independent floating-point values (each handled as VAXF64).

2*VAXDG64 Two double-precision parts of the complex value are stored in memory as
independent floating-point values (each handled as VAXDG64).

Hard Passed in the layout defined by the hardware SRM.

2*Hard Two floating-point parts of the complex value are stored in a pair of registers as
independent floating-point values (each handled as Hard).

Nostd State of all high-order bits not occupied by the data is unpredictable across a call

or return.

5.7.4. Argument Information Register (Al)

On all standard calls, the caller must pass information on the number, location and limited type
information of all arguments. The called procedure can use this information in various argument
count and argument list built-ins. To support this, % ax is used as the Al register. [t must contain the
argument information that is presented in Table 5.13.

Table 5.13. Contents of the Argument Information Register (% ax)

Bit Contents

7:0 (val) Upper bound on the number of XMM registers that are used to pass arguments

15:8 (%@h) |Total number of passed argument slots

47:16 Argument Info Offset relative to the return address of the caller, or zero

63:48 Reserved and must be either 0x0000 or OXFFFF'

'In many cases, the Argument Info Offset is so small that it fits in 16 bits. This means that the MOVL instruction can be used to set % ax
rather than the MOVABSQ instruction. Since the MOVL instruction sign-extends its 32-bit immediate operand, bits 63:48 could contain

either value.

If the Argument Info Offset field is non-zero, it contains a signed byte offset to an Argument Info
Block (AIB). This byte offset is relative to the return address of the caller, that is, an offset from the
location of the instruction after the call instruction. The Argument Info Block must be close enough to
the call site for the offset to fit in 32 bits. If the AIB is in the same section as the code, this offset can
be calculated at compile time.

153

Chapter 5. OpenVMS x86-64 Conventions

Table 5.14 shows the format of an Argument Info Block.

Table 5.14. Argument Info Block Format

Bit Name Usage

7:0 version Format version. This format is version 1.

15:8 arg info count Number of argument slots represented in this block.
19:16 Ist arg info Information on the 1st argument slot.

23:20 2nd arg info Information on the 2nd argument slot.

Information on the nth argument slot.

The arg info count may be less than, equal to, or greater than the actual number of passed arguments.
If it is less, the missing argument information fields are assumed to be 0 (AISK_AR _164). If it is
greater, the extra entries in this block are ignored.

If all the passed arguments are integers and pointers, there is no need to pass an Argument Info Block.
Instead, the Argument Info Offset should be set to zero.

The values of the argument information fields are shown in Table 5.15.

Table 5.15. Argument Slot Information Values

Value Name Meaning
0 AISK AR 164 Argument is passed in a general-purpose register, if one is
available, otherwise on the stack.
or
Argument is not present.
1 AI$K AR FF F_floating argument is passed in a general-purpose register.
2 AI$SK AR FD D_floating argument is passed in a general-purpose register.
3 AISK AR FG G_floating argument is passed in a general-purpose register.
4 AISK AR FS Argument is passed in bits 31:0 of an XMM register.
5 AI$K AR FT Argument is passed in bits 63:0 of an XMM register.
6 AI$SK AR FXL Low half of argument is passed in bits 63:0 of an XMM register.
7 AISK AR FXH High half of argument is passed in bits 127:64 of an XMM register.
8 AISK AR MEM Argument is pushed on the stack.
9—I15 — Reserved.

Note that the AISK_AR FXL and AISK_AR_FXH argument fields always occur in pairs.

5.7.5. Variable Argument Lists

The x86-64 industry standards define how C-style variable argument lists (va_start, va_arg and so on)
are implemented. OpenVMS also allows variable argument lists to be accessed as arrays. On prior

154

Chapter 5. OpenVMS x86-64 Conventions

OpenVMS architectures, a single common mechanism supports both. On OpenVMS x86-64, different
mechanisms are implemented.

5.7.5.1. Standard Variable Arguments

The x86-64 standard mechanism uses the va_list structure and the register save area. The register save
area structure is presented in Table 5.16.

Table 5.16. Register Save Area Structure

Offset Register Usage

0 % di Ist general-purpose argument register
8 % sSi 2nd general-purpose argument register
16 % dx 3rd general-purpose argument register
24 % cX 4th general-purpose argument register
32 % 8 5th general-purpose argument register
40 % 9 6th general-purpose argument register
48 %m0 1st floating-point argument register
64 % mml 2nd floating-point argument register
80 % m 3rd floating-point argument register
96 % mmB 4th floating-point argument register
112 % 5th floating-point argument register
128 L2 411145 6th floating-point argument register
144 %Mo 7th floating-point argument register
160 X i/ 8th floating-point argument register

The register save area is always allocated in the stack frame of the called function. Any function that
contains an invocation of the va_start macro must save argument registers in the register save area.
The six general-purpose registers are always saved. The number of floating-point registers to be saved
depends on the value passed in the %@l register. In theory, code should not save more registers than
indicated in %@l , but in practice, it either saves none (if %@l is zero) or all the registers.

The standard requires the caller to pass a floating-point register argument count in the %@l register
whenever the called function uses the C variable arguments. This includes not only functions
explicitly declared with the variable arguments, but all unprototyped functions as well.

Note that the OpenVMS “arginfo notused” linkage does not influence whether this value is passed
in the %@l or not. The passed value does not need to be absolutely correct, but should at least be an
upper bound on the number of arguments passed in floating-point registers.

The x86-64 va_list structure contains the following fields that are described in Table 5.17.

Table 5.17. va_list Structure

Offset Field Usage

0 gp offset Byte offset from the start of the register save area of the next
available saved integer argument register

4 fp_offset Byte offset from the start of the register save area of the next
available saved floating-point argument register

155

Chapter 5. OpenVMS x86-64 Conventions

Offset Field Usage
8 overflow_arg area |Pointer to the first available stack argument
16 reg_save_area Pointer to the register save area

The va_start macro initializes the va_list structure as follows:

* gp offset is the byte offset within the register save area of the first unused general-purpose
register.

* fp offset is the byte offset within the register save area of the first unused floating-point register.
» overflow arg_area points to the first unused stack argument.
* reg_save area points to the register save area that is already initialized.

For example, for the pri ntf (const char *fnt, ...) function, the va list structure is
initialized as follows:

» gp offsetis set to +8, the offset of the second general-purpose argument; the first argument (f nt)
is already used.

* fp offset is set to +48, the offset of the first floating-point argument.

» overflow arg area is set to FP+16, the location of the first stack argument.

When the va_arg macro is invoked, it fetches the argument from a saved register or the stack and
increments one field on the va_list structure accordingly. For example, if an integer argument is
requested, the va_arg macro will compare the value of gp_offset against 48. If gp_offset is less than

48, the va_arg macro will return a saved integer register and increment gp _offset. Otherwise, it will
return a stack argument and increment overflow_arg_area.

5.7.5.2. OpenVMS Variable Argument Lists

A number of OpenVMS languages allow a procedure to query the total number of arguments and to
access arguments as a single array. The following language constructs allow this:

* ARGPTR, ACTUALPARAMETER and ACTUALCOUNT in BLISS

* [list], argument, and argument_list length in VSI Pascal

e va countin VSIC

All rely on OpenVMS extensions to the standard calling conventions.

On OpenVMS standard calls, the caller passes argument information in the % ax register that
specifies the total number of the used argument slots and location of each register argument. In theory,
this information only needs to be passed if the called procedure uses one of the above mentioned
language constructs, but since the caller is not able to determine this, the argument information is

passed in % ax on all OpenVMS standard calls.

If a called procedure requests its argument count, it is in ¥%@h. If a called procedure requests an
argument list, the called procedure performs the following:

156

Chapter 5. OpenVMS x86-64 Conventions

1. Allocates the storage in its own stack frame for the entire arglist (8 * %@h).

2. Copies all general-purpose registers, floating-point registers, and memory arguments to the arglist
as indicated by the values in % ax.

Unlike the prior OpenVMS architectures, on OpenVMS x86-64 it is not possible to create a register
“home” on the stack that is contiguous with the incoming memory arguments.

5.7.6. Procedure Return Values

Procedure return values are classified and returned to the appropriate locations depending on their
classes as defined for arguments in Section 5.7.2.

1. Ifthe class is MEMORY, then the caller provides the space for the return value and passes the
address of this storage in % di as if it were the first argument to the function. In effect, this
address becomes a hidden first argument. This storage must not overlap any data visible to the
callee through the other parameters in this argument list.

On return % ax will contain the address that was passed in % di by the caller.

2. Ifthe class is INTEGER, the next available register of the sequence % ax, % dx is used.

3. If'the class is SSE, the next available floating-point register of the sequence %m0, ¥&xmnl is
used.

4. If the class is SSEUP, the quadword is returned in the next available 8-byte chunk of the last used
floating-point register.

5. If'the class is X87, the value is returned on the X87 stack in #st O as an 80-bit x87 number.
6. If'the class is X87UP, the value is returned together with the previous X87 value in %st O.

7. If'the class is COMPLEX X87, the real part of the value is returned in 6t O and the imaginary
partin st 1.

As a result scalar values and complex floating-point values are returned in registers % ax, % ax and

% di , %MD, or %xnm0 and % mil. The exception is an IEEE complex quadruple precision value
which is returned in a caller-provided temporary location.

5.7.7. Parameter Passing and Return Result Examples

This section includes examples that illustrate the parameter passing and return result rules.

Example 1

As an example of the register passing conventions, consider the declarations and function call shown
in Figure 5.4. The corresponding register allocation is given in Figure 5.5 where the stack frame offset
given shows the frame before calling the function.

157

Chapter 5. OpenVMS x86-64 Conventions

Figure 5.4. Parameter Passing Example 1

typedef struct {
int a, b;
doubl e d;

} structparm

structparms;

int e, f, g, h, i, j, k;
| ong doubl e |d;

double m n;

__n256 vy;

__nbl2 z;

extern void func (int e,
int f,
structparms,
int g,
int h,
| ong double Id,
doubl e m
__ne56 vy,
__nbl12 z,
doubl e n,
int i,
int j,
int k);

func (e, f, s, g, h, Id, m vy, z, n, i, j, k);

Figure 5.5. Register Allocation Example 1

General-Purpose Registers Floating-Point Registers Stack Frame (Memory) Offset
EFrdi: e Fxmm0: s.d 0: Id
EFrai: f Fxmml: m 16: j
%rdx sa sb TymmZ: Y 24 k
(rcxl g %zmm3l Z
zrg: h EFxmmd: N
Ero i
Example 2

This C example illustrates some subtle effects and differences that can result between several closely
related sets of declarations as shown in Figure 5.6. Each part begins with a structure declaration that
has three fields:

1. Anint (4 bytes) or a long (8 bytes) named a.

2. A short (2 bytes) named b.

3. A float (4 bytes) or a double (8 bytes) named c.

All four alternatives are included. This structure is followed by a declaration for a function that
returns a value of that structure type and a function that has one parameter of that structure type.

158

Chapter 5. OpenVMS x86-64 Conventions

Figure 5.6. Declarations Used in Example 2

/1 Part A Declarations: Fields of type int, short, double
typedef struct {
int a;
short b;
doubl e c;
} structparmisd;
structparmisd s_isd
extern structparm.sd set_isd();
extern void func_isd (structparm.isd p_isd);

/1 Part B Declarations: Fields of type long, short, double
typedef struct {
| ong a;
short b;
doubl e c;
} structparml sd;
structparmlsd s_|Isd;
extern structparmlsd set |sd();
extern void func_| sd(structparmlsd p_|sd);

/1 Part C Declarations: Fields of type int, short, float
t ypedef struct {
int a;
short b;
float c;
} structparmi sf;
structparm.isf s_isf;
extern structparm.isf set_isf();
extern void func_isf(structparm.isf p_isf);

/1 Part D Declarations: Fields of type long, short, float
t ypedef struct {
| ong a;
short b;
float c;
} structparml sf;
structparm| sf s_|sf;
extern structparml|sf set_|sf();
extern void func_|sf(structparml|sf p_|sf);

159

Chapter 5. OpenVMS x86-64 Conventions

Figure 5.7 illustrates the allocation and alignment of the fields in the respective structures.
Figure 5.7. Allocation and Alignment for Example Declarations
struct_isd:

a(dbytes) | b2 | /) | c(®

struct_lsd:

a (8 bytes) b(2) | M 6) L T | (8 bytes)

struct_isf:

a(dbytes) | b | /Q) | c@

struct_lsf:

a (8 bytes) B ()| 72V | ¢ (4 bytes)

Table 5.18 illustrates how the fields of the respective fields are passed.

Table 5.18. Parameter Passing Locations for Example Declarations

Call Field a Field b Field ¢
func_isd(s_isd) % di %m0
func_lsd(s_Isd) memory (stack)
func_isf(s_isf) % di %m0
func_Isf(s_Isf) % di % si

Table 5.19 illustrates how the fields of the respective fields are returned as a function result.

Table 5.19. Function Return Locations for Example Declarations

Call Field a Field b Field ¢
set isd(s_isd) % ax %m0
set 1sd(s_Isd) memory pointed to by % ax (passed in % di)
set_isf(s_isf) % ax %m0
set_1sf(s_lIsf) % ax % dx

5.8. Procedure Call Stack

A procedure is an active procedure while its body is executing, including while any procedure it calls
is executing. When a procedure is active, its designated condition handler may handle an exception
that is signaled during its execution.

Associated with each active procedure is an invocation context, informally called a frame, which
consists of the set of registers and space in memory that is allocated and that may be accessed during
execution for a particular call of that procedure.

When a procedure begins to execute, it has a limited invocation context that includes the parameter
passing registers of its caller. The initial instructions may allocate and initialize additional context,

160

Chapter 5. OpenVMS x86-64 Conventions

including possibly saving information from the invocation context of its caller. Such instructions, if
any, are termed a procedure prologue. Once execution of the prologue is complete, the procedure is
said to be active.

When a procedure is ready to return to its caller, the procedure ceases to be active after it begins to
execute the instructions that deallocate and discard the procedure's invocation context (which may
include restoring state of the caller's invocation context that was saved during the prologue). These
instructions are termed a procedure epilogue.

A null frame procedure has no prologue and no epilogue, and consists solely of body instructions.
Such a procedure becomes active immediately.

A procedure may have more than one prologue if there are multiple entry points. A procedure may
also have more than one epilogue if there are multiple return points. One of each will be executed
during any given invocation of the procedure.

A procedure call stack (for a thread) consists of the stack of invocation contexts that exists at
any point in time. New invocation contexts are pushed on that stack as procedures are called and

invocations are popped from the call stack as procedures return.

The invocation context of a procedure that calls another procedure is said to precede or be previous to
the invocation context of the called procedure.

5.8.1. Current Procedure

The current procedure is the active procedure whose execution began most recently; its invocation
context is at the top of the call stack. Note that a procedure executing in its prologue or epilogue is not
active, and hence cannot be the current procedure.

For OpenVMS x86-64, the IP (instruction pointer) register in combination with associated unwind

information determines what procedure is current (for exception handling purposes). See Section B.3
for a description of the unwind information data structures.

5.8.2. Procedure Call Tracing

Mechanisms for each of the following functions are needed to support procedure call tracing:
* To provide the context of a procedure invocation

» To walk (navigate) the procedure call stack

» To refer to a given procedure invocation

* To examine or modify the register context of an active procedure

This section describes the data structure mechanisms. The run-time library functions that support
these functions are described in Section 5.8.3.

5.8.2.1. Invocation Context Block

The context of a specific procedure invocation is provided through the use of a data structure called
an invocation context block (ICB). Table 5.20 describes the contents of the OpenVMS x86-64
invocation context block.

161

Chapter 5. OpenVMS x86-64 Conventions

Table 5.20. Contents of the Invocation Context Block

Field Size Description
LIBICBSL _CONTEXT LENGTH |Longword Unsigned total length in bytes of the invocation
context block. See Section 5.8.3.1.
LIBICB$V_FRAME FLAGS 3 Bytes See Table 5.21.
LIBICB$B BLOCK VERSION Byte ICB version; initial value of 3 for OpenVMS
x86-64. (1 is for OpenVMS Alpha, 2 is for
OpenVMS 164). See Section 5.8.3.1.
LIBICB$IH UC FLAGS 2 Quadwords |Internal (opaque) unwind context data.
LIBICB$IH UC LINK
LIBICBS$IH_IREG 16 Array of general registers.
Quadwords
IREGJ0], the argument information
register, can be referenced using the symbol
LIBICBSIH_AL
IREG[6], the frame pointer, can be referenced
using the symbol LIBICBSIH BP.
IREG[7], the stack pointer, can be referenced
using the symbol LIBICBS$IH SP.
LIBICBSIH_IP Quadword Current instruction pointer (IP).
LIBICB$IH PSEUDO_REGS 32 Array of Alpha pseudo-registers.
Quadwords
LIBICB$IH RFLAGS Quadword Processor RFLAGS register.
LIBICBSIH_FSGS Quadword Segment register % s: LIBICB$W _FS.
Segment register %@s: LIBICBSW_GS.
LIBICBSIH XSAVE STATE Quadword XSAVE state control register value indicating
what information is contained in the XSAVE
area.
This is the state-component bit map needed by
the XRSTOR to restore the floating-point state
from the XSAVE area (0 if the XSAVE pointer
is null).
LIBICB$PH XSAVE Quadword Pointer to an XSAVE area (null if floating-
point is not in use).
LIBICBSL XSAVE LENGTH Longword The number of bytes in the block
pointed to by LIBICB$PH_XSAVE (0 if
LIBICBSPH_XSAVE is null).
LIBICB$IH PSP Quadword Previous stack pointer.
LIBICB$IH RETURN IP Quadword Return instruction pointer.
LIBICB$PH CHFCTX ADDR Quadword Pointer to condition handler facility context
block.
LIBICB$IH_OSSD Quadword Copy of OSSD from unwind information.
LIBICB$IH HANDLER PV Quadword Condition Handler Procedure Value (if any).
LIBICB$PH_LSDA Quadword Address of the Language Specific Data Area (if

any).

162

Chapter 5. OpenVMS x86-64 Conventions

Field Size Description
Beginning of User Override Parameters (offset LIBICBSR_UO_BASE)
LIBICB$Q UO FLAGS Quadword Operational flags:

LIBICB$V_UO FLAG CACHE UNWIND —
Cache unwind information during a walk of the
call stack. See Section 5.8.3.2.

LIBICB$IH UO IDENT Quadword
LIBICB$PH UO READ MEM Quadword
LIBICB$PH_UO_GETUEINFO Quadword
LIBICBSPH UO GETCONTEXT |Quadword
LIBICB$PH UO WRITE MEM |Quadword
LIBICB$PH UO WRITE REG Quadword

LIBICBSPH UO_MALLOC Quadword

LIBICB$PH_UO FREE Quadword

End of user override parameters (length of LIBICBSK_UO_LENGTH)

LIBICBSL ALERT CODE Longword Stack walk detailed status. Alert codes are
enumerated in the LIBICB include files (see
Section 5.8.3.7).

LIBICBSIH _SYSTEM _ n Quadwords | Variable-sized area; unused and undefined at

DEFINED[n] this time.

Table 5.21. Flags in LIBICBSV_FRAME_FLAGS Field of the Invocation Context Block

Flag Description
LIBICB$V_EXCEPTION FRAME |Set to 1 if this is an exception frame.
LIBICB$V_AST FRAME Set to 1 if this is an AST frame.

LIBICBSV_BOTTOM_OF STACK |Set to 1 if this is the bottom of the stack and there is absolutely
no previous frame.

LIBICB$V_HANDLER PRESENT |Set to 1 if this frame has a condition handler.
LIBICB$V_IN PROLOGUE Set to 1 if the IP is in a prologue region.
LIBICB$V_IN EPILOGUE Set to 1 if the IP is in an epilogue region.

Static scratch registers, unless saved and described in the unwind table information, are not realizable
except for an invocation context preceding an exception or AST frame.

5.8.2.2. Invocation Context Handle

To refer to a specific procedure invocation at run-time, an invocation context handle (ICH) can
be used. The invocation context handle is a quadword that uniquely identifies any one of the active
frames on a call stack.

On OpenVMS x86-64, the invocation context handle for a frame is simply the stack pointer value at
procedure entry (that is, the address of the caller’s return address on the stack).

163

Chapter 5. OpenVMS x86-64 Conventions

5.8.3. Invocation Context Block Access Routines

A thread can manipulate the invocation context of any procedure in the thread's virtual address space
by calling the run-time library functions described in this section.

Note

The OpenVMS x86-64 stack tracing routines use heap storage during the analysis of unwind
descriptors. The default heap storage mechanism uses a LIBRTL implementation of the C RTL
function malloc, the use of which may result in virtual memory being expanded using the SEXPREG
system service. See Section 5.8.5 on how to override the defaults. See also Section 5.8.3.12.

5.8.3.1. Initializing the Invocation Context Block

When allocating a new invocation context block, the user must perform the following steps prior to
calling any of the routines described in Section 5.8.3:

* Allocate the block on an octaword (16-byte) boundary.
* Clear (set to all zero bytes) the entire block.

« Initialize the LIBICBSL_CONTEXT LENGTH field to
LIBICB$SK_INVO CONTEXT BLK_SIZE and the LIBICB$SB_BLOCK_VERSION field to
LIBICB$SK_INVO _CONTEXT VERSION.

* Set any required parameters in the user override portion of the invocation context block.

* Setthe LIBICB$V _UO FLAG CACHE UNWIND flag if appropriate. See also Section 5.8.3.2
and Section 5.8.3.12 regarding subsequent use of LIB§X86 PREV _INVO END.

Failure to do so will cause these routines to return an error status. Note that this is a change from
Alpha, where initialization was not necessary.

To simplify the initialization process, the following convenience routines are provided:
+ LIB$X86 CREATE INVO CONTEXT (see Section 5.8.3.3)
+ LIB$X86 FREE INVO CONTEXT (see Section 5.8.3.4)

+ LIB$X86 INIT INVO_CONTEXT (see Section 5.8.3.5)

5.8.3.2. Walking the Call Stack

During the course of program execution, it is sometimes necessary to walk the call stack. Frame-based
exception handling is one case where this is done. Call stack navigation is possible only in the reverse
direction (in a latest-to-earliest or top-to-bottom sequence).

To walk the call stack, perform the following steps:
1. Given a program state (which contains a register set), build an invocation context.

For the current routine, an initial invocation context block can be obtained by calling the
LIB$X86 GET CURR_INVO_CONTEXT routine (see Section 5.8.3.7).

164

Chapter 5. OpenVMS x86-64 Conventions

2. Repeatedly call the LIB§X86 GET PREV_INVO_CONTEXT routine (see Section 5.8.3.8) until
the desired invocation context, or the end of the call chain, has been reached.

LIB$X86 GET PREV INVO_CONTEXT indicates the end of the invocation call chain if either
of the following conditions is true:

+ The OSSDSV_BOTTOM_OF STACK flag is set for the target frame (see Table A.14).
* The return address (IP) of the target frame is zero.

To make the stack walk more efficient, you can set the LIBICBSV_UO FLAG CACHE UNWIND
flag. This causes unwind information to be carried over from one call to

LIB$X86 GET PREV INVO_ CONTEXT to the next. At the conclusion of the stack walk, you must
call LIB§X86 PREV INVO_END to free any cached unwind information. This is the recommended
practice, but not the default behavior.

Compilers are allowed to optimize high-level language procedure calls in such a way that they do not
appear in the invocation chain. For example, inline procedures never appear in the invocation chain.

Make no assumptions about the relative positions of any memory used for procedure frame
information. There is no guarantee that successive stack frames will always appear at higher
addresses.

5.8.3.3. LIB$X86_CREATE_INVO_CONTEXT

This convenience routine simplifies creating and properly initializing an invocation context
block. The routine allocates an invocation context block from heap storage and initializes

it according to the steps described in Section 5.8.3.1. Users of this routine should call
LIB$X86 FREE INVO_CONTEXT when the invocation context block is no longer required.

This routine sets the cache unwind flag LIBICB§V_UO_FLAG CACHE UNWIND in the
invocation context block to speed the stack walk. Do not use this routine in conjunction with
LIB$X86 INIT INVO CONTEXT, as the same initialization is performed by both routines.

LI B$X86_CREATE | NVO_CONTEXT ([rmalloc] [, free] [, ident])

Argument OpenVMS Usage Type Access Mechanism
malloc function_value procedure read by value
free function_value procedure read by value
ident user_value quadword read by value
Arguments:

mal | oc A procedure value for a user callback routine that allocates memory. See

Section 5.8.5.6 for details of this routine. This is an optional argument. The
default is to use an implementation of the C RTL routine mal | oc. If specified,
this routine is used to allocate the invocation context block and is also placed in
the invocation context block field LIBICBSPH _UO_MALLOC for use during
the stack walk.

free A procedure value for a user callback routine that deallocates memory. This
value is placed in the invocation context block field LIBICB$PH_UO FREE.
See Section 5.8.5.7 for details on this routine. This is an optional argument;

165

Chapter 5. OpenVMS x86-64 Conventions

however, it must be specified if mal | oc is specified. The default is to use an
implementation of the C RTL routine f r ee.

i dent Specifies a user ident value to be placed in the invocation context block
LIBICBS$IH UO _IDENT field. In turn, this value is passed to the mal | oc and
f r ee routines, described in Section 5.8.5.6 and Section 5.8.5.7 respectively.
This is an optional argument; the default value is zero.

Function Value Returned:

i nvo_cont ext A non-zero value represents the address of the invocation context block
allocated. A value of 0 indicates failure.

5.8.3.4. LIB$X86_FREE_INVO_CONTEXT

Deallocates an invocation context block that was previously allocated using
LIB$X86 CREATE INVO CONTEXT. This routine calls LIB§X86 PREV _INVO END as a
convenience.

LI B$X86_FREE_| NVO_CONTEXT (i nvo_context)

Argument OpenVMS Usage Type Access Mechanism
invo_context invo_context blk structure modify by reference
Argument:

i nvo_cont ext Address of an invocation context block.
Function Value Returned:

None.

5.8.3.5. LIB$X86_INIT INVO_CONTEXT

Initializes an invocation context block that the user has already allocated (on the stack, or from

heap, or other storage) in accordance with Section 5.8.3.1. Use this routine as an alternative

to LIB$X86 _CREATE INVO_CONTEXT, which both allocates and initializes an invocation context
block.

LI B$X86_I NI T_I NVO_CONTEXT
(invo_context, invo_version [, cache_unw nd_flag])

Argument OpenVMS Usage Type Access Mechanism
invo_context invo_context blk structure modify by reference
invo_version version_number byte read by value

cache unwind flag|flag longword read by value
Arguments:

i nvo_cont ext Address of an invocation context block.

i nvo_ver si on The value LIBICBSK INVO CONTEXT VERSION. This is used to

verify the operating environment.

166

Chapter 5. OpenVMS x86-64 Conventions

cache_unw nd_fl ag A flag indicating if the cache unwind flag,
LIBICB$V_UO _FLAG CACHE UNWIND, should be set in the
invocation context block. A value of zero clears the flag; a value of
one sets the flag. This is an optional argument. The default is zero.

Function Value Returned:

st at us A value of 1 indicates success. A value of 0 indicates a version
number mismatch.

5.8.3.6. LIB$X86_GET_INVO_CONTEXT

A thread can obtain the invocation context of any active procedure by using this function:

LI B$X86_GET_I NVO CONTEXT(i nvo_handl e, invo_cont ext)

Argument OpenVMS Usage Type Access Mechanism
invo_handle invo_handle quadword read by reference
invo_context invo_context blk structure modify by reference
Arguments:

i nvo_handl e Address of the location that contains the handle for the desired invocation.

i nvo_cont ext Address of an invocation context block into which the procedure context of the

frame specified by i nvo_handl e will be written.

Note

The invocation context block must be properly initialized as described in Section 5.8.3.1 before
calling this routine.

Function Value Returned:

st at us Status value. A value of 1 indicates success; a value of 0 indicates failure.

Note

If the invocation handle that was passed does not represent any procedure context in the active call
stack, the new contents of the context block is unpredictable.

5.8.3.7. LIB$X86_GET_CURR_INVO_CONTEXT

A thread can obtain the invocation context of a current procedure by using this function:

LI B$X86_GET_CURR | NVO CONTEXT(i nvo_cont ext)

Argument OpenVMS Usage Type Access Mechanism

invo_context invo_context blk structure modify by reference

167

Chapter 5. OpenVMS x86-64 Conventions

Argument:

i nvo_cont ext Address of an invocation context block into which the procedure context of the
caller will be written.

Note

The invocation context block must be properly initialized as described in Section 5.8.3.1 before
calling this routine.

Function Value Returned:

Zero This facilitates use in the implementation of the C language unwind set j np
or | ongj np function. Check the LIBICBSL ALERT CODE field of the
invocation context block for further status indication.

5.8.3.8. LIB$X86_GET_PREV_INVO_CONTEXT

A thread can obtain the invocation context of the procedure context preceding any other procedure
context by using this function:

LI B$X86_GET_PREV_| NVO_CONTEXT(i nvo_cont ext)

Argument OpenVMS Usage Type Access Mechanism
invo_context invo_context blk structure modify by reference
Argument:

i nvo_cont ext Address of a valid invocation context block. The given invocation context block
is updated to represent the context of the previous (calling) frame.

The LIBICB$V_BOTTOM_OF STACK flag of the invocation context block is
set if the target frame represents the end of the invocation call chain or if stack
corruption is detected.

Function Value Returned:

stat us Status value. A value of 1 indicates success. When the initial context represents
the bottom of the call stack, a value of 0 is returned.

5.8.3.9. LIB$X86_GET_INVO_HANDLE

A thread can obtain an invocation handle corresponding to any invocation context block by using this
function:

LI B$X86_GET_I NVO HANDLE(i nvo_cont ext, invo_handl e)

Argument OpenVMS Usage Type Access Mechanism
invo_context invo_context blk structure read by reference
invo_handle invo_handle quadword write by reference

168

Chapter 5. OpenVMS x86-64 Conventions

Arguments:

i nvo_cont ext Address of a valid invocation context block.

i nvo_handl e Address of the location into which the invocation context handle is to
be written. If the call fails, the value of the invocation context handle is
LIB$K_INVO HANDLE NULL.

Function Value Returned:
st at us A value of 1 indicates success. A value of 0 indicates failure.

5.8.3.10. LIB$X86_GET_CURR_INVO_HANDLE

A thread can obtain the invocation handle for the current procedure by using this function:

LI B$X86_GET_CURR_| NVO HANDLE(i nvo_handl e)

Argument OpenVMS Usage Type Access Mechanism
invo_handle invo_handle quadword write by reference
Arguments:

i nvo_handl e Address of a quadword into which the invocation handle of the caller will be
written.

Function Value Returned:

st at us A value of 1 indicates success. A value of 0 indicates failure.

5.8.3.11. LIB$X86_GET_PREV_INVO_HANDLE

A thread can obtain an invocation handle of the procedure context preceding that of a specified
procedure context by using this function:

LI B$X86_GET_PREV_| NVO HANDLE(i nvo_handl e_i n, i nvo_handl e_out)

Argument OpenVMS Usage Type Access Mechanism
invo_handle_in invo_handle quadword read by reference
invo_handle out |invo handle quadword write by reference
Argument:

i nvo_handl e_in The address of an invocation handle that represents a target invocation
context.

i nvo_handl e_out Address of the location into which the invocation context handle of the
previous context is to be written. If the call fails, the value of the previous
invocation context handle is LIBSK_INVO_HANDLE NULL.

Function Value Returned:

st at us A value of 1 indicates success. A value of 0 indicates failure.

169

Chapter 5. OpenVMS x86-64 Conventions

Note

Each call to this routine involves a stack walk from the top of the stack to find the procedure matching
the input handle. Consequently, using this routine repeatedly is an inefficient way to walk the stack,
compared to using LIB$X86 GET PREV INVO CONTEXT.

5.8.3.12. LIB$X86_PREV_INVO_END

This routine should be called at the conclusion of call tracing operations to free the memory used
to process unwind descriptors. The call tracing routines are LIB§X86 GET INVO CONTEXT,
LIB$X86 GET PREV INVO CONTEXT, and LIB$X86 GET CURR INVO CONTEXT.

To provide efficient call tracing, some unwind information is tracked in heap storage from one call to
the next. This heap storage should be freed before you release or reuse the invocation context block.

Calling this routine is necessary if the LIBICB§V_UO FLAG CACHE UNWIND flag is set in
the LIBICB$SQ UO FLAGS field of the invocation context block. If this flag is not set, unwind
information is released and recreated at each call, and calling this routine is not required.

LI B$X86_PREV_| NVO _END (i nvo_cont ext)

Argument OpenVMS Usage Type Access Mechanism
invo_context invo_context blk structure modify by reference
Arguments:

i nvo_cont ext Address of a valid invocation context block previously used for call tracing.
Function Value Returned:

st at us A value of 1 indicates success. A value of 0 indicates failure.

5.8.3.13. LIB$X86_PUT_INVO_REGISTERS

The fields of a given procedure invocation context can be updated with new register contents by using
this function:

LI B$X86_PUT_I N\VO_REQ STERS
(invo_handl e, invo_context [,gr_mask] [,xmm nask]
[,yym mask] [, zmm nask] [, apr_mask] [, m sc_mask])

Note that if user override routines are specified in the invocation context block, then they are used to
find and modify the invocation context.

170

Chapter 5. OpenVMS x86-64 Conventions

Argument OpenVMS Usage Type Access Mechanism
invo_handle invo_handle quadword read by reference
invo_context invo_context blk structure read by reference
gr mask mask word 16-bit vector read by reference
xmm_mask mask word 16-bit vector read by reference
ymm_mask mask word 16-bit vector read by reference
zmm_mask mask_longword 32-bit vector read by reference
apr_mask mask_longword 32-bit vector read by reference
misc_mask mask quadword 64-bit vector read by reference
Arguments:

i nvo_handl e
i nvo_cont ext

Handle for the invocation to be updated.

Address of a valid invocation context block that contains new register contents.

At least one of the following mask registers (gr _mask, xmm_nmask, ymm nask, or zmm_nask
must be specified. Each register that is set in the XX_mask argument is updated using the value
found in the corresponding IREG[#], which includes the Al, the Alpha Pseudo Register or XSAVE
area. The IP, RFLAGS, FS, GS and MXCSR registers can also be updated in this way.

gr _mask

xnmm_mask

ymm mask

znmm mask

Address of a 16-bit bit vector, where each bit corresponds to a register field in
the i nvo_cont ext argument.

Bits 0 through 15 correspond to IREG[0] through IREG[15].
Bit 0 corresponds to the argument information register (Al).

If bit 7, which corresponds to SP, is set, then no changes are made.

Address of a 16-bit bit vector, where each bit corresponds to an SSE XMM
register field in the XSAVE area, pointed to from the passed i nvo_cont ext .
Bit 7 corresponds to XMM?7.

Address of a 16-bit bit vector, where each bit corresponds to an SSE YMM
register field in the XSAVE area, pointed to from the passed i nvo_cont ext .
Bit 14 corresponds to YMM 14.

Address of a 32-bit bit vector, where each bit corresponds to an SSE ZMM
register field in the XSAVE area, pointed to from the passed i nvo_cont ext .
Bit 21 corresponds to ZMM?21.

Note that if the same bit position is set in more than one of the xmm_mask, ynm mask, and
zmm _mask, the result is undefined.

apr _nask

m sc_mask

Address of a 32-bit bit vector, where each bit corresponds to a register field in
the pointed to Alpha pseudo-register area passed. Bits 0 through 31 correspond
to Alpha registers RO through R31.

Address of a 64-bit bit vector, where each bit corresponds to a register field in
the passed i nvo_cont ext as follows:

Bit 0=IP

Bit 1=RFLAGS register
Bit 2=FS register

Bit 3=GS register

Bit 4=MXCSR register

171

Chapter 5. OpenVMS x86-64 Conventions

Bit 5=FCW register
Bit 6=FSW register
Bits 7—63 are reserved

Note that IP can only be updated when the invocaton in question has been
interrupted (either by exception or by an interrupt) and is logically previous to an
invocation with the OSSD$V_EXCEPTION FRAME bit set.

Note that MXCSR, FCW, and FSW can only be updated when there is a valid
address and an XSAVE area in the i nvo_cont ext .

Function Value Returned:

st at us A value of 1 indicates success. A value of 0 is returned (and nothing is changed)
in the following circumstances:

* When the invocation handle does not represent an active invocation context.
* When bit 7 of the gr _nmask argument is set.

* When a scratch register has not been saved, or a register's save location or
status cannot be determined.

Caution

Great care must be taken to assure that a valid stack frame and execution environment result;
otherwise, execution may become unpredictable.

5.8.4. Supplemental Invocation Context Access
Routines

The routines described in this section can be used to perform some of the more common operations
involving invocation contexts.

5.8.4.1. LIB$X86_GET_GR

Given an invocation context block and general-purpose register index such that 0 <=1 ndex < 16,
copy the register value to gr _copy, for example, i ndex 4 fetches the invocation context block
IREG([4] value, which represents the contents of % si for the context.

LIB$X86 GET_GR fails if the index represents a scratch register whose contents have not been
realized.

LI B$X86_GET_GR (i nvo_context, index, gr_copy)

Argument OpenVMS Usage Type Access Mechanism
invo_context invo_context blk structure read by reference
index index longword read by value

gr copy integer value quadword write by reference

172

Chapter 5. OpenVMS x86-64 Conventions

Arguments:

i nvo_cont ext Address of a valid invocation context block.

i ndex
gr _copy

Index into the IREG array of the invocation context block.

Address of a quadword to receive the value from the invocation context block.
Function Value Returned:

st at us A value of 1 indicates success. A value of 0 indicates failure.

5.8.4.2. LIB$X86_SET_GR

Given an invocation context block, a general-purpose register index such that 1 <=i ndex < 16, and
a quadword value gr _copy, writes the corresponding invocation context block general register and
uses LIB$X86 PUT INVO REGISTERS to write to the actual context. The invocation context block
remains unchanged if the routine fails.

LIB$X86_SET GR fails if LIB$X86_PUT INVO_REGISTERS fails.

LI B$X86_SET_GR (i nvo_context, index, gr_copy)

Argument OpenVMS Usage Type Access Mechanism
invo_context invo_context blk structure modify by reference
index index longword read by value
gr_copy integer value quadword read by reference
Arguments:

i nvo_cont ext
i ndex

gr_copy

5.8.4.3. LIB$X86_GET_XMM

Address of a valid invocation context block.

Index into the IREG array of the invocation context block.

Address of a quadword that contains the value to be written to the invocation

context block.

Given an invocation context block and SSE (Streaming SIMD Extensions) register index such that
0 <=i ndex < 16, copy the register value to xmm_copy. For example, an i ndex value of 4 fetches
the value, which represents the contents of X M.

LIB$X86 GET MMX returns failure status if there is no corresponding XSAVE area in the
i nvo_cont ext orif the i ndex represents a register or register set not saved in the XSAVE area.

LI B$X86_GET_XMM (i nvo_cont ext, index, xnmm_copy)

Argument OpenVMS Usage Type Access Mechanism
invo_context invo_context blk structure read by reference
index index longword read by value
Xmm_copy SSE register contents |16 bytes write by reference

173

Chapter 5. OpenVMS x86-64 Conventions

Arguments:

i nvo_cont ext Address of a valid invocation context block.

i ndex Index into the register array of the XSAVE area pointed to from the invocation
context block.

Xnmm_copy Address of a 16-byte buffer to receive the contents of the specified register.
Function Value Returned:

st at us A value of 1 indicates success. A value of 0 indicates failure.

5.8.4.4. LIB$X86_SET_XMM

Given an invocation context block, an SSE (Streaming SIMD Extensions) register index, and an SSE
register value in Xmm_copy, writes the corresponding entry in the XSAVE area pointed to from the
invocation context block, and calls LIB§X86 PUT INVO REGISTERS to write the actual context.
The invocation context block remains unchanged if the routine fails.

LIB$X86_SET XMM fails if LIB$X86_PUT_INVO_REGISTERS fails.

LI B$X86_SET_XMM (i nvo_cont ext, index, xmm copy)

Argument OpenVMS Usage Type Access Mechanism
invo_context invo_context blk structure modify by reference
index index longword read by value
Xmm_copy SSE register contents |16 bytes write by reference
Arguments:

i nvo_cont ext Address of a valid invocation context block.

i ndex Index into the register array of the XSAVE area pointed to from the invocation
context block.

Xnmm_copy Address of a 16-byte buffer that contains the value to be written to the
invocation context block.

Function Value Returned:

st at us A value of 1 indicates success. A value of 0 indicates failure.

5.8.4.5. LIB$X86_GET_YMM

Given an invocation context block and SSE (Streaming SIMD Extensions) register index such that
0 <=i ndex < 16, copy the register value to ynmm copy. For example, an i hdex value of 4 fetches
the value, which represents the contents of y nm#.

LIB$X86 GET YMM returns failure status if there is no corresponding XSAVE area in the
i nvo_cont ext or if the index represents a register or register set not saved in the XSAVE area.

LI B$X86_GET_YMM (i nvo_context, index, ynm copy)

174

Chapter 5. OpenVMS x86-64 Conventions

Argument OpenVMS Usage Type Access Mechanism
invo_context invo_context blk structure read by reference
index index longword read by value
ymm_copy SSE register contents |32 bytes write by reference
Arguments:

i nvo_cont ext Address of a valid invocation context block.

i ndex Index into the register array of the XSAVE area pointed to from the invocation
context block.

ymm copy Address of a 32-byte buffer to receive the contents of the specified register.
Function Value Returned:

st at us A value of 1 indicates success. A value of 0 indicates failure.

5.8.4.6. LIB$X86_SET_YMM

Given an invocation context block, an SSE (Streaming SIMD Extensions) register index, and an SSE
register value in ymm_copy, writes the corresponding entry in the XSAVE area pointed to from the
invocation context block, and calls LIB$X86 PUT INVO_REGISTERS to write the actual context.
The invocation context block remains unchanged if the routine fails.

LIB$X86_SET YMM fails if LIB$X86_PUT_INVO_REGISTERS fails.

LI B$X86_SET_YMM (i nvo_context, index, ynm copy)

Argument OpenVMS Usage Type Access Mechanism
invo_context invo_context blk structure modify by reference
index index longword read by value
ymm_copy SSE register contents |32 bytes write by reference
Arguments:

i nvo_cont ext Address of a valid invocation context block.

i ndex Index into the register array of the XSAVE area pointed to from the invocation
context block.

ymm copy Address of a 32-byte buffer that contains the value to be written to the
invocation context block.

Function Value Returned:

st at us A value of 1 indicates success. A value of 0 indicates failure.

5.8.4.7. LIB$X86_GET_ZMM

Given an invocation context block and SSE (Streaming SIMD Extensions) register index such that
0 <=i ndex < 32, copy the register value to zimm_copy. For example, an i hdex value of 4 fetches
the value, which represents the contents of znm4.

175

Chapter 5. OpenVMS x86-64 Conventions

LIB$X86 GET ZMM returns failure status if there is no corresponding XSAVE save area in the
i nvo_cont ext or if the index represents a register or register set not saved in the XSAVE save
area.

LI B$X86_GET_YMM (i nvo_context, index, znm copy)

Argument OpenVMS Usage Type Access Mechanism
invo_context invo_context_blk structure read by reference
index index longword read by value
zmm_copy SSE register contents |64 bytes write by reference
Arguments:

i nvo_cont ext Address of a valid invocation context block.

i ndex Index into the register array of the XSAVE area pointed to from the invocation
context block.
Znmm _copy Address of a 64-byte buffer to receive the contents of the specified register.

Function Value Returned:

st at us A value of 1 indicates success. A value of 0 indicates failure.

5.8.4.8. LIB$X86_SET_ZMM

Given an invocation context block, an SSE (Streaming SIMD Extensions) register index, and an SSE
register value in Zmm_copy, writes the corresponding entry in the XSAVE area pointed to from the
invocation context block, and calls LIB$X86 PUT INVO_REGISTERS to write the actual context.
The invocation context block remains unchanged if the routine fails.

LIB$X86 SET ZMM fails if LIB$X86 PUT INVO REGISTERS fails.

LI B$X86_SET_ZMM (i nvo_cont ext, index, znm copy)

Argument OpenVMS Usage Type Access Mechanism
invo_context invo_context blk structure modify by reference
index index longword read by value
zmm_copy SSE register contents |64 bytes write by reference
Arguments:

i nvo_cont ext

Address of a valid invocation context block.

i ndex Index into the register array of the XSAVE area pointed to from the invocation
context block.
zmm copy Address of a 64-byte buffer that contains the value to be written to the

invocation context block.

176

Chapter 5. OpenVMS x86-64 Conventions

Function Value Returned:

st at us A value of 1 indicates success. A value of 0 indicates failure.

5.8.4.9. LIB$X86_SET_IP

Given an invocation context block and a quadword IP value in i p_copy, write the i p_copy value
to the invocation context block IP and then use LIB$X86 PUT INVO REGISTERS to write to the
actual context. The invocation context block remains unchanged if the routine fails.

LIB$X86_SET IP fails if LIBSX86 PUT INVO_ REGISTERS fails.

LI B$X86_SET I P (invo_context, ip_copy)

Argument OpenVMS Usage Type Access Mechanism
invo_context invo_context blk structure modify by reference
ip_copy integer value quadword read by reference
Arguments:

i nvo_cont ext Address of a valid invocation context block.

i p_copy Address of a quadword that contains the IP value to be written to the invocation
context block.

Function Value Returned:

st at us A value of 1 indicates success. A value of 0 indicates failure.

5.8.4.10. LIB$X86_GET_UNWIND_LSDA

Given an i p_val ue, find the address of the unwind information block language specific data area
(LSDA), and write it to unwi nd_I| sda_p. If not present, then write 0 to unwi nd_| sda_p.

LI B$X86_GET_UNW ND_LSDA (i p_val ue, unw nd_| sda_p)

Argument OpenVMS Usage Type Access Mechanism
ip_value IP value quadword read by reference
unwind_lsda p address quadword write by reference
Arguments:

i p_val ue Address of a location that contains the IP value. i p_val ue is used to find the

unwind information and language-specific data area address.

unwi nd_I sda_p Address of a quadword to receive the address of the language-specific data area,
if there is one.

Function Value Returned:

st at us A value of 1 indicates success. A value of 0 indicates failure.

177

Chapter 5. OpenVMS x86-64 Conventions

5.8.4.11. LIB$X86_GET_UNWIND_OSSD

Given an i p_val ue, find the address of the unwind information block operating system-
specific data area, if present, and write it to unwi nd_ossd_p. If not present, then write 0 to
unwi nd_ossd_p.

LI B$X86_GET_UNW ND_OSSD (i p_val ue, unw nd_ossd_p)

Argument OpenVMS Usage Type Access Mechanism
ip_value IP value quadword read by reference
unwind_ossd_p address quadword write by reference
Arguments:

i p_val ue Address of a location that contains the IP value. i p_val ue is used to find

the unwind information block and the unwind information block operating
system-specific data area address.

unwi nd_ossd_p Address of a quadword to receive the address of the operating system-
specific data area.

Note that the OSSD value is contained in the FDE unwind information (see
Section B.3.2.3) and is therefore not writable.

Function Value Returned:

st at us A value of 1 indicates success. A value of 0 indicates failure.

5.8.4.12. LIB$X86_GET_UNWIND HANDLER_PV

Given an i p_val ue, find the procedure value for the condition handler, if present, and write it to
handl er _pv. If not present, then write 0 to handl er _pv.

LI B$X86_GET_UNW ND_HANDLER PV (i p_val ue, handl er_pv)

Argument OpenVMS Usage Type Access Mechanism

ip_value IP value quadword read by reference

handler pv address quadword write by reference

Arguments:

i p_val ue Address of a location that contains the IP value. i p_val ue is used to find the
unwind information and the unwind condition handler pointer.

handl er _pv A quadword to receive the procedure value for the condition handler, if there is
one.

Function Value Returned:

st at us A value of 1 indicates success. A value of 0 indicates failure.

5.8.4.13. LIB$X86_IS_EXC_DISPATCH_FRAME

Used to determine whether a given IP value represents an exception dispatch frame.

178

Chapter 5. OpenVMS x86-64 Conventions

LI B$X86_| S_EXC_DI SPATCH_FRAME (i p_val ue)

Argument OpenVMS Usage Type Access Mechanism

ip_value IP value quadword read by reference

Arguments:

i p_val ue Address of a quadword that contains the IP value. The i p_val ue is used to
find the operating system-specific data area in the unwind information for this
routine.

Function Value Returned:

st at us Returns 1 if the operating system-specific data area is present and the
EXCEPTION_FRAME flag is set.

Returns 0 if the operating system-specific data area is present and the
EXCEPTION_ FRAME flag is clear.

Returns 0 if the operating system-specific data area is not present.

5.8.4.14. LIB$X86_IS_AST_DISPATCH_FRAME

Used to determine whether a given IP value represents an AST dispatch frame.

LI B$X86_1 S_AST_DI SPATCH_FRAME (i p_val ue)

Argument OpenVMS Usage Type Access Mechanism
ip_value IP value quadword read by reference
Arguments:

i p_val ue Address of a quadword that contains the IP value. The i p_val ue is used to

find the operating system-specific data area in the unwind information block for
this routine.

Function Value Returned:

st at us Returns 1 if the operating system-specific data area is present and the
AST FRAME flag is set.

Returns 0 if the operating system-specific data area is present and the
AST_FRAME flag is clear.

Returns 0 if the operating system-specific data area is not present.

5.8.5. Invocation Context Callback Routines

Advanced users can override the way the call stack is traced by providing custom callback routines.
These routines can be used to perform the following functions:

» Perform a call trace on a process other than the current process.

179

Chapter 5. OpenVMS x86-64 Conventions

e Override the heap storage mechanism used to allocate memory used during the analysis of unwind
descriptors.

The user override callback mechanism provides a user ident value that is passed to each callback
routine. The user ident value is stored in the LIBICB$IH _UO_IDENT field of the invocation context
block.

The routines described in this section must be provided to override the call stack walk.

Note

The callback routines cannot be used with the following routines, which are not passed a context
block:

« LIB$X86 GET CURR _INVO HANDLE

« LIB$X86 GET PREV INVO HANDLE

5.8.5.1. The Get Unwind Information Routine

Place a procedure value for this routine in the LIBICB§PH_UO_GETUEINFO field of the invocation
context block.

int (* getueinfo) (uint64 ip, void *get _ue_block, void *nane, ...);

This routine should mimic SYSSGET UNWIND ENTRY INFO for the target process. See
Section B.5 for detailed argument descriptions and return status, with the following notes:

The name argument is not used, and can be ignored. If a read memory callback has been specified,
the contents of LIBICB§PH UO READ MEM are passed as a fourth argument, and the contents of
LIBICB$PH_UO_IDENT are passed as a fifth argument, otherwise the routine is called with three
arguments.

5.8.5.2. The Get Initial Context Routine

Place a function pointer for this routine in the LIBICB§PH_UO_GETCONTEXT field of the
invocation context block.

The get initial context routine is used to seed the invocation context block from the target process.
This routine should initialize the invocation context block structure with the preserved registers,

as well as applicable control and status registers, from the target process. This callback routine is
used by LIB$X86 GET CURR_INVO CONTEXT and should be followed by at least one call to
LIB$X86 GET PREV INVO_CONTEXT to generate a working context.

int (* getcontext) (void *invo context, uint64 ident);

Argument OpenVMS Usage Type Access Mechanism
invo_context invo_context blk structure modify by reference
ident user_value quadword read by value

®Routine descriptions in this section use a C-like function prototype notation.

180

Chapter 5. OpenVMS x86-64 Conventions

Arguments:

i nvo_cont ext The address of the invocation context block.

i dent Specifies a user ident value from the invocation context block.

Function Value Returned:

st at us A value of 1 indicates success. A value of 0 indicates failure.

5.8.5.3. The Read Memory Routine

Place a function pointer for this routine in the LIBICBSPH _UO_READ_ MEM field of the invocation
context block.

The read memory routine is used to transfer data from the target process.

int (* read_nmem (void *dst, uint64 src, size_t length, uint64 ident);

Argument OpenVMS Usage Type Access Mechanism
dst memory_access byte array write by reference
src memory_address quadword read by value
length size t longword read by value
ident user_value quadword read by value
Arguments:

dst A local memory address and the destination for the read operation.

src An address in the target process to be read.

| engt h The length in bytes to be read.

i dent Specifies a user ident value from the invocation context block.

Function Value Returned:

st at us A value of 1 indicates success. A value of 0 indicates failure.

5.8.5.4. The Write Memory Routine

Place a procedure value for this routine in the LIBICBSPH_UO_WRITE MEM field of the
invocation context block.

The write memory routine is used to transfer data to the target process. It is used by
LIB$X86 PUT INVO REGISTERS for a register that has been saved in memory.

int (* wite nen) (void *src, uint64 dst, size t length, uint64 ident);

Argument OpenVMS Usage Type Access Mechanism
src memory_access byte array read by value
dst memory_address quadword write by reference
length size t longword read by value
ident user_value quadword read by value

181

Chapter 5. OpenVMS x86-64 Conventions

Arguments:

src A local memory address and the source for the write operation.
dst An address in the target process to be written.

| engt h The length in bytes to be written.

i dent Specifies a user ident value from the invocation context block.

Function Value Returned:

st at us A value of 1 indicates success. A value of 0 indicates failure.

5.8.5.5. The Write Register Routine

Place a procedure value for this routine in the LIBICB§PH_UO_WRITE REG field of the invocation
context block.

The write register routine is used to write a register in the target process. It is used by
LIB$X86 PUT INVO REGISTERS for a register that has not been saved in memory.

This routine is optional, or a subset of registers can be implemented, in this case
LIB$X86 PUT INVO REGISTERS will return an error if this routine is not present, or is unable to
write the desired register.

int (* wite_reg)
(i nt whichReg, uint64 value_ 1, uint64 value 2, uint64 ident);

Argument OpenVMS Usage Type Access Mechanism
whichReg enumeration longword read by value

value p address quadword read by value

ident user_value quadword read by value
Arguments:

whi chReg Indicates the register to be written (see enum in libicb.h).

val ue_p Specifies the address of the register contents to be written. The number of bytes

written is determined by the size of the register.

i dent Specifies a user ident value from the invocation context block.

Function Value Returned:
st at us A value of 1 indicates success. A value of 0 indicates failure.

5.8.5.6. The Memory Allocation Routine

The memory allocation routine is used to allocate heap storage required during the analysis of unwind
descriptors. This routine should mimic the behavior of the C RTL routine malloc.

void * (* malloc) (size_t size, uint64 ident);

182

Chapter 5. OpenVMS x86-64 Conventions

Argument OpenVMS Usage Type Access Mechanism
length size t longword read by value
ident user_value quadword read by value
Arguments:

| engt h The length in bytes of memory to be allocated. The returned memory block

should be aligned on a 16-byte boundary.

i dent Specifies a user ident value from the invocation context block.

Function Value Returned:

ptr Address of the memory block allocated, or 0 for failure.

In the case where local memory is being read, that is, you have not overridden the read memory
routines, the malloc requests are reduced to:

* One Unwind Context block of size LIBICBSK _CONTEXT BLK SIZE

* One Unwind Descriptor block of size LIBICBSK DESCRIPTOR BLK SIZE

» Several Unwind region blocks of size LIBICBSK REGION BLK SIZE

* Several Unwind region label blocks of size LIBICB$SK REGIONLABEL BLK SIZE

The number of the last two required depends on the complexity of the unwind descriptors for a given
procedure being traced.

5.8.5.7. The Memory Deallocation Routine

The memory deallocation routine is used to free heap storage allocated by the memory allocation
routine (see Section 5.8.5.6). This routine should mimic the behavior of the C RTL routine free.

void (* free) (void * ptr, uint64 ident);

Argument OpenVMS Usage Type Access Mechanism

ptr address quadword read by value

ident user_value quadword read by value

Arguments:

ptr Address of a memory block previously allocated by a call to the user malloc
routine.

i dent Specifies a user ident value from the invocation context block.

Function Value Returned:

None.

5.9. Data Alignment and Layout

On x86-64 hardware, a memory reference to data that is not naturally aligned does not result
in alignment faults. However, natural alignment is nonetheless generally more efficient and
recommended on OpenVMS x86-64.

183

Chapter 5. OpenVMS x86-64 Conventions

In addition, common blocks, dynamically allocated (heap) regions (for example from malloc), and
global data items greater than 8 bytes should be aligned on a 16-byte boundary.

5.9.1. Scalars

For scalar data, natural alignment is achieved as shown in Table 5.22.

Table 5.22. Natural Alignment Recommendations

Data Type Alignment Starting Position

8-bit character string Byte boundary

16-bit integer Address that is a multiple of 2 (word alignment)
32-bit integer Address that is a multiple of 4 (longword alignment)
64-bit integer Address that is a multiple of 8 (quadword alignment)
F_floating Address that is a multiple of 4 (longword)

F_floating complex

D floating Address that is a multiple of 8 (quadword)
D_floating complex

G _floating Address that is a multiple of 8 (quadword)
G_floating complex

S floating Address that is a multiple of 4 (longword)
S floating complex

T floating Address that is a multiple of 8 (quadword)
T floating complex

X floating Address that is a multiple of 16 (octaword)
X _floating complex

For aggregates such as strings, arrays, and records, the data type to be considered for purposes of
alignment is not the aggregate itself, but rather the elements of which the aggregate is composed. The
alignment requirement of an aggregate is that all elements of the aggregate be naturally aligned. For
example, varying 8-bit character strings must start at addresses that are a multiple of at least 2 (word
alignment) because of the 16-bit count at the beginning of the string; 32-bit integer arrays start at a
longword boundary, irrespective of the extent of the array.

However, some languages allow definition of aggregate types with an alignment that is greater than
that of any of its components, or provide predefined types with such an alignment (for example, the
_ m28, nP56,and ___nb12 types in C/C++ for x86-64). The alignment of such types becomes
the natural alignment for elements of those types when included in a containing aggregate.

The rules for passing a record in an argument that is passed by immediate value (see Section 5.7)
always provide quadword alignment of the record value independent of the normal alignment
requirement of the record. If deemed appropriate by an implementation, normal alignment can be
established within the called procedure by making a copy of the record argument at a suitably aligned
location.

5.9.2. Record Layout Conventions

The OpenVMS x86-64 calling standard rules for record layout are designed to provide good run-time
performance on all implementations of the x86-64 architecture and to provide the required level of
compatibility with conventional VAX, Alpha, and 164 operating environments.

184

Chapter 5. OpenVMS x86-64 Conventions

Therefore, this standard defines the following record layout conventions:
» Those optimized for optimal access characteristics (referred to as aligned record layouts)

* Those compatible with conventions that are traditionally used by VAX languages (referred to as
VAX compatible record layouts)

Only these record layouts may be used across standard interfaces or between languages. Languages
can support other language-specific record layout conventions, but such layouts are nonstandard.

The aligned record layout conventions should be used unless interchange is required with
conventional VAX applications that use the OpenVMS VAX compatible record layouts.

5.9.2.1. Aligned Record Layout

The aligned record layout conventions ensure that:
» All components of a record or subrecord are naturally aligned.

* Layout and alignment of record elements and subrecords are independent of any record or
subrecord in which they are embedded.

* Layout and alignment of a subrecord is the same as if it were a top-level record.

* Declaration in high-level languages of standard records for interlanguage use is straightforward
and obvious, and meets the requirements for source-level compatibility between OpenVMS
x86-64 languages and OpenVMS 164, Alpha, and VAX languages.

The aligned record layout is defined by the following conventions:

* The components of a record must be laid out in memory corresponding to the lexical order of their
appearance in the high-level language declaration of the record.

* The first bit of a record or subrecord must be directly addressable (byte aligned).

* Records and subrecords must be aligned according to the largest natural alignment requirements of
the contained elements and subrecords.

» Bit fields (packed subranges of integers) are characterized by an underlying integer type that is a
byte, word, longword, or quadword in size together with an allocation size in bits. A bit field is
allocated at the next available bit boundary, provided that the resulting allocation does not cross
an alignment boundary of the underlying type. Otherwise, the field is allocated at the next byte
boundary that is aligned as required for the underlying type. (In the later case, the space skipped
over is left permanently not allocated). In addition, if necessary, the alignment of the record as a
whole is increased to that of the underlying integer type.

* Unaligned bit strings, unaligned bit arrays, and elements of unaligned bit arrays must start at
the next available bit in the record. No fill is ever supplied preceding an unaligned bit string,
unaligned bit array, or unaligned bit array element.

* All other components of a record must start at the next available naturally aligned address for the
data type.

* The length of a record must be a multiple of its alignment. (This includes the case when a record is
a component of another record).

185

Chapter 5. OpenVMS x86-64 Conventions

» Strings and arrays must be aligned according to the natural alignment requirements of the data
type of which the string or array is composed.

* The length of an array element is a multiple of its alignment, even if this leaves unused space at its
end. The length of the whole array is the sum of the lengths of its elements.

5.9.2.2. OpenVMS VAX Compatible Record Layout

The OpenVMS VAX compatible record layout is defined by the following conventions:

* The components of a record must be laid out in memory corresponding to the lexical order of their
appearance in the high-level language declaration of the record.

» Unaligned bit strings, unaligned bit arrays, and elements of unaligned bit arrays must start at
the next available bit in the record. No fill is ever supplied preceding an unaligned bit string,
unaligned bit array, or unaligned bit array element.

* All other components of a record must start at the next available byte in the record. Any unused
bits following the last-used bit in the last-used byte of each component must be filled out to the
next byte boundary so that any following data starts on a byte boundary.

* Subrecords must be aligned according to the largest alignment of the contained elements and
subrecords. A subrecord always starts at the next available byte unless it consists entirely of
unaligned bit data and it immediately follows an unaligned bit string, unaligned bit array, or a
subrecord consisting entirely of unaligned bit data.

* Records must be aligned on byte boundaries.

5.10. Addressing

Industry standard conventions for x86-64 Position Independent Code (PIC) generally make use of a
Global Offset Table (GOT) to facilitate addressing code and data that is not known or assured to be
within a 32-bit offset of the reference. The GOT is itself a data segment that is assured “near” the code
so that PC-relative addressing with a 32-bit offset is sufficient to access that GOT. The GOT holds 64-
bit addresses that allow access to any location in the system 64-bit address space.

5.10.1. Memory Models

Almost all x86-64 memory instructions have the size of the displacement field limited to 32 bits. This
means that a single instruction can directly address only £2 GB of memory. This limitation gives rise
to three memory models:

* The small code model—all code and data is within 2 GB.
* The large code model—code and data is not limited to be within 2 GB.

* The medium code model—code and data is assumed within 2 GB while specifically marked large
model data may not.

OpenVMS compilers generate small model position-independent code using indirect addressing of all
data to allow static data to be farther than 2 GB away from code. Because direct addressing is used
only for entries in the Global Offset Table, OpenVMS compilers do not distinguish between the small
and medium memory models. In effect, OpenVMS compilers support the medium data model for
applications.

186

Chapter 5. OpenVMS x86-64 Conventions

Foreign compilers and object modules may use any memory model. The OpenVMS linker and image
activator support all memory models.

5.10.2. Inter-Segment Addressing

In industry standards for x86-64, shareable images may be loaded anywhere, but all segments within
a shared library must have the same positions relative to each other that they were assigned by the
linker. On OpenVMS x86-64, the image activator may map (logically load) segments of a shareable
image independently of each other.

The independent loading of segments influences the way code addresses data. Industry standard
x86-64 code uses PC-relative addressing to access not only the Global Offset Table, but also any
other data that is known to be local to the image. Because segments may be mapped independently,
this standard requires that code use indirect addressing to access all data except for the Global Offset
Table. With this scheme, the code segment and the Global Offset Table (linkage) segment are the only
segments whose relative positions have to be maintained.

In an image with multiple code segments, each code segment has its own Global Offset Table.

Non-VSI compilers and object modules may assume a small code model and use PC-relative data
addressing exclusively. Both the linker and the image activator maintain the relative positions of code
segments, Global Offset Tables, and other segments that are referenced in a PC-relative manner. In
theory, the code could be adjusted with image relocations; in practice, the limited address range of the
small code model (£2 GB) precludes this.

187

Chapter 5. OpenVMS x86-64 Conventions

188

Chapter 6. Signature Information and
Translated Images
(Alpha and 164 Systems)

To support interoperation between images built from native OpenVMS Alpha code and images
translated from OpenVMS VAX code, native Alpha compilers can optionally generate information
that describes the parameters and result of a procedure. Similarly, for interoperation between images
built from native OpenVMS 164 code and images translated from VAX or Alpha code, 164 compilers
can also optionally generate information that describes the parameters and result of a procedure. This
auxiliary information is called signature information.

Translated VAX code on Alpha and 164 systems uses VAX argument list and function return
conventions as described in Section 2.4 and Section 2.5.

Translated Alpha code on 164 systems uses Alpha argument list and function return conventions as
described in Chapter 3.

The following sections describe the conventions for using signature information to control the passing
of arguments and returning a function value when a native procedure passes control to a translated

procedure and vice versa.

The Translated Image Executive (TIE) is the user-mode support facility (itself a sharable image) that
performs the following functions:

* Mediates calls between native and translated code
¢ Controls execution of translated code

» Performs interpretation where necessary

6.1. Overview

OpenVMS compilers for Alpha and 164 provide a compilation option that causes signature
information to be included in the resulting object file. To support interoperation between OpenVMS
native and translated code, the native code must contain signature information.

With one exception related to indirect calls (see Section 6.1.1.3 and Section 6.1.2.3), code generation
is not affected by the presence or absence of translated code support.

The operation of translated images on OpenVMS Alpha and 164 systems is very similar, though
different in certain details.

6.1.1. Translated VAX Images on Alpha Systems

When a VAX image is translated to an Alpha image, the VAX registers R0—15 are represented using
the lower half of the corresponding Alpha registers RO—15 at call interface boundaries. No “type
conversion” is performed in making parameters from either native or translated code available to each
other.

189

Chapter 6. Signature Information and Translated Images (Alpha and 164 Systems)

6.1.1.1. Direct Calls From Translated to Native Code

When the TIE encounters a call in translated code that passes control to native Alpha code, it obtains
signature information for the target procedure using the PDSC$SW_SIGNATURE_ OFFSET field of
the target procedure descriptor (see Section 3.4.1).

If the value in the PDSC$W_SIGNATURE OFFSET is zero, then no signature information is
available, the call cannot be performed, and the TIE signals an error.

Otherwise, the TIE uses the signature information to create an appropriate Alpha argument list (in the
integer registers and stack as appropriate), then calls the native procedure. When control returns, the
TIE obtains the returned result (if any), makes it available to translated code, and resumes translated
code execution.

6.1.1.2. Direct Calls From Native to Translated Code

Calls from native Alpha code to a routine in a translated image depend on special linker and image
activator support. If the linker can confirm that the target of the call is also in native code (because the
target is local to the same image), then the call is resolved normally. Otherwise, the linker passes the
compiler generated signature information for use by the image activator.

If the image activator can determine that the target of the call is also in native code, then the call
is resolved normally. Otherwise, the image activator creates a bound procedure descriptor (see
Section 3.6.4) and resolves the procedure value to that descriptor. This descriptor is setup to pass
control to a special TIE entry point which obtains the target VAX procedure value and signature
information from that same descriptor.

6.1.1.3. Indirect Calls From Native to Translated Code

If interoperation with translated images is not required, then an indirect call is made as described in
Section 3.6.3. If interoperation with translated images must be considered, the procedure value (in
R4 in the following example) might be the address of a VAX entry point or the address of an Alpha
procedure descriptor.

A VAX entry point can be dynamically distinguished from an Alpha procedure descriptor

by examining bits 12 and 13 of a VAX entry call mask, which are required to be 0 by the

VAX architecture. For an Alpha procedure, bit 12 corresponds to the PDSC$V_NATIVE

flag, which is required to be set in all Alpha procedure descriptors. Bit 13 corresponds to the
PDSCS$V_NO JACKET flag, which is currently required to be set but reserved for enhancements to
this standard in all Alpha procedure descriptors.

If the procedure value is determined to correspond to an Alpha procedure, then the call can be
completed as discussed. If the procedure value is determined to correspond to a VAX procedure, then
the call must be completed using system TIE facilities that will effect the transition into and out of the
code of the translated image.

Example 6.1 illustrates a code sequence for examining the procedure value.

Example 6.1. Code for Examining the Procedure Value

LDL R28, 0(R4) ;Load the flags field of the target PDSC
MoV #Al LI TERAL, R25 ; Load Argurent Information register

SRL R28, #PDSC$V_NO_JACKET, R26; Posi ti on jacket fl ag

BLBC R26, CALL_JACKET ;1f clear then jacket needed

190

Chapter 6. Signature Information and Translated Images (Alpha and 164 Systems)

LDQ R26, 8(R4) ; Entry address to scratch register
MoV R4, R27 ; Procedure value to R27
JSR R26, (R26) ;Call entry address.

back_in_line:
; Rest of procedure code goes here

TRANSLATED: ; Generated out of line, R2 contains a
LDQ R26, N_TO T_LKP(R2) ; Entry address to scratch register
LDQ R27, N TO T_LKP+8(R2) ;Load procedure val ue
MoV R4, R23 ; Address of routine to call to R23
JSR R26, (R26) ;Call jacket routine
BR back _in_line ; Return to normal code path

CALL_JACKET: ;

SRL R28, #PDSC$V_NATI VE, R28; Jacketing for translated or native?

LDA R24, PSI G_QUT(R2) ; Pass address of our argunent
signature information in R24

BLBC R28, TRANSLATED ;1f clear, then translated jacketing

(Native Jacketing Reserved for Future Use)

BR back _in_line ; Return to normal code path

In Example 6.1, TIE jacketing functionality is provided by the SYSS§NATIVE TO TRANSLATED
routine. This system procedure is called with the actual arguments for the target procedure in their
normal locations (as though the target procedure were an Alpha procedure) and with two additional,
nonstandard arguments:

* R23 contains the procedure value for the target VAX procedure.

* R24 contains the address of a signature information block for the call, as described in Section 6.2.
There are two special address values:

* The value zero (null) indicates that no signature information is available. As a result, if the call
is to a translated image, then the call will fail.

* The value one indicates a default signature applies, based on information in the argument
information register (see Section 6.2.5).

The conventions just described are normally accomplished using the special service routine
OTSSCALL PROC . The actual parameters to the target function are passed to OTSSCALL PROC
as though the target routine is native code that is being invoked directly. In addition,

OTS$CALL PROC receives two additional parameters in registers R23 and R24 as described above
for SYSSNATIVE TO TRANSLATED .

6.1.2. Translated Images on 164 Systems

When a VAX or Alpha image is translated to an 164 image, the VAX or Alpha registers become
associated with 164 registers for the purpose of making a call according to the following mapping:

VAX/Alpha Register 164 Register
RO RS
R1 R9

In the case of a VAX image, the lower half of the corresponding 164 register is used.

For example, at the time of a call from an Alpha to an 164 image, the contents of the Alpha R1 register
become the initial contents of the 164 R9 register when native execution begins. Similarly, at the time

191

Chapter 6. Signature Information and Translated Images (Alpha and 164 Systems)

of a call from an 164 image to a VAX image, the contents of the lower half of the 164 R8 register
become the initial contents of the VAX RO register.

For calls between a translated VAX and a translated Alpha image on 164 systems, the rules for calls
between translated VAX and native Alpha images apply and make use of signature information in the
translated Alpha image.

OpenVMS 164 implements a static mapping that:

» Allows an address corresponding to a translated image to be identified

e Specifies whether it is an Alpha or VAX translated image

However, the means for creating and accessing this mapping is not part of this calling standard.

It is not possible for dynamically generated non-native code to be reflected in this mapping. As a
result, OpenVMS does not support translated images that dynamically generate non-native code and
call the in-memory result.

6.1.2.1. Calls From Translated to Native 164 Code

When the TIE encounters a call in translated code that passes control to native 164 code, it obtains
signature information for the target routine from the function descriptor for that routine.

If the value in the signature information field is zero, then no signature information is available, the
call cannot be performed, and the TIE signals an exception.

Otherwise, the TIE uses the signature information to create an appropriate 164 argument list (in the
stacked registers and memory stack as appropriate), then calls the target native function. When control
returns, the TIE obtains the returned result (if any), makes it available to the translated code, and
resumes translated code execution.

To assure that any routine that can potentially be called from translated code has either signature
information or a zero indicating the lack of signature information, it is necessary that every official
function descriptor be allocated with room for the signature information field.

6.1.2.2. Direct Calls From Native 164 Code to Translated Code

Calls from native 164 code to a routine in a translated image depend on special linker and image
activator support. If the linker can confirm that the target of a call is also in native code (because the
target is local to the same image), then the call is resolved normally. Otherwise, the linker creates

an import stub and an associated local function descriptor in the linkage table in the normal way.
However, in this case the local function descriptor must be a jacket function descriptor, as described in
the following paragraphs.

The linker also passes through the compiler generated signature information for use by the image
activator. If the image activator can determine that the target of a call is also in native code, then the
jacket function descriptor is initialized as for a simple function descriptor (the extra space in the jacket
descriptor is unused). Otherwise, the image activator initializes the jacket function descriptor so that
the call using that descriptor will transfer control into the TIE.

A jacket function descriptor is similar to a bound function descriptor (see Section 4.7.7) except that
it initially transfers control to an entry point in the TIE. The TIE uses the signature information field
together with other information in the descriptor to construct an appropriate parameter list for the
translated code and effects the transfer of control into that code. When the call completes, control
returns to the TIE, which sets up the return value for the native code and returns to normal execution.

192

Chapter 6. Signature Information and Translated Images (Alpha and 164 Systems)

A jacket function descriptor consists of the following fields:

* Entry (code) address of the TIE entry point that handles transfers of control into translated code
» Pseudo-GP value, which is the address of the jacket function descriptor

* Signature information for the call (see Section 6.1.3)

* Function pointer to the official function descriptor for the entry point in the translated image (or
other unique identification that can be interpreted by the TIE)

More complete details are beyond the scope of this Standard.

Calls made by translated code to other entry points in translated code are not visible to the OpenVMS
164 calling standard. From the outside, a call from native 164 code to translated code looks like a
single call to the TIE entry point, regardless of how many calls are made within the translated image.

6.1.2.3. Indirect Calls From Native to Translated Code

When translated code support is not requested, the code generated for calling a dynamic function
value follows the 164 conventions. In particular, the target code address and target global pointer value
are obtained from the function pointer and used in the standard way (see Section 4.7.3.2).

When translated code support is requested, the compiled code must instead call a special
service routine, OTSSCALL PROC. The actual parameters to the target function are passed to
OTSSCALL_PROC as though the target routine is native code that is being invoked directly. In
addition, OTSSCALL PROC receives two additional parameters in special registers:

* R17 contains the address of a signature information block for the call (see Section 6.1.3).
* R18 contains the function pointer for the target of the call.

OTSSCALL PROC first determines whether the target routine is part of a translated image or not
using the static mapping mentioned earlier.

If the target is in native code, then OTSSCALL PROC completes the call in a way that makes
its mediation transparent (that is, control need not pass back through it for the return). The native
parameters are used without modification.

If the target is in translated code, then OTS$CALL PROC passes control to the TIE which handles
the call as described in Section 6.1.2.2.

6.1.3. Signature Information Fields in Function
Descriptors

The signature information field of the function descriptor is encoded using the low three bits of the
field as a tag that specifies the interpretation of the rest of the field. Table 6.1 contains the meaning of
the values specified by the tag value.

Table 6.1. Signature Information Field Tag Values

Tag Value Meaning
(low 3 bits)

0 The signature information field as a whole (including the tag bits) is the address of
a signature information block (see Section 6.2). However, if the address is null, no
signature information is available.

193

Chapter 6. Signature Information and Translated Images (Alpha and 164 Systems)

Tag Value Meaning

(low 3 bits)

1 Default signature information applies, which is based on the information in the
argument information register (see Section 6.2.5). In this case the rest of the field
must be zero.

2 The field as a whole is a signature information block (see Section 6.2) that is
immediately contained in the function descriptor. This can only be used for a
signature information block whose size is less than or equal to 64 bits (which can
represent up to 12 arguments).

3—7 Reserved.

6.2. Signature Information Blocks

Signature information blocks on Alpha and 164 systems are nearly identical in content and
interpretation. However, they differ in the following ways:

* Signature information blocks are associated with the corresponding Alpha procedure descriptor or
164 function descriptor differently (see Section 6.1).

» Signature information fields are arranged in different orders.

* An 164 signature information block includes control information that is not present in an Alpha
signature information block (see Section 6.1.3).

6.2.1. Signature Information on Alpha Systems

If a procedure is compiled with signature information, PDSC$W_SIGNATURE OFFSET
contains a byte offset from the procedure descriptor to the start of a signature information
block. The maximum size of the signature information block is 72 bytes (defined by constant
PSIGSK MAX SIZE). The fields defined in the signature information block are illustrated in
Figure 6.1 and described in Table 6.2.

Figure 6.1. Alpha Signature Information Block (PSIG)

PSIG quadword aligned
e :0 (from PDSCSW
SU:I;\GI%QHY FIEG_Azl;Eil_INFO F3F.ICI?—I' " SIGNATURE
< - > < 4> <I:U> _OFFSET)
MEMORY_ARG_INFO ARG_COUNT 4
(for argument counts 7 to 255) <7:0>
8
PSIGSK_MAX_SIZE =72
* FRET = PSIGSV_FUNC_RETURN
ZK-4713A-GE

6.2.2. Signature Information on 164 Systems

Signature information is represented in Figure 6.2, and is explained in Table 6.2, Table 6.3, and
Table 6.4.

194

Chapter 6. Signature Information and Translated Images (Alpha and 164 Systems)

Signature information is defined only for standard calls, that is, for normal parameters passed
using standard mechanisms and locations as defined in this calling standard. For all other cases, the
signature information will be null so that an attempted call between native and translated code will
fail.

Figure 6.2. 164 Signature Information Block (PSIG)

quadword aligned

0
REG_ARG_INFO ARG_COUNT |*SUMM |*FRET X CTRL
<55:24> <23:16> <15:12>|<11:8> | <7:3> |<2:0>
8
MEMORY_ARG_INFO
(for arguments 9 to 255)

[]

PSIG$K_MAX_SIZE = 72 bytes
* FRET = PSIG$V_FUNC_RETURN
* SUMM = PSIG$V_SUMMARY

VM-1028A-Al

6.2.3. Signature Information Block Content

The content of Alpha and 164 signature information blocks is described in Tables 6.2, 6.3, and 6.4.
Table 6.2 omits reference to particular bit positions. In these tables and subsequence sections, the
following logical names are used to refer to corresponding Alpha and Intel Itanium registers:

Name Interpretation Alpha |Itanium Register
Register
RetVal First (or only) integer return register RO RS
RetVal2 Second integer return register R1 R9
RetFlt First (or only) floating-point return FO F8for S_and T floating
register R8 for F ,D , and G_floating
RetFl1t2 Second floating-point return register F1 F9forS and T floating
R9forF ,D , and G _floating

Table 6.2. Contents of the Signature Information Block (PSIG)

Field Name Contents

PSIG$V_CTRL (164 systems only) A 3-bit control information field. Not used in

a signature information block. Contents are unspecified. Allows a
signature information block to occur as an immediate value in the
signature information field of a function descriptor (see Section 6.1.3).

PSIG$V_X (164 systems only) A 5-bit unused field. Must be zero.

PSIGSV_FUNC RETURN |A 4-bit field that describes which registers are used for the function
value return (if there is one) and what format is used for those
registers.

Table 6.4 lists and describes the possible encoded values of
PSIG$V_FUNC_RETURN.

PSIGSV_REG_ARG INFO |A field that is divided into groups of 4 bits that correspond to the
arguments that can be passed in registers. There are six groups for a

195

Chapter 6. Signature Information and Translated Images (Alpha and 164 Systems)

Field Name

Contents

total of 24 bits on Alpha systems and eight groups for a total of 32 bits
on 164 systems. The first group (lowest order bits) describes the first
register argument, the second group (next lowest order bits) describes
the second register argument, and so on. Table 6.3 lists the possible
codes.

PSIGSV_SUMMARY

A 4-bit field that contains coded argument signature information as
follows:

Bit Name Meaning

0,1 PSIGSM_SU ASUM |On Alpha, summary of
arguments 7 through
PSIG$B_ARG_COUNT.
On Itanium, summary

of arguments 9 through
PSIG$B_ARG_COUNT:

00 = All arguments are 64-bit or
not used

01 = All arguments are 32-bit
sign-extended or not used

10 = Reserved
11 = Other (not 00 or 01)

2 PSIGSM_SU VLIST |VAX formatted argument list
expected

3 Must be 0 (reserved)

PSIGSM_SU_ASUM values of 00 and 01 (binary) allow a quick test
for the occurrence of either an all 32-bit or an all 64-bit argument list.
The values for the PSIGSV_MEMORY ARG INFO field must be
valid even when these occurrences apply.

PSIGSB ARG COUNT

Unsigned byte (bits 0—7) that specifies the number of 64-bit
argument items described in the argument signature information. This
count includes the initial arguments that are passed in registers.

PSIGSV_MEMORY _
ARG _INFO

Array of 2-bit values that describe each of the arguments through
PSIG$B ARG _COUNT that are passed in memory (rather than
registers). PSIGSS MEMORY ARG INFO data is only defined for
the arguments described by PSIG$B. ARG _COUNT. These memory
argument signature bits are defined as follows:

Value |Name Meaning1

0 MASESK MA Q 64-bit argument

1 Reserved

2 MASESK MA 132 32-bit sign-extended argument
3 Reserved

For a more detailed description of these conversions, see Section 6.2.4.

Table 6.3. Register Argument Signature Encodings

Value Name

Meaning1 2

0 RASESK RA NOARG |Argument is not present

196

Chapter 6. Signature Information and Translated Images (Alpha and 164 Systems)

Value |Name Meaning1 2

1 RASESK RA Q 64-bit argument passed in an integer register

2 RASES$K RA 132 32-bit argument sign-extended to 64 bits passed in an integer
register

3 RASESK RA U32 32-bit unsigned argument zero-extended to 64 bits passed in an
integer register

4 RASES$SK RA FF F floating argument passed in a floating-point register on Alpha
or a general register on 164 systems

5 RASESK RA FD D_floating argument passed in a floating-point register on Alpha
or a general register on 164 systems

6 RASESK RA FG G _floating argument passed in a floating-point register on Alpha
or a general register on 164 systems

7 RASESK RA FS S _floating argument passed in a floating-point register

8 RASESK RA FT T floating argument passed in a floating-point register

9—I15 Reserved for future use

'For a more detailed description of these conversions, see Section 6.2.4.

The X floating and X_floating complex data types do not appear in this table because these types are not passed using the by value
mechanism (see Section 3.7.5.1 and Section 4.7.5.1).

Table 6.4. Function Return Signature Encodings

Value |Name Meaning1 2
0 PSIGSK FR 164 64-bit result in RetVal
or No function result provided
or First parameter mechanism used
1 PSIGSK _FR D64 64-bit result with low 32 bits sign-extended in RetVal and high
32 bits sign-extended in RetVal2
2 PSIGSK FR 132 32-bit sign-extended to 64-bit result in RetVal
3 PSIG$K FR U32 32-bit unsigned result (zero-extended) in RetVal
4 PSIG$SK FR FF F floating result in RetFlt
5 PSIG$K _FR FD D floating result in RetFIt
6 PSIG$K FR FG G_floating result in RetFIt
7 PSIGSK FR _FS S _floating result in RetFIt
8 PSIG$SK FR FT T floating result in RetFlt
9,10 Reserved for future use
11 PSIG$K FR _FFC F_floating complex result in RetFlIt and RetFIt2
12 PSIG$SK _FR _FDC D_floating complex result in RetFlt and RetF1t2
13 PSIGSK FR FGC G_floating complex result in RetFIt and RetF1t2
14 PSIG$SK FR FSC S floating complex result in RetFlt and RetF1t2
15 PSIG$K FR FTC T floating complex result in RetF1t and RetFIt2

"For a more detailed description of these conversions, see Section 6.2.4.

The X floating and X_floating complex data types do not appear in this table because these types are not passed using the by value
mechanism (see Section 3.7.5.1 and Section 4.7.5.1).

197

Chapter 6. Signature Information and Translated Images (Alpha and 164 Systems)

6.2.4. Call Parameter PSIG Conversions

Note that for the purposes of translated images, an address on OpenVMS Alpha or 164 is described
using RASESK RA 132 or MASE$SK MA 132 as appropriate.

6.2.4.1. Native-Alpha-to-Translated-VAX PSIG Conversions

A detailed description of the native-to-translated call conversions for the PSIGSV_REG_ ARG _INFO
and the PSIGSV_FUNC_RETURN field values is given in Table 6.5.

Table 6.5. Native-to-Translated Conversion of the PSIG Field Values

Name

Description

PSIGSV_REG_ARG_INFO Field Conversions

RASESK_RA Q

The low-order 32 bits of the native integer register contents are used to

fill the first of two longword entries in the VAX formatted argument list,
while the high-order 32 bits are used to fill the second longword entry. This
counts as two arguments in the VAX formatted argument list.

RASESK_RA 132
RASESK_RA_U32

The low-order 32 bits of the integer register contents are used to fill one
longword entry in the VAX formatted argument list passed to the translated
procedure. The high-order 32 bits are ignored. This counts as one argument
in the VAX formatted argument list.

RASESK_RA_FF

The single-precision contents of a floating-point register are used to fill one
longword entry in the VAX formatted argument list passed to the translated
procedure. This counts as one argument in the VAX formatted argument
list. The Alpha store instruction STF (or an equivalent sequence on Itanium
systems) is used to place the register contents into memory.

RASE$SK_RA FD
RASESK_RA FG

The double-precision contents of a floating-point register are used to fill
two longword entries in the VAX formatted argument list passed to the
translated procedure. This counts as two arguments in the VAX formatted
argument list. The Alpha store instruction STG (or an equivalent sequence
on [tanium systems) is used to place the register contents into memory.

RASESK RA FS
RASESK RA FT

Undefined.

PSIGSV_MEMORY_ARG_INFO Field Conversions

MASE$K_MA_Q
MASE$K_MA_I32

These convert like the RASESK RA Q and RASE$SK RA 132 field
conversions, except that the native argument list entry is stored in memory
(rather than in a register).

PSIGSV_FUNC_RETURN Field Conversions

PSIGSK_FR_164

The translated code is returning a 64-bit result split between VAX RO and
R1. The low-order 32 bits of R1 are shifted left and combined with the low-
order 32 bits of RO to form the 64-bit result that is returned to the native
caller in RetVal.

PSIGSK_FR_D64

The translated code is returning a 64-bit result split between VAX RO and
R1. Both RO and R1 are sign-extended from 32 to 64 bits and returned to
the native caller in RetVal and RetVal2.

PSIGSK_FR 132
PSIGSK_FR_U32

The translated code is returning a 32-bit result in VAX RO. RO is sign-
extended from 32 to 64 bits and returned to the native caller in RetVal.

198

Chapter 6. Signature Information and Translated Images (Alpha and 164 Systems)

Name

Description

PSIGSK_FR_FF

The single-precision contents of the result in VAX RO is loaded into native
register RetFlt.

PSIGSK_FR_FD
PSIGSK_FR_FG

The double-precision contents in VAX registers RO and R1 are combined
and loaded into native register RetFIt.

PSIGSK_FR_FS
PSIGSK_FR_FT

Undefined.

PSIG$K_FR_FFC

The single-precision complex contents in VAX registers RO and R1 are
loaded into native registers RetFlt and RetFIt2.

PSIGSK_FR_FDC
PSIGSK_FR_FGC

The translated code is returning a double-precision complex result using the
hidden first parameter method (by reference). The storage for the result is
allocated prior to the call and the address is passed as the extra parameter.
Upon return, the result is copied from the temporary storage into the native
floating-point return registers and returned to the native caller.

PSIGSK_FR_FSC
PSIGSK_FR_FTC

Undefined.

In all 64-bit cases, the longword at the lower memory address forms the earlier argument in the VAX
formatted argument list. Also, for single-precision floating-point types, the unused 32 bits of an native
64-bit argument list entry are undefined.

6.2.4.2. Translated-VAX-to-Native-Alpha PSIG Conversions

A detailed description of the translated-to-native call conversions for the PSIGSV_REG ARG _INFO
and the PSIGSV_FUNC_RETURN field values is given in Table 6.6.

Table 6.6. Translated-to-Native Conversion of the PSIG Field Values

Name

Description

PSIGSV_REG_ARG_INFO Field Conversions

RASESK RA Q

The contents of two successive longwords from the VAX formatted
argument list are combined to form a single quadword value that is placed
in an integer register. This counts as one argument in the native argument
list.

RASE$K_RA 132
RASE$SK_RA U32

The contents of one longword entry from the VAX formatted argument
list is sign-extended and placed in the integer register. This counts as one
argument in the native argument list.

RASESK RA_FF

A single longword entry from the VAX formatted argument list is used to
form a floating-point value in a floating-point register. This counts as one
argument in the native argument list. The Alpha load instruction LDF (or
an equivalent sequence on 164 systems) is used to place the argument in the
floating-point register.

RASESK_RA_FD
RASESK_RA_FG

Two longword entries from the VAX formatted argument list are combined
to form a single floating-point value in a floating-point register. This counts
as one argument in the native argument list. The Alpha load instruction
LDG (or an equivalent sequence on 164 systems) is used to place the
argument in the floating-point register.

RASE$K_RA FS
RASESK_RA FT

Undefined.

199

Chapter 6. Signature Information and Translated Images (Alpha and 164 Systems)

Name

Description

PSIGSV_MEMORY_A

RG_INFO Field Conversions

MASE$K_MA_Q
MASES$K_MA_I32

These convert like RASESK RA Q and RASE$K RA 132 field
conversions, except that the native argument list entry is stored in memory
(rather than a register).l

PSIGSV_FUNC_RETURN Field Conversions

PSIGSK_FR 164

The native code is returning a 64-bit result in RetVal. The high 32 bits of
RetVal are moved to the VAX R1 register and the low 32 bits of RetVal
are moved to the VAX RO register. The 64-bit result is then returned to the
translated caller in VAX RO and R1.

PSIGSK_FR D64

The native code is returning a 64-bit result split between RetVal and
RetVal2. Both are returned to the translated caller in place.

PSIGSK_FR 132
PSIGSK_FR_U32

The native code is returning a 32-bit result in RetVal. The low 32 bits of
RetVal are returned to the translated caller.

PSIGSK_FR_FF

The single-precision result in native register RetFlt is returned in the VAX
register RO.!

PSIGSK_FR_FD
PSIGSK_FR_FG

The double-precision result in native register RetFlt is returned in VAX
registers RO and R1.

PSIGSK_FR FS
PSIGSK_FR_FT

Undefined.

PSIGSK_FR_FFC

The single-precision complex result in native registers RetF1t and RetFIt2 is
returned in the VAX registers R0 and R1 !

PSIGSK_FR_FDC
PSIGSK_FR_FGC

The native code is returning a double-precision complex result in the native
floating-point registers. The result is copied into the storage given by the
hidden first parameter passed by the translated caller.

PSIG$K_FR_FSC
PSIG$K_FR_FTC

Undefined.

'Note that for single-precision floating-point types, the unused 32 bits of a native 64-bit argument list entry are undefined.

6.2.4.3. Native-l64-to-Translated-Alpha PSIG Conversions

Conversion of native 164 arguments and results and translated Alpha arguments and results is trivial; it
is concerned solely with moving the already properly formatted data to the appropriate location for the

target environment.

6.2.4.4. Translated-Alpha-to-Native-164 PSIG Conversions

Conversion of translated Alpha arguments and results and native 164 arguments and results is trivial; it
is concerned solely with moving the already properly formatted data to the appropriate location for the

target environment.

6.2.5. Default Signature Information

Default signature information is defined for common special cases. Such a default is a short-hand
description that can always be represented explicitly but may sometimes be more compact than the
corresponding explicit representation.

200

Chapter 6. Signature Information and Translated Images (Alpha and 164 Systems)

Translated VAX Image Calling a Native Alpha Procedure
* The number of parameters is taken from the count byte in the VAX argument list.

» All parameters (if any) are 32-bit sign-extended (RASE$K _RA 132 for register arguments,
MASES$K MA 132 for memory arguments).

» The function result (if any) is 32-bit sign-extended (PSIGSK_FR 132).

Native Alpha Procedure Calling a Translated VAX Image
* The number of parameters passed is contained in the Al (R25) register.

* The register parameters (if any) are described in the Al register.

* The memory parameters (if any) are 32-bit sign-extended (MASE$K _MA 132).

» The function result (if any) is 32-bit sign-extended (PSIG$SK_FR 132).

Translated VAX or Alpha Image Calling a Native 164 Procedure

* The number of parameters is taken from the count byte in the VAX argument list or the argument
count in the Alpha Al register (R25) as appropriate.

* All parameters (if any) are 32-bit sign-extended (RASESK RA 132 for register arguments,
MASES$K MA 132 for memory arguments).

» The function result (if any) is 32-bit sign-extended (PSIGSK FR 132).

Native 164 Procedure Calling a Translated VAX or Alpha Image
* The number of parameters is contained in the 164 Al (R25) register.

* The register parameters (if any) are described in the Al register.

* The memory parameters (if any) are 32-bit sign-extended (MASESK MA 132).

» The function result (if any) is 32-bit sign-extended (PSIGSK_FR 132).

201

Chapter 6. Signature Information and Translated Images (Alpha and 164 Systems)

202

Chapter 7. OpenVMS Argument Data
Types

This chapter defines the argument-passing data types that are used to call a procedure for OpenVMS
environments. All features defined here apply to all OpenVMS systems unless otherwise noted.

Each data type implemented for a high-level language uses one of the following classes of data types
for procedure parameters and elements of file records:

¢ Atomic
» String
¢ Miscellaneous

When existing data types fail to satisfy the semantics of a language, new data types, including certain
language-specific ones, are added to this standard. These data types can generally be passed by
immediate value, by reference, or by descriptor.

Each data type code presented in this chapter indicates a unique data format. Use these encodings
whenever you need to identify data types to achieve greater commonality across user software.

The encoding given in Section 7.1 and Section 7.2 can help you to identify data types, such as in a
descriptor. However, in addition to their use in descriptors, these data type codes are also useful for
identifying OpenVMS hardware and software data types in areas outside the scope of the calling
standard. Therefore, each data-type code indicates a unique data format independent of its use in
descriptors.

Some data types are composed of a record-like structure consisting of two or more elementary data
types. For example, the F_floating complex (FC) data type is made up of two F_floating (F) data
types, and the varying character string (VT) data type is made up of a word (unsigned, WU) data type
followed by a character string (T) data type.

Unless stated otherwise, all data types in this standard represent signed quantities. The unsigned
quantities do not allocate space for the sign; all bit or character positions are used for significant data.

7.1. Atomic Data Types

Table 7.1 shows how atomic data types are defined and encoded for OpenVMS environments.

Table 7.1. Atomic Data Types

Symbol Code Name/Description

DSC$K DTYPE Z 0 Unspecified
The calling program has specified no data type. The default
argument for the called procedure should be the correct type.

DSC$K DTYPE BU |2 Byte (unsigned)

8-bit unsigned quantity.
DSC$K DTYPE WU |3 Word (unsigned)

16-bit unsigned quantity.
DSC$K DTYPE LU |4 Longword (unsigned)

32-bit unsigned quantity.

203

Chapter 7. OpenVMS Argument Data Types

Symbol

Code

Name/Description

DSC$K_DTYPE QU

5

Quadword (unsigned)
64-bit unsigned quantity.

DSC$K_DTYPE OU

25

Octaword (unsigned)
128-bit unsigned quantity.

DSC$K_DTYPE B

Byte integer (signed)
8-bit signed two's complement integer.

DSC$K_DTYPE W

Word integer (signed)
16-bit signed two's complement integer.

DSC$K_DTYPE L

Longword integer (signed)
32-bit signed two's complement integer.

DSC$K_DTYPE Q

Quadword integer (signed)
64-bit signed two's complement integer.

DSC$K_DTYPE O

Octaword integer (signed)
128-bit signed two's complement integer.

DSC$K_DTYPE_F!

F_floating
32-bit F_floating quantity representing a single-precision
number.

DSC$K_DTYPE D!?

11

D_floating
64-bit D_floating quantity representing a double-precision
number.

DSC$K_DTYPE_G!

27

G_floating
64-bit G_floating quantity representing a double-precision
number.

DSC$K_DTYPE H>*

28

H_floating

number.

DSC$K_DTYPE_FC!

12

F floating complex
Ordered pair of F_floating quantities representing a single-

real part; the higher addressed quantity is the imaginary part.

DSC$K_DTYPE DC'

13

D_floating complex
Ordered pair of D_floating quantities representing a double-

real part; the higher addressed quantity is the imaginary part.

DSC$K_DTYPE_GC!

29

G_floating complex
Ordered pair of G_floating quantities representing a double-

real part; the higher addressed quantity is the imaginary part.

DSC$K_DTYPE HC>*

30

H_floating complex

real part; the higher addressed quantity is the imaginary part.

DSC$K_DTYPE_FS°

52

S floating

number.

204

128-bit H_floating quantity representing a quadruple-precision

precision complex number. The lower addressed quantity is the

precision complex number. The lower addressed quantity is the

precision complex number. The lower addressed quantity is the

Ordered pair of H_floating quantities representing a quadruple-
precision complex number. The lower addressed quantity is the

32-bit IEEE S _floating quantity representing a single-precision

Chapter 7. OpenVMS Argument Data Types

Symbol Code Name/Description

DSC$K_DTYPE FT° |53 T floating
64-bit IEEE T floating quantity representing a double-precision
number.

DSC$K_DTYPE FSC° |54 S floating complex

Ordered pair of S_floating quantities representing a single-
precision complex number. The lower addressed quantity is the
real part; the higher addressed quantity is the imaginary part.

DSC$K_DTYPE_FTC’ |55 T_floating complex

Ordered pair of T_floating quantities representing a single-
precision complex number. The lower addressed quantity is the
real part; the higher addressed quantity is the imaginary part.

DSC$K_DTYPE FX° |57 X_floating
128-bit IEEE X floating quantity representing an extended-
precision number.

DSC$K_DTYPE _FXC° |58 X _floating complex

Ordered pair of X _floating quantities representing an extended-
precision complex number. The lower addressed quantity is the
real part; the higher addressed quantity is the imaginary part.

1OpenVMS 164 and x86-64 support the VAX floating-point types by converting VAX format values to IEEE format to perform an operation
and converting the resulting IEEE format values back to VAX format for storing the result. Intermediate results may remain in IEEE format.

2While the calling standard supports the manipulation of D_floating and D_floating complex data, compiled code support will invoke
conversion from D_floating to G_floating as needed for Alpha arithmetic operations, and conversion of G_floating intermediate results back
to D_floating when needed for stores to memory or parameter passing. This allows D_floating data to be used in 64-bit arithmetic operations
without required source changes but with results limited to G_floating precision.

3 OpenVMS VAX specific.

4}Lﬂoating data is not supported for general use on OpenVMS 64-bit systems. However, conversion routines are supplied to allow users to
convert existing H_floating data to other storage representations.

Not supported on OpenVMS VAX.

7.2. String Data Types

String data types are ordinarily described by a string descriptor. Table 7.2 shows how the string data
types are defined and encoded for all OpenVMS environments.

Table 7.2. String Data Types

Symbol Code Name/Description
DSC$K _DTYPE T 14 Character string

A single 8-bit character (atomic data type) or a sequence of 0 to
216 — 1 8-bit characters (string data type).

DSC$K DTYPE VT |37 Varying character string

A 16-bit unsigned count of the current number of 8-bit characters
in the following string, followed by a string of 0 to 216 — 1 8-bit
characters (see Section 7.5 for details). When this data type is
used with descriptors, it can only be used with the varying string
and varying string array descriptors, because the length field is
interpreted differently from the other 8-bit string data types. (See
Section 7.5, Section 8.8, and Section 8.9 for further discussion).

205

Chapter 7. OpenVMS Argument Data Types

Symbol Code Name/Description

DSC$K DTYPE NU |15 Numeric string, unsigned

DSC$K DTYPE NL |16 Numeric string, left separate sign

DSC$K DTYPE NLO |17 Numeric string, left overpunched sign

DSC$K DTYPE NR |18 Numeric string, right separate sign

DSC$K_DTYPE NRO |19 Numeric string, right overpunched sign

DSC$K DTYPE NZ |20 Numeric string, zoned sign

DSCS$K _DTYPE P 21 Packed-decimal string

DSC$K DTYPE V 1 Aligned bit string
A string of 0 to 2161 contiguous bits. The first bit is bit
<0> of the first byte, and the last bit is any bit in the last byte.
Remaining bits in the last byte must be 0 on read and are cleared
on write. Unlike the unaligned bit string (VU) data type, when
the aligned bit string (V) data type is used in array descriptors,
the ARSIZE field is in units of bytes, not bits, because allocation
is a multiple of 8 bits.

DSC$K DTYPE VU |34 Unaligned bit string

The data is 0 to 216 — 1 contiguous bits located arbitrarily with

respect to byte boundaries. See also aligned bit string (V) data

type. Because additional information is required to specify the

bit position of the first bit, this data type can be used only with
the unaligned bit string and unaligned bit array descriptors (see
Section 8.10 and Section 8.11).

7.3. Miscellaneous Data Types

Table 7.3 shows how miscellaneous data types are defined and encoded for all OpenVMS

environments.

Table 7.3. Miscellaneous Data Types

Symbol Code Name/Description

DSC$K_DTYPE_ZI1 22 Sequence of instructions

DSC$K_DTYPE_ZEM1 23 Procedure entry mask

DSC$K_DTYPE DSC |24 Descriptor
This data type allows a descriptor to be a data type; thus, levels
of descriptors are allowed.

DSCSSK_DTYPE_BPV1 32 Bound procedure value (for VAX environment only)

A two-longword entity in which the first longword contains the
address of a procedure entry mask and the second longword is
the environment value. The environment value is determined in
a language-specific manner when the original bound procedure
value is generated. When the bound procedure is called, the
calling program loads the second longword into R1. When the

206

Chapter 7. OpenVMS Argument Data Types

Symbol

Code

Name/Description

environment value is not needed, this data type can be passed
using the immediate value mechanism. In this case, the argument
list entry contains the address of the procedure entry mask and
the second longword is omitted.

DSC$K_DTYPE_BLV

33

Bound label value

A two-longword entity in which the first longword contains
the address of an instruction and the second longword is the
language-specific environment value. The environment value
is determined in a language-specific manner when the original
bound label value is generated.

DSC$K_DTYPE _ADT

35

Absolute date and time

A 64-bit unsigned, scaled, binary integer representing a date
and time in 100-nanosecond units offset from the OpenVMS
operating system base date and time, which is 00:00 o'clock,
November 17, 1858 (the Smithsonian base date and time for
astronomical calendars). The value 0 indicates that the date and
time have not been specified, so a default value or distinctive
print format can be used.

Note that the ADT data type is the same as the OpenVMS date
format for positive values only.

vax specific.

7.4. Reserved Data-Type Codes

All codes from 0 through 191 not otherwise defined in this standard are reserved to OpenVMS. Codes
192 through 255 are reserved for OpenVMS custom systems and for customers for their own use.

Table 7.4 lists the data types and codes that are obsolete or reserved to OpenVMS.

Table 7.4. Reserved Data Types

Symbol Code Purpose

DSC$K _DTYPE CIT 31 Reserved to COBOL (intermediate temporary)
No symbol defined 36 Obsolete

DSC$K DTYPE T2 38 Obsolete

DSCS$K DTYPE VT2 39 Obsolete

DSC$K _DTYPE TF 40 Reserved to DEBUG (Boolean true/false)
DSC$K _DTYPE SV 41 Reserved to DEBUG (signed bit-field, aligned)
DSC$K _DTYPE SVU 42 Reserved to DEBUG (signed bit-field, unaligned)

DSC$K DTYPE FIXED 43

Reserved to DEBUG (fixed binary — fixed point in Ada
and fixed binary in PL/I)

DSC$K_DTYPE TASK 44 Reserved to DEBUG (task type in Ada)
DSC$K DTYPE AC 45 Reserved to DEBUG (ASCIC text)
DSC$K DTYPE AZ 46 Reserved to DEBUG (ASCIZ text)

207

Chapter 7.

OpenVMS Argument Data Types

Symbol Code Purpose

DSC$K _DTYPE M68 S 47 Reserved to DEBUG (Motorola 68881 single precision, 32-
bit)!

DSC$K DTYPE M68 D |48 Reserved to DEBUG (Motorola 68881 double precision, 64-
bit)!

DSC$K DTYPE M68 X |49 Reserved to DEBUG (Motorola 68881 extended precision,
96-bit)?

DSC$K _DTYPE 1750 S 50 Reserved to DEBUG (1750 single precision, 32-bit)

DSC$K DTYPE 1750 X |51 Reserved to DEBUG (1750 extended precision, 48-bit)

DSC$K DTYPE WC 56 Reserved to DEBUG (set | ocal e dependent C string)

DSC$K DTYPE F80 59 Reserved to DEBUG (Intel Itanium extended precision, 80-
bit)

DSC$K _DTYPE F80C 60 Reserved to DEBUG (Intel Itanium extended precision
complex, two 80-bit)

DCS$K _DTYPE FIR 61 Reserved to DEBUG (Intel Itanium floating-point Register
format, 84-bit)

DCS$K _DTYPE FIRC 62 Reserved to DEBUG (Intel Itanium floating-point Register
format complex, two 84-bit)

DSC$K_DTYPE CIT2 64 Reserved to COBOL (intermediate temporary alternative 2)

DSC$K DTYPE Mo64 65 Reserved to DEBUG (array of eight IEEE 32-bit binary
floating-point)

DSC$K _DTYPE M128 66 Reserved to DEBUG (array of 16 IEEE 32-bit binary
floating-point)

DSCS$K _DTYPE M256 67 Reserved to DEBUG (array of 32 IEEE 32-bit binary
floating-point)

DSC$K DTYPE M512 68 Reserved to DEBUG (array of 64 IEEE 32-bit binary

floating-point)

'Differs from IEEE floating because of byte ordering.

“Differs from IEEE floating because of byte ordering and size.

7.4.1. Facility-Specific Data-Type Codes

Data-type codes 160 through 191 are reserved to OpenVMS for facility-specific purposes. These
codes must not be passed between facilities because different facilities can use the same code for
different purposes. These codes might be used by compiler-generated code to pass parameters to the
language-specific run-time support procedures associated with that language or with the OpenVMS

Debugger.

7.5. Varying Character String Data Type
(DSCSK_DTYPE_VT)

The varying character string data type (DSC$SK_DTYPE_VT) consists of the following two fixed-
length areas allocated contiguously with no padding in between (see Figure 7.1):

208

Chapter 7. OpenVMS Argument Data Types

CURLEN An unsigned word specifying the current length in bytes of the immediately following
string.

BODY A fixed-length area containing the string that can vary from 0 to a maximum length
defined for each instance of string. The range of this maximum length is 0 to 2101,

Figure 7.1. Varying Character String Data Type (DSC$SK_DTYPE_VT—General
Format

CURLEN (=n) 0
e
12
BODY <X ~ ~
12+ (n-1)
e
ZK-7975A-GE

When passed by reference or by descriptor, the address of the varying character string (VT) data type
is always the address of the CURLEN field, not the BODY field.

When a called procedure modifies a varying character string data type passed by reference or by
descriptor, it writes the new length, n, into CURLEN and can modify all bytes of BODY, even those
beyond the new length.

For example, consider a varying string with a maximum length of seven characters. To represent the
string ABC, CURLEN will have a value of 3 and the last four bytes will be undefined, as shown in
Figure 7.2.

Figure 7.2. Varying Character String Data Type (DSC$SK_DTYPE_VT) Format

15 0
3 adr
A
B
C
VA
VA
VA
VA
7 0
ZK-1889-GE

209

Chapter 7. OpenVMS Argument Data Types

210

Chapter 8. OpenVMS Argument
Descriptors

This chapter describes the argument descriptors used in calling a procedure on OpenVMS.

A uniform descriptor mechanism is defined for use by all procedures that conform to the OpenVMS
calling standard. Descriptors are self-describing and the mechanism is extensible. When existing
descriptors fail to satisfy the semantics of a language, new descriptors are added to this standard.

Unless stated otherwise, the calling program fills in all fields in descriptors. This is true whether

the descriptor is generated by default or by a language extension. The fields are filled in even if a
called procedure written in the same language ignores the contents of some of the fields. Therefore, a
descriptor conforms to this calling standard if all fields are filled in by the calling program, even if the
called program does not need the field.

Note

Unless stated otherwise, all fields in descriptors represented as unsigned quantities are read-only from
the point of view of the called procedure, and can be allocated in read-only memory at the option of
the calling program.

If a language processor implements a language-specific data type that is not added to this standard
(see Chapter 7), the processor is not required to use a standard descriptor to pass an array of such

a data type. However, if a language processor passes an array of such a data type using a standard
descriptor, the language processor fills in the DSC$B_DTYPE field with the value 0, indicating that
the data-type field is unspecified, rather than using a more general data-type code.

For example, an array of PL/I POINTER data types has the DTYPE field filled in with the value 0
(unspecified data type), rather than with the value 4 (longword [unsigned] data type). The remaining
fields are filled in as specified by this standard; for example, DSC$W_LENGTH is filled in with

the size in bytes. Because the language-specific data type might be added to the standard in the
future, generic application procedures that examine the DTYPE field should be prepared for 0 and for
additional data types.

Table 8.1 identifies the classes of argument descriptors for use in standard environments. Each class
has two synonymous names—one for 32-bit environments (DSCS$) and one for 64-bit environments

(DSC643). Descriptions and formats of each of these descriptors follow.

Table 8.1. Argument Descriptor Classes

Descriptor Code Class

DSC$K _CLASS S 1 Fixed-length scalar/string
DSC64$K _CLASS S

DSC$K CLASS D 2 Dynamic string

DSC64$K CLASS D

DSCS$K _CLASS A 4 Contiguous array
DSC64$K_CLASS A

DSC$K_CLASS P! 5 Procedure argument descriptor

211

Chapter 8. OpenVMS Argument Descriptors

Descriptor Code Class
DSC64$K_CLASS P!

DSCS$K _CLASS SD 9 Decimal (scalar) string
DSC64$K CLASS SD

DSC$K CLASS NCA 10 Noncontiguous array
DSC64$K CLASS NCA

DSC$K_CLASS VS 11 Varying string
DSC64$K_CLASS VS

DSCS$K _CLASS VSA 12 Varying string array
DSC64$K CLASS VSA

DSC$K _CLASS UBS 13 Unaligned bit string
DSC64$K CLASS UBS

DSC$K CLASS UBA 14 Unaligned bit array
DSC64$K CLASS UBA

DSC$K _CLASS SB 15 String with bounds
DSC64$K_CLASS SB

DSC$K_CLASS UBSB 16 Unaligned bit string with bounds
DSC64$K CLASS UBSB

"The pointer field usage for this descriptor differs from VAX usage (see Section 8.5).

8.1. Descriptor Prototype

Figure 8.1 shows the descriptor prototype format. There are two forms: one for use with 32-bit
addresses and one for use with 64-bit addresses. The two forms are compatible in that the forms can
be distinguished dynamically at run-time and, except for the size and consequential placement of
fields, 32-bit and 64-bit descriptors are identical in content and interpretation.

The 32-bit descriptors are used on all OpenVMS systems. When used on 64-bit OpenVMS systems,
32-bit descriptors provide full compatibility with their use on OpenVMS VAX systems. The 64-

bit descriptors are used on all 64-bit OpenVMS systems—they have no counterparts and are not
recognized on OpenVMS VAX systems.

Figure 8.1. Descriptor Prototype Format

32-Bit Form (DSC)

CLASS DTYPE LENGTH 0

POINTER 4

ZK-4663A-GE

212

Chapter 8. OpenVMS Argument Descriptors

64-Bit Form (DSC64)
quadword alighed

CLASS DTYPE MBO (=1) :0
MBMO (=-1) 4
8
- LENGTH -
16
- POINTER -
ZK-7656A-GE

The 32-bit descriptors on 64-bit OpenVMS systems have no required alignment for compatibility with
OpenVMS VAX systems; however, longword alignment generally promotes performance. The 64-bit
descriptors on 64-bit OpenVMS systems must be quadword aligned.

Table 8.2 describes the fields of the descriptor. In this table and the similar tables for descriptors in
later sections, note that most fields have two symbols and one description. The symbol that begins
with the prefix DSCS is used with 32-bit descriptors, while the symbol that begins with the prefix
DSC648$ is used with 64-bit descriptors.

In this chapter, it is generally the practice to use only the main part of a field name, without either of
the prefixes used in actual code. For example, the length field is referred to using LENGTH rather
than mentioning both DSC$W_LENGTH and DSC64$Q LENGTH. The DSC$ and DSC64$ prefixes
are used only when referring to a particular form of descriptor.

The CLASS and DTYPE fields occupy the same offsets in both 32-bit and 64-bit descriptors.

Thus, the symbols DSC$B_CLASS and DSC64$B_CLASS have the same definition, as do
DSC$B_DTYPE and DSC64$B_DTYPE. Furthermore, these fields are permitted to contain the same
values with the same meanings in both 32-bit and 64-bit forms.

The DSC$W_LENGTH and DSC$A_POINTER fields in the 32-bit descriptors correspond in
placement to the DSC64$W_MBO (must be 1) and DSC64$L. MBMO (must be -1) fields in the 64-
bit descriptors. The values of these fields are used to distinguish whether a given descriptor has the
32-bit or 64-bit form as described later in this section.

When the CLASS field is 0, no more information can be assumed than is shown in Table 8.2.

Table 8.2. Contents of the Prototype Descriptor

Symbol Description

DSC$W_LENGTH Defines the data item length specific to the descriptor class.
DSC64$Q LENGTH

DSC64$W_MBO In a 64-bit descriptor, this field must contain the value 1. This field
overlays the DSCSW_LENGTH field of a 32-bit descriptor and the value 1
is necessary to correctly distinguish between the two forms (see below).

DSCS$B_DTYPE A data-type code. Data-type codes are listed in Section 7.1 and Section 7.2.
DSC64$B_DTYPE
DSC$B_CLASS A descriptor class code that identifies the format and interpretation of the

DSC64$B_CLASS other fields of the descriptor as specified in the following sections. This

213

Chapter 8. OpenVMS Argument Descriptors

Symbol

Description

interpretation is intended to be independent of the DTYPE field, except for
the data types that are made up of units less than a byte (packed-decimal
string [P], aligned bit string [V], and unaligned bit string [VU]). The
CLASS code can be used at run-time by a called procedure to determine
which descriptor is being passed.

DSC$A_POINTER
DSC64$PQ POINTER

The address of the first byte of the data element described.

DSC64$L_MBMO

In a 64-bit descriptor, this field must contain the value -1 (all 1 bits). Note
that this field overlays the DSC$SA POINTER field of a 32-bit descriptor
and the value -1 is necessary to correctly distinguish between the two forms
(see below).

As previously mentioned, the MBO field (a word at offset 0) and the MBMO field (a longword
at offset 4) are used to distinguish between a 32-bit and 64-bit descriptor. A called routine that is
designed to handle both kinds of descriptors must do both of the following:

¢ Confirm that the MBO field contains 1

¢ Confirm that the MBMO field contains -1

before concluding that it has a 64-bit form descriptor.

Note

It may seem sufficient to test just the MBMO field. However, that allows a 32-bit descriptor with a
length of 0 and an undefined pointer to be inadvertently treated as a 64-bit descriptor.

If the MBMO field contains -1, then 0 and 1 are the only values of the MBO field that have defined

interpretations.

8.2. Fixed-Length Descriptor (CLASS _S)

A single descriptor class is used for scalar data and fixed-length strings. Any OpenVMS data type,
except data type 34 (unaligned bit string), can be used with this descriptor. Figure 8.2 shows the
format of a fixed-length descriptor. Table 8.3 describes the fields of the descriptor.

Figure 8.2. Fixed-Length Descriptor Format

32-Bit Form (DSC)

CLASS (=1)

DTYPE LENGTH :0

POINTER 4

ZK-4664A-GE

214

Chapter 8. OpenVMS Argument Descriptors

B84-Bit Form (DSCE4)
quadword aligned

CLASS (=1) DTYPE MBO (=1) 0
MBMO (=—1) 4
B

- LENGTH —
16

- POINTER —
ZK-7857A-GE

Table 8.3. Contents of the CLASS_S Descriptor

Symbol Description

DSC$W_LENGTH Length of the data item in bytes, unless the DTYPE field contains the value
DSC64$Q LENGTH |1 (aligned bit string) or 21 (packed-decimal string). Length of the data item
is in bits for bit string. Length of the data item is the number of 4-bit digits
(not including the sign) for a packed-decimal string.

DSC64$W_MBO Must be 1. See Section 8.1.

DSCS$B _DTYPE A data-type code. Data-type codes are listed in Section 7.1 and Section 7.2.
DSC64$B_DTYPE

DSC$B CLASS Defines the descriptor class code that must be equal to 1 for CLASS S.

DSC64$B_CLASS

DSC$A_POINTER Address of first byte of data storage.
DSC64$PQ_POINTER

DSC64$L._ MBMO Must be -1. See Section 8.1.

If the data type is 14 (character string) and the string must be extended in a string comparison or is
being copied to a fixed-length string containing a greater length, the space character (hexadecimal 20
if ASCII) is used as the fill character.

8.3. Dynamic String Descriptor (CLASS_D)

A class D descriptor is used for dynamically allocated strings. When a string is written, either the
length field, pointer field, or both can be changed. The OpenVMS Run-Time Library provides
procedures for changing fields. As an input parameter, this format is interchangeable with class 1
(CLASS _S). Figure 8.3 shows the format of a dynamic string descriptor. Table 8.4 describes the fields
of the descriptor.

Figure 8.3. Dynamic String Descriptor Format

32-Bit Form (DSC)

CLASS (=2) DTYPE LENGTH :0

POINTER 4

ZK-4665A-GE

215

Chapter 8. OpenVMS Argument Descriptors

84-Bit Form (DSCg&4)
quadword aligned

CLASS (=2) DTYPE MBO (=1) 0
MBMO (=—1) 4
8

- LENGTH -
16

- POINTER -
ZK-7658A-GE

Table 8.4. Contents of the CLASS_D Descriptor

Symbol Description

DSC$W_LENGTH Length of the data item in bytes, unless the DTYPE field contains the value
DSC64$Q LENGTH |1 (aligned bit string) or 21 (packed-decimal string). Length of the data item
is in bits for the bit string. Length of the data item is the number of 4-bit
digits (not including the sign) for a packed-decimal string.

DSC64$W_MBO Must be 1. See Section 8.1.

DSC$B DTYPE A data-type code. Data-type codes are listed in Section 7.1 and Section 7.2.
DSC64$B_DTYPE

DSC$B_CLASS Defines the descriptor class code that must be equal to 2 for CLASS D.

DSC64$B_CLASS
DSCSA_POINTER Address of first byte of data storage.
DSC64$PQ POINTER

DSC64$L._ MBMO Must be -1. See Section 8.1.

8.4. Array Descriptor (CLASS_A)

The array descriptor shown in Figure 8.4 is used to describe contiguous arrays of atomic data types

or contiguous arrays of fixed-length strings. An array descriptor consists of three contiguous blocks.
The first block contains the descriptor prototype information and is part of every array descriptor. The
second and third blocks are optional. If the third block is present, so is the second. Table 8.5 describes
the fields of the descriptor.

216

Chapter 8. OpenVMS Argument Descriptors

Figure 8.4. Array Descriptor Format

32-Bit Form (DSC)

CLASS (=4)

DTYPE

LENGTH

POINTER

DIMCT

AFLAGS

DIGITS

SCALE

ARSIZE

AQ

M1

[£4

L
"

M (n-1)

L1

U1

(44

Ln

Un

Block 1
:8 (Prototype)

12

20

Block 2
(Multipliers)

:20+4n

:24+4n

Block 3
(Bounds)

ZK-4666A-GE

217

Chapter 8. OpenVMS Argument Descriptors

B4-Bit Form (DSCE4)

quadword aligned

CLASS (=4) OTYFE

MBO (=1)

MEMO |= -1)

LEMNGTH

POINTER

DIMCT AFLAGS DIGITS

SCALE

MEZ

ARSIZE

A

M

M in-1)

Mn

(0]

Lm

Un

3

24

28

=32

240

-EE+

Block 1
{Prototype)

Elock 2
[Muitipli=rs)

an

Block 3
{Bounds)

ZK-TEEAA-Al

218

Chapter 8. OpenVMS Argument Descriptors

Table 8.5. Contents of the CLASS A Descriptor

Symbol

Description

DSC$W_LENGTH
DSC64$Q LENGTH

Length of an array element in bytes, unless the DTYPE field contains the
value 1 (aligned bit string) or 21 (packed-decimal string). Length of an
array element is in bits for the bit string. Length of an array element is the
number of 4-bit digits (not including the sign) for a packed-decimal string.

DSC64$W_MBO

Must be 1. See Section 8.1.

DSC$B_DTYPE
DSC64$B_DTYPE

A data-type code. Data-type codes are listed in Section 7.1 and Section 7.2.

DSC$B_CLASS
DSC64$B_CLASS

Defines the descriptor class code that must be equal to 4 for CLASS A.

DSCSA_POINTER
DSC64$PQ_POINTER

Address of the first actual byte of data storage.

DSC64SL_MBMO

Must be -1. See Section 8.1.

DSC$B_SCALE
DSC64$B_SCALE

Signed power-of-two or power-of-ten multiplier, as specified by
FL_BINSCALE, to convert the internal form to external form. (See
Section 8.6).

DSC$B_DIGITS
DSC64$B_DIGITS

If nonzero, the unsigned number of decimal digits in the internal
representation. If 0, the number of digits can be computed based on
LENGTH. This field should be 0 unless the TYPE field specifies a string
data type that could contain numeric values.

DSCS$SB_AFLAGS
DSC64$B_AFLAGS

Array flag bits <23:16>:

Bits <18:16> Reserved and must be 0.

DSC$V_FL_BINSCALE
DSC64$V_FL_BINSCALE

If set, the scale factor specified by SCALE is
a signed power-of-two multiplier to convert
the internal form to external form. If not

set, SCALE specifies a signed power-of-ten
multiplier. (See Section 8.6).

DSC$V_FL_REDIM
DSC64$V_FL_REDIM

If set, the array can be redimensioned; that

is, A0, My, Li, and Ui can be changed. The

redimensioned array cannot exceed the size
allocated to the array ARSIZE.

DSC$V_FL_COLUMN
DSC64$V_FL_COLUMN

If set, the elements of the array are stored by
columns (FORTRAN). That is, the leftmost
subscript (first dimension) is varied most
rapidly, and the rightmost subscript (nth
dimension) is varied least rapidly. If not set,
the elements are stored by rows (most other
languages). That is, the rightmost subscript
is varied most rapidly and the leftmost
subscript is varied least rapidly.

DSC$V_FL COEFF
DSC64$V_FL_COEFF

If set, the multiplicative coefficients in block
2 are present. Must be set if FL BOUNDS is
set.

DSC$V_FL_BOUNDS
DSC64$V_FL_BOUNDS

If set, the bounds information in block 3 is
present and requires that FL._COEFF be set.

219

Chapter 8. OpenVMS Argument Descriptors

Symbol Description

DSC$B_DIMCT Number of dimensions, 7.

DSC64$B_DIMCT

DSCSL ARSIZE Total size of array (in bytes, unless the TYPE field contains the value 21;

DSC643Q ARSIZE see the description for LENGTH). A redimensioned array can use less than
the total size allocated.

For data type 1 (aligned bit string), LENGTH is in bits while ARSIZE is
in bytes because the unit of length is bits, while the unit of allocation is

aligned bytes.
DSCSA A0 Address of element A(0,0,...,0). This need not be within the actual array. It
DSC64$PQ A0 is the same as POINTER for zero-origin arrays.
DSCSL_Mi Addressing coefficients (Mi=Ui—Li+1).
DSC64$Q Mi
DSCSL_Li Lower bound (signed) of ith dimension.
DSC643Q Li
DSCSL Ui Upper bound (signed) of ith dimension.
DSC64$Q Ui

The following formulas specify the effective address, E, of an array element.

Caution

Modification of the following formulas is required if DTYPE contains a 1 or 21, because LENGTH is
given in bits or 4-bit digits rather than in bytes.

The effective address, E, for element A(I):

E = A + | *LENGTH

PO NTER + [I - Lj]*LENGTH

The effective address, E, for element A(I;,I,) with FLL COLUMN clear:

E=A + [11*M + |,]*LENGTH

PONTER + [[I1 - Li]*M + I - L] *LENGTH

The effective address, E, for element A(I;,I;) with FLL COLUMN set:

E=A + [12*M + |4]*LENGTH

PONTER + [[l2 - Lo]*M + 11 - Li]*LENGTH

The effective address, E, for element A(Iy, . . . ,I,,) with FL_ COLUMN clear:

E=A + [[[[...[1d*M + ...]*M.2 + In2] *M1
+ I n-1]*My + 1] *LENGTH
= PONTER + [[[[...[l1 - Li]*M
+ ...] M2 + In2 - Lp2] *Mha
+ Ip-1 - Lpoa]*My + Iy - Lp] *LENGTH

The effective address, E, for element A(Iy, . . . ,I,,) with FLL COLUMN set:
E=A + [[[[...[In]*M-1 + ...]

*Mg + 13]*M + 1] *M + | 1] *LENGTH
= PONTER + [[[[.--[ln- Lal*Mv.1 + ...1*M + I3

220

Chapter 8. OpenVMS Argument Descriptors

- L3]*M + 12 - L2]*M + 11 - Lg] *LENGTH

8.5. Procedure Argument Descriptor

(CLASS_P)

A descriptor for a procedure argument identifies a procedure and its result data type, if any.

On OpenVMS VAX systems, the descriptor for a procedure argument specifies its entry address
and function value data type. On OpenVMS Alpha systems, the procedure argument descriptor is a
pointer to the procedure descriptor, which is described in Section 3.4. On OpenVMS 164 systems,
the procedure argument descriptor is a pointer to the function descriptor, which is described in
Section 4.7.7. On OpenVMS x86-64 systems, the procedure argument descriptor is a pointer to

a function value, which is described in Section 5.3. Figure 8.5 shows the format of a procedure
argument descriptor. Table 8.6 describes the fields of the descriptor.

Figure 8.5. Procedure Argument Descriptor Format

32-Bit Form (DSC)

CLASS (=5) DTYPE LENGTH 0
POINTER 4
ZK-4675A-GE
&4-Bit Form (DSCg&4)

guadword aligned
CLASS (=5) DTYPE MBO (=1} :0
MBMO (=1) 4
8

- LENGTH —
16

= POINTER .
FK-TEE0A-GE

Table 8.6. Contents of the CLASS P Descriptor

Symbol

Description

DSC$SW_LENGTH
DSC64$Q LENGTH

Length associated with the function value, or 0 if no function value is
returned.

DSC64$W_MBO

Must be 1. See Section 8.1.

DSC$B_DTYPE
DSC64$B_DTYPE

Function value data-type code. Data-type codes are listed in Section 7.1
and Section 7.2.

DSCS$B_CLASS
DSC64$B_CLASS

Defines the descriptor class code that must be equal to 5 for CLASS P.

DSC$A_POINTER

Address of entry mask to the procedure for VAX environments.

221

Chapter 8. OpenVMS Argument Descriptors

Symbol Description
DSC64$PQ POINTER |Address of the procedure descriptor of the procedure for Alpha
environments.

Address of the function descriptor of the procedure for [64 environments.

Procedure value for x86-64 environments.

DSC64$L. MBMO Must be -1. See Section 8.1.

Procedures return a function value as described in:
* Section 2.5 for VAX systems

* Section 3.7.7 for Alpha systems

» Section 4.7.6 for 164 systems

* Section 5.7.6 for x86-64 systems

8.6. Decimal String Descriptor (CLASS_SD)

Figure 8.6 shows the format of a decimal string descriptor. Decimal size and scaling information for
both scalar data and simple strings is given in this descriptor form. Table 8.7 describes the fields of the
descriptor.

Figure 8.6. Decimal String Descriptor Format

32-Bit Form (DSC)

CLASS (=9) DTYPE LENGTH 0
POINTER -4

Reserved SFLAGS DIGITS SCALE 8
ZK-4668A-GE

B84-Bit Form (DSCB4)
quadword alignad

CLASS (=9) DTYPE MBO (=1) 0
MBMO (=—1) 4
B

~ LENGTH —
16

- POINTER -
Resenved SFLAGS DIGITS SCALE 24
MBZ 28
ZK-7851A-GE

222

Chapter 8. OpenVMS Argument Descriptors

Table 8.7. Contents of the CLASS SD Descriptor

Symbol

Description

DSC$SW_LENGTH
DSC64$Q LENGTH

Length of the data item in bytes, unless the DTYPE field contains the value
1 (aligned bit string) or 21 (packed-decimal string). Length of the data item
is in bits for the bit string. Length of the data item is the number of 4-bit
digits (not including the sign) for packed-decimal string.

DSC64$W_MBO

Must be 1. See Section 8.1.

DSC$B_DTYPE
DSC64$B_DTYPE

A data-type code. Data-type codes are listed in Section 7.1 and Section 7.2.

DSC$B_CLASS
DSC64$B_CLASS

Defines the descriptor class code that must be equal to 9 for CLASS SD.

DSC$A_POINTER
DSC64$PQ POINTER

Address of the first byte of data storage.

DSC64$L_MBMO

Must be -1. See Section 8.1.

DSC$B_SCALE
DSC64$B_SCALE

Signed power-of-two or power-of-ten multiplier, as specified by
FL BINSCALE, to convert the internal form to external form. (See
examples in Table 8.8).

DSC$B_DIGITS
DSC64$B_DIGITS

If nonzero, the unsigned number of decimal digits in the internal
representation. If 0, the number of digits can be computed based on
LENGTH. This field should be 0 unless the TYPE field specifies a string
data type that could contain numeric values.

DSC$B_SFLAGS
DSC64$B_SFLAGS

Scalar flag bits <23:16>:

Bits <18:16> Reserved and must be 0.

DSC$V_FL_BINSCALE
DSC64$V_FL_BINSCALE

If set, the scale factor specified by SCALE is
a signed power-of-two multiplier to convert
the internal form to external form. If not

set, SCALE specifies a signed power-of-ten
multiplier. (See examples in Table 8.8).

Bit <23:20> Reserved and must be 0.

Examples of SCALE and FL_ BINSCALE interpretation are presented in Table 8.8.

Table 8.8. Internal-to-External BINSCALE Conversion Examples

Internal Value SCALE FL_BINSCALE External Value
123 +1 0 1230

123 +1 1 246

200 -2 0 2

200 -2 1 50

8.7. Noncontiguous Array Descriptor
(CLASS_NCA)

The noncontiguous array descriptor describes an array in which the storage of the array elements
can be allocated with a fixed, nonzero number of bytes separating logically adjacent elements. Two

223

Chapter 8. OpenVMS Argument Descriptors

elements are said to be logically adjacent if their subscripts differ by 1 in the most rapidly varying
dimension only. The difference between the addresses of two adjacent elements is termed the stride.
You can align elements by row or column, because the accessing algorithm in the called procedure
handles both alignments.

This array descriptor is to be used where the calling program, at its option, can pass a slice of an
array that contains noncontiguous allocations. This standard indicates no preference between the
noncontiguous array descriptor (NCA) and the contiguous array descriptor (A), as described in
Section 8.4, for language processors that always allocate contiguous arrays. Figure 8.7 shows the
format of a noncontiguous array descriptor, which consists of three contiguous blocks. Table 8.9
describes the fields of the descriptor.

Figure 8.7. Noncontiguous Array Descriptor Format

32-Bit Form (DSC)

CLASS (=10) DTYPE LENGTH 0
POINTER 4
Block 1
DIMCT AFLAGS DIGITS SCALE .8 (Prototype)
ARSIZE 12
AD 16
s1 20
~ H L Block 2
T . T (Strides)
S (n-1)
Sn
L1 :20+4n
U1 24+4n
A : L Block 3
I~ . I~ (Bounds)
Ln
Un
ZK-4667A-GE

224

Chapter 8. OpenVMS Argument Descriptors

B4-Bit Form [DSCE4)

quadword aligned

CLASS (=10) DTYPE

MBO (=1}

i

MBMO (=-1)

LENGTH

Block 1

POINTER

(Profotyps

DIMCT AFLAGS

MEBZ

ARSIFE

Al

51

3%

3

Block 2
(Sirides)

5 in-1)

Sn

L1

:48+8n

Block 3
(Bounds)

Ln

ZE-TeE2a-A

225

Chapter 8. OpenVMS Argument Descriptors

Table 8.9. Contents of the CLASS NCA Descriptor

Symbol

Description

DSC$SW_LENGTH
DSC64$Q LENGTH

Length of an array element in bytes, unless the DTYPE field contains the
value 1 (aligned bit string) or 21 (packed-decimal string). Length of an
array element is in bits for the bit string. Length of an array element is the
number of 4-bit digits (not including the sign) for a packed-decimal string.

DSC64$W_MBO

Must be 1. See Section 8.1.

DSC$B_DTYPE
DSC64$B_DTYPE

A data-type code. Data-type codes are listed in Section 7.1 and Section 7.2.

DSC$B_CLASS

Defines the descriptor class code that must be equal to 10 for
CLASS _NCA.

DSC$A_POINTER
DSC64$PQ POINTER

Address of first actual byte of data storage.

DSC64$L_MBMO

Must be -1. See Section 8.1.

DSC$B_SCALE
DSC64$B_SCALE

Signed power-of-two or power-of-ten multiplier, as specified by
FL BINSCALE, to convert the internal form to external form. (See
Section 8.6).

DSC$B_DIGITS
DSC64$B_DIGITS

If nonzero, the unsigned number of decimal digits in the internal
representation. If 0, the number of digits can be computed based on
LENGTH. This field should be 0 unless the TYPE field specifies a string
data type that could contain numeric values.

DSC$B_AFLAGS
DSC64$B_AFLAGS

Array flag bits <23:16>:

Bits <18:16> Reserved and must be 0.

DSC$V_FL BINSCALE If set, the scale factor specified by SCALE is
DSC64$V_FL BINSCALE |a signed power-of-two multiplier to convert
the internal form to external form. If not

set, SCALE specifies a signed power-of-ten
multiplier. (See Section 8.6).

DSC$V_FL REDIM Must be 0.
DSC64$V_FL REDIM

DSC$V_FL UNALLOC If set, the storage for the array described
DSC64$V_FL _UNALLOC |by this descriptor has not been allocated;

the POINTER field must contain 0. If not
set, storage for the array described by this
descriptor has been allocated; the POINTER
field may or may not be 0, depending on the
bounds of the array. (If the POINTER field
contains a nonzero value, then this flag must
not be set).

DSC$V_FL NODEALLOC |If set, the storage for the array described

by this descriptor must not be deallocated.
(The POINTER and other fields of this
descriptor may be cleared or otherwise set
to eliminate access to the described storage,
but the storage itself belongs to some other
descriptor which must be used to deallocate
that storage).

226

Chapter 8. OpenVMS Argument Descriptors

Symbol

Description

Bit <23:23> Reserved and must be 0.

DSC$B_DIMCT
DSC64$B_DIMCT

Number of dimensions, 7.

DSCSL_ARSIZE
DSC64$Q ARSIZE

If the elements are contiguous, ARSIZE is the total size of the array (in
bytes, unless the DTYPE field contains the value 21; see the description of
LENGTH). If the elements are not allocated contiguously or if the program
unit allocating the descriptor is uncertain whether the array is actually
contiguous, the value placed in ARSIZE might be meaningless.

For data type 1 (aligned bit string), LENGTH is in bits while ARSIZE is in
bytes because the unit of length is in bits while the unit of allocation is in
bytes.

DSCS$A_A0
DSC64$PQ_A0

Address of element A(0,0,...,0). This need not be within the actual array. It
is the same as POINTER for zero-origin arrays.

A0 =POINTER — (S1*L; + Sp*L, + ...+ S,*L,)

DSCSL _Si Stride of the ith dimension. The difference between the addresses of
DSC64%Q_Si successive elements of the ith dimension.

DSCSL Li Lower bound (signed) of the ith dimension.

DSC64$Q_Li

DSCSL Ui Upper bound (signed) of the ith dimension.

DSC64$Q_Ui

The following formulas specify the effective address, E, of an array element.

The effective address, E, of A(I):

E= A + Si*I

PO NTER + Si*[1 - L]

The effective address, E, of A(I,1»):

E

Ap + S1*l1 + Sl
PO NTER + S]_*[ll - L]_] + Sz*[|2 - L2]

The effective address, E, of A(Iy, . . . ,I,):

E=A + S1*l1 + .
PO NTER + Si*[11 - Li] + .

+ Sp*ln
+ S*[1n - L]

8.8. Varying String Descriptor (CLASS_VS)

A class VS descriptor is used for varying string data types (see Section 7.5).

As an input parameter, this format is not interchangeable with class 1 (CLASS S) or with class 2
(CLASS D). When a called procedure modifies a varying string passed by reference or by descriptor,
it writes the new length, n, into CURLEN and can modify all bytes of BODY. Figure 8.8 shows the
format of a varying string descriptor. Table 8.10 describes the fields of the descriptor.

227

Chapter 8. OpenVMS Argument Descriptors

Figure 8.8. Varying String Descriptor Format

32-Bit Form (DSC)
CLASS (=11) DTYPE MAXSTRLEN 0
POINTER 4
ZK-4669A-GE
64-Bit Form (DSCB4)
quadword aligned
CLASS (=11) DTYPE MBO (=1) :0
MBMO (=-1) 4
8
- MAXSTRLEN -
116
- POINTER -
ZK-TEE3IA-GE

Table 8.10. Contents of the

CLASS _VS Descriptor

Symbol

Description

DSC§W_MAXSTRLEN
DSC64$Q_MAXSTRLEN

Maximum length of the BODY field of the varying string in bytes in
the range 0 to 2101,

DSC64$W_MBO

Must be 1. See Section 8.1.

DSC$B_DTYPE
DSC64$B_DTYPE

A data type code that has the value 37, which specifies the varying
character string data type (see Section 7.2 and Section 7.5). The use of
other data types is reserved.

DSC$B_CLASS
DSC64$B_CLASS

Defines the descriptor class code that must be equal to 11 for
CLASS_VS.

DSCSA_POINTER
DSC64$PQ_POINTER

Address of the first field (CURLEN) of the varying string.

DSC64SL_MBMO

Must be -1. See Section 8.1.

The following figure illustrates the use of a 32-bit varying string descriptor to present a variable that

is capable of holding a string v
string value ABCD. As shown

alue of up to five characters in length and that is currently holding the
in the figure, MAXSTRLEN contains five, CURLEN contains four,

string is currently ABCD, and the remaining byte is currently undefined.

228

Chapter 8. OpenVMS Argument Descriptors

Figure 8.9. Varying String Descriptor with Character String Data Type

11 37 5 -descriptor
adr
15 0
4 :adr
A
B
o}
D
VA
7 0
ZK-1897-GE

8.9. Varying String Array Descriptor
(CLASS_VSA)

A variant of the noncontiguous array descriptor is used to specify an array of varying strings where
each varying string has the same maximum length. Each array element is of the varying string data
type (see Section 7.5).

When a called procedure modifies a varying string in an array of varying strings passed to it by
reference or by descriptor, it writes the new length, n, into CURLEN and can modify all bytes of
BODY. The format of this descriptor is the same as the noncontiguous array descriptor except for
the first two longwords. Figure 8.10 shows the format of a varying string array descriptor. Table 8.11
describes the fields of the descriptor.

229

Chapter 8. OpenVMS Argument Descriptors

Figure 8.10. Varying String Array Descriptor Format

32-Bit Form (DSC)

CLASS (=12) DTYPE MAXSTRLEN :0
POINTER 4
Block 1
DIMCT AFLAGS DIGITS SCALE :8 (Prototype)
ARSIZE 12
AO 116
S1 20
A . L Block 2
- H ~ (Multipliers)
S (n-1)
Sn
L1 :20+4n
U1 224+4n
~ o~ Block 3
(Bounds)
Ln
Un
ZK-4670A-GE

230

Chapter 8. OpenVMS Argument Descriptors

B4-Bit Form (DSCE4)

quadword aligned

CLASS (=12)

OTYPE

MEO [=1)

MBMO (= -1}

MAXSTRLEN

POINTER

DIMCT

DIGITS

SCALE

MBZ

ARSIZE

=2

5 (n-1)

Sn

0y

Lm

Un

Block 1
{Prototype

24
28

32

40

Block 2
(Multipliers

-56+8n

Block 3
(Bounds)

ZE-TeEdn-al

231

Chapter 8. OpenVMS Argument Descriptors

Table 8.11. Contents of the

CLASS _VSA Descriptor

Symbol

Description

DSC§W_MAXSTRLEN
DSC64$Q_MAXSTRLEN

Maximum length of the BODY field of an array element in bytes in
the range 0 to 2161,

DSC64$W_MBO

Must be 1. See Section 8.1.

DSC$B_DTYPE
DSC64$B_DTYPE

A data-type code that has the value 37, which specifies the varying
character string data type (see Section 7.2 and Section 7.5). The use of
other data types is reserved.

DSC$B_CLASS
DSC64$B_CLASS

Defines the descriptor class code that must be equal to 12 for
CLASS_VSA.

DSCSA_POINTER
DSC64$PQ_POINTER

Address of the first actual byte of data storage.

DSC64SL_MBMO

Must be -1. See Section 8.1.

The remaining fields in the des

criptor are identical to those in the noncontiguous array descriptor

(NCA). The effective address computation of an array element produces the address of CURLEN of

the desired element.

8.10. Unaligned Bit String Descriptor
(CLASS_UBS)

A descriptor is used to pass an

unaligned bit string (DSC$K_DTYPE_VU) that starts and ends on an

arbitrary bit boundary. The descriptor provides two components: a base address and a signed relative

bit position. Figure 8.11 shows
the fields of the descriptor.

Figure 8.11. Unaligned Bit

the format of an unaligned bit string descriptor. Table 8.12 describes

String Descriptor Format

32-Bit Form (DSC)

CLASS (=13) DTYPE

LENGTH

BASE

POS

ZK-4671A-GE

232

Chapter 8. OpenVMS Argument Descriptors

£4-Bit Form (DSCé4)
guadword aligned

CLASS (=13) OTYPE MBO (=1) 0
MEMO (=—1) 4
]
- LENGTH -
16
~ BASE -
24
ZK-TBEBA-GE

Table 8.12. Contents of the CLASS UBS Descriptor

Symbol Description

DSC$SW_LENGTH Length of data item in bits.
DSC64$Q LENGTH
DSC64$W_MBO Must be 1. See Section 8.1.

DSCS$B DTYPE A data-type code that has the value 34, which specifies the unaligned bit
DSC64$B_DTYPE string data type (see Section 7.1 and Section 7.2). The use of other data
types is reserved.

DSC$B_CLASS Defines the descriptor class code that must be equal to 13 for
DSC64$B_CLASS CLASS_UBS.
DSC$A BASE Base of the address relative to which the signed relative bit position, POS,

DSC64$PQ BASE is used to locate the bit string. The base address need not be the first actual
byte of data storage.

DSC64$L._ MBMO Must be -1. See Section 8.1.

DSCSL_POS Relative bit position with respect to BASE of the first bit of unaligned bit
DSC64$Q_POS string.

8.11. Unaligned Bit Array Descriptor
(CLASS _UBA)

A variant of the noncontiguous array descriptor is used to specify an array of unaligned bit strings.
Each array element is an unaligned bit string data type (DSC$K_DTYPE VU) that starts and ends
on an arbitrary bit boundary. The length of each element is the same and is 0 to 216 — 1 bits. In the
OpenVMS VAX environment, you can access elements of the array directly by using the VAX
variable bit field instructions. Therefore, the descriptor provides two components: a byte address,
BASE, and a means to compute the signed bit offset, EB, with respect to BASE of an array element.

The unaligned bit array descriptor consists of four contiguous blocks that are always present. The first
block contains the descriptor prototype information. Figure 8.12 shows the format of an unaligned bit
array descriptor. Table 8.13 describes the fields of the descriptor.

233

Chapter 8. OpenVMS Argument Descriptors

Figure 8.12. Unaligned Bit Array Descriptor Format

32-Bit Form (DSC)

CLASS (=14)

DTYPE

LENGTH

BASE

DIMCT

AFLAGS

DIGITS

SCALE

ARSIZE

Vo

S1

33
(44

e

S (n-1)

Sn

L1

U1

33

Ln

POS

Block 1
:8 (Prototype)

12

20

Block 2
(Strides)

:20+4n

24+4n

Block 3
(Bounds)

:24+8n Block 4
(Position)

ZK-4872A-GE

234

Chapter 8. OpenVMS Argument Descriptors

64-Bit Form (DSCE4)

quadword aigned

CLASS [=14)

OTYPE

MBEO (=1

MEMD [=-1)

LEMETH

BASE

DIMCT

ol

Lal

SCALE

MBZ

ARSIFE

Vo

51

5(m-1)

5Sn

L1

L

Hi]

Lu-

Un

Bllock 1
(Prototype)

40

Block 2
(Sirides)

46+Bn

Block 3
(Bounds)

56+16n
Blodk 4
(Position)

ZK-raa5a-al

235

Chapter 8. OpenVMS Argument Descriptors

Table 8.13. Contents of the CLASS UBA Descriptor

Symbol

Description

DSC$W_LENGTH
DSC64$Q LENGTH

Length of an array element in bits.

DSC64$W_MBO

Must be 1. See Section 8.1.

DSC$B_DTYPE
DSC64$B_DTYPE

A data-type code that must have the value 34, which specifies the
unaligned bit string data type (see Section 7.1 and Section 7.2). The use of
other data types is reserved.

DSC$B_CLASS
DSC64$B_CLASS

Defines the descriptor class code that must be equal to 14 for
CLASS UBA.

DSC$A BASE
DSC64$PQ BASE

Base address relative to the effective bit offset, EB, that is used to locate
elements of the array. The base address need not be the first actual byte of
data storage.

DSC64SL_MBMO

Must be -1. See Section 8.1.

DSC$B_SCALE
DSC64$B_SCALE

Reserved and must be 0.

DSC$B_DIGITS

DSC64$B_DIGITS

If nonzero, the unsigned number of decimal digits in the internal
representation. If 0, the number of digits can be computed based on
LENGTH. This field should be 0 unless the TYPE field specifies a string
data type that could contain numeric values.

DSC$SB_AFLAGS
DSC64$B_AFLAGS

Array flag bits <23:16>:

Bits <18:16> Reserved and must be 0.

DSC$V_FL BINSCALE |Must be 0.
DSC64$V_FL_BINSCALE
DSC$V_FL_REDIM Must be 0.

DSC64$V_FL_REDIM

Bits <23:21> Reserved and must be 0.

DSC$B_DIMCT

DSC64$B_DIMCT

Number of dimensions, 7.

DSCS$L_ARSIZE

DSC64$Q_ARSIZE

If the elements are contiguous, ARSIZE is the total size of the array in
bits. If the elements are not allocated contiguously or if the program
unit allocating the descriptor is uncertain whether the array is actually
contiguous, the value placed in ARSIZE might be meaningless.

DSCSL_VO0 Signed bit offset of element A(0,...,0) with respect to BASE. Vo =POS —
DSC643$Q VO [Si*L; + ... + S, *L,].

DSCSL_Si Stride of the ith dimension. The difference between the bit (not byte)
DSC64$Q_Si addresses of successive elements of the ith dimension.

DSCSL_Li Lower bound (signed) of the ith dimension.

DSC64$Q Li

DSCSL Ui Upper bound (signed) of the ith dimension.

DSC64$Q Ui

DSCSL _POS Relative bit position with respect to BASE of the first actual bit of the

DSC64$Q_POS

array, that is, element A(Ly,...,L,).

236

Chapter 8. OpenVMS Argument Descriptors

The following formulas specify the signed effective bit offset, EB, of an array element:

The signed effective bit offset, EB, of A(I;):

EB Vo + S1*%1 ¢

PGS + S1*[11 - L4

The signed effective bit offset, EB, of A(I;,I»):

EB Vo + S1*l1 + Sy*lo

PCS + Si*[11 - Li] + S*[12 - Lo]

The signed effective bit offset, EB, of A(Iy, ..., L,,):

EB = Vo + St*l1 + ... + Sp*lq,

POS + Si*[11 - L1l + ... + Sy*[In - Ly

Note that EB is computed ignoring integer overflow.

On VAX systems, EB is used as the position operand, and the content of BASE is used as the base
address operand in the VAX variable-length bit field instructions. Therefore, BASE must specify a
byte within 2% bytes of all bytes of storage in the bit array.

For example, consider a single-origin, one-dimensional, five-element array consisting of 3-bit
elements allocated adjacently (therefore, S1 = 3). Assume BASE is byte 1000 and the first actual
element, A(1), starts at bit <4> of byte 1001.

7 6 5 4 3 2 1 0

:1000

2 1 1 1 0 :1001

4 4 4 3 3 3 2 2] :1002

5 5 5| :1003

ZK-1901-GE

The following dependent field values occur in the descriptor:

PCS = 12
Vo =12 - 3*1 =9

8.12. String with Bounds Descriptor
(CLASS_SB)

A variant of the fixed-length string descriptor is used to specify strings where the string is viewed as a
one-dimensional array with user-specified bounds. The following figure shows the format of a string
with bounds descriptor. Table 8.14 describes the fields of the descriptor.

237

Chapter 8. OpenVMS Argument Descriptors

Figure 8.13. String with Bounds Descriptor Format

32-Bit Form (DSC)

CLASS (=15) DTYPE LENGTH 0
POINTER 4
SB_L1 8
SB_U1 12
ZK-4674A-GE
64—Bit Form (DSC&4)
quadword aligned
CLASS (=15) DOTYPE MBO (=1) 0
MBMO (=—1) 4
B
= LENGTH =
116
= POINTER .
24
= sB_lA1 =
32
- sSB_A -
ZK-T886A-GE

Table 8.14. Contents of the CLASS_SB Descriptor

Symbol

Description

DSC$W_LENGTH
DSC64$Q LENGTH

Length of the string in bytes.

DSC64$W_MBO

Must be 1. See Section 8.1.

DSC$B_DTYPE
DSC64$B_DTYPE

A data-type code that must have the value 14, which specifies the character
string data type (see Section 7.1 and Section 7.2). The use of other data
types is reserved.

DSCS$B_CLASS
DSC64$B_CLASS

Defines the descriptor class code that must be equal to 15 for CLASS SB.

DSC$A_POINTER
DSC64$PQ_POINTER

Address of the first byte of data storage.

DSC64SL_MBMO

Must be -1. See Section 8.1.

DSCSL_SB_ L1
DSC64$Q SB L1

Lower bound (signed) of the first (and only) dimension.

238

Chapter 8. OpenVMS Argument Descriptors

Symbol Description

DSCSL_SB Ul Upper bound (signed) of the first (and only) dimension.
DSC64$Q_SB_Ul

The following formula specifies the effective address, E, of a string element A(I):
E = PONTER + [| - SB L1]

If the string must be extended in a string comparison or assignment, the space character (hexadecimal
20 if ASCII) is used as the fill character.

8.13. Unaligned Bit String with Bounds
Descriptor (CLASS_UBSB)

A variant of the unaligned bit string descriptor is used to specify bit strings where the string is viewed
as a one-dimensional bit array with user-specified bounds. Figure 8.14 shows the format of an
unaligned bit string with bounds descriptor. Table 8.15 describes the fields of the descriptor.

Figure 8.14. Unaligned Bit String with Bounds Descriptor Format

32-Bit Form (DSC)

CLASS (=16) DTYPE LENGTH :0
BASE 4
POS 8

UBSB_L1 112

UBSB_U1 116

ZK-4642A-GE

239

Chapter 8. OpenVMS Argument Descriptors

64—Bit Form (DSCe4)
quadword aligned

CLASS (=18) DTYPE MBO (=1) :0
MBMO (=—1) 4
8

o LENGTH —
18

o BASE -
24

o POS -
132

o LUBSB_L1 -
:40

- UBSBE_UA -
ZK-TeeTA-GE

Table 8.15. Contents of the CLASS_UBSB Descriptor

Symbol

Description

DSC$W_LENGTH
DSC64$Q LENGTH

Length of the data item in bits.

DSC64$W_MBO

Must be 1. See Section 8.1.

DSC$B_DTYPE
DSC64$B_DTYPE

A data-type code that must have the value 34, which specifies the
unaligned bit string data type (see Section 7.1 and Section 7.2). The use of
other data types is reserved.

DSC$B_CLASS
DSC64$B_CLASS

Defines the descriptor class code that must be equal to 16 for
CLASS_UBSB.

DSCS$A_BASE
DSC64$PQ BASE

Base address relative to the signed relative bit position, POS, used to locate
the bit string. The base address need not be the first actual byte of data
storage.

DSC64$L_MBMO

Must be -1. See Section 8.1.

DSCSL_POS
DSC64$Q POS

Signed longword that defines the relative bit position of the first bit of the
unaligned bit string to the BASE address.

DSCSL _UBSB LI
DSC64$Q UBSB L1

Lower bound (signed) of the first (and only) dimension.

DSCSL_UBSB Ul
DSC64$Q UBSB_Ul

Upper bound (signed) of the first (and only) dimension.

The following formula specifies the effective bit offset, EB, of a bit element A(I):

EB = PCS + [I -

UBSB_L1]

240

Chapter 8. OpenVMS Argument Descriptors

8.14. Reserved Descriptor Class Codes

All descriptor class codes from 0 through 191 not otherwise defined in this standard are reserved to
OpenVMS. Classes 192 through 255 are reserved for OpenVMS custom systems and for customers
for their own use.

Table 8.16 lists some specific descriptor classes and codes that are obsolete or reserved to OpenVMS.

Table 8.16. Specific Reserved OpenVMS VAX Descriptors

Descriptor Code Class

DSCS$K _CLASS V 3 Obsolete (variable buffer)
DSC$K_CLASS PI 6 Obsolete (procedure incarnation)
DSC$K _CLASS J 7 Reserved to DEBUG (label)

DSCS$K _CLASS JI 8 Obsolete (label incarnation)

DSC$K _CLASS CT 17 Reserved to ACMS (compressed text)
DSC$K _CLASS BFA 191 Reserved to BASIC (file array)

8.14.1. Facility-Specific Descriptor Class Codes

Descriptor class codes 160 through 191 are reserved for facility-specific purposes. These codes must
not be passed between facilities, because different facilities might use the same code for different
purposes. These codes can be used by compiler-generated code to pass parameters to the language-
specific, run-time support procedures associated with that language or to the OpenVMS Debugger.

241

Chapter 8. OpenVMS Argument Descriptors

242

Chapter 9. OpenVMS Conditions

An OpenVMS condition is a hardware-generated synchronous exception or a software event that is to
be processed in a manner similar to a hardware exception.

Floating-point overflow exception, memory access violation exception, and reserved operation
exception are examples of hardware-generated conditions. An output conversion error, an end of file,
and the filling of an output buffer are examples of software events that might be treated as conditions.

Depending on the condition and on the program, you can exercise any of four types of action when a
condition occurs:

» Ignore the condition.

For example, if an underflow occurs in a floating-point operation, continuing from the point of the
exception with a zero result might be sufficient.

» Take some special action and continue from the point at which the condition occurred.

For example, if the end of a buffer is reached while a series of data items are being written, the
special action is to start a new buffer.

* End the operation and branch from the sequential flow of control.

For example, if the end of an input file is reached, the branch exits from a loop that is processing
the input data.

¢ Treat the condition as an unrecoverable error.

For example, when the floating divide-by-zero exception condition occurs, the program exits after
writing (optionally) an appropriate error message.

When an unusual event or error occurs in a called procedure, the procedure can return a condition
value to the caller indicating what has happened (see Section 9.1). The caller tests the condition value
and takes the appropriate action.

When an exception is generated by the hardware, a branch out of the program's flow of control occurs
automatically. In this case, and for certain software-generated events, it is more convenient to handle
the condition as soon as it is detected rather than to program explicit tests.

9.1. Condition Values

Condition values are used in the OpenVMS operating system to provide the following functions:
» Indicate the success or failure of a called procedure as a function value.

* Describe an exception condition when an exception is signaled.

* Identify system messages.

* Report program success or failure to the command language level.

A condition value is a longword that includes fields to describe the software component that
generates the value, the reason the value was generated, and severity status of the condition value.
Figure 9.1 shows the format of a condition value. Table 9.1 describes the fields of a condition value.

243

Chapter 9. OpenVMS Conditions

Figure 9.1. Format of a Condition Value

31 2827 3 2 0
Control Condition identification Severity
\ AN J/
2 1 0
'S
27 1615 3
Facility number Message number
*S = Success
ZK-1795-GE

Table 9.1. Contents of the Condition Value

Symbol Description

Severity Indicates success or failure. The severity code bit <0> is set for success
(logical true) and is clear for failure (logical false); bits <1> and <2>
distinguish degrees of success or failure. Bits <2:0>, when taken as an
unsigned integer, are interpreted as shown in the following table:

Symbol Value |Description

STSSK WARNING 0 Warning

STS$K SUCCESS 1 Success

STSSK _ERROR 2 Error

STS$K_INFO 3 Information

STS$SK SEVERE 4 Severe error
5 Reserved to OpenVMS
6 Reserved to OpenVMS
7 Reserved to OpenVMS

Section 9.1.1 more fully describes severity codes.

Condition identification |Identifies the condition uniquely on a systemwide basis.

Message number Describes the status, which can be a hardware exception that occurred or
a software-defined value. Message numbers with bit <15> set are specific
to a single facility. Message numbers with bit <15> clear are systemwide
status codes.

Facility number Identifies the software component generating the condition value. Bit <27>
is set for customer facilities and is clear for OpenVMS facilities.

Control Controls the printing of the message associated with the condition value.
Bit <28> inhibits the message associated with the condition value from
being printed by the SYSSEXIT system service. This bit is set by the
system default handler after it has output an error message using the
SYSSPUTMSG system service. It should also be set in the condition value
returned by a procedure as a function value, if the procedure has also

244

Chapter 9. OpenVMS Conditions

Symbol

Description

signaled the condition (so the condition has been printed or suppressed).
Bits <31:29> must be 0; they are reserved for future use.

Table 9.2 lists the possible software symbols that are defined for the various fields of the condition-

value longword.

Table 9.2. Value Symbols for the Condition Value Longword

Symbol Value |Meaning Field

STS$V_COND ID 3 Position of <27:3> Condition identification
STS$S _COND ID 25 Size of <27:3> Condition identification
STS$M_COND ID Mask Mask for <27:3> Condition identification
STS$V_INHIB_MSG 1@28 |Position for <28> Inhibit message on image exit
STS$S INHIB MSG 1 Size for <28> Inhibit message on image exit
STS$SM_INHIB_MSG Mask Mask for <28> Inhibit message on image exit
STS$V_FAC NO 16 Position of <27:16> Facility number

STS$S FAC NO 12 Size of <27:16> Facility number
STSSM_FAC NO Mask Mask for <27:16> Facility number
STS$V_CUST_DEF 27 Position for <27> Customer facility

STS$S CUST DEF 1 Size for <27> Customer facility
STS$M_CUST DEF 1@27 |Mask for <27> Customer facility
STS$V_MSG NO 3 Position of <15:3> Message number
STS$S_MSG_NO 13 Size of <15:3> Message number
STS$M_MSG NO Mask Mask for <15:3> Message number
STS$V_FAC SP 15 Position of <15> Facility-specific

STS$S FAC SP 1 Size for <15> Facility-specific
STS$SM_FAC _SP @15 |Mask for <15> Facility-specific
STS$V_CODE 3 Position of <14:3> Message code

STS$S CODE 12 Size of <14:3> Message code
STS$SM_CODE Mask Mask for <14:3> Message code
STS$V_SEVERITY 0 Position of <2:0> Severity

STS$S SEVERITY 3 Size of <2:0> Severity

STSSM_SEVERITY 7 Mask for <2:0> Severity

STS$V_SUCCESS 0 Position of <0> Success

STS$S_SUCCESS 1 Size of <0> Success

STS$M_SUCCESS 1 Mask for <0> Success

9.1.1. Interpretation of Severity Codes

A standard procedure must consider all possible severity codes (0—4) of a condition value. Table 9.3
lists the interpretation of severity codes 0 through 4.

245

Chapter 9. OpenVMS Conditions

Table 9.3. Interpretation of Severity Codes

Severity Meaning

Code

0 Indicates a warning. This code is used whenever a procedure produces output, but
the output produced might not be what the user expected (for example, a compiler
modification of a source program).

1 Indicates that the procedure generating the condition value completed successfully, as
expected.

2 Indicates that an error has occurred but the procedure did produce output. Execution
can continue, but the results produced by the component generating the condition
value are not all correct.

3 Indicates that the procedure generating the condition value completed successfully
but has some parenthetical information to be included in a message if the condition is
signaled.

4 Indicates that a severe error occurred and the component generating the condition

value was unable to produce output.

When designing a procedure, you should base the choice of severity code for its condition values on
the following default interpretations:

* The calling program typically performs a low-bit test, so it treats warnings, errors, and severe
errors as failures, and treats success and information as successes.

* If'the condition value is signaled (see Section 9.4.3), the default handler treats severe errors as
reason to terminate and treats all the others as the basis for continuation.

* When the program image exits, the command interpreter by default treats errors and severe errors
as the basis for stopping the job, and treats warnings, information, and successes as the basis for
continuation.

The following table summarizes the action default decisions of the severity conditions:

Severity Routine Signal Default at Program
Exit

Success Normal Continue Continue

Information Normal Continue Continue

Warning Failure Continue Continue

Error Failure Continue Stop job

Severe error Failure Exit Stop job

The default for signaled messages is to output a message on SYS$OUTPUT. In addition, for severities
other than success (STS$K_SUCCESS), a copy of the message is made on SYSSERROR. At program
exit, success and information completion values do not generate messages; however, warning, error,
and severe error condition values do generate messages to SYS$SOUTPUT and SYSSERROR unless
bit <28> (STS$V_INHIB_MSGQG) is set.

Unless there is a good basis for another choice, a procedure should use success or severe error as its
severity code for each condition value.

246

Chapter 9. OpenVMS Conditions

9.1.2. Use of Condition Values

OpenVMS software components return condition values when they complete execution. When a
severity code in the range of 0 through 4 is generated, the status code describes the nature of the
problem. This value can be tested to change the flow of control of a procedure, can be used to
generate a message, or both.

User procedures can also generate condition values to be examined by other procedures and by the
command interpreter. User-generated condition values should have bits <27> and <15> set so they do
not conflict with values generated by OpenVMS.

9.2. Condition Handlers

To handle hardware- or software-detected exceptions, the OpenVMS Condition Handling Facility
(CHF) allows you to specify a condition handler procedure to be called when an exception condition
occurs.

An active procedure can establish a condition handler to be associated with it. When an event occurs
that is to be treated using the Condition Handling Facility, the procedure detecting the event signals
the event by calling the facility and passing a condition value that describes the condition. This
condition value has the format and interpretation described in Section 9.1. All hardware exceptions
are signaled.

When a condition is signaled, the Condition Handling Facility looks for a condition handler associated
with the current procedure's stack frame. If a handler is found, it is entered. If a handler is not
associated with the current procedure, the immediately preceding stack frame is examined. Again, if a
handler is found, it is entered. If a handler is not found, the search of previous stack frames continues
until the default condition handler established by the system is reached or until the stack runs out.

The default condition handler prints messages, indicated by the signal argument list, by calling the
put message (SYS$PUTMSG) system service, followed by an optional symbolic stack traceback.
Success conditions with STS$K SUCCESS result in messages to SYSSOUTPUT only. All other
conditions, including informational messages (STS$K_INFO), produce messages on SYSSOUTPUT
and SYSSERROR.

For example, if a procedure needs to keep track of the occurrence of the floating-point underflow
exception, it can establish a condition handler to examine the condition value passed when the handler
is invoked. Then, when the floating-point underflow exception occurs, the condition handler is entered
and logs the condition. The handler returns to the instruction immediately following the instruction
that was executing when the condition was reported by the hardware. On a VAX or 164 processor, or
on an x86-64 processor when the underflow was caused by an SSE instruction, this instruction is the
one immediately following the instruction that caused the underflow; on an Alpha processor, or on an
x86-64 processor when the underflow was caused by an x87 instruction, this instruction might occur
later.

If floating-point operations occur in many procedures of a program, the condition handler can be
associated with the program's main procedure. When the condition is signaled, successive stack
frames are searched until the stack frame for the main procedure is found, at which time the handler
is entered. If a user program has not associated a condition handler with any of the procedures that
are active at the time of the signal, successive stack frames are searched until the frame for the
system program invoking the user program is reached. A default condition handler that prints an error
message is then entered.

247

Chapter 9. OpenVMS Conditions

9.3. Condition Handler Options

Each procedure activation potentially has a single condition handler associated with it. This condition
handler is entered whenever any condition is signaled within that procedure. (It can also be entered as
a result of signals within active procedures called by the procedure). Each signal includes a condition
value (see Section 9.1) that describes the condition that caused the signal. When the condition handler
is entered, it should examine the condition value to determine the cause of the signal. After the
handler either processes the condition or ignores it, it can take one of the following actions:

* Return to the instruction immediately following the signal. Note that such a return is not always
possible.

* Resignal the same or a modified condition value. A new search for a condition handler begins
with the immediately preceding stack frame.

» Signal a different condition.
* Unwind the stack.

* OpenVMS Alpha, 164, or x86-64 systems, perform a nonlocal GOTO operation (see Section 9.4)
that transfers control from one procedure invocation and continues execution in a prior one.

9.4. Operations Involving Condition Handlers

The OpenVMS Condition Handling Facility (CHF) provides functions to perform the following
operations:

* Establish a condition handler.

A condition handler is associated with a procedure in various ways, depending on the language in
which the procedure is written. Some languages provide specific syntax for defining a handler and
its possible actions; others allow dynamic specification of a routine to act as a handler.

* On VAX systems, revert to the caller's handling.
If a condition handler has been established on a VAX system, you can remove it.
* Enable or disable certain arithmetic exceptions.

The software can enable or disable the following hardware exceptions: floating-point underflow,
integer overflow, and decimal overflow. No signal occurs when the exception is disabled.

On VAX systems, exceptions are enabled or disabled dynamically at every procedure entry or by
directly manipulating the processor status longword.

On Alpha systems, exceptions are enabled or disabled statically during compilation; this is
reflected in the code that is compiled.

On 164 and x86-64 systems, exceptions are enabled or disabled dynamically by directly
manipulating the appropriate status register or by calling a system service (the latter is preferred
on 164).

» Signal a condition.

Signaling a condition initiates the search for an established condition handler.

248

Chapter 9. OpenVMS Conditions

¢ Unwind the stack.

Upon exiting from a condition handler, it is possible to remove one or more frames that occur
before the signal from the stack. During the unwinding operation, the stack is scanned; if a
condition handler is associated with a frame, the handler is entered before the frame is removed.
Unwinding the stack allows a procedure to perform application-specific cleanup operations before
exiting.

* On 64-bit systems, perform a nonlocal GOTO unwind.

A GOTO unwind operation is a transfer of control that leaves one procedure invocation and
continues execution in a prior (currently active) procedure. This unified GOTO operation gives
unterminated procedure invocations the opportunity to clean up in an orderly way.

9.4.1. Establishing a Condition Handler

On VAX systems, the association of a handler with a procedure invocation is dynamic and can be
changed or reverted to the caller's handler during execution, but this is not supported for languages
that implicitly provide their own handlers.

Each procedure activation can have an associated condition handler, using the first longword in its
stack frame. Initially, the first longword (longword 0) contains the value 0, indicating no handler.
You establish a handler by moving the address of the handler's procedure entry point mask to the
establisher's stack frame.

On VAX systems, the following code establishes a condition handler:

MOVAB handl er _entry_poi nt, O(FP)

On 64-bit systems, the association of a handler with a procedure is static and must be specified at

the time a procedure is compiled (or assembled). However, some languages that lack their own
exception handling syntax can support emulation of dynamically specified handlers by means of built-
in routines.

Each procedure, other than an Alpha or 164 null frame procedure, can have a condition handler
potentially associated with it, which is identified by the presence of the procedure value of the handler
in a field of the associated procedure descriptor on Alpha (see Section 3.4) or unwind information on
164 (see Section A.4.1) and x86-64 (see Section B.3.2.2 and Section B.3.4).

In addition, the OpenVMS operating system on all processors provides three statically allocated
exception vectors for each access mode of a process. Two of them can be used to establish handlers
that are considered before any frame-based handlers, and the third can be used to establish a handler
that is considered after all frame-based handlers (see Section 9.4.6 for further details). For example,
the vectors are used to allow a debugger to monitor all exceptions and for the system to establish a
last-chance handler. Because these handlers do not obey the procedure nesting rules, do not use them
with modular code. Instead, use frame-based handlers.

9.4.2. Reverting to the Caller's Handling

On VAX systems, reverting to the caller's handling deletes the condition handler associated with the
current procedure activation. You do this by clearing the handler address in the stack frame.

On VAX systems, the code to revert to the caller's handling is as follows:

CLRL O(FP)

249

Chapter 9. OpenVMS Conditions

On 64-bit systems, there is no means to revert to a caller's handler (unless a language provides
emulation of dynamically specified handlers).

9.4.3. Signaling a Condition

The signal operation is the method for indicating the occurrence of an exception condition. To

initiate a signal and allow execution to continue after handling the condition, a program calls the
LIB$SIGNAL procedure. To initiate a signal but not allow execution to continue at the point of
initiation, a program calls the LIBSSTOP procedure. The format of the LIBSSIGNAL and LIB$STOP
calls are defined as follows:

LI B$SI GNAL(condi ti on-val ue, argn...)

LI BSSTOP(condi ti on-val ue, argn...)

Argument OpenVMS Usage Type Access Mechanism
condition-value condition longword read by value
argn integer quadword read by value
Arguments:

condi ti on-val ue An OpenVMS condition value.

argn Zero or more integer arguments that become the additional arguments of a
signal argument vector (see Section 9.5.1.1)

Function Value Returned:
None.

In both cases, the condi t i on- val ue argument indicates the condition that is signaled. However,
LIB$STOP sets the severity of the condi ti on- val ue argument to be a severe error. The
remaining arguments describe the details of the exception. These are the same arguments used to issue
a system message.

9.4.4. Signaling a Condition Using GENTRAP
(64-Bit Systems)

Alpha, 164, and x86-64 systems each have a special instruction that provides an efficient means to
raise a hardware-like exception. These are intended for use especially in low levels of the operating
system or in the bootpath sequence when only a limited execution environment is available. Compiled
code can also use these instructions to raise common generic exceptions more simply and compactly
than by executing a complete LIBSSIGNAL procedure call.

In each case, the special instruction takes an exception code (eXcp_code) parameter that is passed
in a general register; that parameter specifies the particular exception to be raised.

On Alpha systems, the GENTRAP PALcall instruction is used. The excp_code parameter is passed
in R16. Interpretation of that parameter is described below.

On 164 systems, the BREAK instruction with an immediate operand of 100001 (hex) is used to
implement a GENTRAP operation. The excp_code parameter is passed in R17. Interpretation of
that parameter is described below.

250

Chapter 9. OpenVMS Conditions

On x86-64 systems, the INT 32 instruction together with BREAKSC SYS GENTRAP (100001 (hex)

or 1048577 (decimal)) in % di is used to implement a GENTRAP operation. The exception code
parameter is passed in % Si . This parameter is described below.

If the excp_code value is one of the small integers shown in the first column of Table 9.4, then
that value is mapped to a corresponding OpenVMS condition code as shown in the third (Symbol)
column of the Table. If the value is negative but not one of the values shown in Table 9.4, then

SS$ GENTRAP is raised with the unmapped value included in the signal vector as the first and only

qualifier value. Otherwise, a positive value is used directly to raise an exception using that value as

the condition value. Note that there is no means to associate any parameters with an exception raised

by GENTRAP.

For more information on:

» the Alpha GENTRAP PALcall, see the Alpha Architecture Reference Manual

» the BREAK instruction on the Intel [tanium processors, see the Intel 14-64 Architecture Software
Developer's Manual

e Itanium Conventions Defined Codes, see Section 9.4.5

» the x86-64 INT instruction, see the Intel 64 and I4-32 Architectures Software Developer Manuals

Table 9.4. Exception Codes and Symbols for the GENTRAP Parameter

OpenVMS | Corresponding Symbol Meaning
GENTRAP |Intel Itanium
excp_code |Conventions
Parameter |Defined Codes
(High Bits 000),
not used in calls
to GENTRAP
64-bit Systems
-1 2 SS$ INTOVF Integer overflow
-2 1 SS§ INTDIV Integer divide by zero
-3 SS$ FLTOVF Floating overflow
-4 SS$ FLTDIV Floating divide by zero
-5 SS$ FLTUND Floating underflow
-6 SS§ FLTINV Floating invalid operand
-7 SS$ FLTINE Floating inexact result
-8 6 SS$ DECOVF Decimal overflow
-9 7 SS$ DECDIV Decimal divide by zero
-10 8,9,10 SS§ DECINV Decimal invalid operand
—11 0 SS$ ROPRAND Reserved operand
-12 SS$ ASSERTERR Assertion error
-13 4 SS$ NULPTRERR Null pointer error
—-14 11 SS§ STKOVF Stack overflow
-15 SS$ STRLENERR String length error
-16 SS$ SUBSTRERR Substring error

251

Chapter 9. OpenVMS Conditions

OpenVMS | Corresponding Symbol Meaning
GENTRAP |Intel Itanium
excp_code |Conventions
Parameter |Defined Codes

(High Bits 000),

not used in calls

to GENTRAP
-17 SS$ RANGEERR Range error
-18 3 SS$ SUBRNG Subscript range error
-19 SS$ SUBRNGI Subscript 1 range error
=20 SS$ SUBRNG2 Subscript 2 range error
=21 SS$ SUBRNG3 Subscript 3 range error
22 SS$ SUBRNG4 Subscript 4 range error
=23 SS$ SUBRNGS5 Subscript 5 range error
24 SS$ SUBRNG6 Subscript 6 range error
=25 SS$ SUBRNG7 Subscript 7 range error

-26 SS$ CALLUNDEFSYM Call using undefined function
symbol
=27 SS$ ARGTYPI1 Argument 1 type error
-28 SS$ ARGTYP2 Argument 2 type error
-29 SS$ ARGTYP3 Argument 3 type error
=30 SS$ ARGTYP4 Argument 4 type error
=31 SS$ ARGTYPS Argument 5 type error
-32 SS$ ARGTYP6 Argument 6 type error
-33 SS$ ARGTYP7 Argument 7 type error
-34 SS$ ARGTYPS Argument 8 type error

SS$ UNALIGNED

Unaligned parameter

9.4.5. Signaling a Condition Using BREAK (164 Only)

In accordance with the Itanium software conventions, OpenVMS 164 partitions the 21-bit immediate
operand values that can occur in a BREAK instruction into the following groups:

* Immediate operands whose three highest-order bits are 000, which is the range 000000 through
03FFFF (hex). These values are reserved for architected software interrupt codes. The defined
software interrupt codes are listed in the second column of Table 9.4. Immediate operands in this
range, but not listed in the table, are reserved for future use.

A code shown in the second column of Table 9.4 is mapped to a corresponding OpenVMS
condition code as shown in the third (Symbol) column, which is then raised. (This handling is
similar to the handling of a negative excp_code parameter for GENTRAP as described in
Section 9.4.4).

* Immediate operands whose three highest-order bits are 001, which is the range 040000 (hex)
through 07FFFF (hex).

252

Chapter 9. OpenVMS Conditions

Operands in this range are reserved for use by applications. If one of these occurs, then
SS$ BREAK APPL is raised with the operand value included as the first (and only) additional
argument in the signal argument vector (see Section 9.5.1.1).

* Immediate operands whose two highest-order bits are 01, which is the range 080000 (hex) through
OFFFFF (hex).

Operands in this range are reserved for use by debuggers. OpenVMS debugger software uses only
immediate operands in the range 080000 (hex) through OBFFFF (hex). Other debugger software
is encouraged, but not required, to use immediate operands in the range 0C0000 (hex) through
OFFFFF (hex).

* Immediate operands whose highest-order bit is 1, which is the range 100000 (hex) through
IFFFFF (hex).

Operands in this range are reserved for use within OpenVMS. The value 100001, however, is used
to implement an Alpha-compatible GENTRAP operation as described in Section 9.4.4.

For more information on the Itanium software conventions, see the Itanium® Software
Conventions and Runtime Architecture Guide.

9.4.6. Condition Handler Search

The signal procedure examines the two exception vectors first, then examines a system-defined
maximum number of previous stack frames, and, if necessary, examines the last-chance exception
vector. The exception vectors have three procedure value locations per access mode.

As part of image startup, the system declares a default last-chance handler. This handler is used as
a last resort when the normal handlers are not performing correctly. The debugger can replace the
default system last-chance handler with its own.

On 64-bit systems, note that the default catchall handler in user mode can be a list of handlers and is
not in conflict with this standard.

On OpenVMS systems, in some frame before the call to the main program, the system establishes

a default catchall condition handler that issues system messages. In a subsequent frame before the
call to the main program, the system usually establishes a traceback handler. These system-supplied
condition handlers use the condi t i on- val ue argument to get the message and then use the
remainder of the argument list to format and output the message through the SYS$PUTMSG system
service.

If the severity field of the condi ti on- val ue argument (bits <2:0>) does not indicate a severe
error (that is, a value of 4), these default condition handlers return with SS§ CONTINUE. If the
severity is a severe error, these default handlers exit the program image with the condition value as the
final image status.

The stack search ends when the old frame address is O or is not accessible, or when a system-defined
maximum number of frames have been examined. If a condition handler is not found, or if all
handlers return with a SS§ RESIGNAL or SS§ RESIGNALG64, then the vectored last-chance handler
is called.

If a handler returns SS§ CONTINUE or SS§ CONTINUEG64, and LIBSSTOP was not called, control
returns to the signaler. Otherwise, LIBSSTOP issues a message indicating that an attempt was made to
continue from a noncontinuable exception and exits with the condition value as the final image status.

253

Chapter 9. OpenVMS Conditions

Figure 9.2 lists all combinations of interaction between condition handler actions, default condition
handlers, types of signals, and calls to signal or stop. In this figure, “Cannot Continue” indicates an

error that results in the following message:

| MVPROPERLY HANDLED CONDI TI ON, ATTEMPT TO CONTI NUE FROM STOP.

Figure 9.2. Interaction Between Handlers and Default Handlers

(:S(')%ré?tli%?l Default Handler Handler No Handler
Call to: Severit Handler Specifies Specifies Is Found
<2:0 z Gets Control Continue UNWIND (Stack Bad)
Call
Condition Last-
<4 Message RET UNWIND Chance
RET Handler
LIBSSIGNAL EXIT
or
Hardware
Exception Call
Condition Last-
=4 Message RET UNWIND Chance
EXIT Handler
EXIT
Call
Force Condition "Cannot Last—
LIBSSTOP (=4) Message Continue” UNWIND Chance
» EXIT EXIT Handler
EXIT
ZK-4247-GE

9.5. Properties of Condition Handlers

This section describes the properties of condition handlers for all OpenVMS environments.

9.5.1. Condition Handler Parameters and Invocation

If a condition handler is found on a software-detected exception, the handler is called as follows:

(*handl er) (si gnal _args,

nmechani sm ar gs)

Argument OpenVMS Usage Type Access Mechanism
signal args signal vector structure modify by reference
mechanism_args |mechanism structure modify by reference

254

Chapter 9. OpenVMS Conditions

Arguments:

signal _args A 32-bit signal argument vector (see Section 9.5.1.1)
nmechani sm ar gs A mechanism argument vector (see Section 9.5.1.2)

Function Value Returned:

One of the following status codes: SS§ CONTINUE, SS$ RESIGNAL, SS$ CONTINUE64,
SS$ RESIGNALG64. This value is used by the Condition Handling Facility to determine how to
proceed next in processing the condition. (See Section 9.6).

9.5.1.1. Signal Argument Vector

There are two forms of signal argument vector (or signal vector for short): one for use with 32-bit
addresses and one for use with 64-bit addresses. The two forms are compatible in that the forms can
be distinguished dynamically at run-time and, except for the size and offset of fields, are identical in
content and interpretation.

The 32-bit signal argument vectors are used on all OpenVMS systems. When used on 64-bit systems,
32-bit signal argument vectors provide full compatibility with their use on VAX systems. The 64-

bit signal argument vectors are used only on 64-bit systems—they have no counterpart and are not
recognized on VAX systems.

When a condition handler is called by the Condition Handling Facility (CHF) on 64-bit systems,
both forms of signal argument vector are available. The first argument is always a reference

to a 32-bit form of signal argument vector. A handler that chooses to operate using the 64-

bit form must obtain the address of the corresponding 64-bit signal argument vector from the
CHF$PH _MCH_SIG64 ADDR field of the mechanism argument vector (see Section 9.5.1.2).

Both forms of signal vector include a length field, a condition value, zero or more parameters that
further qualify the condition value, and finally a processor program counter (PC) and program status
(PS). For hardware-detected exceptions, the condition value indicates which exception was taken.
The PC value gives the address of the instruction that caused the exception or the address of the

next instruction, depending on whether the exception was a fault or a trap. For software-detected
conditions, the condition value and any associated parameters are copies of the parameters to the call
of LIB$SSIGNAL or LIB$SSTOP that initiated exception handling, while the PC is the return address to
the caller of that routine.

Note that bits <2:0> of a condition value indicate severity and not what condition is being signaled.
Therefore, a handler should examine only the condition identification, that is, condition value bits
<27:3>, to determine the cause of the exception. The setting of severity bits <2:0> may vary from
time to time even for the same condition. In fact, some handlers might only change the severity of a
condition in the signal vector and resignal.

Generally, a handler may validly modify any field of a signal argument vector except for the
CHFSL _SIG ARGS length field or, in the case of a 64-bit signal vector, the CHF64$L. SIGNAL64
field. In particular, a modified signal vector is passed to a subsequent handler if the current handler
completes by resignaling. (If the length is modified, the modification is ignored; CHF restores the
original length). It is invalid for a handler to modify both forms of signal argument vector—the effect
of doing so is undefined.

The remainder of this section is organized as follows. First, the 32-bit form of signal argument vector
is described. Second, the 64-bit form of signal argument is described. Finally, the relationship between
the two forms is discussed.

255

Chapter 9. OpenVMS Conditions

The following figure shows the format of the 32-bit form of signal argument vector. The

CHFSL _SIG_ARGS longword contains the argument vector count, which is the number of remaining
longwords in the vector. The CHFSL_SIG_NAME longword contains the condition value. Next are 0
or more longwords that contain additional parameters appropriate to the condition. The remaining two
longwords contain the PC and PS values.

Figure 9.3. Signal Argument Vector — 32-Bit Format

31 0
Vector count (n) :CHF$IS_SIG_ARGS
~
Condition value :CHF$L_SIG_NAME
~ Additional arguments (or none) ~
PC
n
PS
S

ZK-4643A-GE

On VAX systems, the value used for the PS is the contents of the VAX processor status longword
(PSL).

On Alpha systems, the value used for the PS is the low half of the Alpha processor status register.
Furthermore, CHFS$IS_ SIG ARGS and CHFS$IS SIG NAME are aliases for CHF$L _SIG ARGS and
CHFSL_SIG_NAME, respectively.

On 164 and x86-64 systems, the value used for the PS is the low half of a fabricated Alpha-like
processor status register that contains IPL, CM, CSW, and IP fields.

On 164 systems, code may be loaded into 64-bit address space by using a LINK qualifier. On
x86-64 systems, code is loaded into 64-bit address space by default unless overridden with a LINK
qualifier. In these cases, the value used for the PC is the bottom 32-bits of the actual IP value. In
order to access the full IP value, it is necessary to examine the 64-bit format signal vector using the
CHF$PH_MCH_SIG64 ADDR field in the mechanism argument vector.

Figure 9.4 shows the format of the 64-bit form of signal argument vector. The address of this form of
signal argument is available only from the CHFSPH_MCH_SIG64 ADDR field of the mechanism
argument vector (see Section 9.5.1.2). The CHF64$L_SIG ARGS field is a longword that contains
the number of remaining quadwords in the vector (following the CHF64$L SIGNAL64 field).

The CHF64$L_SIGNALG64 longword contains a special code named SS$ SIGNAL64 whose

value is key to distinguishing between a 32-bit and 64-bit form of signal argument vector. The
CHF64$Q _SIG_NAME quadword contains a sign-extended condition value. Next are zero or more
quadwords that contain additional parameters appropriate to the condition. The remaining two
quadwords contain the PC and PS values.

256

Chapter 9. OpenVMS Conditions

Figure 9.4. Signal Argument Vector — 64-Bit Format

31 0
Vector count (n) :CHF64$L SIG ARGS

SS$SIGNALG4 :CHF$64L_SIGNAL64

:CHF64$Q SIG NAME
- Condition value -

Additional arguments (or none)

33
T(
33
TC

ZK-7685A-GE

When a handler is called, the 32-bit and 64-bit signal argument vectors are closely related as follows:

* The value of the length field in the 64-bit form (the number of quadwords following the
CHF64SL_SIGNALG64 field) is equal to the value of the length field in the 32-bit form (the
number of longwords following the CHFSL_SIG ARGS field).

* The condition value, any related arguments, and the PC and PS values in the 32-bit form are the
same as the values in the 64-bit form truncated to 32 bits.

Note that given a 64-bit signal vector, it is possible to create the corresponding 32-bit signal vector

by fetching the low-order longword of each quadword of the 64-bit vector and packing the results
together contiguously into a 32-bit vector; other than using the length, no interpretation of the contents
is required.

Given the address of a signal argument vector that might be either the 32-bit or 64-bit form, either of
the following equivalent tests may be used to distinguish which one is present:

* Assuming a 32-bit form, compare the contents of the CHFSL_SIG_NAME field (equivalently
CHF64S$L_SIGNALG64) with the value SS§_SIGNALG64. If equal, then the 64-bit form is present;
otherwise, the 32-bit form is present.

* Assuming a 64-bit form, compare the contents of the CHF64$L. SIGNALG64 field with the value
SS$ SIGNALG64. If equal, then the 64-bit form is present; otherwise, the 32-bit form is present.

9.5.1.2. Mechanism Argument Vector

The mechanism argument vector for the argument mechani sm_ar gs contains information
about the machine state when an exception occurs or when a condition is signaled. Therefore, the
mechanism argument vector is highly specific to the underlying machine architecture.

9.5.1.2.1. VAX Mechanism Vector Format

On VAX systems, the mechanism format for the argument vectors is shown in Figure 9.5. The first
longword contains the argument vector count, which is the number of remaining longwords in

257

Chapter 9. OpenVMS Conditions

the vector. The frame longword contains the contents of the FP in the establisher's context. If the
restrictions described in Section 9.5.3.1 are met, the frame can be used as a base from which to access
the local storage of the establisher.

The depth longword is a positive count of the number of procedure-activation stack frames between
the frame in which the exception occurred and the frame depth that established the handler being
called. (For more information about depth, see Section 9.5.1.3).

The CHFSL._ MCH_SAVRO0 and CHFSL_ MCH_SAVRI1 longwords save the state of the RO and
R1 registers, respectively, at the time of the call to LIBSSIGNAL or LIBSSTOP. If not modified
by a handler during CHF processing, these values will become the values of those registers after
completion of CHF processing (either by continuation or by unwinding). These two fields may
be modified by a handler to establish different values to be used at CHF completion. Note that the
contents of other registers are not available in the mechanism vector and can only be accessed by
analysis of the stack. (See Section 9.7.1).

CHFSL_MCH_SAVRO0 and CHFSL_MCH_SAVRI are the only fields of a VAX mechanism vector
that can be validly modified by a handler. The effect of any other modification is undefined.

Figure 9.5. VAX Mechanism Vector Format

31 0
Vector count (=4) :CHF$L_MCH_ARGS

Frame :CHF$L_MCH_FRAME

Depth :CHF$L_MCH_DEPTH

RO :CHF$L_MCH_SAVRO

Ri :CHF$L_MCH_SAVR1

ZK-7686A-GE

Note

The 64-bit systems use more generic names (beginning in Version 8.2), for example,
CHFS$IH MCH _RETVAL and CHFSIH_ MCH_RETVAL, for the registers that are used to hold
function results.

If the VAX vector hardware or emulator option is in use, then for hardware-detected exceptions, the
vector state is implicitly saved before any condition handler is entered and restored after the condition
handler returns. (Save and restore is not required for exceptions initiated by calls to LIBSSIGNAL or
LIB$STOP, because there can be no useful vector state at the time of such calls in accordance with the
rules for vector register usage in Section 2.1.2). Thus, a condition handler can make use of the system
vector facilities in the same manner as mainline code.

The VAX saved vector state is not directly available to a condition handler. A condition handler

that needs to manipulate the vector state to carry out agreements with its callers can call the
SYSSRESTORE VP _STATE service. This service restores the saved state to the vector registers
(whether hardware or emulated) and cancels any subsequent restore. The vector state can then be
manipulated directly in the normal manner by means of vector instructions. (This service is normally
of interest only during processing for an unwind condition).

258

Chapter 9. OpenVMS Conditions

9.5.1.2.2. Alpha Mechanism Vector Format

On Alpha systems, the 64-bit-wide mechanism array is the argument mechanism in the handler call.
The array is shown in Figure 9.6. Table 9.5 lists and describes the fields.

Note

The following table lists variable name equivalence for VSI OpenVMS Version 8.2 and earlier and
VSI OpenVMS Version 8.2 and later. Although VSI OpenVMS Version 8.2 and later offer backward
compatibility, it is recommended that you use the new names for that version of the operating system.

VSI OpenVMS Version 8.2 and earlier VSI OpenVMS Version 8.2 and later
MCH_SAVRO0 MCH_RETVAL

MCH_SAVRI1 MCH_RETVAL2

MCH_SAVF0 MCH_RETVAL FLOAT
MCH_SAVF1 MCH _RETVAL2 FLOAT

The CHF$IH_MCH_RETVALX and CHF$FH MCH_RETVALX_FLOAT quadwords save the

state of the nonpreserved general and floating registers, respectively, at the time of the call to
LIB$SIGNAL or LIBSSTOP. If not modified by a handler during CHF processing, these values will
become the values of those registers after completion of CHF processing (either by continuation or by
unwinding). These fields may be modified by a handler to establish different values to be used at CHF
completion.

The CHF$IH MCH_RETVALX and CHFSFH_MCH_RETVALX FLOAT fields are the only fields
of an Alpha mechanism vector that can be validly modified by a handler. The effect of any other
modification is undefined. (See also Section 9.7.2). Note that the contents of the normally preserved
registers are not available in the mechanism vector and can only be accessed by analysis of the stack.
(See Section 9.7.1).

The recommended method for modifying return values in a procedure's invocation context
(CHFIH_MCH_RETVAL, CHFIH MCH_RETVAL?2, CHF$SIH_ MCH_RETVAL FLOAT, and
CHFS$IH_RETVAL2 FLOAT) is by using routine SYSSSET RETURN_VALUE (see Section 9.7.2).
The recommended method for modifying all other registers in a procedure's invocation context is by
using routine LIB§PUT INVO REGISTERS (see Section 3.5.3.6).

259

Chapter 9. OpenVMS Conditions

Figure 9.6. Alpha Mechanism Vector Format

quadword aligned

MCH_ARGS 0
MCH_FLAGS 4
8
f— MCH_FRAME —
MCH_DEPTH 16
MCH_RESVD1 20
24
p— MCH_DADDR —
:32
_ MCH_ESF_ADDR -
40
— MCH_SIG_ADDR —
MCH_RETVAL 48
(MCH_SAVRO_LOW)
MCH_SAVRO_HIGH
MCH_RETVAL2 56
(MCH_SAVR1_LOW) '
(MCH_SAVR1_HIGH)
64
fr MCH_SAVR16 —
A Integer registers 17-27 a
160
— MCH_SAVR28 —_
| MCH_RETVAL_FLOAT _|1e8
(MCH_SAVFQ)
176
| MCH_RETVAL2_FLOAT -
(MCH_SAVF1)
184
e MCH_SAVF10 —
= Floating registers 11-29 =
1344
o MCH_SAVF30 —
:352
f MCH_SIG64_ADDR —
CHF$S_CHFDEF2=360
VM-T689A-Al

260

Chapter 9. OpenVMS Conditions

Table 9.5. Contents of the Alpha Argument Mechanism Array (MECH)

Field Name

Contents

CHFS$IS MCH_ARGS

Count of quadwords in this array starting from the next
quadword, CHF$PH_MCH_FRAME (not counting the first
quadword that contains this longword). This value is always
44.

CHFS$IS MCH_FLAGS

Flag bits <31:0> for related argument-mechanism
information defined as follows:

CHF$V_FPREGS_ VALID |Bit 0. When set, the process has
already performed a floating-
point operation and the floating-
point registers stored in this
structure are valid.

If this bit is clear, the process
has not yet performed any
floating-point operations and
the values in the floating-point
register slots in this structure are
unpredictable.

CHF$PH_MCH_FRAME

Contains the frame pointer in the procedure context of the
establisher.

CHFS$IS MCH_DEPTH

Positive count of the number of procedure activation stack
frames between the frame in which the exception occurred
and the frame depth that established the handler being called
(see Section 9.5.1.3).

CHFS$IS MCH_RESVDI

Reserved to OpenVMS.

CHF$PH_MCH_DADDR

Address of the handler data quadword if the exception
handler data field is present (as indicated by
PDSC$V_HANDLER DATA VALID); otherwise, contains
0.

CHF$PH_MCH_ESF_ADDR

Address of the exception stack frame (see the Alpha
Architecture Reference Manual).

CHF$PH_MCH_SIG _ADDR

Address of the 32-bit form of signal array. This array is a
32-bit wide (longword) array. This is the same array that is
passed to a handler as the signal argument vector.

CHF$IH_MCH_RETVAL

Contains a copy of RO at the time of the exception.

CHFS$IH_MCH_RETVAL2

Contains a copy of R1 at the time of the exception.

CHF$IH_MCH_SAVRnn

Contain copies of the saved integer registers at the time

of the exception. The following registers are saved: R16
through R28. Registers R2 through R15 are implicitly saved
in the call stack.

CHF$FH_MCH_RETVAL FLOAT

Contains a copy of FO at the time of the exception,
or is unpredictable as described for the field
CHFS$IS MCH_FLAGS.

261

Chapter 9. OpenVMS Conditions

Field Name Contents

CHF$SFH_MCH_RETVAL2 FLOAT |Contains a copy of F1 at the time of the exception,
or is unpredictable as described for the field
CHFS$IS MCH_FLAGS.

CHF$FH_MCH_SAVFnn Contain copies of the saved floating-point registers at the
time of the exception, or are unpredictable as described at
field CHF$IS MCH_FLAGS. If the floating-point register
fields are valid, the following registers are saved: F10
through F30. Registers F2 through F9 are implicitly saved in
the call.

CHF$PH_MCH_SIG64 ADDR Address of the 64-bit form of signal array. This array is a 64-
bit wide (quadword) array.

9.5.1.2.3. 164 Mechanism Vector Format

On 164 systems, the 64-bit-wide mechanism array is the argument mechanism in the handler call. The
array is shown in Figure 9.7.

The CHF$IH_ MCH_RETVAL and CHF$SFH_MCH_RETVAL?2 quadwords save the

state of registers R8 and R9 at the time of the call to LIBSSIGNAL or LIB§STOP.

The CHF$SFH_MCH_RETVAL FLOAT, CHFSFH _MCH_RETVAL2 FLOAT, and
CHF$FH_MCH_SAVFnn octawords save the state of the floating-point registers at the time of
the call to LIB$SIGNAL or LIB$SSTOP. If not modified by a handler during CHF processing (as
described below), these values will become the values of those registers after completion of CHF
processing (either by continuation or by unwinding).

The only supported method for modifying return values in a procedure's invocation context
(CHFSIH_MCH_RETVAL, CHFSIH MCH_RETVAL2, CHF$SFH_MCH_RETVAL FLOAT,
CHF$FH_MCH RETVAL2 FLOAT) is by using routine SYS$SET RETURN_ VALUE (see
Section 9.7.2). The only supported method for modifying all other registers in a procedure invocation
context is by using routine LIB$I64 PUT INVO_REGISTERS (see Section 4.8.3.13).

262

Chapter 9. OpenVMS Conditions

Figure 9.7. 164 Mechanism Vector Format

octaword aligned

CHF$IS_MCH_ARGS

CHF$IS_MCH_FLAGS

CHF$PH_MCH_FRAME

CHFS$IS_MCH_DEPTH

CHF$IS_MCH_RESVD1

20

CHF$PH_MCH_DADDR

24

CHF$PH_MCH_ESF_ADDR

132

CHF$PH_MCH_SIG_ADDR

140

CHFS$IH_MCH_RETVAL

148

CHF$IH_MCH_RETVAL2

:56

CHF$PH_MCH_SIG64_ADDR

164

CHF$PH_MCH_SAVF32_SAVF127

72

CHF$FH_MCH_RETVAL_FLOAT

:80

CHF$FH_MCH_RETVAL2_FLOAT

:96

CHF$FH_MCH_SAVF2

CHF$FH_MCH_SAVF5

112

CHF$FH_MCH_SAVF12

CHF$FH_MCH_SAVF31

CHF$IH_MCH_SAVB1

CHF$IH_MCH_SAVB5

:496

:528

CHF$IH_MCH_AR_LC

:536

CHFS$IH_MCH_AR_EC

:544

CHF$PH_MCH_OSSD

:652

CHF$Q_MCH_INVO_HANDLE

:560

CHF$PH_MCH_UWR_START

:568

CHF$IH_MCH_FPSR

:576

CHF$IH_MCH_FPSS

:584

CHF$S_CHFDEF2=592

VM-1082A-Al

263

Chapter 9. OpenVMS Conditions

Table 9.6. Contents of the 164 Argument Mechanism Array (MECH)

Field Name

Contents

CHFS$IS MCH_ARGS

Count of quadwords in this array starting from the next
quadword, CHF$PH_MCH_FRAME (not counting the first
quadword that contains this longword). This value is 73 if
CHF$V_FPREGS2 VALID is clear, and 265 if
CHF$V_FPREGS2 VALID is set.

CHFS$IS MCH_FLAGS

Flag bits <31:0> for related argument-mechanism information defined
as follows:

CHF$V_FREGS_VALID Bit 0. When set, the process has already
performed a floating-point operation in
registers F2-F31 and the contents of the
CHF$FH_MCH_SAVFnn fields of this

structure are valid.

When this bit is clear, the contents of
the CHFSFH_MCH_SAVFnn fields are
undefined.

CHF$V_FPREGS2 VALID |Bit 1. When set, the process has already
performed a floating-point operation

in registers F32-F127 and the floating-
point registers stored in the extension to

this structure are valid.

If this bit is clear, the process has

not yet performed any floating-point
operations in registers F32-F127,

and the pointer to the extension area
(CHF$FH_MCH_SAVF32 SAVF127)
will be zero.

CHF$PH_MCH_FRAME

Contains the Previous Stack Pointer, PSP, (the value of the SP at
procedure entry) for the procedure context of the establisher (see
Section 4.5.1).

CHF$IS MCH_DEPTH

Positive count of the number of procedure activation stack frames
between the frame in which the exception occurred and the frame
depth that established the handler being called (see Section 9.5.1.3).

CHFS$IS MCH_RESVDI

Reserved to OpenVMS.

CHF$PH_MCH_DADDR

Address of the handler data quadword (start of the Language Specific
Data area, LSDA, see Section A.4.1 and Section A.4.4) if the
exception handler data field is present in the unwind information
block (as indicated by OSSD$V_HANDLER DATA VALID);
otherwise, contains 0.

CHF$PH_MCH_ESF_ADDR

Address of the exception stack frame.

CHF$PH_MCH SIG ADDR

Address of the 32-bit form of signal array. This array is a 32-bit wide
(longword) array. This is the same array that is passed to a handler as
the signal argument vector.

CHF$IH_ MCH_RETVAL

Contains a copy of RS at the time of the exception.

CHFS$IH_MCH_RETVAL2

Contains a copy of R9 at the time of the exception.

264

Chapter 9. OpenVMS Conditions

Field Name Contents

CHF$PH_MCH_SIG64 Address of the 64-bit form of signal array. This array is a 64-bit wide
ADDR (quadword) array.

CHF$FH_MCH _ Address of the extension to the mechanism array that contains copies
SAVF32 SAVF127 of F32-F127 at the time of the exception.

CHF$SFH_MCH_RETVAL |Contains a copy of F8 at the time of the exception.
FLOAT

CHF$SFH_MCH_RETVAL2 |Contains a copy of F9 at the time of the exception.
FLOAT

CHF$SFH_MCH_SAVFnn Contain copies of floating-point registers F2-F5 and F12-F31.
Registers F6-F7 and F10-F11 are implicitly saved in the exception

frame.

CHFS$IH_MCH_SAVBnn Contains copies of branch registers B1-B5 at the time of the
exception.

CHF$IH MCH_AR LC Contains a copy of the Loop Count Register (AR65) at the time of the
exception.

CHFS$IH MCH_AR EC Contains a copy of the Epilog Count Register (AR66) at the time of
the exception.

CHF$PH_MCH_OSSD Address of the operating system-specific data area.

CHF$Q MCH_INVO Contains the invocation handle of the procedure context of the

HANDLE establisher (see Section 4.8.2.2).

CHF$PH MCH_UWR Address of the unwind region.

START

CHFS$IH MCH_FPSR Contains a copy of the hardware floating-point status register
(AR.FPSR) at the time of the exception.

CHFS$IH_MCH_FPSS Contains a copy of the software floating-point status register (which

supplements CHF$SIH_MCH_FPSR) at the time of the exception.

9.5.1.2.4. x86-64 Mechanism Vector Format

On x86-64 systems, the 64-bit-wide mechanism array is the argument mechanism in the handler call.
The array is shown in Figure 9.8.

The CHF$IH MCH_RETVAL and CHF$FH _MCH_RETVAL?2 quadwords are set to

SS$ NORETVALS and 0, respectively, by the signal processing software at the time of the

call to LIB$SIGNAL or LIBSSTOP. (The standard return registers, 9% ax and % dx, are

not used here because they are changed by making the call itself, so they have no useful or

reliable contents as an implicit return value). The CHFSFH MCH_RETVAL FLOAT and

CHF$SFH MCH_RETVAL2 FLOAT quadwords save the state of floating-point registers %m0
and % mnil, respectively, at the time of the call to LIBSSIGNAL or LIB$SSTOP. If not modified by
a handler during CHF processing (as described below), the values of these registers will become
the values of those registers after completion of CHF processing (either by continuation or by
unwinding).

The only supported method for modifying return values in a procedure's invocation context
(CHF$SIH MCH_RETVAL, CHFSIH MCH_RETVAL2, CHFSFH MCH_RETVAL FLOAT,

and CHFSFH_MCH_RETVAL2_FLOAT) is by using routine SYS$SET RETURN_VALUE (see
Section 9.7.2). The only supported method for modifying all other registers in a procedure invocation
context is by using routine LIB$I64 PUT INVO REGISTERS (see Section 5.8.3.13).

265

Chapter 9. OpenVMS Conditions

Figure 9.8. x86-64 Mechanism Vector Format

octaword aligned

CHFHS_MCH_ARGS

CHFEIS_MCH_FLAGS

CHFFPH_MCH_FRAME

CHFSIS_MCH_DEFTH

CHFSIS_MCH_RESDWVA

CHFEPH_MCH_DADDR

CHFEPH_MCH_ESF_ADDR

CHFFPH_MCH_SIG_ADDR

CHFSPH_MCH_SIGE4_ADDR

CHFEIH_MCH_RETWVAL

CHFFIH_MCH_SAVRCX

CHFSIH_MCH_RETWVALZ

CHFSIH_MCH_SAVRSI

CHFFIH_MCH_SAVRDI

CHFSIH_MCH_SAVRS
CHFSIH_MCH_SAVR11

CHFFIH_MCH_SAVFLAGS

CHFFPH_MCH_SAVRIP

CHFFFH_MCH_RETWVAL_FLOAT

CHFEFH_MCH_RETWVAL_FLOATX

CHFSFH_MCH_RETWVAL_FLOATZ

CHFFFH_MCH_RETWVAL _FLOAT2X

CHFBIH_MCH_XSAVE_STATE

CHFFPH_MCH_XSAVE

CHFBIH_MCH_XSAVE_LEMGTH

CHFSIH_MCH_APR_SAVRO,
CHFFIH_MCH_APR_SAVRA,
CHFSIH_MCH_APR_SAVR1G

CHFSIH_MCH_APR_SAVR31

CHFSPH_MCH_0S5D

CHFF_MCH_INVO_HAMDLE

CHFSPH_MCH_UWR_START

CHFSS_CHFDEFZ=368

16
20
24
32
40
48
56
64
g2
80
88

86

128
136
144
152
A160
7168
76
184
82

2200

344
352
360

266

Chapter 9. OpenVMS Conditions

Table 9.7. Contents of the x86-64 Argument Mechanism Array (MECH)

Field Name

Contents

CHFS$IS MCH_ARGS

Count of quadwords in this array starting from the next quadword,
CHF$PH_MCH_FRAME (not counting the first quadword that
contains this longword).

CHFS$IS MCH_FLAGS

Flag bits <31:0> for related argument-mechanism information
defined as follows:

CHF$V_FPREGS VALID |Bit 0. When set, the process has
already performed a floating-

point operation in floating-point
registers and the contents of the
CHF$FH_MCH_XSAVE_STATE
and CHF$PH _MCH_XSAVE fields

of this structure are valid.

When this bit is clear,

the contents of the

CHF$FH _MCH_XSAVE STATE
and CHF$PH_MCH_XSAVE fields
are zero.

CHF$PH_MCH_FRAME

Contains the Previous Stack Pointer, PSP, (the value of the SP at
procedure entry) for the procedure context of the establisher (see
Section 5.4).

CHF$IS MCH_DEPTH

Positive count of the number of procedure activation stack frames
between the frame in which the exception occurred and the frame
depth that established the handler being called (see Section 9.5.1.3).

CHFS$IS MCH_RESVDI

Reserved to OpenVMS.

CHF$PH_MCH_DADDR

Address of the handler data quadword (start of the Language
Specific Data area, LSDA, see Section B.3.2.3.1) if the exception
handler data field is present in the unwind information block;
otherwise, contains 0.

CHF$PH_MCH_ESF_ADDR

Address of the exception stack frame.

CHF$PH_MCH SIG ADDR

Address of the 32-bit form of signal array. This array is a 32-bit
wide (longword) array. This is the same array that is passed to a
handler as the signal argument vector.

CHF$PH_MCH_SIG64
ADDR

Address of the 64-bit form of signal array. This array is a 64-bit
wide (quadword) array.

CHF$IH_MCH_RETVAL

Contains a copy of % ax at the time of the exception.

CHFS$IH_MCH_SAVRCX

Contains a copy of % cX at the time of the exception.

CHFSIH MCH RETVAL2

Contains a copy of % dx at the time of the exception.

CHFSIH_MCH_SAVRSI,
CHFSIH_MCH_SAVRDI,
CHFSIH_MCH_SAVRS,

CHFS$IH_MCH_SAVRI11

Contains a copy of the remaining (scratch) general-purpose
registers at the time of the exception.

CHFS$IH_MCH_SAVRFLAGS

Contains a copy of the processor flags register at the time of the
exception.

267

Chapter 9. OpenVMS Conditions

Field Name

Contents

CHF$IH_MCH_SAVRIP

Contains a copy of the instruction pointer at the time of the
exception.

CHF$FH_MCH_RETVAL
FLOAT

Contains a copy of &m0 bits <63:0> at the time of the exception.

CHF$FH_MCH_RETVAL _
FLOATX

Contains a copy of Ym0 bits <127:64> at the time of the
exception.

CHF$FH MCH RETVAL _
FLOAT2

Contains a copy of ¥l bits <63:0> at the time of the exception.

CHF$FH_MCH_RETVAL _
FLOAT2X

Contains a copy of ¥l bits <127:64> at the time of the
exception.

CHFS$IH MCH_XSAVE
STATE

Contains a copy of the XSAVE state control value indicating
what information is contained in the XSAVE area. This is the
state-component bit map needed by the XRSTOR instruction to
restore the floating-point state from the XSAVE area (0 if the
CHF$PH_MCH_XSAVE pointer is null).

CHF$PH_MCH_XSAVE

Contains a pointer to the XSAVE area described by
CHFS$IH MCH_XSAVE STATE (0 if none).

CHFS$IH_MCH_XSAVE
LENGTH

The number of bytes in the block pointed to by
CHF$PH MCH_XSAVE (0 if CHF$PH _MCH_XSAVE is null).

CHFSIH_ MCH_APR_SAVRO,
CHFSIH MCH_APR_SAVRI,
CHFSIH MCH_APR_SAVRI6,

CHFSIH MCH_APR_SAVR31

Contains a copy of the Alpha pseudo-registers RO, R1 and R16
through R31 at the time of the exception.

CHF$PH_MCH_OSSD

Address of the operating system-specific data area.

CHF$Q MCH_INVO

Contains the invocation handle of the procedure context of the

HANDLE establisher (see Section 5.8.2.2).
CHF$PH _MCH _UWR Address of the unwind region (FDE).
START

9.5.1.3. Mechanism Depth

For all argument mechanisms, the depth field has the value 0 for an exception that is handled by
the procedure activation invoking the exception. The exception procedure contains the instruction
that either causes the hardware exception or calls LIBSSIGNAL. The depth field of the argument
mechanism has positive values for procedure activations calling the one having the exception, for
example, 1 for the immediate caller.

If a system service gives an exception, the immediate caller of the service is notified at depth = 1.
The depth field has a value of —2 when the condition handler is established by the primary exception
vector, a value of —1 when it is established by the secondary vector, and a value of —3 when it is
established by the last-chance vector.

Given the same circumstances, the mechanism depth on any given processor type is not necessarily
the same as the depth on a different processor type (that is, the depth on a VAX processor may differ
from that on a 64-bit processor, and so on) if any of the following are present:

* Condition dispatcher in the call stack

268

Chapter 9. OpenVMS Conditions

» Jacket frames, if there are any translated routines in the call stack
e Multiple active signals

e Compiler use of no frame procedures or inline code expansion of calls

9.5.2. System Default Condition Handlers

If one of the default condition handlers established by the system is entered, the handler calls the
SYSSPUTMSG system service to interpret the signal argument list and to output the indicated
information or error message. See the description of SYS$SPUTMSG in the VST OpenVMS System
Services Reference Manual for the format of the signal argument list.

9.5.3. Coordinating the Handler and Establisher

This section describes the requirements for use of memory, exception synchronization, and
continuation of the handler.

9.5.3.1. Use of Memory

Exceptions can be raised and unwind operations (which cause exception handlers to be called) can
occur when the current value of one or more variables is in registers rather than in memory. Because
of this, a handler, and any descendant procedure called directly or indirectly by a handler, must not
access any variables except those explicitly passed to the procedure as arguments or those that exist in
the normal scope of the procedure.

This rule can be violated for specific memory locations only by agreement between the handler and all
procedures that might access those memory locations. A handler that makes such agreements does not
conform to this standard.

9.5.3.2. Exception Synchronization (Alpha Only)

The Alpha hardware architecture allows instructions to complete in a different order than that in
which they were issued, and for exceptions caused by an instruction to be raised after subsequently
issued instructions have been completed.

Because of this, the state of the machine when a hardware exception occurs cannot be assumed with
the same precision as it can be assumed on VAX or other 64-bit processors unless such precision
has been guaranteed by bounding the exception range with the appropriate insertion of TRAPB
instructions.

The rules for bounding the exception range follow:

» Ifaprocedure has an exception handler that does not simply reraise all arithmetic traps caused
by code that is not contained directly within that procedure, the procedure must issue a TRAPB
instruction before it establishes itself as the current procedure.

» Ifaprocedure has an exception handler that does not simply reraise all arithmetic traps caused
either by code that is not contained directly within that procedure or by any procedure that might
have been called while that procedure was current, the procedure must issue a TRAPB instruction
in the procedure epilogue while it is still the current procedure.

» Ifaprocedure has an exception handler that is sensitive to the invocation depth, the procedure
must issue a TRAPB instruction immediately before and after any call. Furthermore, the handler

269

Chapter 9. OpenVMS Conditions

must be able to recognize exception PC values that represent either epilogue code in called
procedures or TRAPB instructions immediately after a call, and adjust the depth appropriately (see
Section 3.6.5).

These rules ensure that exceptions are detected in the intended context of the exception handler.

These rules do not ensure that all exceptions are detected while the procedure within which the
exception-causing instruction was issued is current. For example, if a procedure without an exception
handler is called by a procedure that has an exception handler not sensitive to invocation depth, an
exception detected while that called procedure is current may have been caused by an instruction
issued while the caller was the current procedure. This means the frame, designated by the exception
handling information, is the frame that was current when the exception was detected, not necessarily
the frame that was current when the exception-causing instruction was issued.

9.5.3.3. Continuation from Exceptions (Alpha Only)

The Alpha architecture guarantees neither that instructions are completed in the same order in which
they were fetched from memory nor that instruction execution is strictly sequential. Continuation is
possible after some exceptions, but certain restrictions apply.

By definition, software-raised general exceptions are synchronous with the instruction stream and can
have a well-defined continuation point. Therefore, a handler can request continuation from a software-
raised exception. However, since compiler-generated code typically relies on error-free execution of
previously executed code, continuing from a software-raised exception might produce unpredictable
results and unreliable behavior unless the handler has explicitly fixed the cause of the exception so
that it is transparent to subsequent code.

Hardware faults on Alpha processors follow the same rules as the strict interpretation of the VAX

or Itanium rules. Loosely paraphrased, these rules state that if the offending exception is fixed,
reexecution of the instruction (as determined from the supplied PC) will yield correct results. This
does not imply that instructions following the faulting instruction have not been executed. Therefore,
hardware faults can be viewed as similar to software-raised exceptions and can have well-defined
continuation points.

Arithmetic traps cannot be restarted because all the information required for a restart is not available.
The most straightforward and reliable way in which software can guarantee the ability to continue
from this type of exception is by placing appropriate TRAPB instructions in the code stream.
Although this technique does allow continuation, it must be used with extreme caution because of the
negative effect on application performance.

9.5.3.4. Floating-Point Control Status (164 and x86-64)

Normally the floating-point control status (see Section 4.1.7) of a program is established at the
beginning of program execution and remains unchanged throughout execution of the whole program.

However, a procedure (or cooperating group of procedures) may temporarily modify the floating-
point control status provided the following rules are followed. Such a procedure must:

» Save the floating-point control status in effect on entry and restore that status when it returns.

« Establish a handler that will restore the floating-point control status if either an exception is
resignalled or if the routine terminates due to an unwind operation.

270

Chapter 9. OpenVMS Conditions

Note

The means by which the saved floating-point control status of the establisher is communicated to its
handler is not specified here.

9.6. Returning from a Condition Handler

Condition handlers are invoked by the OpenVMS Condition Handling Facility (CHF). Therefore, the
return from the condition handler is to the CHF.

To continue from the instruction following the signal, the handler must return with a function value
of either SS§ CONTINUE or SS$ CONTINUEG64 (both of which have bit <0> set). If, however,
the condition is signaled with a call to LIBSSTOP, the image exits. To resignal the condition, the
condition handler returns with a function value of either SS§ RESIGNAL or SS$ RESIGNAL64
(both of which have the bit <0> clear).

The difference between SS§ CONTINUE and SS§ CONTINUEG64, and similarly between

SS$ RESIGNAL and SS$ RESIGNALG64, is of significance only if the handler has made

an alteration to the signal vector that is intended to be taken into account by the CHF. When

SS$ CONTINUE or SS§ RESIGNAL is returned, then any modification to the 32-bit signal vector
is propagated (in sign-extended form) to the corresponding position in the 64-bit vector. When

SS$ CONTINUEG64 or SS§ RESIGNALG64 is returned, any modification in the 64-bit signal vector
is propagated (in truncated form) to the corresponding position in the 32-bit vector. If no modification
has been made, then the two forms of continuation or resignal are equivalent.

The algorithm for detecting change is as follows:

* For SS§ CONTINUEG64 and SS$ RESIGNALG64, the 32-bit signal vector is simply derived again
from the 64-bit signal vector. In particular, no hidden copy of the 64-bit signal vector is kept. It is
not necessary to determine if there was a change or not—if there was, it is properly reflected in the
32-bit vector.

* For SS§ CONTINUE and SS$ RESIGNAL, let SIGVEC32[I] and SIGVEC64([I] be
corresponding entries in the two vectors, for I from 1 to length. (Recall that the length[s] cannot be
changed). For each entry, do the following:

if SIGVEC32[I] /= SIGVECE4[1] <0, 32>
t hen
SI GVEC64[1] = sign-extend(SI GVEC32[1])

That is, if the 32-bit entry is still the same as the low-order 32 bits of the 64-bit entry, then it did
not change and thus the 64-bit entry is not changed. Otherwise, update the 64-bit entry with the
sign-extended contents of the 32-bit entry.

To alter the severity of the signal, the handler modifies the low-order three bits of the condition
value longword in the si gnal _ar gs vector and resignals. If the condition handler wants to alter
the defined control bits of the signal, the handler modifies bits <31:28> of the condition value and
resignals.

To unwind, the handler calls SYS$UNWIND and then returns. In this case, the handler function value
is ignored.

271

Chapter 9. OpenVMS Conditions

For 164 or x86-64, if the establisher of the handler changes the floating-point control status and either
the handler resignals an exception or the handler is called for an unwind exception (see Section 9.7),
the handler must reset the floating-point control status to the value saved by the establisher.

9.7. Request to Unwind from a Signal

To unwind, the handler or any procedure that it calls can make a call to SYSSUNWIND. The format is
as follows:

SYSSUNW ND(depadr, new_PC)

Argument OpenVMS Usage Type Access Mechanism

depadr integer longword read by reference

new PC address longword read by reference

Arguments:

depadr Optional number of presignal frames (depth) to be removed.

new PC Optional address of the location to receive control after the unwind operation is
completed.

Function Value Returned:
Success or failure status (see text that follows).

The depadr argument specifies the address of the longword that contains the number of presignal
frames (depth) to be removed. The deepest procedure invocation whose frame is not removed is
called the target invocation of the unwind. If that number is less than or equal to 0, nothing is to

be unwound. The default (address = 0) is to return to the caller of the procedure that established

the handler that issued the SUNWIND service. To unwind to the establisher, specify the depth from
the call to the handler, which can be found in the CHF$IS MCH_DEPTH field of the Mechanism
Array. When the handler is at depth 0, it can achieve the equivalent of an unwind operation to an
arbitrary place in its establisher by altering the PC in its Si gnal _ar gs vector and returning with
SS$ CONTINUE, or SS$ CONTINUEG64 if the 64-bit signal vector is altered, instead of performing
an unwind.

The new_PC argument specifies the location to receive control when the unwinding operation
is complete. The default is to continue at the instruction following the call to the last procedure
activation that is removed from the stack.

The function value success either is a standard success code (SS§ NORMAL) or it indicates failure
with one of the following return status condition values:

* No signal active (SS§ NOSIGNAL)
* Already unwinding (SS$_UNWINDING)
» Insufficient frames for depth (SS§ INSFRAME)

If SYSSUNWIND is invoked by a handler that has already invoked SYS$SUNWIND, then the effect of
the second invocation is undefined.

The unwinding operation occurs when the handler returns to the CHF. Unwinding is done by scanning
back through the stack and calling each handler associated with a frame. The handler is called with the

272

Chapter 9. OpenVMS Conditions

exception SS§ UNWIND to perform any application-specific cleanup. If the depth specified includes
unwinding the establisher's frame, the current handler is recalled with this unwind exception.

When the target invocation is reached on 64-bit systems, unwind completion depends on the
PDSC$V_TARGET INVO flag of the associated procedure descriptor or unwind information,
respectively. If that flag is set to 1, then the handler for that procedure invocation is called; otherwise,
no handler is called. Control then resumes in the target invocation.

The call to the handler takes the same form as described in Section 9.5.1 with the following values:

+ signal _ar gs: for a handler for a procedure other than the target invocation of the unwind—
an argument count (CHF$SL _SIG_ARGS) of 1 and a condition value (CHF$L_SIG NAME) of
SS$ UNWIND.
For a handler on 64-bit systems for a procedure that is the target invocation of the unwind—an
argument count (CHF$L SIG ARGS) of 2 and two condition values consisting of SS§ UNWIND
followed by SS§ TARGET UNWIND.

* mechani sm ar gs: same as for the original call except for a depth of 0 (that is, unwinding self)
and any other changes made by prior handlers.

After each handler is called, the stack is logically cut back to the previous frame.
On 64-bit systems, the stack is not actually cut back until after the last handler is called.

The exception vectors are not checked because they are not being removed. Any function value from
the handler is ignored.

To specify the value of the top-level function being unwound, the handler must establish the function
result using the appropriate saved register locations in the mechani sm_ar gs vector as described in
Section 9.7.2. These locations are part of the register values restored from the mechani sm ar gs
vector at the end of the unwind.

Depending on the arguments to SYS$UNWIND, the unwinding operation is terminated as follows:

SYSSUNWIND (0,0) Unwind to the establisher's caller.

SYS$SUNWIND (depth,0) Unwind to the establisher at the point of the call that resulted in
the exception.

SYSSUNWIND (depth,location) |Unwind to the specified procedure activation and transfer to a
specified location.

The only recommended values for depth are the default (address of 0), which unwinds to the caller
of the establisher, and the value of depth taken from the mechanism vector, which unwinds to the
establisher. Other values depend on implementation details that can change at any time.

You can call SYSSUNWIND whether the condition was a software exception signaled by calling
LIB$SIGNAL or LIBSSTOP or was a hardware exception. Calling SYSSUNWIND is the only way to
continue execution after a call to LIB§STOP.

9.7.1. Signaler's Registers

Because the handler is called and can in turn call routines, the actual register values in use at the time
of the signal or exception can be scattered on the stack.

273

Chapter 9. OpenVMS Conditions

On VAX systems, to find registers R2 through FP, a scan of stack frames must be performed starting
with the current frame and ending with the call to the handler. During the scan, the last frame found
to save a register contains that register's contents at the time of the exception. If no frame saved the
register, the register is still active in the current procedure. The frame of the call to the handler can
be identified by the return address of SYSSCALL HANDL+4. In this case, the registers are in the
following states:

RO, R1 In mechani sm ar gs

R2—11 Last frame saving it

AP Old AP of SYSSCALL HANDL+4 frame
FP Old FP of SYS$SCALL HANDL+4 frame
SP Equal to end of si gnal _ar gs vector+4
PC, PSL Atend of si gnal _ar gs vector

On 64-bit systems, to find the contents of the registers, use the invocation context routines described
in Section 3.5.3 (Alpha systems), Section 4.8.3 (164 systems), or Section 5.8.3 (x86-64 systems).

9.7.2. Unwind Completion

On VAX systems, the values that exist in RO and R1 when the unwind completes are the values passed
implicitly to the unwinder in the mechanism array (see Section 9.5.1.2.1). If desired, these values can
be modified by an exception handler before the unwind is initiated.

On Alpha systems, the values that exist in RO, R1, FO, and F1 when the unwind completes are the
values passed implicitly to the unwinder in the mechanism array (see Section 9.5.1.2.2). If desired,
these values can be modified by an exception handler using SYSSSET RETURN_ VALUE before the
unwind is initiated. Note that, unlike VAX systems, an Alpha system does not use R1 for returning
any type of return values.

On 164 systems, the values that exist in R8, R9, F8, and F9 when the unwind completes are the values
passed implicitly to the unwinder in the mechanism array (see Section 9.5.1.2.3). If desired, these
values can be modified by an exception handler using SYS$SET RETURN_VALUE before the
unwind is initiated.

On x86-64 systems, the values that exist in %X nm0 and % il when the unwind completes are the
values passed implicitly to the unwinder in the mechanism array (see Section 9.5.1.2.4). However,
unlike earlier 64-bit systems, % ax and % dx cannot usefully be implicitly established in this way
because they are set as part of making the call to LIBSSIGNAL or LIB§STOP (being the AT and
third parameter registers, respectively). To preclude inadvertent use of these values as the ultimate
return result of an unwind, LIBSSIGNAL and LIB§STOP both set the CHF$IH MCH RETVAL
and CHF$STH_MCH_RETVAL2 fields in the mechani sm_ar gs vector to SS§ NORETVALS
and 0, respectively. If desired, these values can be modified by an exception handler using
SYS$SSET RETURN_VALUE before the unwind is initiated.

On 64-bit systems, as an alternative to using SYSSSET RETURN VALUE, a handler may
also set new values directly in fields CHF$IH MCH _RETVAL, CHF$IH MCH RETVAL2,
CHFS$IH MCH RETVAL FLOAT, or CHF$IH MCH RETVAL2 FLOAT as appropriate.

274

Chapter 9. OpenVMS Conditions

Note

For code intended to be portable across all types of 64-bit systems, the use of implicit parameters as
described above for Alpha and 164 cannot be used. Use of implicit parameters is really only viable
and reliable in code written in MACRO code in any case, not in any high-level language. As a general
rule, handlers must explicitly establish the ultimate function result.

The effect of handler modification of any mechanism vector field other than described above is
undefined.

SYS$SET_RETURN_VALUE (64-bit Systems)

SYS$SET_RETURN_VALUE(mechani sm arg, return_type, return_val ue)

Argument OpenVMS Usage Type Access Mechanism
mechanism_arg mechanism vector quadword read by value
address (unsigned)
return_type integer longword read by reference
(unsigned)
return_value buffer scalar read by reference
Arguments:
mechani sm arg Address of mechanism vector. If zero, the mechanism vector for the
currently active signal will be used.!
return_type Address of a longword that contains one of the function return signature
codes found in Table 6.4.!
return_val ue Address of a value of the appropriate type. The referenced value will be

read as a longword, quadword, or octaword, depending on the return_‘[ype.1

'If the address of the r et ur n_t ype argument is zero, then the r et ur n_val ue argument is fetched by value and is treated as return-type
PSIG$K_FR_U32. This combination of arguments can be used to set a condition code such as SS§_ACCVIO as a return value.

Function Value Returned:

st at us (Success or failure) The given return value is placed in the appropriate
fields of the specified mechanism vector, according to the return type.

9.8. GOTO Unwind Operations
(64-bit Systems)

A GOTO unwind is a transfer of control that leaves one procedure invocation and continues
execution in a prior, currently active procedure invocation. Modular and reliable support of the
nonlocal GOTO requires procedure invocations that are terminated to have an opportunity to clean up
in an orderly way (just like a procedure that is terminated as a result of an unwind from a condition
handler).

Performing a GOTO unwind operation in a thread causes a transfer of control from the location at
which the GOTO unwind operation is initiated to a target location in a target invocation. This transfer

275

Chapter 9. OpenVMS Conditions

of control also results in the termination of all procedure invocations, including the invocation in
which the unwind request was initiated, up to the target procedure invocation. Thread execution then
continues at the target location.

Before control is transferred to the unwind target location, the unwind support code invokes all frame-
based handlers that were established by procedure invocations being terminated. These handlers are
invoked with an indication of an unwind in progress. This gives each procedure invocation being
terminated the chance to perform cleanup processing before its context is lost.

When the target invocation is reached, unwind completion depends on the TARGET INVO flag in the
respective unwind information (this symbol has different prefixes on the respective systems).

After all the relevant frame-based handlers have been called and the appropriate frames have been
removed from existence, the target invocation's saved context is restored and execution is resumed at
the specified location.

A GOTO unwind procedure can be initiated while an exception is active (from within a condition
handler) or while no exception is active. If the GOTO unwind transfers control out of an exception
handler (resulting in the termination of current handler invocation), it also terminates handling of the
corresponding condition (like SYSSUNWIND).

Note

This section uses the terms RetVal, RetVal2, NewRetVal, and NewRetVal2 to describe the generic

unwind operation. The following table translates these terms for each system:

Symbol Alpha Systems 164 Systems x86-64 Systems
RetVal RO RS rax

RetVal2 R1 R9 rdx

NewRetVal New RO New RS New rax
NewRetVal2 New_RI1 New_R9 New_rdx

A thread can initiate a GOTO unwind operation by calling SYSSGOTO_UNWIND 64, defined as:

SYS$GOTO_UNW ND_64(t arget _i nvo,

target _pc,

NewRet Val ,

NewRet Val 2)

On Alpha systems, the following backward compatible form is also provided:

SYS$GOTO UNW ND(t arget _i nvo, target_pc, New RO, New R1)

Argument OpenVMS Usage Type Access Mechanism

target_invo invo_handle longword or read by reference
quadword
(unsigned)1

target pc address longword or read by reference
quadword
(unsigned)1

NewRetVal quadword_unsigned quadword read by reference
(unsigned)

276

Chapter 9. OpenVMS Conditions

Argument OpenVMS Usage Type Access Mechanism
NewRetVal2 quadword unsigned quadword read by reference
(unsigned)

1Type is longword (unsigned) for SYSSGOTO_UNWIND; quadword (unsigned) for SYS$GOTO_UNWIND_64.

Arguments:

target _invo

target _pc

NewRet Val

NewRet Val 2

Address of a location that contains a handle for the target invocation.

If omitted or the address of the handle is zero, then the effect of the call is
undefined.

Address of a location that contains the address at which execution should
continue in the target invocation.

If omitted or if the address is 0, then execution resumes at the location specified
by the return address for the call frame of the target procedure invocation.

Address of a location that contains the value to place in the saved RetVal
location of the mechanism argument vector. The contents of this location
are then loaded into RetVal at the time that execution continues in the target
invocation.

If this argument is omitted, then the contents of RetVal at the time of the call to
SYSSGOTO UNWIND 64 are used.

This argument is called New RO in SYSSGOTO_UNWIND for compatibility
with Alpha.

Address of a location that contains the value to place in the saved RetVal2
location of the mechanism argument vector. The contents of this location are
then loaded into RetVal2 at the time that execution continues in the target
invocation.

If this argument is omitted, then the contents of RetVal2 at the time of the call to
SYS$GOTO UNWIND 64 are used.

This argument is called New R1 in SYS$SGOTO_ UNWIND for compatibility
with Alpha.

Condition Value Returned:

SS$_ACCVI O

An invalid address was given.

When a GOTO unwind is initiated, control almost never returns to the point at which the unwind
was initiated. Control returns with an error status only if a GOTO unwind cannot be started.

If SYSSGOTO_UNWIND 64 (or SYSSGOTO_UNWIND) is invoked by a handler that has
already invoked SYSSUNWIND, then the effect of calling SYSSGOTO UNWIND 64 (or
SYS$GOTO _UNWIND) is undefined.

9.8.1. Handler Invocation During a GOTO Unwind

When an unwind operation takes place, all frame-based exception handlers are invoked that were
established by any procedure invocation being terminated. In addition, the handler for the target
procedure invocation is called if the PDSC$V_TARGET INVO flag is set in the corresponding

277

Chapter 9. OpenVMS Conditions

procedure descriptor or unwind information (see Sections 3.4.2, 3.4.5, and A.4.3). These handlers are
invoked in the reverse order from which they were established.

Because primary, last-chance handlers, and the system catchall handler are not associated with a
normal procedure invocation, these handlers are never invoked during an unwind (but they are
invoked if an exception is raised during the unwind operation).

For a GOTO unwind procedure, each handler that is invoked is called with two arguments as follows:

(* handl er) (signal_args, nmechani sm args)

Argument OpenVMS Usage Type Access Mechanism
signal args signal vector structure modify by reference
mechanism_args |mechanism vector structure modify by reference
Arguments:
signal _args Argument count of 2, followed by a condition value of SS§ UNWIND,
followed by:

* SS$§ GOTO_UNWIND when a target invocation is specified but not for
that target invocation

* SS$ TARGET GOTO UNWIND when a target invocation is specified
and the handler for that target invocation is called

mechani sm ar gs Mechanism argument corresponding to the frame being unwound, as
defined in Section 9.5.1.2.

For information about signal argument and mechanism argument vectors, see Section 9.5.1.1 and
Section 9.5.1.2.

9.8.2. Unwind Completion

When an unwind completes, the following conditions are true:
* The target procedure invocation is the most current invocation in the procedure invocation chain.

* The environment of the target invocation is restored to the state when that invocation was last
current, except for the contents of all scratch registers.

* The two integer return value registers contain the respective values (if any) that were passed by
the routine that invoked the unwind.

» Execution continues at the target location.

9.9. Multiple Active Signals

A signal is said to be active until the signaler gets control again or is unwound. A signal can occur
while a condition handler or a procedure it has called is executing in response to a previous signal. For
example, procedures A, B, and C establish condition handlers Ah, Bh, and Ch. If A calls B and B calls
C, which signals S, and Ch resignals, then Bh gets control.

If Bh calls procedure X, and X calls procedure Y, and Y signals T, the stack is as follows:

278

Chapter 9. OpenVMS Conditions

<Signal T>
Y
X
Bh

<Signal S>
C
B
A

Which was programmed:
A

<Signal S> Y

<Signal T>

ZK-1884-GE

The handlers are searched for in the following order: Yh, Xh, Bhh, Ah. Bh is not called again because
it is not appropriate to assume that a routine is able to be its own handler. However, Bh can establish
itself or another procedure as its handler (Bhh).

On VAX systems, Ch is not checked or called because it is a structural descendant of B.

On 64-bit systems, the search does check handlers Ch and Bh between calling Bhh and Ah. These
handlers will be reinvoked only if enabled by the HANDLER REINVOCABLE flag of the
establisher's procedure descriptor (see Section 3.4.1 and Section 3.4.4) or unwind information (see
Section A.4.3).

For all systems, the following algorithm is used on the second and subsequent signals that occur
before the handler for the original signal returns to the Condition Handling Facility. The primary and
secondary exception vectors are checked. However, the search backward in the process stack is then
modified. On a VAX processor, the stack frames traversed in the first search are skipped, in effect,
during the second search, while on a 64-bit system, the stack frames are skipped unless they explicitly
enable handler reinvocation. Therefore, the stack frame preceding the first condition handler, up to
and including the frame of the procedure that has established the handler, is skipped. In the VAX
environment, frames that are skipped are not counted in the depth. In a 64-bit environment, all frames
are counted in the depth.

For example, the stack frames traversed in the first and second searches are skipped in a third search.
Note that if a condition handler signals, it is not automatically invoked recursively. However, if a
handler itself establishes a handler, the second handler is invoked. Therefore, a recursive condition
handler should start by establishing itself. Any procedures invoked by the handler are treated in the
normal way; that is, exception signaling follows the stack up to the condition handler.

If an unwind operation is requested while multiple signals are active, all the intermediate handlers are
called for the operation. For example, in the preceding diagram, if Ah specifies unwinding to A, the
following handlers are called for the unwind: Yh, Xh, Bhh, Ch, and Bh.

For proper hierarchical operation, an exception that occurs during execution of a condition handler
established in an exception vector should be handled by that handler rather than propagating up the
activation stack. To prevent such propagation, the vectored condition handler should establish a
handler in its stack frame to handle all exceptions.

279

Chapter 9. OpenVMS Conditions

9.10. Multiple Active Unwind Operations

During an unwind operation (resulting from a call of SYS$SGOTO UNWIND 64,

SYS$SGOTO UNWIND, or SYSSUNWIND), another unwind operation can be initiated (using
SYS$SGOTO UNWIND 64, SYSSGOTO UNWIND, or SYSSUNWIND). This can occur, for
example, if a handler that is invoked for the original unwind initiates another unwind, or if an
exception is raised in the context of such a handler and a handler invoked for that exception initiates
another unwind operation. However, SYSSUNWIND cannot be called from a handler that is invoked
as part of an unwind (see Section 9.7), but it can be called from a handler for a nested exception.

An unwind that is initiated while a previous unwind is active is either a nested unwind or an
overlapping unwind.

A nested unwind is an unwind that is initiated while a previous unwind is active and whose target
invocation in the procedure invocation chain is not a predecessor of the most current active unwind
handler. A nested unwind does not terminate any procedure invocation that would have been
terminated by the previously active unwind.

When a nested unwind is initiated, no special rules apply. The nested unwind operation proceeds as a
normal unwind operation, and when execution resumes at the target location of the nested unwind, the
nested unwind is complete and the previous unwind is once again the most current unwind operation.

An overlapping unwind is an unwind that is initiated while a previous unwind is active and whose
target invocation in the procedure invocation chain is a predecessor of the most current active unwind
handler. An overlapping unwind terminates one or more procedure invocations that would have been
terminated by the previously active unwind.

An overlapping unwind is detected when the most current active unwind handler is terminated. This
detection of an overlapping unwind is termed an unwind collision.

When a GOTO unwind collides with a GOTO unwind, the later unwind supersedes the earlier unwind,
which is abandoned. The later unwind then continues from the point of the collision.

The result of any other collision is undefined.

280

Appendix A. Stack Unwinding and
Exception Handling on OpenVMS 164

Stack unwinding is the process of tracing backwards through the stack of invocation contexts of

a thread. Every active procedure has one invocation context. An invocation context has memory (a
frame) on the register stack, the memory stack, or both. To trace backwards through the stack of
invocation contexts, it must be possible to identify each invocation context and its associated frames.
Exception handling often requires the ability to trace backwards through a number of invocation
contexts and then to transfer control to an exception handling routine.

For the register stack, the state of the current register stack frame together with the AR.PFS register
provides sufficient information to identify the previous frame. However, this works for only one level
of nesting, because there is no hardware stack of AR.PFS registers. To make it possible to unwind
the register stack, this calling standard defines a convention for saving and recovering the AR.PFS
register in each frame.

For the memory stack, it is expected that most procedures will allocate a frame that does not change
in size while the procedure is active. For these procedures, the fixed frame size is recorded in a static
unwind table, and the instruction pointer (PC) is used as a key into this table.

To make it possible to unwind frames that vary in size, this calling standard defines a convention for
saving and recovering the SP value for the previous frame on the stack.

As the register and memory stacks are unwound, it is also necessary to recover the values of preserved
registers that were saved by each procedure for the following uses:

* So that debuggers have access to correct values of local variables
* So that exception handlers can operate correctly
* To provide values needed for further unwinding

This calling standard defines a convention for saving and recovering the values of these preserved
registers. This convention uses the PC as a key for locating a static unwind table entry that contains
everything necessary for locating the following values:

* The previous register stack frame

* The memory stack frames

» The previous PC

Unwinding the stack is done using system routines (see Section 4.8.3) that can be called from the
thread itself, from a debugger, or for exception handling. Stack unwinding operates on context
records; the primary routine reconstructs the context for a previous frame given the context for its
descendent frame.

This appendix describes the following topics:

* The framework for unwinding the stack and for processing exceptions

* The format of the static unwind tables

281

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

* The code generation conventions required to perform the above tasks

A.1. Unwinding the Stack

The process of unwinding the stack begins with an initial context record that describes the process
state in the most recent procedure invocation at the point of interruption. From this initial state, the
stack is unwound one invocation context at a time, using static information generated by the compilers
about each procedure to reconstruct a context record that describes the previous procedure (which is
suspended at a point just after the procedure call or an asynchronous interruption).

A.1.1. Initial Context

There is only one way to get an initial context: call LIB$I64 GET CURR INVO CONTEXT (see
Section 4.8.3.7).

A.1.2. Step to Previous Frame

The unwind routines build a context record that corresponds to the next older frame on the stack. This
context record can then be used to unwind to the previous frame on the stack. The following steps
reconstruct the context for the previous frame using information in the unwind tables for the current
frame:

1. Find the return link in the current context, and set PC in the previous context to that address.

2. Find the previous frame marker in the current context (for example, in the AR.PFS register), and
copy it to the current frame marker (CFM) in the previous context.

3. Determine the value of GP for the new PC, and set GP in the previous context to that value.

4. Set SP in the previous context to SP from current context plus the current size of the memory
frame.

5. Set AR.BSP in the previous context to AR.BSP from the current context minus the size of the
input/local region of the frame (taking into account NaT collections that may have been saved to
the backing store). The frame size can be calculated from the frame marker.

6. Find the saved copies of the preserved registers in the current context, and copy them to the
previous context.

7. Find any OpenVMS-specific Caller Spill Register information (see Section A.4.3.2) in the unwind
information associated with the PC that was determined in Step 1 and restore any applicable
registers saved in the previous frame.

The bottom of the call stack is identified by a BOTTOM_OF_ STACK flag in the context block.

The information needed to execute these steps correctly is recorded in static unwind information
that is associated with each code segment of the program itself. The structure of this information is
described in Section A.4. Each code segment has an associated table of static unwind information,
and the operating system provides an API for finding the unwind table, given a known PC (see
Section A.7).

When a thread receives an asynchronous interruption, the thread context is saved so that the thread
can continue executing correctly once the interruption has been handled. This context is saved on

282

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

the memory stack, and a new procedure frame is constructed for the interruption handler. The first
procedure frame in the interruption handler is marked in such a way that the unwind routine can
recognize that unwinding past the point of interruption requires a restoration of the full context.

A.2. Exception Handling Framework

The exception handling model for OpenVMS is partitioned into a language-independent component
and a language-dependent component. The language-independent component is responsible for
fielding an exception, searching for and dispatching to a condition handler and unwinding the stack.
The run-time library of each source language that supports exception handling must provide a
condition handler that implements the language-dependent component of this model.

Note

For compatibility with the OpenVMS VAX and Alpha calling standards, this document uses the terms
condition handler and personality routine interchangeably—they mean the same thing.

The exception handling model is oriented around procedure invocation contexts. Each invocation
context corresponds to an activation of a procedure, which may or may not have associated exception
handling requirements. A language typically uses a single condition handler for all procedures, but
this is not a requirement.

Exceptions are signalled by invoking a routine in the language-independent component called the
exception dispatcher, which initiates the process of handling the exception. Synchronous exceptions
can be signalled directly by the application through a language-specific construct; asynchronous
exceptions can be signalled in response to hardware-detected traps or faults.

The exception dispatcher walks the stack of invocation contexts non-destructively beginning with the
most recent invocation, searching for the first invocation context with a condition handler. When a
condition handler is found, the exception dispatcher invokes the condition handler.

A condition handler may perform the following actions:

» Ignore the condition.

» Take some special action and continue from the point at which the condition occurred.

* End the operation and branch from the sequential flow of control.

» Treat the condition as an unrecoverable error.

* Resignal the exception to the next condition handler.

» Invoke a user-written condition handler.

* Perform language-specific exception handling actions (for example, C++ try region processing).

If the condition handling facility finds a handler for the exception that requests an unwind, it invokes
the dispatcher to walk the stack a second time. During the second walk, the dispatcher invokes the
condition handler for each frame again to execute cleanup actions as necessary. When the dispatcher
reaches the frame that contains the condition handler, control is transferred to the condition handler.

For more details about OpenVMS condition handling, see Chapter 9.

283

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

A.3. Coding Conventions for Reliable
Unwinding

This section describes the coding conventions that must be observed to guarantee that the stacks can
be unwound from every point in the program. For the purposes of unwinding, this calling standard
divides every procedure into one or more regions, which are classified as either prologue or body
regions.

A prologue region is one where the register stack and memory stack frames are established and
where key registers are saved. To unwind correctly when the PC is one of these regions, the unwinder
must have a detailed description of the order of operations within the region, so that it knows what
state has changed, and which registers have been saved at any given point in that region.

A body region is one for which the register stack and the memory stack are fully formed and
initialized. Although a body region can change the state of the stack frame and save and restore
preserved registers (for example, to shrink-wrap the save and restore of a register), the unwind data
structures are tuned for body regions that have few such operations.

A.3.1. Requirements for Unwinding the Stack

Certain constraints must be met in order to unwind the stack successfully at any time, both by
standard procedure calls as described in Chapter 4 and by special-purpose calling conventions.
Section A.5 describes the format of the unwind data structures. To meet the needs of the stack unwind
mechanism, the following rules must be followed at all times:

* The previous function state register (AR.PFS) must be preserved prior to any call. The compiler
must record, in the unwind data structures, where this register is stored, and over what range of
code the saved value is valid.

* For special calls using a return branch register other than B0, the compiler must record the branch
register number used for the return link.

* The return branch register must be preserved prior to any call involving the same branch register.
The compiler must record where the return branch register is stored and over what range of code
the saved value is valid.

» Ifapreserved register is saved, the compiler must record where the preserved register is stored
and over what range of code the saved value is valid.

» If aprocedure has a memory stack frame, the compiler must record either: (1) how large the frame
is, or (2) that a previous frame pointer is stored on the stack or in a general register.

* The return branch register must contain an address that can be used to determine the unwind state
of the calling procedure. For example, a compiler may choose to optimize calls to procedures that
do not return. If it does so, however, it must ensure that the unwind information for the procedure
properly describes the unwind state at the return point, even though the return pointer will never
be used. This may require the insertion of an otherwise unnecessary NOP or BREAK instruction.

The following sections provide detailed conventions for satisfying these requirements.

A.3.2. Conventions for Prologue Regions

A typical prologue region performs some or all of the following steps:

284

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

Allocate a new register stack frame. The order of this step is not important to the unwind process
(although it must precede any other operations in the prologue that require the use of local stack
registers).

Allocate a new memory stack frame. For fixed-size frames, the stack pointer (SP) must be
modified in a single instruction (either with a single add immediate, or by performing intermediate
calculations in a scratch register before modifying SP). The location of this instruction and the size
of the fixed-frame must be recorded in the unwind descriptor (see Section A.4.1.1).

For variable-size frames, the stack pointer must be saved in a general register that is kept valid
throughout the remainder of the prologue region and the following body regions. This copy of the
previous stack pointer is called PSP. The location of the copy instruction and the general register
number must be recorded in the unwind descriptor.

Save the previous function state (AR.PFS), either in a general register or on the memory stack.
The location of this instruction and the general register number (or stack offset) must be recorded
in the unwind descriptor. Normally, the previous function state is copied to a general register

by the ALLOC instruction that allocates a new register stack frame. However, if the previous
function state is to be stored in the memory stack, the location of the instruction that stores the
general register to the memory stack must be recorded, and the original PFS must not be modified
until after the store.

Save the return pointer (RP), either in a general register or on the memory stack. The location of
this instruction and the general register number (or stack offset) must be recorded in the unwind
descriptor. Saving RP to the memory stack requires the following steps:

1. Copy it to a general register.

2. Store it (the location of this store is the one to record). The original RP must not be modified
before the store.

Save the preserved registers, either on the memory stack or in local registers in the current register
stack frame. In general, the location of each instruction used to save a preserved register and the
general register number (or stack offset) must be recorded. There are five groups of registers:

* General registers

* Floating-point registers
* Branch registers

* Predicate registers

* Application registers

The predicate registers must be copied as a whole to a general register with a single Move from
Predicates instruction; if they are to be stored on the memory stack, the Store instruction is the
one to record. Any arbitrary subset of preserved general registers, floating-point registers, and
branch registers can be saved in a prologue, but they must be saved in ascending order by register
number within each group (saves from different register groups may be interleaved). Saving a
branch register to memory (other than RP) requires the following steps:

1. Move to general register.

2. Store it (the location of this store is the one to record). The value of the branch register must
not be modified until the store is completed.

285

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

The unwinder must also know where preserved registers are saved in the memory stack frame,
because it must reconstruct the values of these registers as it unwinds the stack. The conventions for
the spill area are discussed in Section A.3.5.

A prologue region can contain code that is irrelevant to the unwind process. However, for efficiency
during the unwind process, observe the following guidelines:

» Keep the size of the prologue region as small as possible.
* End the prologue immediately after allocating stack frames and saving registers.

When OpenVMS semantics apply (see Section A.4.1), a condition handler will not be called

for an exception that occurs in a prologue or epilogue because the procedure is not current (see
Section 4.8.1), but a condition handler of the caller will be considered. Therefore, a prologue region
can not occur in the interior of a procedure, except for a zero-length prologue that describes the initial
state for noncontiguous code segments. General unwind descriptors must be used in the interior of a
procedure instead of prologue descriptors (see Section A.4.1.3) to describe needed changes in unwind
state.

For a routine that has no condition handler, there is no restriction on the use of prologue descriptors,
even interior to the body.

A.3.3. Conventions for Body Regions

Body regions can do anything that does not invalidate the state of the stack frames and preserved
registers as recorded for that region. A body region must obey the following restrictions:

» Ifits memory stack frame is fixed in size, a body region must not modify the SP register.

» If its memory stack frame is variable in size, a body region can modify SP at any point, but the
unwind descriptors must indicate where a valid PSP value can be found at any point while the
body region is executing.

* The unwind descriptors must indicate where a valid copy of the previous frame marker can be
found at any point while the body region is executing. The body region code must not make a
procedure call while the previous frame marker remains only in AR.PFS.

* The unwind descriptors must indicate where a valid copy of the return PC can be found at any
point while the body region is executing. The body region code must not make a procedure call
while the saved return PC remains only in BO.

* The unwind descriptors must indicate where a valid copy of each preserved register can be found
at any point while the body region is executing.

At every point in a body region, the unwind descriptors identify a single location where a valid value
for SP, PSP, AR.PFS, PC, and each preserved register can be found. The body region must not modify
a register or memory location while the unwind descriptors indicate that one of these items (SP, PSP,
AR.PFES, PC, preserved register) is stored there.

The locations of these saved values (SP, PSP, AR.PFS, PC, preserved registers) generally remain
constant throughout the body region in locations specified in the prologue descriptor records.
However, when this is not the case, the unwind descriptors described in Table A.13 can be used to
mark changes in the unwind state within a body region. A body region can restore AR.PFS, RP, and
any preserved registers.

286

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

A.3.4. Conventions for Epilogues

The memory stack pointer (SP) is typically restored just before executing a return branch. In a
normal epilogue at the end of a body region, the instruction that restores the previous SP value can be
anywhere within a few instructions of the end of the region; the unwind descriptor format provides a
place to record the exact location of this instruction. If the procedure has a memory stack frame and
has return instructions in the middle of the body, the procedure must be divided into separate body
regions, each ending at the point of each return instruction.

The unwinder does not need a specific epilogue region that is distinct from the body region.

A.3.5. Conventions for the Spill Area in the Memory
Stack Frame

The spill area for preserved general, floating-point, and branch registers is near the base of the stack
frame, in a continuous range ending (by default) at the base of the stack frame plus 16 bytes (PSP
+16). In other words, the 16-byte scratch area in the caller's stack frame is normally included in

the spill area. If the scratch area is needed to save register parameters for a variable-argument list
procedure, the spill area can be moved so that it ends at a lower address, but the ending address must
be a fixed location relative to the base of the frame (PSP).

Locations in the spill area are reserved for each preserved general, floating-point, and branch register
that is saved anywhere within the procedure (including shrink-wrapped regions). Locations are
allocated, from low address to high, for (in order) general registers, then branch registers, and then
floating-point registers. Registers are saved in numerical order, lower-numbered registers at lower
addresses. The spill area must end at a 16-byte boundary, so that all the floating-point spill locations
are 16-byte aligned.

It is not required that all registers preserved in the spill area be consecutive from each register file. If,
for example, R4 and R7 are preserved, but R5 and R6 are not, space is allocated only for R4 and R7.

Code may need to spill scratch registers in addition to preserved registers. There are no conventions
for spilling scratch registers, because they do not need to be recovered during a stack unwind. To
make the best use of the User NaT collection register, general register spills should be adjacent to the
preserved general register spill area.

Normally, the unwinder expects to find the NaT bits for the preserved registers in the User NaT
collection register, AR.UNAT. If the total spill area for general registers (scratch and preserved
registers combined) exceeds 64 quadwords, it is necessary to save the User NaT collection register
in order to spill up to an additional 64 general registers. In this overflow situation, two or more
NaT collections are managed by swapping them in and out of the single collection register. The
NaT collection that contains the NaT bits for the preserved registers is called the primary UNaT
collection, and the unwinder must know where to find these bits. In procedures where the NaT
collection register is multiplexed, the location of the primary UNaT collection is recorded in the
unwind information.

If the primary UNaT collection is saved, then the location of the primary UNaT value must be
recorded, as well as when that value is restored. The only way to do the latter is by using one of the
general unwind descriptors found in Section A.4.1.1.

The unwinder must take special note of the time at which the primary UNaT is restored. In the case of
an unwind after the primary UNaT restore, the unwinder must not attempt to redundantly reperform
any fills that preceded that restore because the applicable UNaT state will have been lost.

287

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

Note

In this regard, the UNaT restore operation is analogous to a stack restore operation. It forms a barrier
after which saved state has been lost. As a result, some or all of the state restoration cannot be
reperformed.

A.4. Data Structures

The condition handling mechanism uses the following data structures:

* A master unwind table, which allows the unwinder and dispatcher to associate a PC value with an
image

* Anunwind table for each image, which allows the dispatcher and unwinder to associate a PC
value with a procedure and its unwind and exception handling information

Every procedure (except some leaf procedures) has one entry in this table. (If the compiler has
generated more than one noncontiguous region of code for a procedure, there is one entry in this table
for each region). Each unwind table entry points to an information block that contains the following
data structures:

* A set of unwind descriptors

(Optional) A pointer to a condition handler

(Optional) An operating system-specific data area

(Optional) A language-specific data area for each procedure

Given a PC value, the dispatcher and unwinder both use the unwind table to locate an unwind entry
for a procedure. The unwinder also uses the unwind descriptor list to unwind the stack from any point
in the procedure.

The operating system-specific data area contains information about a routine as a whole that is
not otherwise expressible using the unwind descriptors, independent of whether the routine has a
condition handler.

The language-specific data area contains information specific to the condition handler that uses it. The
address of the language-specific data area is passed to the condition handler whenever the condition
handler is invoked by the dispatcher.

A.4.1. Unwind Table and Unwind Information Block

The unwind table is a sequence of sorted unwind table entries. Unwind table entries contain three
fields, as illustrated in Figure A.1; each field is a 64-bit quadword. The first two fields define the
starting and ending addresses of the region, respectively. The third field points to a variable-size
information block that contains the unwind descriptor list and language-specific data area. The ending
address is the address of the first bundle beyond the end of the procedure. Because these values are all
segment-relative offsets rather than absolute addresses, they do not require run-time relocations. The
unwind table entries are sorted by the region start address. The shaded area in the figure represents the
language-specific data area.

288

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

Figure A.1. Unwind Table and Unwind Information Block

Unwind Table Info. Block
start >| V| F | ULEN
end unwind

descriptor area

info ptr.

condition handler | ¢
(optional)

operating system-

specific data area
(optional)

language-specific
data area
(optional)

VM-1026A-Al

Note that a leaf procedure may have no unwind table entry (see Section A.6).

The unwind table and the unwind information block must each be aligned at an 8-byte boundary.
Within the information block, the condition handler pointer must also be aligned at an 8-byte
boundary.

The first quadword of the information block consists of the following fields:

ULEN, a 32-bit longword field that contains the length in quadwords of the unwind descriptor
area (zero is a legitimate value).

F, a 16-bit flag field (see Table A.1). Four bits are set aside for operating system-specific use. Two
of these bits are defined by the Itanium software conventions, and the remaining bits are reserved.

In this version, OpenVMS uses only the two low-order bits of the four bits available for operating
system-specific use. These OpenVMS-specific bits can be accessed using the following:

#define UNW | VMVB_MODE(x) (((x) >> 44) & 0x3L)

These two bits form an enumeration code, which is interpreted as shown in Table A.1.

Note

For OpenVMS 164, the value of UNW_IVMS MODE field must be 2 or 3. Otherwise, exception
handling behaviour is undefined.

The EHANDLER flag is set if the condition handler must be called during search for an exception
handler. The UHANDLER flag is set if this routine must be called during the second unwind.
(Note that for OpenVMS 164, the EHANDLER and UHANDLER flags are both set or both not
set). If neither bit is set, there is no frame handler for this procedure, and the condition handler
identifier must be omitted along with the entire language-specific data area.

V, a 16-bit version number that identifies the version of the unwind descriptor format. For this
specification, the version number is 1.

289

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

These fields may be accessed with the following macros:

#def i ne UNW LENGTH(x) ((x) & 0x00000000fffffffflL)
#defi ne UNW FLAG_UHANDLER(x) ((x) & 0x0000000200000000L)
#defi ne UNW FLAG EHANDLER(x) ((x) & 0x0000000100000000L)
#defi ne UNW FLAG OSMASK 0x0000f 00000000000L

#defi ne UNW FLAG_MASK 0x0000f f f f 00000000L

#defi ne UNW VER(x) ((x) >> 48)

Table A.1. F (Flags) Field of the Information Block

Field Bit Position |Description

EHANDLER <0> Set if there is an exception-processing handler
established (for this region). (Note that for OpenVMS
164, the EHANDLER and UHANDLER flags are both
set or both not set).

UHANDLER <1> Set if there is an exception cleanup (second/unwind
pass) handler established. (Note that for OpenVMS
164, the EHANDLER and UHANDLER flags are both
set or both not set).

UNUSED <11:2> Reserved
UNW_IVMS MODE <13:12> Value |Description
0 Reserved.!
1 Reserved.!
2 OpenVMS handler semantics.’
3 Both OpenVMS handler semantics” and
OpenVMS-specific data area are present.

OS_SPECIFIC_FLAGS <15:14> Reserved and must be zero.

"Must not be used — exception handling behavior is undefined.
2OpenVMS handler semantics means that handlers are not called in prologue or epilogue regions.

A.4.1.1. Unwind Descriptor Area

The unwind descriptor area contains a contiguous sequence of records describing the unwind regions
in the procedure. Each group of records begins with a region header record that identifies the type and
length of the region. The region header record is followed by any number of descriptor records that
supply additional unwind information about the region.

Unwind descriptor records are divided into three categories:
* Region header records

* Descriptor records for prologue regions

» Descriptor records for body regions

This section describes the record types in each of these categories, lists rules for using unwind
descriptor records, and explains how the records must be processed.

The information is encoded in variable-length records with a record type and one or more additional
fields. The length of each record is implicit from the record type and its fields. All records are an

290

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

integral number of bytes in length. In the descriptor record tables in the next three sections, the third
column lists the format of each record type. These record formats are described in Section A.5.

Because the unwind descriptor area must be a multiple of 8 bytes, the last unwind descriptor must be
followed by zero bytes as necessary to pad the area to an 8-byte boundary. These zero bytes will be
interpreted as prologue region header records, specifying a zero-length prologue region, and serve as
no-ops.

A.4.1.2. Region Header Records

The region header records are listed in Table A.2.

Table A.2. Region Header Records

Record Type Fields Format Description
BODY RLEN R1/R3 Defines a body region.
PROLOGUE RLEN R1/R3 Defines a general prologue region.
PROLOGUE_GR RLEN, MASK, R2 Defines a prologue region with
GRSAVE a mask of saved registers, and a
set of general registers used for
saving preserved registers.

The fields in these records are used as follows:

* RLEN — Contains the length of the region, measured in instruction slots (three slots per bundle,
counting X-unit instructions as two slots).

* MASK — Indicates which registers are saved in the prologue. The PROLOGUE_GR region type
is used for entry prologues that save one or more preserved registers in the local register area
of the register stack frame. This field defines what combination of RP, AR.PFS, PSP, and the
predicate registers are preserved in standard general registers in the local area of the register stack
frame. This mask is four bits; see Section A.5 for the allocation of these bits. Other registers may
be preserved in the prologue, but additional descriptor records are required for registers other than
these four.

* GRSAVE — Identifies the first general register used to save the preserved registers identified
in the mask field. Normally, this identifies a register in the procedure's local stack frame (that
is, it should be greater than or equal to 32). However, leaf procedures can choose to use any
consecutive sequence of scratch registers.

The entry state for a region matches the exit state of the preceding region, except for body regions that
contain a COPY_ STATE descriptor record, which is described in Table A.12.

The exit state of a region is determined as follows:

» For prologue regions, and body regions with no epilogue code, the exit state is the logical
combination of the entry state with the modifications described by the descriptor records for the
region.

» For body regions with epilogue code, the exit state is the same as the entry state of the
corresponding prologue region whose effect is being undone. When shrink-wrap regions are
nested, it is possible to reverse the effects of multiple prologues at once.

291

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

A.4.1.3. Descriptor Records for Prologue Regions

This section lists the descriptor records that can be used to describe prologue regions. In addition,

the descriptor records described in Section A.4.1.5 can also be used. In the absence of any descriptor
records or information in the region header record, a prologue region is assumed to create no memory
stack frame and save no registers. Descriptors need be supplied only to override these defaults.

Table A.3 describes the descriptor records that are used to record information about the stack frame
and the state of the previous stack pointer (PSP).

Table A.3. Prologue Descriptor Records for the Stack Frame

Record Type Fields Format Description

MEM_STACK F T, SIZE P7 Specifies a fixed-size memory stack
frame, when SP is modified, and size of
frame.

MEM_STACK V T P7 Specifies a variable-size memory stack

frame, and when PSP is saved.

PSP_GR GR P3 Specifies the general register where

PSP is saved.

PSP_SPREL SPOFF P7 Specifies (as an SP-relative offset) the

memory location where PSP is saved.

The fields in these records are used as follows:

T — Describes a time, T, when a particular action occurs within the prologue. The time is
specified as an instruction slot number, counting three slots per bundle. The first instruction slot in
the prologue is numbered zero.

For procedures with a memory stack frame, the instruction that modifies SP (fixed-size frame)
or that saves PSP (variable-size frame) must be identified with either a MEM_STACK F or a
MEM_STACK V record.

In all other cases, if the time is not specified, the unwinder can assume that both of the following
are true:

» The original contents of the register is valid through the end of the prologue region.

* The saved copy of the register is valid by the end of the prologue region.

In a zero-length prologue region, the time parameter is irrelevant, and must be specified as zero.
SIZE — Contains the fixed size of the memory stack frame, measured in 16-byte units.

GR — Identifies a general register, or the first in a consecutive group of general registers, that is
used for preserving the value of another register (as implied by the record type). Typically, this
field identifies a general register in the procedure's local stack frame. A leaf procedure, however,
can choose to use scratch registers. (A non-leaf procedure can also use scratch registers through
a body region that makes no calls, but then it must move any values saved in scratch registers to
a more permanent save location prior to making any calls, and needs a second prologue region to
describe this process).

292

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

* SPOFF — Identifies a location in the memory stack where a register or group of registers are
spilled to memory. This location is specified relative to the current stack pointer. See Section A.5
for the encoding of this field.

Table A.4 describes the descriptor records that are used to record the state of the return pointer (RP).

Table A.4. Prologue Descriptor Records for the Return Pointer

Record Type Fields Format Description

RP_WHEN T P7 Specifies when RP is saved.

RP GR GR P3 Specifies the general register where RP
is saved.

RP BR BR P3 Specifies the alternate branch register
used as return pointer.

RP_PSPREL PSPOFF P7 Specifies (as a PSP-relative offset) the
memory location where RP is saved.

RP_SPREL SPOFF P8 Specifies (as an SP-relative offset) the
memory location where RP is saved.

The fields in these records are used as follows:

* BR — Identifies a branch register that contains the return link, when the return link is not either in

BO or saved to another location.

* PSPOFF — Identifies a location in the memory stack where a register or group of registers is
spilled to memory. The location is specified relative to the previous stack pointer (which is equal
to the current stack pointer plus the frame size). See Section A.5 for the encoding of this field.

Table A.5 describes the descriptor records that are used to record the state of the previous function

state register (AR.PFS).

Table A.S. Prologue Descriptor Records for the Previous Function State

Record Type Fields Format Description

PFS_WHEN T P7 Specifies when AR.PFS is saved.

PFS GR GR P3 Specifies general register where
AR.PFS is saved.

PFS_PSPREL PSPOFF P7 Specifies (as a PSP-relative offset) the
memory location where AR.PFS is
saved.

PFS SPREL SPOFF P8 Specifies (as an SP-relative offset) the
memory location where AR.PFS is
saved.

Table A.6 describes the descriptor records that are used to record the state of the preserved predicate

registers.

Table A.6. Prologue Descriptor Records for Predicate Registers

Record Type

Fields

Format

Description

PREDS WHEN

T

P7

Specifies when the predicate registers
are saved.

293

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

Record Type

Fields

Format

Description

PREDS_GR

GR

P3

Specifies the general register where
predicate registers are saved.

PREDS PSPREL

PSPOFF

P7

Specifies (as a PSP-relative offset)
memory location where predicate
registers are saved.

PREDS_SPREL

SPOFF

P8

Specifies (as an SP-relative offset)
memory location where predicate
registers are saved.

Table A.7 describes the descriptor records that are used to record the state of the preserved general
registers, floating-point registers, and branch registers.

Table A.7. Prologue Descriptor Records for General, Floating-Point, and Branch

Registers

Record Type

Fields

Format

Description

FR_MEM

RMASK

P6

Specifies (as a bit mask) which
preserved floating-point registers are
spilled to memory by this prologue.

FRGR _MEM

GRMASK,
FRMASK

P5

Specifies (as a bit mask) which
preserved general and floating-point
registers are spilled to memory by this
prologue.

GR_GR

GRMASK, GR

P9

Specifies (as a bit mask) which
preserved general registers are saved in
other general registers, and the general
register where first preserved general
register is saved.

GR_MEM

RMASK

P6

Specifies (as a bit mask) which
preserved general registers are spilled
to memory by this prologue.

BR_MEM

BRMASK

P1

Specifies (as a bit mask) which
preserved branch registers are spilled to
memory by this prologue.

BR_GR

BRMASK, GR

P2

Specifies (as a bit mask) which
preserved branch registers are saved in
general registers by this prologue, and
the general register where first branch
register is saved.

SPILL BASE

PSPOFF

P7

Specifies (as a PSP-relative offset) end
of (first byte following the) spill area in
memory stack frame.

SPILL_MASK

IMASK

P4

Specifies (as a bit mask) when
preserved registers are spilled.

The fields in these records are used as follows:

» RMASK, FRMASK, GRMASK, BRMASK — Identify which preserved floating-point registers,
general registers, and branch registers are saved by the prologue region. The fr mem record uses

294

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

a short RMASK field, which can be used when a subset of floating-point registers from the range
F2-F5 is saved. The FRGR_MEM record can be used for any number of saved floating-point and
general registers. The GR_MEM record can be used when only general registers (R4-R7) are
saved.

* IMASK — Identifies when each preserved floating-point, general, and branch register is saved.
It contains a two-bit field for each instruction slot in the prologue, that indicates whether the
instruction in that slot saves one of these preserved registers. The length of this field is implied
by the size of the prologue region as given in the region header record. It contains two bits for
each instruction slot in the region, and the length of the field is rounded up to the next whole byte
boundary.

If a prologue saves one or more preserved floating-point, general, or branch registers, and the
SPILL._MASK record is omitted, the unwinder can assume that both of the following are true:

» The original contents of these preserved registers are valid through the end of the prologue region.
* The saved copies of the registers are valid by the end of the prologue region.

There can be only one SPILL. BASE and one SPILL. MASK record per prologue region. Each
GR_GR and BR_GR record describes a set of registers that is saved to a consecutive set of general
registers (typically in the local register stack frame). To represent registers saved to nonconsecutive
general registers, two or more of each of these records can be used.

Table A.8 describes the descriptor records used to record the state of the User NaT Collection register
(AR.UNAT).

Table A.8. Prologue Descriptor Records for the User NaT Collection Register

Record Type Fields Format Description

UNAT WHEN T P7 Specifies when AR.UNAT is saved.

UNAT GR GR P3 Specifies the general register where
AR.UNAT is saved.

UNAT PSPREL PSPOFF P7 Specifies (as a PSP-relative offset) the
memory location where AR.UNAT is
saved.

UNAT SPREL SPOFF P8 Specifies (as an SP-relative offset) the
memory location where AR.UNAT is
saved.

Table A.9 describes the descriptor records that are used to record the state of the loop counter register
(AR.LC).

Table A.9. Prologue Descriptor Records for the Loop Counter Register

Record Type Fields Format Description

LC WHEN T P7 Specifies when AR.LC is saved.

LC GR GR P3 Specifies general register where AR.LC
is saved.

LC PSPREL PSPOFF P7 Specifies (as a PSP-relative offset)
the memory location where AR.LC is
saved.

295

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

Record Type Fields Format Description

LC_SPREL SPOFF P8 Specifies (as an SP-relative offset)
the memory location where AR.LC is
saved.

Note

The FPSR-related descriptor records (FPSR_WHEN, FPSR_GR, FPSR_PSPREL, FPSR_SPREL)
defined in the ltanium® Software Conventions and Runtime Architecture Guide are not supported on

OpenVMS 164.

Table A.10 describes the descriptor records that are used to record the state of the primary UNaT

collection.

Table A.10. Prologue Descriptor Records for the Primary UNaT Collection

Record Type Fields Format Description

PRIUNAT WHEN GR |T P8 Specifies when the primary UNaT
collection is copied to a general
register.

PRIUNAT WHEN T P8 Specifies when the primary UNaT

MEM collection is saved in memory.

PRIUNAT GR GR P3 Specifies the general register where the
primary UNaT collection is copied.

PRIUNAT PSPREL PSPOFF P8 Specifies (as a PSP-relative offset) the
memory location where the primary
UNaT collection is saved.

PRIUNAT SPREL SPOFF P8 Specifies (as an SP-relative offset) the

memory location where the primary
UNaT collection is saved.

Table A.11 describes the descriptor records that are used to record the state of the backing store, when

it is necessary to record a discontinuity.

Table A.11. Prologue Descriptor Records for the Backing Store

Record Type Fields

Format

Description

BSP_ WHEN T

P8

Specifies when AR.BSP is saved. The
backing store pointer can be saved,
along with the AR.BSPSTORE pointer
and the AR.RNAT register, to indicate a
discontinuity in the backing store.

BSP GR GR

P3

Specifies the general register where
AR.BSP is saved.

BSP PSPREL PSPOFF

P8

Specifies (as a PSP-relative offset) the
memory location where AR.BSP is
saved.

BSP SPREL SPOFF

P8

Specifies (as an SP-relative offset) the
memory location where AR.BSP is
saved.

296

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

Record Type Fields Format Description

BSPSTORE WHEN T P8 Specifies when AR.BSPSTORE is
saved.

BSPSTORE GR GR P3 Specifies the general register where
AR.BSPSTORE is saved.

BSPSTORE PSPREL |PSPOFF P8 Specifies (as a PSP-relative
offset) the memory location where
AR.BSPSTORE is saved.

BSPSTORE SPREL SPOFF P8 Specifies (as an SP-relative offset)
the memory location where
AR.BSPSTORE is saved.

RNAT WHEN T P8 Specifies when AR.RNAT is saved.

RNAT GR GR P3 Specifies the general register where
AR.RNAT is saved.

RNAT PSPREL PSPOFF P8 Specifies (as a PSP-relative offset) the
memory location where AR.RNAT is
saved.

RNAT SPREL SPOFF P8 Specifies (as an SP-relative offset) the

memory location where AR.RNAT is
saved.

A.4.1.4. Descriptor Records for Body Regions

Table A.12 lists the optional descriptor records that may be used to describe body regions. In
addition, the descriptor records described in Section A.4.1.5 can also be used. In the absence of these
descriptors, a body region is assumed to inherit its entry state from the previous region.

Table A.12. Body Region Descriptor Records

Record Type Fields Format Description

EPILOGUE T, ECOUNT B2/B3 Body region contains epilogue code for
one or more prologues.

LABEL STATE LABEL B1/B4 Labels the entry state for future
reference.

COPY_STATE LABEL B1/B4 Use the labeled entry state as entry

state for this region.

* T — Indicates the location (relative to the end of the region) of the instruction that restores the
previous SP value. The number is a count of the remaining instruction slots to the end of the
region (thus, a value of zero indicates the final slot in the region).

* ECOUNT — Indicates how many additional levels of nested shrink-wrap regions are being
popped at the end of a body region with epilogue code. A value of zero indicates that one level
must be popped. When OpenVMS handler semantics apply, this value must be zero.

* LABEL — Identifies a previously-specified body region, whose entry state must be copied for this

body region.

297

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

Prologue regions nest within other prologue regions, and are balanced by body regions with an
epilogue descriptor. An epilogue descriptor with an ECOUNT of 7 serves to balance (n+1) earlier
prologue regions. When OpenVMS handler semantics apply, prologue nesting is not allowed.

When the LABEL STATE descriptor is used to label an entry state, it must appear prior to any
general unwind descriptors in the same body region.

A COPY_STATE descriptor must appear prior to any general unwind descriptors in the same body
region.

A labelled entry state includes not only the record of where current valid copies of all preserved
values can be found, but also references the states that are currently on the stack of nested prologues.
For example, consider the following sequence of regions:

* Prologue region A

* Body region B (no epilogue)

* Prologue region C

* Body region C (label state 1, epilogue count 2)
* Body region D (copy_state 1, epilogue count 2)

The effect of the COPY_STATE in body region D restores the entry state of body region C, as well as
the two prologue regions within which the body region is nested.

The scope of a label is restricted to a single unwind descriptor area.

A.4.1.5. Descriptor Records for Body or Prologue Regions

This section lists the descriptor records that can be used to describe either prologue or body regions.
These descriptors provide complete generality for compilers to perform register spills and restores
anywhere in the procedure, without creating an arbitrary boundary between prologue and body.

If a SPILL record (see Table A.13) is used in a prologue for a given preserved register, then only
SPILL records can be used for that preserved register in that prologue region. In other words, you
must not mix X format and P format descriptors for the same preserved register in the same prologue.

Table A.13. General Unwind Descriptors

Record Type Fields Format |Description

SPILL. PSPREL T, REG, PSPOFF X1 Specifies (as a PSP-relative offset) when
and where REG is saved.

SPILL SPREL T, REG, SPOFF X1 Specifies (as an SP-relative offset) when
and where REG is saved.

SPILL REG T, REG, TREG X2 Specifies when and where REG is saved
in another register, TREG, or restored.

SPILL PSPREL P QP, T, REG, X3 Specifies (as a PSP-relative offset) when

PSPOFF and where REG is saved, under predicate

QP.

SPILL SPREL P QP, T, REG, SPOFF | X3 Specifies (as an SP-relative offset) when
and where REG is saved, under predicate
QP.

298

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

Record Type Fields Format |Description

SPILL REG P QP, T, REG, TREG |X4 Specifies when and where REG is saved
in another register, TREG, or restored,
under predicate QP.

T — Describes a time, T, when a particular action occurs within the prologue or body. The time
is specified as an instruction slot number, counting three slots per bundle. The first slot in the
containing prologue or body is numbered zero.

* REG — Identifies the register being spilled or restored at the given point in the code. This field
may indicate any of the preserved general registers, floating-point registers, branch registers,
application registers, predicate registers, previous SP, primary UNaT collection, or return pointer.
See Section A.5 for the encoding of this field.

* TREG — Identifies a target register to which the value being spilled is copied. This field may
indicate any general register, floating-point register, or branch register; it may also contain the
special Restore target, indicating the point at which a register is restored. See Section A.5 for the
encoding of this field.

* QP — Identifies a qualifying predicate register, which determines whether the indicated spill or
restore instruction executes. The qualifying predicate register must be a preserved predicate if
there are any procedure calls in the range between the spill and restore, and it must remain live
throughout the range.

If a body region contains any general descriptors and an epilogue descriptor, the effects of the general
descriptors are undone when the unwind state is restored by popping one or more prologues. By the
end of the body region, the code must have restored any preserved registers that the new unwind state
indicates are restored. It is not necessary, however, to record the points at which registers are restored
unless the locations used to save the values are modified before the end of the region.

A.4.1.6. Rules for Using Unwind Descriptors

Preserved registers that are saved in the prologue region must be specified with one or more of the
following descriptor records:

« PROLOGUE _GR (RP, AR.PFS, PSP, and the predicate registers)

* MEM STACK V (PSP is saved in a general register)

« RP_WHEN, RP_GR, RP_PSPREL, or RP_SPREL (RP)

» PFS_WHEN, PFS_GR, PFS_PSPREL, or (AR.PFS)

« UNAT_WHEN, UNAT GR, UNAT PSPREL, or UNAT SPREL (AR.UNAT)

« LC WHEN, LC GR, LC _PSPREL, or LC_SPREL (AR.LC)

« FR_MEM, FRGR_MEM, or GR_MEM (floating-point registers and general registers)
« BR MEM or BR GR (branch registers)

« SPILL PSPREL, SPILL_SPREL, SPILL REG, SPILL PSPREL P, SPILL. SPREL P,
SPILL. REG_P (any register)

If a preserved register is not named by one or more of these records, it is assumed that the prologue
does not save or modify that register. The locations where preserved registers are saved are
determined according to the following rules:

299

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

1. Certain descriptor records explicitly name a save location for a register (records whose names end
with GR, PSPREL, or SPREL). If a register is described by one of these records, the unwinder
uses the named location.

2. Some descriptor records specify that registers are saved to the spill area (FR. MEM,
FRGR_MEM, GR_MEM, BR_MEM). These locations are determined by the conventions for the
spill area.

3. Any remaining registers that are named as saved but do not have an explicit save location are
assigned consecutive general registers, beginning with the general register identified by the
PROLOGUE_GR region header record. If the prologue region uses a prologue header record,
the first general register is assumed to be R32. The registers are saved as needed in the following
order:

a. Return pointer, RP

b. Previous function state, AR.PFS

c. Previous stack pointer, PSP

d. Predicate registers

e. User NaT collection register, AR.UNAT
f. Loop counter, AR.LC

g. Primary UNaT collection

Note

Without explicitly specifying a save location, the only way to indicate that any of the last four groups
of registers (e through h) is saved is to use one of the corresponding WHEN descriptor records.

A.4.1.7. Processing Unwind Descriptors

The unwind process for a frame begins by locating the unwind table entry for a given PC. (A leaf
procedure may have no unwind table entry; see Section A.4).

If there is an unwind table entry, the unwinder then locates the unwind information block and checks
the size of the unwind descriptor area. If this area is zero length, the unwinder must use the default
conditions as above.

In preparation for reading the unwind descriptor records, the unwinder must start with an initial
current state record, and an empty stack of state records. A state record describes the locations of all
preserved registers at entry to a region. The initial value of the current state record must describe the
frame in its default condition.

The unwind descriptor records must be read and processed sequentially, beginning with the first
descriptor record for a procedure, continuing until the PC is contained within the current region. For
each prologue region header, the current state record must be pushed on the stack, and the descriptor
records for the prologue region must be applied to the current state record. When a body region with
epilogue code is seen, one or more states must be popped from the stack, and the entry state for the
next region is taken as the last state popped. This restores the current state to the entry state of the
matching prologue.

300

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

When a body region contains a LABEL STATE descriptor, the unwind processor must replicate

the current unwind state, including the current stack of prologues. When a body region contains a
COPY_STATE descriptor, the unwind processor must discard the current state and stack, and restore
the replicated state and stack that corresponds with the label.

When the current PC is within a body region, the unwinder can generate the context of the previous
frame by restoring registers as indicated by the current state record. If the body region has epilogue
code and the PC is beyond the indicated point where SP is restored, the unwinder must assume that
SP has already been restored, and that all registers spilled to the memory stack frame (except those
between PSP and PSP+16) have also been restored. Registers spilled to the scratch area in the caller's
frame may not have been restored at that point, and the unwinder must use the values in memory.

When the current PC is within a prologue region, the unwinder must look for descriptor records that
specify a time parameter that is at or beyond the current PC. The unwinder must ignore these state
modifications when applying descriptor records to the current state. If a register is saved but does
not have a specified time, the unwinder can assume that the original value is not modified within the
prologue and can ignore it.

The layout and size of the preserved register spill area cannot be determined without reading all the
prologue region descriptor records in the procedure, and merging the save masks for the general,
floating-point, and branch registers.

A.4.2. Condition Handler

The condition handler identifier is accessed by adding the size of the unwind descriptor area (ULEN,
which is the count of quadwords), plus the size of the header quadword, to the information block
pointer. The value in that location is the GP-relative offset for the global offset table entry that
contains the function pointer (address of a function descriptor) for the condition handler. The
dispatcher calls this routine during the first unwind only if the EHANDLER bit is set, and during the
second unwind only if the UHANDLER bit is set.

Because the operating system-specific data area immediately follows the condition handler identifier,
the address of this area must be made available to the condition handler.

A.4.3. Operating System-Specific Data Area

If an operating system-specific data area is present, it is located immediately following the condition
handler (if any) and before the language-specific data area (if any). If there is no condition handler,
the operating system-specific data area is located immediately following the unwind descriptors
(where the condition handler would have been). The operating system-specific data area must be
aligned at a quadword boundary.

The following field of the mechanism vector passed to a condition handler (see Section 9.5.1 and
Section 9.5.1.2.3) may be helpful in interpreting the contents of operating system-specific data:

CHF$PH_MCH_OSSD The virtual address of the operating system-specific data area.

The OpenVMS-specific data area is present if the UNW_IVMS MODE field in the unwind
information block has the value 3 (see Table A.1).

An OpenVMS-specific data area consists of one or more segments, where each segment begins with a
15-bit TYPE code field followed by a 1-bit SUCCESSOR flag as shown in the following figure.

301

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

Figure A.2. OpenVMS Operating System-Specific Data Area Segment

. . *

type-specific data

'S TYPE

VM-1085A-Al

The segment types defined for OpenVMS are described in the following sections. They are identified
by the codes shown in the following table:

Name

Value

Use

OSSD$K_GENERAL INFO 1

General information

OSSD$K_CALL SPILL INFO |2

Caller spill register information

Unless otherwise stated, each kind of segment data can occur at most once in any given data area.

A.4.3.1. General Information Segment

The OpenVMS general information segment contains various flags and general exception handling
information, and is described in Table A.14.

A general information segment may be omitted if all of its fields would have their default values.

If a general information segment is present, it must be the first segment in the operating system-

specific data area.

Table A.14. Operating System-Specific Data Area

EXCEPTION _MODE

Field Bit Position |Description

OSSD$V_TYPE <14:0> A 15-bit type field that identifies the segment as a
general information segment. The value of this field is
OSSD$K_GENERAL _INFO (=1).

OSSDS$V_S <15> If set to 1, another segment immediately follows this one. If
set to 0, there are no further segments in this area.

OSSD$V _ <18:16> A 3-bit field that encodes the caller's desired exception-

reporting behavior when calling certain mathematically
oriented library routines. These routines generally search
up the call stack to find the desired exception behavior
whenever an error is detected. However, if no floating-
point exceptions are enabled in the 164 FPSR, then

no stack search is performed and the exception mode
SIGNAL _SILENT is assumed.!

Value |Name Meaning
0 OSSD$K_EXC Raise exceptions for
MODE_SIGNAL all error conditions
except for underflows
producing a 0 result.
This is the default
mode.
1 OSSD$K EXC Raise exceptions for
MODE SIGNAL _ALL |all error conditions
(including underflows).

302

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

Field

Bit Position

Description

2 OSSD$K_EXC
MODE_SIGNAL _
SILENT

Raise no exceptions.
Create only finite
values (no infinities,
denormals, or NaNs).
In this mode, either
the function result

or the C language

er r no variable must
be examined for any
error indication.

3 OSSD$K_EXC
MODE_FULL IEEE

Raise no exceptions
except as controlled by
separate IEEE exception
enable bits. Create
infinities, denormals, or
NaN values according
to the IEEE floating-
point standard.

4 OSSD$K_EXC
MODE_CALLER

Perform the exception-
mode behavior specified
by this procedure's
caller.

OSSD$V_TARGET _
INVO

<19>

If set to 1, the exception handler for this procedure is
invoked when this procedure is the target invocation of an
unwind. Note that a procedure is the target invocation of an
unwind if it is the procedure in which execution resumes
following completion of the unwind. The default value is 0.

OSSD$V_BASE
FRAME

<20>

This bit must be zero except in operating system routines
whose documented purpose is to provide the base frame
marker. If set to 1, this bit indicates the logical base frame
of a stack that precedes all frames corresponding to user
code. The interpretation and use of this frame and whether
there are any predecessor frames is system software defined
(and subject to change). The default value is 0.

OSSD$V_HANDLER _
REINVOKABLE

<21>

If set to 1, the handler can be reinvoked, allowing an
occurrence of another exception while the handler is already
active. If this bit is set to 0, the exception handler cannot be
reinvoked. The default value is 0.

OSSD$V_AST_
FRAME

<22>

If set to 1, then this is an AST dispatch frame. The
interrupted procedure is the predecessor frame on the stack
and much of its context is saved in this procedure's memory
stack frame. The default value is 0.

0SSDS$V _
EXCEPTION_FRAME

<23>

If set to 1, then this is an exception dispatch frame. The
excepting procedure is the predecessor frame on the stack
and much of its context is saved in this procedure's memory
stack frame. The default value is 0.

303

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

Field Bit Position |Description

OSSD$V_TIE FRAME |<24> If set to 1, this is a frame created by the Translated Image
Executive for use during the execution of translated images.
The default value is 0.

OSSD$V_BOTTOM _ |<25> A value of 1 indicates that this frame has no predecessor

OF STACK frames (that is, this frame is the end of the invocation call
chain). The default value is 0.

OSSD$V_HANDLER _ |<26> A value of 1 indicates that an exception handler data field is

DATA_ VALID present in the unwind information block. The default value
is 0.

OSSD$V_SS <27> If set to 1, then this is the System Service dispatch frame.

DISPATCH_FRAME Much of the context for a procedure calling a system service
is saved on an inner mode stack. The default value is 0.

OSSD§V_KP_ <28> Internal use only.

START FRAME

OSSD$V _ <29> Tags code executing in context of another routine whose 1P

FRAMELESS HELPER| is in BO

RESERVED <63:30> Reserved; must be zero.

IThis is different than on Alpha, where a stack search is performed even when no floating-point exceptions are enabled in the Alpha FPCR
(see the description of PDSC$V_EXCEPTION_MODE in Table 3.3 and Table 3.4).

A.4.3.2. Caller Spill Register Information

The OpenVMS caller spill register information segment encodes information to emulate the effects
of callee register saving conventions even when caller save/restore conventions are in use. The key
difference between this and the more general unwind information described in other parts of Section
A 4 is that the information described here must be applied in the frame with which it is associated in
order to complete that frame whereas other information is applied in order to unwind to the previous
frame.

The caller spill register segment is described in Table A.15.

Table A.15. OpenVMS OSSD Caller Spill Register Information

Field Bit Position |Description

OSSD$V_TYPE <14:0> A 15-bit type field that identifies the segment as a caller
spill register information segment. The value of this field is
OSSD$K CALLER _SPILL INFO (=2).

OSSD$V_S <15> If set to 1, another segment immediately follows this one. If
set to 0, there are no further segments in this area.
OSSD$W_LENGTH <31:16> A two-byte field that specifies the number of quadwords in

this segment (including OSSD$V_TYPE, OSSD$V _S and
OSSD$W_LENGTH itself).

OSSDS$T SPILL DATA|<...> See below.

The OSSDST_SPILL DATA field in a spill register segment consists of a sequence of triples encoded
as shown in Figure A.3.

304

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

Figure A.3. Format of OSSDST_SPILL_DATA

7 5 4 3 2 1 0
Byte 0 0 0 REG
Byte 1 0 TREG
T
—~ o
T (ULEB128) T
VM-1084A-Al

Table A.16 describes the fields in the OSSD$T SPILL DATA segment.

Table A.16. Description of OSSDST _SPILL_DATA Segment

OSSD$V_REG

A 5-bit field that identifies the saved static general register. Bits <7:5> of
byte 0 are reserved and must be zero.

A REG value of zero indicates that there is no more spill data; one or more
zero bytes are used to pad the end of the spill data if needed to fill out the
specified length.

0SSD$V_TREG

A 7-bit field that identifies one of the general registers. Bit <7> of byte 1 is
reserved and must be zero.

A TREG value other than zero indicates that the contents of register REG is
saved in register TREG. A TREG value of zero indicates that register REG
is restored, that is, is no longer saved elsewhere.

OSSDST T

A ULEB128 slot offset from the start address given in the corresponding
unwind table (see Section A.4.1) to the instruction that performs the save or
restore.

It is valid for save actions to occur in a prologue and restore events to occur
in an epilogue. (Save actions events will never occur in an epilogue and
restore events will never occur in an prologue because these would require
a call to occur in either the prologue or epilogue, which is forbidden).

It is valid for two or more save actions for the same register REG to occur without an intervening
restore of that register. In this case, the later save register location TREG supercedes the earlier one as
the save location for register REG beginning at the specified offset T.

When unwinding to a frame, the unwind information of the called frame is first used to construct
the frame of the caller; the unwind operation must then be completed by using any spill register
information for that caller.

A.4.4. Language-Specific Data Area

The language-specific data area contains information whose format and interpretation need be known
only by the condition handler that uses it. As such, this area is not described in this document.

305

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

To preserve sharability of the image of which language-specific data is a part, that data should be
read-only and position-independent. For example, an address within the associated procedure might
be represented as an offset relative to the starting address given in the unwind table for the routine.

The following fields, which are found in the mechanism vector passed to a condition handler (see
Section 9.5.1 and Section 9.5.1.2.3), may be helpful in interpreting the contents of language-specific
data:

CHF$PH MCH _UWR START The virtual address of an unwind region. May be used together
with an offset in the language specific data to encode an address
within a procedure.

CHF$PH_MCH _DADDR The virtual address of the language-specific data area.

A.5. Unwind Descriptor Record Format

Note

For compatibility with the VAX and Alpha calling standards, this appendix describes big-endian
values stored in little-endian bytes.

The unwind descriptor records are encoded in variable-length byte strings. The various record formats
are described in this appendix. The first byte of each record is sufficient to determine its format. The
high-order bit of this byte determines whether it is a header record (if the bit is zero), or a region
descriptor record (if the bit is one). The remaining bits and any subsequent bytes are divided into
separate fields. In most formats, the first field, R, identifies the record type. The record formats are
listed by the bit pattern of the first byte in Table A.17.

Table A.17. Record Formats

Region Header Records Prologue Descriptor Records Body Descriptor Records
Bit Pattern Format Bit Pattern Format Bit Pattern Format
00-- ---- R1 100- ---- P1 10-- ---- B1
0100 O--- R2 1010 ---- P2
0110 00-- R3 1011 O--- P3
1011 1000 P4
1011 1001 P5
110- ---- P6 110- ---- B2
1110 ---- P7 1110 0000 B3
1111 0000 P8 1111 -000 B4
1111 0001 P9
1111 1001 X1 1111 1001 X1
1111 1010 X2 1111 1010 X2
1111 1011 X3 1111 1011 X3
1111 1100 X4 1111 1100 X4
1111 1111 P10

306

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

Some fields in the unwind descriptor records are variable in length. The variable-length encoding uses
the ULEB128 (Unsigned Little-Endian Base 128) encoding, described below:

* Divide the number into groups of 7 bits, beginning at the low-order end.

* Discard all groups of leading zeroes, but keep at least the first (low-order) group if the number is
all zeroes.

* Place a 1 bit to the left of of all but the last group; place a 0 bit to the left of the last group. This
forms one or more 8-bit groups.

Table A.18 shows example ULEB128 encodings.

Table A.18. Example ULEB128 Encodings

Value Encoding Interpretation

0 00000000 0

127 01111111 127

128 10000000 0+(1<<7)
00000001

1544 10001000 8+ (12<<7)
00001100

49,802 10001010 10+ (5<<7)+(3<<14)
10000101
00000011

Fields in the ULEB128 format always follow the fixed fields, and begin on a byte boundary.

A.5.1. Region Header Records

The PROLOGUE and BODY region header records can appear in either format R1 or R3, depending
on the magnitude of the region length field. If the region length is no greater than 31 instruction slots,
the R1 format may be used; otherwise, format R3 must be used.

A.5.1.1. Format R1

7 6 5 4 3 2 1 0

Byte 0 0 0 R RLEN

VIM-0887A-Al

This format is used for the short forms of the PROLOGUE and BODY region header records. The R
bit identifies the record type, as shown in the following table:

Record Type
PROLOGUE 0
BODY

307

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

A.5.1.2. Format R2

7 6 5 4 3 2 1 0
Byte 0 0 1 0 0 0 MASK <3:1>
Byte 1 [MASK <0 GRSAVE
RLEN
.(‘h..l (“-..I
T (ULEB128) T

VM-0988A-Al

This format is used only for the PROLOGUE_GR region header record. The following table shows
the meaning of the bits in the MASK field:

Mask bit Meaning when bit is set

Byte 0, bit 2 RP is saved in a standard general register.

Byte 0, bit 1 AR.PFS is saved in a standard general register.

Byte 0, bit 0 PSP is saved in a standard general register.

Byte 1, bit 7 Predicate registers are saved in a standard general register.

The GRSAVE field identifies the general register in which the first of these values is stored.
Additional general registers are used as needed. For example, assume that RP, AR.PFS, and the
predicate registers are stored, but not PSP. The mask bits would be 1101, and GRSAVE might be set
to 39, indicating that the three values are stored in R39, R40, and R41, respectively.

A.5.1.3. Format R3

7 6 5 4 3 2 1 0
Byte 0 0 1 1 0 0 0 R
RLEN
-~ =
i (ULEB128) T

VM-0989A-Al

This format is used for the long forms of the PROLOGUE and BODY region header records. The R
field identifies the record type, as shown in the following table:

Record Type R
PROLOGUE 00
BODY 01

308

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

A.5.2. Descriptor Records for Prologue Regions
A.5.2.1. Format P1

7 6 5 4 3 2 1 0

Byte 0 1 0 0 BRMASK

VM-0977A-Al

This format is used only for the BR MEM descriptor record.

The five bits in the BRMASK field are used to indicate which of the five preserved branch registers
(B1-B5) are saved in the prologue. Bit 0 corresponds to B1; bit 4 corresponds to BS5. If the bit is clear,
the corresponding register is not saved; if the bit is set, the corresponding register is saved.

A.5.2.2. Format P2

7 6 5 4 3 2 1 0
Byte 0 1 0 1 0 BRMASK <4:1>
Byte 1 [BRMASK<0> GR

VM-0978A-Al

This format is used only for the BR_GR descriptor record.

The five bits in the BRMASK field are used to indicate which of the five preserved branch registers
(B1-B5) are saved in the prologue. Bit 7 of byte 1 corresponds to B1; bit 3 of byte 0 corresponds

to BS. If the bit is clear, the corresponding register is not saved; if the bit is set, the corresponding
register is saved.

The GR field identifies the general register in which the first of these registers is stored. Additional
general registers are used as needed. For example, assume that B1, B4, and B5 are stored. The mask
bits would be 11001, and GR might be set to 37, indicating that the three branch registers are stored in
R37, R38, and R39, respectively.

A.5.2.3. Format P3

7 6 5 4 3 2 1 0
Byte 0 1 0 1 1 0 R <3:1>
Byte 1 R <0> GR/BR

VM-0979A-Al

This format is used by the group of descriptor records that specify a general register or branch register
number. The record type is identified by the R field, which is read as a four bit number whose low-
order bit is bit 7 of byte 1. The following table shows the record types:

Record Type R Notes
PSP_GR 0
RP_GR 1
PFS_GR 2
PREDS GR 3

309

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

Record Type Notes

UNAT_GR

LC GR

RNAT GR

BSP_GR

R

4

5

RP_BR 6
7

8

9

BSPSTORE_GR

FPSR_GR 10 Not supported on OpenVMS

PRIUNAT GR 11

A.5.2.4. Format P4

7 6 5 4 3 2 1 0

Byte 0 1 0 1 1 1 0 0 0

IMASK

3
{4
)
48

VM-0980A-Al

This format is used only by the SPILL. MASK descriptor record. The first byte is followed by the
IMASK field, whose length is determined by the length of the current prologue region as given by the
region header record. The IMASK field contains two bits for each instruction slot in the region, and
the size is rounded up to the next whole number of bytes, if necessary.

The high-order (leftmost) two bits of the first byte of the IMASK field correspond to the first
instruction slot of the region. Bit pairs are read from left to right (high-order bits to low-order bits)
within each byte, and bytes are read from increasing memory addresses. Each bit field describes the
behavior of the corresponding instruction slot as follows:

Bit Pair Meaning
00 The instruction slot does not save one of these registers.
01 The instruction slot saves the next floating-point register.
10 The instruction slot saves the next general register.
11 The instruction slot saves the next branch register.
A.5.2.5. Format P5
7 6 5 4 3 2 1 0
Byte 0 1 0 1 1 1 0 0 1
Byte 1 GRMASK FRMASK <19:16>
Byte 2 FRMASK <15:8>
Byte 3 FRMASK <7:0>

VM-0881A-Al

310

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

This format is used only by the FRGR MEM descriptor record.

The bits in the GRMASK field correspond to the preserved general registers (R4-R7). The bits are
read from right to left: bit 4 of byte 1 corresponds to R4, and bit 7 corresponds to R7.

The bits in the FRMASK field correspond to the preserved floating-point registers (F2-F5 and
F16-F31). The bits are read from right to left: bit O of byte 3 corresponds to F2, and bit 3 of byte 1
corresponds to F31.

A value of 1 in each bit position indicates that the corresponding register is saved.

A.5.2.6. Format P6

7 6 5 4 3 2 1 0

Byte 0 1 1 0 R RMASK

VM-0982A-Al

This format is used by the FR_MEM and GR_MEM descriptor records. The R bit identifies the record
type, as shown in the following table:

Record Type R
FR_MEM 0
GR_MEM 1

The bits in the RMASK field correspond to either the preserved general registers (R4-R7) or the set
of the first four preserved floating-point registers (F2-F5). The bits are read from right to left: bit 0
corresponds to R4 or F2, and bit 3 corresponds to R7 or F5. A value of 1 in each bit position indicates
that the corresponding register is saved.

A.5.2.7. Format P7

7 6 5 4 3 2 1 0
Byte 0 1 1 1 0 R
A T/SPOFF/PSPOFF A
T~ (ULEB128) m
SIZE
~ (ULEB128) g
(MEM_STACK_F ONLY)

VM-0983A-Al

This format is used for a number of descriptor records. The R field identifies the record type, as
shown in the following table:

Record Type R Additional |Notes
ULEB128
Fields

MEM STACK F 0 T, SIZE

311

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

Record Type R Additional |Notes
ULEB128
Fields
MEM_STACK V 1 T
SPILL. BASE 2 PSPOFF
PSP _SPREL 3 SPOFF
RP_WHEN 4 T
RP_PSPREL 5 PSPOFF
PFS WHEN 6 T
PFS PSPREL 7 PSPOFF
PREDS WHEN 8 T
PREDS_PSPREL 9 PSPOFF
LC_WHEN 10 T
LC PSPREL 11 PSPOFF
UNAT WHEN 12 T
UNAT PSPREL 13 PSPOFF
FPSR_WHEN 14 T Not supported on OpenVMS
FPSR_PSPREL 15 PSPOFF Not supported on OpenVMS

Stack pointer offsets (SPOFF) are represented as positive longword offsets from the top of the stack
frame (that is, the location is SP + 4 * SPOFF). Previous stack pointer offsets (PSPOFF) are encoded
as positive numbers representing a negative longword offset relative to PSP+16 (that is, the location is
PSP + 16 - 4 * PSPOFF).

A.5.2.8. Format P8

7 6 5 4 3 2 1 0
Byte 0 1 1 1 1 0 0 0 0
Byte 1 R
Ao T/SPOFF/PSPOFF A
T (ULEB128) T~

VM-0984A-Al

This format is used for a number of descriptor records. The R field identifies the record type, as
shown in the following table:

Record Type R Additional |Notes
ULEB128
Fields

RP_SPREL 1 SPOFF

PFS_SPREL 2 SPOFF

312

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

Record Type R Additional |Notes
ULEB128
Fields
PREDS_SPREL 3 SPOFF
LC _SPREL 4 SPOFF
UNAT SPREL 5 SPOFF
FPSR_SPREL 6 SPOFF Not supported on OpenVMS
BSP_WHEN 7 T
BSP PSPREL 8 PSPOFF
BSP_SPREL 9 SPOFF
BSPSTORE WHEN 10 T
BSPSTORE_PSPREL 11 PSPOFF
BSPSTORE_ SPREL 12 SPOFF
RNAT WHEN 13 T
RNAT PSPREL 14 PSPOFF
RNAT _SPREL 15 SPOFF
PRIUNAT WHEN GR 16 T
PRIUNAT PSPREL 17 PSPOFF
PRIUNAT SPREL 18 SPOFF
PRIUNAT WHEN MEM |19 T

Stack pointer offsets (SPOFF) are represented as positive longword offsets from the top of the stack
frame (that is, the location is SP + 4 * SPOFF). Previous stack pointer offsets (PSPOFF) are encoded
as positive numbers representing a negative longword offset relative to PSP+16 (that is, the location is

PSP + 16 -4 * PSPOFF).

A.5.2.9. Format P9

7 6 5 3 2 1 0
Byte O 1 1 0 0 0 1
Byte 1 0 0 0 GRMASK
Byte 2 0 GR

This format is used only by the GR_GR descriptor record.

VM-0985A-Al

The bits in the GRMASK field correspond to the preserved general registers (R4-R7). The bits are
read from right to left: bit 0 of byte 1 corresponds to R4, and bit 3 corresponds to R7. The GR field
identifies the general register in which the first of these registers is stored. Additional general registers
are used as needed. For example, assume that R4, RS, and R7 are stored. The mask bits would be
1011, and GR might be set to 37, indicating that the three preserved general registers are stored in
R37, R38, and R39, respectively.

313

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

A.5.2.10. Format P10

7 6 5 4 3 2 1 0
Byte 0 1 1 1 1 1 1 1 1
Byte 1 ABI
Byte 2 CONTEXT

VM-0986A-Al

This format is reserved for ABI-specific unwind descriptor records, typically to identify a region
whose stack frame indicates some saved context record (for example, a Unix signal context).

The value defined to indicate the OpenVMS ABI is 13. Codes for other operating systems are defined
in the Itanium documentation.

The interpretation of the CONTEXT field is ABI dependent. No codes or interpretations are currently
defined for OpenVMS. All codes are reserved for future use.

A.5.3. Descriptor Records for Body Regions

The EPILOGUE, LABEL_STATE, and COPY_STATE descriptor records can each appear in two
formats, depending on the magnitudes of their fields.

A.5.3.1. Format B1

7 6 5 4 3 2 1 0

Byte 0 1 0 R LABEL

VM-0973A-Al

This record is used for the short form of LABEL STATE and COPY_STATE descriptor records. If the
label is no greater than 31, this format may be used; otherwise, format B4 must be used. The record
types are shown in the following table:

Record Type
label state 0
copy_state 1

A.5.3.2. Format B2

7 6 5 = 3 2 1 0

Byte 0 1 1 0 ECOUNT

T
(ULEB128)

)
{4
h)!

(<

VM-0974A-Al

314

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

This format is used only for the short form of the EPILOGUE descriptor record. If the ECOUNT field
is no greater than 31, this format may be used; otherwise, format B3 must be used.

A.5.3.3. Format B3

7 6 5 4 3 2 1 0
Byte 0 1 1 1 0 0 0 0 0
T
r-l f"d
L (ULEB128) Lt
A ECOUNT A
T~ (ULEB128) T~

VM-0975A-Al
This format is used only for the long form of the EPILOGUE descriptor record.

A.5.3.4. Format B4

7 6 5 4 3 2 1 0
Byte 0 1 1 1 1 R 0 0 0
LABEL
f‘-—l {-.._’
A (ULEB128) T

VIM-0976A-Al

This format is used only for the long form of the LABEL STATE and COPY_STATE descriptor
records. The record types are shown in the following table:

Record Type
label state 0
copy_state 1

A.5.4. Descriptor Records for Body or Prologue
Regions

The record formats listed here describe general spills and restores, and may appear in either body or
prologue regions.

315

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

A.5.4.1. Format X1

7 6 5 4 3 2 1 0
Byte 0 1 1 1 1 1 0 0 1
Byte 1 R A B REG
T
-~ —
ot (ULEB128) a
SPOFF/PSPOFF
"~ (ULEB128) =

VM-0930A-Al

This format is used by the SPILL. PSPREL and SPILL SPREL descriptor records, which identify
when a register is saved by spilling to the memory stack. The R bit identifies the record type, as
shown in the following table:

Record Type
SPILL PSPREL 0
SPILL._SPREL 1

The A, B, and REG fields identify the register being spilled. The encodings are given in the following
table:

Register A B REG Notes
R3-R31 0 0 GR

F2-F5 or F16-F31 0 1 FR

B1-B5 1 0 BR

P1-P63 1 1 0

PSP 1 1 1

PRIUNAT 1 1 2

RP 1 1 3

AR.BSP 1 1 4
AR.BSPSTORE 1 1 5

AR.RNAT 1 1 6

AR.UNAT 1 1 7

AR.FPSR 1 1 8 Not supported on OpenVMS
AR.PFS 1 1 9

AR.LC 1 1 10

316

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

A.5.4.2. Format X2

7 6 4 3 2 1 0
Byte 0 1 1 1 1 0 1 0
Byte 1 X A REG
Byte 2 Y TREG
T
o o
m~ (ULEB128) T~
VM-0991A-Al

This format is used only by the SPILL. REG descriptor record, which identifies when a register is

saved by copying to another register, or when a register is restored from its spill location. The register

being saved or restored is identified by the A, B, and REG fields, using the same encodings given

for Format X1. The target register to which the saved register is copied is identified by the X, Y, and
TREG fields; a special encoding also indicates the restore operation. The encodings for these fields

are given in the following table:

Register X Y TREG
Restore 0 0 0
R1-R127 0 0 GR
F2-F127 0 1 FR
B0-B7 1 0 BR
A.5.4.3. Format X3
7 6 4 3 2 1 0
Byte 0 1 1 1 1 0 1 1
Byte 1 R 0 QP
Byte 2 0 A REG
—— T ——
T (ULEB128) T
SPOFF/PSPOFF
I~ (ULEB128) "~

VM-0992A-Al

317

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

This format is used by the SPILL. PSPREL P and SPILL SPREL P descriptor records, which
identify when a register is saved under control of a predicate register. The R bit identifies the record
type, as shown in the following table:

Record Type

SPILL_PSPREL P 0

[um—

SPILL SPREL P

The QP field identifies the controlling predicate register. The remaining fields are encoded the same
as Format X1.

A.5.4.4. Format X4

7 6 5 4 3 2 1 0
Byte 0 1 1 1 1 1 1 0 0
Byte 1 0 0 QP
Byte 2 X A B REG
Byte 3 Y TREG
—~ T =
"~ (ULEB128) "

VM-0993A-Al

This format is used only by the SPILL REG_P descriptor record, which identifies when a register

is saved to another register under control of a predicate register, or when a register is restored under
control of a predicate register. The QP field identifies the controlling predicate register. The remaining
fields are encoded the same as Formats X1 and X2.

A.6. Default Unwind Information

A null frame procedure may have no corresponding unwind table entry, hence no unwind information
block, if all of the following apply:

» It has no memory stack, no register stack and preserves no context of its caller (these are
properties of all null frame procedures), hence requires no unwind descriptors. Note in particular
that this means that BO and AR.PFS are unchanged throughout the execution of the procedure.
(See Section A.4 and Section A.4.4).

» It has no condition handler, hence also no language-specific data area. (See Section 4.4 and
Section A.4.4).

» It has no operating system-specific data area. (See Section A.4.3).

Such a procedure is necessarily a leaf procedure, that is, a procedure that makes no calls, either
explicitly or implicitly. (To make a call, a procedure must preserve at least BO and AR.PFS).

318

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

Conversely, if the dispatcher or unwinder encounters a PC for the top-most procedure on the call stack
that is not represented in the unwind tables, it assumes that the PC corresponds to a null frame leaf
procedure that satisfies the properties described above.

A.7. System Unwind Routines

See the VSI OpenVMS System Services Reference Manual for descriptions of the following unwind
routines:

+ SYSSSET UNWIND TABLE
+ SYSSCLEAR UNWIND TABLE
 SYSSGET UNWIND ENTRY_ INFO

See the VSI OpenVMS RTL Library (LIB$) Manual for a description of the LIBSGET UIB_INFO
routine.

319

Appendix A. Stack Unwinding and Exception Handling on OpenVMS 164

320

Appendix B. Stack Unwinding and
Exception Handling on OpenVMS
x86-64

Stack unwinding is the process of tracing backwards through the stack of invocation contexts
(frames) of a thread. Every active procedure has one invocation context. An invocation has memory
on the processor memory stack, including at minimum a return address pushed as part of being called.
Exception handling often requires the ability to trace backwards through a number of invocation
contexts and then to transfer control to an exception handling routine.

This calling standard uses the IP (instruction pointer, also known as the PC or program counter)
as a key for locating a static unwind table entry that contains everything necessary for locating the
following values:

» The values of preserved registers
» The previous stack frame
» The previous IP

Unwinding the stack is done using system routines (see Section B.5) that can be called from the thread
itself, from a debugger, or for exception handling. Stack unwinding operates on context records; the
primary routine reconstructs the context for a previous frame given the context for its descendent
frame.

This appendix describes the following topics:
* The framework for unwinding the stack and for processing exceptions
* The format of the static unwind tables

* The code generation conventions required to perform the above tasks

B.1. Unwinding the Stack

The process of unwinding the stack begins with an initial context record that describes the process
state in the most recent procedure invocation at the point of interruption. From this initial state, the
stack is unwound one invocation context at a time, using static information generated by the compilers
about each procedure to reconstruct a context record that describes the previous procedure (which is
suspended at a point just after the procedure call or an asynchronous interruption).

B.1.1. Initial Context

There is only one way to get an initial context: call LIB$X86 GET CURR INVO CONTEXT (see
Section 5.8.3.7).

B.1.2. Step to Previous Frame

The unwind routines build a context record that corresponds to the next older frame on the stack. This
context record can then be used to unwind to the previous frame on the stack. The following steps

321

Appendix B. Stack Unwinding and Exception Handling on OpenVMS x86-64

reconstruct the context for the previous frame using information in the unwind tables for the current
frame:

1. Find the saved copies of the preserved registers in the current context, and copy them to the
previous context (this includes pseudo-registers).

2. Determine the kind of current frame. Then

a. For a fixed-size frame, set the stack pointer in the previous context to the stack pointer from
current context plus the current size of the frame.

b. For a varying-size frame, set the stack pointer in the previous context to the saved frame
pointer.

3. Find the return address in the current context, and set the instruction pointer in the previous
context to that address (which will further adjust the stack pointer in the previous context to its
final value).

The bottom of the call stack is identified by a BOTTOM_OF_ STACK flag in the unwind descriptor
block.

The information needed to execute these steps correctly is recorded in static unwind information

that is associated with each code segment of the program itself. The structure of this information is
described in Section B.3. The operating system provides an API for finding the unwind table, given a
known IP (see Section B.5).

When a thread receives an asynchronous interruption, the thread context is saved so that the thread
can continue executing correctly once the interruption has been handled. This context is saved on
the stack, and a new procedure frame is constructed for the interruption handler. The first procedure
frame in the interruption handler is marked in such a way that the unwind routine can recognize that
unwinding past the point of interruption requires a restoration of the full context.

B.2. Exception Handling Framework

The exception handling model for OpenVMS is partitioned into a language-independent component
and a language-dependent component. The language independent component is responsible for
fielding an exception, searching for and dispatching to a condition handler and unwinding the stack.
The run-time library of each source language that supports exception handling must provide a
condition handler that implements the language-dependent component of this model.

Note

For compatibility with the OpenVMS VAX and Alpha calling standards, this document uses the terms
condition handler and personality routine interchangeably—they mean the same thing.

The exception handling model is oriented around procedure invocation contexts. Each invocation
context corresponds to an activation of a procedure, which may or may not have associated exception
handling requirements. A language typically uses a single condition handler for all procedures, but
this is not a requirement.

Exceptions are signaled by invoking a routine in the language-independent component called the
exception dispatcher, which initiates the process of handling the exception. Synchronous exceptions
can be signaled directly by the application through a language-specific construct; asynchronous
exceptions can be signaled in response to hardware-detected traps or faults.

322

Appendix B. Stack Unwinding and Exception Handling on OpenVMS x86-64

The exception dispatcher walks the stack of invocation contexts non-destructively beginning with the
most recent invocation, searching for the first invocation context with a condition handler. When a
condition handler is found, the exception dispatcher invokes the condition handler.

A condition handler may perform the following actions:

* Ignore the condition.

» Take some special action and continue from the point at which the condition occurred.

* End the operation and branch from the sequential flow of control.

* Treat the condition as an unrecoverable error.

* Resignal the exception to the next condition handler.

* Invoke a user-written condition handler.

* Perform language-specific exception handling actions (for example, C++ try region processing).

If the condition handling facility finds a handler for the exception that requests an unwind, it invokes
the dispatcher to walk the stack a second time. During the second walk, the dispatcher invokes the
condition handler for each frame again to execute cleanup actions as necessary. When the dispatcher
reaches the frame that contains the condition handler, control is transferred to the condition handler.

For more details about OpenVMS condition handling, see Chapter 9.

B.3. Data Structures

The condition handling mechanism uses the following data structures:

* A master unwind table, which allows the unwinder and dispatcher to associate an IP value with an
image executable segment.

* An unwind dispatch table for each segment (there can be more than one per image), which
allows the dispatcher and unwinder to associate an IP value with a procedure and its unwind and
exception handling information

* One or two unwind descriptor tables, which allow the system unwind software to perform unwind
and exception processing.

The mapping from an address to the corresponding top-level code segment unwind dispatch structure
is not specified in this document. It is private to the linker, image activator and condition handling
facility.

The unwind dispatch table (see Section B.3.1) is created by the linker using information in the unwind
descriptors (see Section B.3.2 and Section B.3.3) provided by compilers. The linker may use the
provided unwind descriptors directly or replace them with equivalent optimized forms based on its
optimization strategies.

OpenVMS x86-64 compilers use two unwind descriptor formats.

The first is based on the DWARF Debugging Information Format, with extensions based on the
System V Application Binary Interface, AMDG64 Architecture Processor Supplement, Version 1.0
together with extensions for compatibility with the OpenVMS family of systems.

323

Appendix B. Stack Unwinding and Exception Handling on OpenVMS x86-64

The second is based on the compact unwind descriptor format developed as part of the LLVM
compiler infrastructure project.

DWAREF descriptors are fully general and support handling of asynchronous exceptions (ASTs).
Compact unwind descriptors are specialized to be small and easy to interpret but do not support
exceptions that may occur in prologue or epilogue code. OpenVMS combines the two in order to
achieve the benefits of each.

Every procedure (except some leaf procedures) has one entry in the DWARF unwind descriptor table.
(If the compiler has generated more than one noncontiguous region of code for a procedure, there is
one entry in this table for each region). It may also have an entry in the compact unwind descriptor
table.

Each unwind table entry contains the following information:

* A description of the procedure frame (registers saved and where, size of allocated stack, and so
on)

* (Optional) A pointer to a condition handler
* (Optional) A pointer to a language-specific data area for each procedure
* (Optional) An operating system-specific data area

Given a PC value, the dispatcher and unwinder both use the unwind tables to locate an unwind entry
for a procedure. The unwinder also uses the unwind descriptor list to unwind the stack from any point
in the procedure.

The language-specific data area contains information specific to the condition handler that uses it. The
address of the language-specific data area is passed to the condition handler whenever the condition
handler is invoked by the dispatcher.

The operating system-specific data area contains information about a routine as a whole that is
not otherwise expressible using the unwind descriptors, independent of whether the routine has a
condition handler.

When an OpenVMS compiler provides both DWARF and compact unwind information for the same

procedure, the DWARF information is used for prologue and epilogue regions of the code, while the
compact unwind information is used for the body (where the procedure is current).

B.3.1. Unwind Dispatch Table

Corresponding to each code segment is a top-level structure that is used to map addresses to
corresponding unwind information. This structure is created by the linker based on the unwind
information contained in each object file that contributes to that segment together with optional linker
directives.

The goals for the code segment dispatch structure are:

* Simple

* Fast lookup to find the unwind information corresponding to a function (or part of a function)

» Flexibility to easily extend and evolve the forms of unwind information that are supported

324

Appendix B. Stack Unwinding and Exception Handling on OpenVMS x86-64

* Ability to simultaneously support multiple unwind information formats on a (roughly) function by
function basis

To these ends, the unwind structure consists of

* A header

* A vector of unwind dispatch elements (UDEs)
e A trailer

The unwind dispatch element header is illustrated in Figure B.1 and described in Table B.1.

Figure B.1. Unwind Dispatch Element Header

Reserved MBZ COUNT VERSION

Table B.1. Description of Unwind Dispatch Element Header

Field Name Size Description

UDESW_VERSION Word Version number for the unwind dispatch table format,
currently 1.

UDESW_COUNT Word The number of unwind dispatch elements that follow,
including the trailer UDE.

RESERVED Longword Reserved and must be 0.

An unwind dispatch element is illustrated in Figure B.2 and described in Table B.2.

Figure B.2. Unwind Dispatch Element

ADDRESS

TYPE INFO

Table B.2. Contents of Unwind Dispatch Element

Field Name Size Description

UDES$Q ADDRESS Quadword Offset within the associated code segment for a range
of addresses that extends to one less than the offset
contained in the following UDE. (The special case of
the last UDE is described below).

UDESV_INFO 6 Bytes Either an immediate value or a (truncated) pointer to
unwind information.
UDESW_TYPE Word A code that indicates how to interpret the contents of

the UDE$V_INFO field.

A trailer unwind dispatch element is a special form of unwind dispatch element that occurs as the last
UDE of an unwind dispatch table. Unlike other UDEs, the UDE$SQ_ ADDRESS field does not begin a
new range, but it does provide (one more than) the ending of the range begun by the preceding UDE.
For this UDE, UDE$W_TYPE and UDES$V_INFO contain zero.

325

Appendix B. Stack Unwinding and Exception Handling on OpenVMS x86-64

Table B.3 provides a summary of the types of unwind information that are codified. They are grouped
as they are presented and defined in the following sections.

A key property of every type of unwind information is whether or not it is asynchronous unwind safe.
Asynchronous unwind safe means that it is safe to propagate an asynchronous exception from an
exception (AST) frame into the type of frame in question even when the asynchronous exception
occurs during function prologue or epilogue code. Note that some exception handling conventions and
environments are designed only to support call-based exceptions. This support will often fail to work
if an asynchronous exception is propagated from an asynchronous frame. Accordingly, attempting to
unwind from an asynchronous frame into a frame that is not known to be safe is considered a severe
error.

UDESK TYPE VMS PROLOG and UDESK TYPE VMS EPILOG entries that apply to the same
procedure will generally have UDE$V_INFO values that refer to the same DWARF FDE but different
UDE$Q_ADDRESS values that identity the start of the prologue and epilogue regions, respectively.

Table B.3. Summary of Unwind Dispatch Information Types

Type Code General Meaning Immediate |Async Safe |INFO Field
(Prefix UDESK) vs Pointer
Safe DWARF CFI
TYPE_CFI_SAFE Industry standard DWARF |Pointer Y Address of
CFI + AMD extensions FDE
(safe) + (optionally)
OpenVMS extensions

Extended DWARF CFI + Compact Unwind Descriptors

TYPE VMS PROLOG |Like TYPE CFI SAFE, but |Pointer Y Address of
limited to prologue FDE

TYPE_VMS _CUD Industry (LLVM) CUD with |Pointer Y Address of
OpenVMS extensions CUD

TYPE VMS EPILOG |Like TYPE CFI SAFE, but |Pointer Y Address of
limited to epilogue FDE

Useful Helpers

TYPE NULL FRAME |[NULL FRAME Immediate Y Location of

return address

TYPE NO UNWIND |No UNWIND possible — | — — —
Fatal Program Error

Unsafe (Imported) Object Files'

TYPE CFI UNSAFE |Industry standard DWARF |Pointer N Address of
CFI + AMD extensions FDE
(unsafe)

'Whether unwind information in an object file is asynchronous unwind safe or not may not be determinable solely by examination of that
information or the object file in which it is contained. Linker option switches can be used to explicitly set this property.

B.3.2. DWARF Unwind Descriptors

DWAREF supports virtual unwinding by defining an architecture independent basis for recording how
subprograms save and restore registers during their lifetimes.

326

Appendix B. Stack Unwinding and Exception Handling on OpenVMS x86-64

Abstractly, this mechanism describes a very large table that has the following structure:

LOC CFARORI ... RN
LO
L1

LN

The first column indicates an address for every location that contains code in a program. (In
OpenVMS x86-64 object files, this is a code-segment relative offset). The remaining columns contain
virtual unwinding rules that are associated with the indicated location.

The CFA column defines the rule which computes the Canonical Frame Address value; it may be
either a register and a signed offset that are added together, or a DWAREF expression that is evaluated.

The remaining columns are labeled by register number. This includes some registers that have special
designation on some architectures, such as the PC and the stack pointer register. (The actual mapping
of registers for a particular architecture is defined by the augmenter). The register columns contain
rules that describe whether a given register has been saved and the rule to find the value for the
register in the previous frame.

The register rules are:

undefined A register that has this rule has no recoverable value in the previous frame. (By
convention, it is not preserved by a callee).

same value This register has not been modified from the previous frame. (By convention, it
is preserved by the callee, but the callee has not modified it).

offset(N) The previous value of this register is saved at the address CFA+N where CFA is
the current CFA value and N is a signed offset.

val offset(N) The previous value of this register is the value CFA+N where CFA is the current
CFA value and N is a signed offset.

register(R) The previous value of this register is stored in another register numbered R.

expression(E) The previous value of this register is located at the address produced by

executing the DWARF expression E.

val_expression(E) The previous value of this register is the value produced by executing the
DWARF expression E.

architectural The rule is defined externally to this specification by the augmenter.

The virtual unwind information is encoded in a self-contained section called .eh_framel. Entries in
an .eh_frame section are aligned on a multiple of the address size relative to the start of the section
and come in two forms: a Common Information Entry (CIE) and a Frame Description Entry (FDE).

If the range of code addresses for a function is not contiguous, there may be multiple CIEs and FDEs
corresponding to the parts of that function.

B.3.2.1. 32-bit vs 64-bit DWARF Formats

DWAREF defines two closely related file formats. In the 32-bit format, all values that represent
lengths of DWARF sections and offsets relative to the beginning of a DWARF section are represented
using 32 bits. In the 64-bit format, all such values are represented using 64-bit. This affects only the

"The .eh_frame section corresponds to the .debug_frame section in the DWARF Standard.

327

Appendix B. Stack Unwinding and Exception Handling on OpenVMS x86-64

DWAREF sections and their references to each other as such—either format can describe 32- or 64-bit
addresses in the target architecture.

OpenVMS x86-64 supports only the 32-bit DWARF format, using 64-bit target addresses. This is
reflected in the descriptions in the following sections.

B.3.2.2. Common Information Entry

A Common Information Entry (CIE) holds information that is shared among many Frame Description
Entries. There is at least one CIE in every non-empty .eh_frame section. A CIE contains the following
fields, in order:

1.

length (unsigned longword)

A constant that gives the number of bytes of the CIE structure, not including the length field itself.
The size of the length field plus the value of length must be an integral multiple of the address
size.

CIE _id (unsigned longword)

A constant that is used to distinguish CIEs from FDEs.
The value of the CIE id in the CIE header is 0.

version (unsigned byte)

A version number. This number is specific to the call frame information and is independent of and
not related to the DWARF version number.

The value of the CIE version number is 1.
augmentation (sequence of UTF-8 characters)

A null-terminated UTF-8 string that identifies the augmentation to this CIE or to the FDEs that use
it. If a reader encounters an augmentation string that is unexpected, then only the following fields
can be read:

* CIE: length, CIE id, version, augmentation
* FDE: length, CIE pointer, initial location, address range
If there is no augmentation, this value is a zero byte.

OpenVMS x86-64 supports augmentation strings beginning with the letter ‘v’ or ‘z’ followed by
zero or more letters from the set {‘P’, ‘R’, ‘L’} (in any order but without repetition). The presence
of an OpenVMS augmentation string requires the presence of a CIE augmentation section field
later in this same CIE. If the augmentation string contains the character ‘L’, there will also be a
FDE augmentation section in any FDE that refers to this CIE.

Interpretation of an OpenVMS augmentation string and its related augmentation sections is given
in Section B.3.2.2.1.

OpenVMS x86-64 has an implicit address_size field whose value is 8 and a segment_selector_size
field whose value is 0.

S.

code_alignment_factor (unsigned LEB128)

328

Appendix B. Stack Unwinding and Exception Handling on OpenVMS x86-64

10.

A constant that is factored out of all advance location instructions. The resulting value is (operand
* code_alignment_factor).

data_alignment_factor (signed LEB128)

A constant that is factored out of certain offset instructions (see below). The resulting value is
(operand * data_alignment_factor).

return_address_register (unsigned LEB128)

An unsigned LEB128 constant that indicates which column in the rule table represents the return
address of the function. Note that this column might not correspond to an actual machine register.

CIE augmentation section (array of bytes)

This field is present (has a size greater than 0) if an augmentation string is present that begins with
either ‘v’ or ‘z’.

Interpretation of an OpenVMS CIE augmentation section is given in Section B.3.2.2.1.
initial_instructions (array of unsigned byte)
A sequence of rules that are interpreted to create the initial setting of each column in the table.

On OpenVMS x86-64, the default rule for all columns before interpretation of the initial
instructions is the undefined rule.

padding (array of unsigned byte)

Enough DW_CFA _nop instructions to make the size of this entry match the length value above.

B.3.2.2.1. CIE_augmentation_section

The CIE aumentation_section field is itself a sequence of fields as defined below. This field exists if
and only if there is a non-null augmentation field that begins with either ‘v’ or ‘z’.

L.

2.

3.

size (unsigned LEB128)
The size field gives the size in bytes of the CIE_augmentation_section excluding itself.
personality enc (byte)

The personality _enc specifies the encoding used for the address of the personality routine
that follows. This field is present if and only if there is a ‘P’ in the augmentation field. (See
Section B.3.2.4).

personality routine (encoded address)

The personality routine is the address of an associated personality routine that handles any
exception that occurs while any associated procedure is current (augmentation begins with “v’)
or active (augmentation begins with ‘z’). This field is present if and only if there is a ‘P’ in the
augmentation field.

code enc (byte)

The code_enc field specifies the (non-default) encoding used for any code address that occurs
in the initial location or address_range fields of an associated FDE and the operand for any

329

Appendix B. Stack Unwinding and Exception Handling on OpenVMS x86-64

DW_CFA_set loc instruction that may occur either in this CIE or an associated FDE. This field is
present if and only if there is a ‘R’ in the augmentation field. (See Section B.3.2.4).

5. lIsda_enc (byte)

The Isda_enc field specifies the encoding used for any language specific data area address that
occurs in the LDSA field of an associated FDE. This field is present if and only if there is a ‘L’ in
the augmentation field. (See Section B.3.2.4).

B.3.2.3. Frame Description Entry
A Frame Description Entry (FDE) contains the following fields, in order:
1. length (unsigned longword)

A constant that gives the number of bytes of the header and instruction stream for this function,
not including the length field itself. The size of the length field plus the value of length must be an
integral multiple of the address size.

2. CIE_pointer (unsigned longword)

Offset from this field to the nearest preceding CIE (the value is subtracted from the current
address). Note that this value can never be zero and thus can be used to distinguish CIE’s and
FDE’s when scanning the .eh_frame section.

3. initial_location (segment selector and target address)

The address of the first location associated with this table entry. Recall that the implicit
segment_selector size field has value 0. (See Section B.3.2.2).

4. address range (target address)
The number of bytes of program instructions described by this entry.
5. FDE augmentation_section (array of bytes)

This field is present (has a size greater than 0) if an augmentation string is present in the
related CIE that begins with either ‘v’ or ‘z” and that includes the letter ‘L’. Interpretation of an
OpenVMS FDE augmentation section is given in Section B.3.2.3.1.

6. instructions (array of unsigned byte)

A sequence of table defining instructions that are described in the next section.
7. padding (array of unsigned byte)

Enough DW_CFA nop instructions to make the size of this entry match the length value above.
B.3.2.3.1. FDE_augmentation_section

The FDE aumentation_section field is itself a sequence of fields as defined below. This field exists if
and only if there is a non-null augmentation field in the associated CIE that begins with either ‘v’ or
‘z’, and that augmentation field contains a ‘L’.

1. length (unsigned LEB128)

The length field gives the size in bytes of the FDE augmentation_section excluding itself.

330

Appendix B. Stack Unwinding and Exception Handling on OpenVMS x86-64

2. LDSA (encoded address)

The LSDA field gives the address of an associated language specific data area to be passed to the
handler (personality routine) for any exception that occurs during the execution of the associated
procedure.

B.3.2.4. Address/Pointer Encodings

The encoding used in the personality enc, code enc, and Isda_enc fields of a CIE consist of a single
byte made up of the following:

* Four bits encoding the size of an offset value
* Three bits encoding the base address to which the offset is added
* One bit indicating whether to fetch indirectly for the above formed address

Symbols for forming such encodings are summarized in Table B.4.

Table B.4. Summary of Exception Handling Pointer Types

Name Value Use

Offset encodings...

DW_EH PE uleb128 |0x01 Offset is an unsigned LEB128 integer

DW_EH PE udata2 0x02 Offset is an unsigned 2-byte integer

DW_EH PE udata4 0x03 Offset is an unsigned 4-byte integer

DW_EH _PE udata8 0x04 Offset is an unsigned 8-byte integer

DW_EH PE sleb128 |0x09 Offset is an signed LEB128 integer

DW_EH PE sdata2 0x0a Offset is an signed 2-byte integer

DW_EH PE sdata4 0x0b Offset is an signed 4-byte integer

DW_EH PE sdata8 0x0c Offset is an signed 8-byte integer

Base encodings...

DW_EH_PE pcrel 0x10 Offset is PC-relative

DW_EH PE textrel 0x20 Offset is text (code) section relative

DW_EH _PE datarel 0x30 Offset is data section relative

DW_EH PE funcrel |0x40 Offset is relative to start of the function

Other special encodings...

DW_EH PE absptr 0x00 Address is an absolute 8-byte pointer

DW_EH PE signed 0x08 Offsets are signed

DW_EH PE aligned |0x50 Address is an absolute 8-byte pointer that must be aligned before

use
DW_EH PE indirect |0x80 Address is indirect through the given base + offset
DW_EH PE omit Oxff No address is given

B.3.2.5. Call Frame Instructions

Each call frame instruction is defined to take 0 or more operands. Some of the operands may be
encoded as part of the opcode. The instructions are defined in Sections B.3.2.5.1 through B.3.2.5.6.

331

Appendix B. Stack Unwinding and Exception Handling on OpenVMS x86-64

Some call frame instructions have operands that are encoded as DWARF expressions. The following
DWAREF operators cannot be used in such operands:

DW_OP addrx, DW_OP call2, DW_OP call4, DW_OP_call ref, DW_OP_const_type,
DW_OP constx, DW_OP_convert, DW_OP_deref type, DW_OP regval type, and
DW_OP_reinterpret operators are not allowed in an operand of these instructions because the call
frame information must not depend on other debug sections.

DW_OP_push_object_address is not meaningful in an operand of these instructions because there
is no object context to provide a value to push.

DW_OP _call frame cfa is not meaningful in an operand of these instructions because its use
would be circular.

Call frame instructions to which these restrictions apply include DW_CFA_def cfa expression,
DW_CFA_expression and DW_CFA val expression.

B.3.2.5.1. Row Creation Instructions

1.

DW_CFA_set_loc

The DW_CFA_set_loc instruction takes a single operand that represents a target address. The
required action is to create a new table row using the specified address as the location. All other
values in the new row are initially identical to the current row. The new location value is always
greater than the current one. If the segment_selector_size field of this FDE’s CIE is non-zero, the
initial location is preceded by a segment selector of the given length.

DW_CFA_advance_loc

The DW_CFA_advance loc instruction takes a single operand (encoded with the opcode) that
represents a constant delta. The required action is to create a new table row with a location value
that is computed by taking the current entry’s location value and adding the value of delta *
code alignment factor. All other values in the new row are initially identical to the current row.

DW_CFA_advance locl

The DW_CFA advance locl instruction takes a single unsigned byte operand that represents a
constant delta. This instruction is identical to DW_CFA advance loc except for the encoding and
size of the delta operand.

DW_CFA_advance_loc2

The DW_CFA_advance loc2 instruction takes a single unsigned word operand that represents a
constant delta. This instruction is identical to DW_CFA advance loc except for the encoding and
size of the delta operand.

DW_CFA_advance loc4

The DW_CFA advance loc4 instruction takes a single unsigned longword operand that represents
a constant delta. This instruction is identical to DW_CFA advance loc except for the encoding
and size of the delta operand.

B.3.2.5.2. CFA Definition Instructions

1.

DW_CFA_def cfa

332

Appendix B. Stack Unwinding and Exception Handling on OpenVMS x86-64

The DW_CFA_def cfa instruction takes two unsigned LEB128 operands representing a register
number and a (non-factored) offset. The required action is to define the current CFA rule to use
the provided register and offset.

DW_CFA_def cfa_sf

The DW_CFA def cfa_sfinstruction takes two operands: an unsigned LEB128 value
representing a register number and a signed LEB128 factored offset. This instruction is identical
to DW_CFA def cfa except that the second operand is signed and factored. The resulting offset is
factored offset * data_alignment factor.

DW_CFA_def cfa_register

The DW_CFA_def cfa register instruction takes a single unsigned LEB128 operand representing
a register number. The required action is to define the current CFA rule to use the provided
register (but to keep the old offset). This operation is valid only if the current CFA rule is defined
to use a register and offset.

DW_CFA_def cfa_offset

The DW_CFA_def cfa offset instruction takes a single unsigned LEB128 operand representing
a (non-factored) offset. The required action is to define the current CFA rule to use the provided
offset (but to keep the old register). This operation is valid only if the current CFA rule is defined
to use a register and offset.

DW_CFA_def cfa_offset_sf

The DW_CFA def cfa offset sf instruction takes a signed LEB128 operand representing a
factored offset. This instruction is identical to DW_CFA def cfa offset except that the operand
is signed and factored. The resulting offset is factored offset * data alignment factor. This
operation is valid only if the current CFA rule is defined to use a register and offset.

DW_CFA_def cfa_expression

The DW_CFA _def cfa expression instruction takes a single operand encoded as a
DW_FORM _exprloc value representing a DWARF expression. The required action is to establish
that expression as the means by which the current CFA is computed.

B.3.2.5.3. Register Rule Instructions

L.

DW_CFA_undefined

The DW_CFA_undefined instruction takes a single unsigned LEB128 operand that represents a
register number. The required action is to set the rule for the specified register to “undefined.”

DW_CFA_same_value

The DW_CFA same_value instruction takes a single unsigned LEB128 operand that represents a
register number. The required action is to set the rule for the specified register to “same value.”

. DW_CFA offset

The DW_CFA _offset instruction takes two operands: a register number (encoded with the opcode)
and an unsigned LEB128 constant representing a factored offset. The required action is to change
the rule for the register indicated by the register number to be an offset(N) rule where the value of
N is factored offset * data_alignment factor.

333

Appendix B. Stack Unwinding and Exception Handling on OpenVMS x86-64

10.

I1.

12.

DW_CFA offset extendedThe DW_CFA offset extended instruction takes two unsigned
LEB128 operands representing a register number and a factored offset. This instruction is identical
to DW_CFA offset except for the encoding and size of the register operand.

DW_CFA _offset_extended_sf

The DW_CFA offset extended sf instruction takes two operands: an unsigned LEB128 value
representing a register number and a signed LEB128 factored offset. This instruction is identical
to DW_CFA offset extended except that the second operand is signed and factored. The resulting
offset is factored offset * data alignment factor.

DW_CFA _val offset

The DW_CFA val offset instruction takes two unsigned LEB128 operands representing a
register number and a factored offset. The required action is to change the rule for the register
indicated by the register number to be a val offset(N) rule where the value of N is factored offset
* data_alignment_factor.

DW_CFA _val offset_sf

The DW_CFA val offset sf instruction takes two operands: an unsigned LEB128 value
representing a register number and a signed LEB128 factored offset. This instruction is identical to
DW_CFA val offset except that the second operand is signed and factored. The resulting offset is
factored offset * data_alignment factor.

DW_CFA _register

The DW_CFA_register instruction takes two unsigned LEB128 operands representing register
numbers. The required action is to set the rule for the first register to be register(R) where R is the
second register.

DW_CFA_expression

The DW_CFA_expression instruction takes two operands: an unsigned LEB128 value
representing a register number, and a DW_FORM _block value representing a DWARF
expression. The required action is to change the rule for the register indicated by the register
number to be an expression(E) rule where E is the DWARF expression. That is, the DWARF
expression computes the address. The value of the CFA is pushed on the DWARF evaluation stack
prior to execution of the DWARF expression.

DW_CFA _val_expression

The DW_CFA_val expression instruction takes two operands: an unsigned LEB128 value
representing a register number, and a DW_FORM _block value representing a DWARF
expression. The required action is to change the rule for the register indicated by the register
number to be a val_expression(E) rule where E is the DWARF expression. That is, the DWARF
expression computes the value of the given register. The value of the CFA is pushed on the
DWAREF evaluation stack prior to execution of the DWARF expression.

DW_CFA _restore

The DW_CFA _restore instruction takes a single operand (encoded with the opcode) that
represents a register number. The required action is to change the rule for the indicated register to
the rule assigned it by the initial instructions in the CIE.

DW_CFA _restore_extended

334

Appendix B. Stack Unwinding and Exception Handling on OpenVMS x86-64

The DW_CFA restore extended instruction takes a single unsigned LEB128 operand that
represents a register number. This instruction is identical to DW_CFA restore except for the
encoding and size of the register operand.

B.3.2.5.4. Row State Instructions

The next two instructions provide the ability to stack and retrieve complete register states. They may
be useful, for example, for a compiler that moves epilogue code into the body of a function.

1.

DW_CFA_remember_state

The DW_CFA remember_state instruction takes no operands. The required action is to push the
set of rules for every register onto an implicit stack.

DW_CFA _restore_state

The DW_CFA restore state instruction takes no operands. The required action is to pop the set of
rules off the implicit stack and place them in the current row.

B.3.2.5.5. Padding Instruction

1.

DW_CFA_nop

The DW_CFA _nop instruction has no operands and no required actions. It is used as padding to
make a CIE or FDE an appropriate size.

B.3.2.5.6. OpenVMS-Specific Instructions

1.

DW_CFA_VMS set_current

The DW_CFA VMS set current instruction takes a single unsigned LEB128 operand that
represents whether the routine is current for exception handling purposes. The value 0 indicates
the routine is not current and the value 1 indicates the routine is current.

DW_CFA_VMS_set_ossd

The DW_CFA_VMS set ossd instructions takes a word (16-bit) operand that specifies the
OpenVMS-specific data applicable to the routine. This value is encoded as specified for the 16
low-order bits defined in Section A.4.3.1.

B.3.2.6. Call Frame Instruction Usage

To determine the virtual unwind rule set for a given location (L1), search through the FDE headers
looking at the initial location and address_range values to see if L1 is contained in the FDE. If so,

then:

1. Initialize a register set by reading the initial_instructions field of the associated CIE. Set L2 to the
value of the initial location field from the FDE header.

2. Read and process the FDE’s instruction sequence until a DW_CFA advance loc,
DW_CFA_set loc, or the end of the instruction stream is encountered.

3. IfaDW_CFA_advance loc or DW_CFA set loc instruction is encountered, then compute a new

location value (L2). If L1 > L2 then process the instruction and go back to step 2.

335

Appendix B. Stack Unwinding and Exception Handling on OpenVMS x86-64

4. The end of the instruction stream can be thought of as a DW_CFA_set loc (initial location +
address_range) instruction. Note that the FDE is ill-formed if L2 is less than L1.

The rules in the register set now apply to location L1.

B.3.2.7. Call Frame Encoding

Call frame instructions are encoded in one or more bytes. The primary opcode is encoded in the
high order two bits of the first byte (that is, opcode = byte » 6). An operand or extended opcode
may be encoded in the low order 6 bits. Additional operands are encoded in subsequent bytes. The
instructions and their encodings are presented in Table B.5.

Table B.5. DWARF CFA Instruction Encodings

Instruction Used In |High2 |Low6 Operand 1 Operand 1
LLVM |Bits Bits
DW_CFA_advance loc * 0x1 delta
DW_CFA_offset * 0x2 register |ULEB128
offset
DW_CFA_restore 0x3 register
DW_CFA nop * 0 0
DW_CFA_set loc 0 0x01 address
DW_CFA advance locl * 0 0x02 1-byte delta
DW_CFA advance loc2 * 0 0x03 2-byte delta
DW_CFA advance loc4 * 0 0x04 4-byte delta
DW_CFA offset_extended 0 0x05 ULEB128 ULEB128
register offset
DW_CFA restore extended 0 0x06 ULEB128
register
DW_CFA_undefined * 0 0x07 ULEBI128
register
DW_CFA same value * 0 0x08 ULEB128
register
DW_CFA_register * 0 0x09 ULEB128 ULEB128
register register
DW_CFA remember state * 0x0a
DW_CFA restore state * 0 0x0b
DW_CFA_def cfa * 0x0c ULEB128 ULEB128
register offset
DW_CFA_def cfa register * 0 0x0d ULEBI128
register
DW_CFA def cfa offset * 0 0x0e ULEBI128
offset
DW_CFA_def cfa_expression 0x0f BLOCK
DW_CFA_expression 0 0x10 ULEB128 BLOCK
register

336

Appendix B. Stack Unwinding and Exception Handling on OpenVMS x86-64

Instruction UsedIn |High2 |Low6 Operand 1 Operand 1
LLVM |Bits Bits
DW_CFA_ offset extended sf 0 Ox11 ULEBI128 SLEB128
register offset
DW_CFA_def cfa_sf 0 0x12 ULEBI128 SLEB128
register offset
DW_CFA_def cfa offset sf 0 0x13 SLEB128
offset
DW_CFA val offset 0 0x14 ULEBI128 ULEB128
DW_CFA val offset sf 0 0x15 ULEB128 SLEB128
DW_CFA val_expression 0 0x16 ULEBI128 BLOCK
DW_CFA lo_user 0 Oxlc
0 0x2d
(reserved)1 0 Ox2e
0 0x2f
0 0x34
DW_CFA VMS set ossd 0 0x3d word (16-bit)
DW_CFA_VMS set current 0 0x3e ULEBI128
(reserved) 0 0x3f
DW_CFA_hi_user 0 0x3f
"Known to be used on systems other than OpenVMS.
B.3.2.8. DWARF Register Number Mapping
Table B.6. DWARF Encodings for x86-64 Registers
Register Name(s) Number(s) Abbreviation
General-purpose register RAX 0 % ax
General-purpose register RDX 1 % dx
General-purpose register RCX 2 % cXx
General-purpose register RBX 3 % bx
General-purpose register RSI 4 % Si
General-purpose register RDI 5 % di
Frame pointer register RBP 6 % bp
Stack pointer register RSP 7 % sp
Extended integer registers 8—15 8-15 % 8—9% 15
Return address RA 16
Vector registers 0—7 17-24 % M0—%x v/
Extended vector registers 8—15 25-32 % mMmB- xS
Floating-point registers 0—7 33-40 Y%t 0-Ust 7
MMX registers 0—7 41-48 %m0—%mi/
Flag register 49 % f 1 ags

337

Appendix B. Stack Unwinding and Exception Handling on OpenVMS x86-64

Register Name(s) Number(s) Abbreviation

Segment register ES 50 %es

Segment register CS 51 % s

Segment register SS 52 U%ss

Segment register DS 53 %ls

Segment register FS 54 % s

Segment register GS 55 %gs

Reserved 56-57

FS base address 58 % s. base

GS base address 59 %gs. base

Reserved 60-61

Task register 62 % r

LDT register 63 % dtr

128-bit Media Control and Status |64 %rxcsr

x87 Control Word 65 % cw

x87 Status Word 66 % sw

Upper vector registers 16-31 67-82 XMl 6% mB1

Reserved 83-117

Vector mask registers 0—7 118-125 UKO—-9K 7

Bound Registers 0-3 126-129 %%nd0O- %Hnd3

Reserved 130-16351

Alpha pseudo-registers 031 16352-16383 Yapr 0-%apr 31
(0x3FE0-0x3FFF)

B.3.2.9. Related Assembler Directives and Implementation Notes

The following .cfi directives map directly and one-to-one to corresponding DWARF frame
instructions: .cfi_advance loc{|1|2|4}, .cfi_def cfa{| register| offset}, .cfi offset,.cfi same value,
.cfi_remember _state, .cfi_restore_state, .cfi_restore, .cfi_undefined, .cfi_register and .cfi_set ossd

(OpenVMS-specific).

Other .cfi directives have a more diverse effect on the DWARF output. Where known, these effects
are summarized in Table B.7.

Table B.7. Summary of Assembler CFI Directives

CFI Directive

Effect

.cfi_startproc

Establishes the starting address in the FDE.

.cfi_endproc

Ends the current FDE and establishes the length value in the FDE.

.cfi_personality Adds ‘P’ to the CIE augmentation string and includes the personality
routine address in the CIE augmentation field.
.cfi_Isda Adds ‘L to the CIE augmentation string and includes the LSDA address in

the FDE augmentation field.

.cfi_rel offset

Adjusts the offset to be used in a subsequent DW_CFA_offset command.

338

Appendix B. Stack Unwinding and Exception Handling on OpenVMS x86-64

CFI Directive Effect

.cfi_adjust_cfa offset |Adjusts the offset to be used in a subsequent DW_CFA_def cfa offset.

.cfi_escape Allows the following data to be appended to the DWARF information.
Useful for OS-specific entries.

.cfi_signal frame Marks the current function as a signal trampoline. Not applicable to
OpenVMS.

.cfi_sections Determines whether output goes to section .eh_frame, .dwarf frame or
both.

.cfi_end prologue Generates DW_CFA_VMS set current with operand 1 to mark the end of
a prologue.

.cfi_begin_epilogue Generates DW_CFA VMS set current with operand 0 to mark the
beginning of an epilogue.

.cfi_set ossd Adds ‘v’ (instead of ‘z’) to the CIE augmentation string and sets the initial
currency state to 0.

B.3.3. Compact Unwind Description

An OpenVMS x86-64 compact unwind description is a group of three to six fields that describe
how to unwind from the body of one procedure frame to the frame of the caller together with the
address of an exception handler and associated data, if any, (in industry documentation also known
as a personality routine and language-specific data area, respectively) that is called to process any
exception that occurs in that body.

The compact unwind description applies only to the body of a procedure; thus on OpenVMS x86-64 it
is always used in combination with a simplified form of DWARF unwind descriptors which apply to
the prologue and epilogue regions of code in a procedure.

The heart of the description is the compact unwind_encoding field, which is described first. This
is followed by the compact unwind description as a whole, then the related simplified DWARF
descriptors.

B.3.3.1. Compact Unwind Encoding

A compact unwind encoding describes a (fully formed) frame in sufficient detail to be able to unwind
that frame to the frame of its caller, as illustrated in Figure B.3 and described in Tables B.8, B.9, and
B.10.

Figure B.3. Compact Unwind Entry Top-Level Layout

FLAGS MODE

Table B.8. Description of CUE Top-Level Structure

Field Name Bit Position |Description

CUE$V_FLAGS <31:28> Flags that indicate what additional fields are part
of the containing compact unwind description (see
Table B.9).

CUES$V_MODE <27:24> A tag that indicates what information is encoded in the
low-order 24 bits.

339

Appendix B. Stack Unwinding and Exception Handling on OpenVMS x86-64

At the top most level, there are four flag bits defined in the following table.

Table B.9. Description of CUE Top-Level Flags

Field Bit Position |Description

RESERVED <31> Reserved and must be zero.

CUE$V_UNWIND <30> An LSDA field is included as part of the containing
HAS LSDA description.

CUES$V_UNWIND <29> A personality routine address is included as part of the
HAS PERSONALITY containing description.

CUES$V_UNWIND <28> OpenVMS OSSD information is included as part of the
HAS OSSD containing information.

There is also a MODE field, whose possible values are shown in Table B.10.

Table B.10. Description of CUE Modes

MODE_DWARF

Name Value Use

CUESK X86 64 1 Variable-size frame. The frame uses the RBP register

MODE RBP FRAME as a frame pointer. The size of the frame can vary
during execution.

CUESK X86 64 2 Fixed-size frame. The frame uses RSP as the frame

MODE _STACK_IMM pointer. The size of the frame is fixed (at compile-
time).

CUESK X86 64 3 Large fixed-size frame. The frame uses RSP as the

MODE_STACK IND frame pointer, The size of the frame is fixed (at
compile-time); however, that size is too large to
express within this 32-bit encoding.

CUESK X86 64 4 DWAREF escape. The frame, for whatever reason,

cannot be adequately described using the compact
unwind frame description. The remaining 24-bits are
an offset in the DWARF section to a DWARF FDE
entry.

All other values are reserved to OpenVMS.

These uses and the interpretation of the remaining 24 bits that go with them are described in the

following sections.

B.3.3.2. Preserved Register Enumeration

In the compact unwind encoding, saved registers are denoted using the following codes shown in

Table B.11.

Table B.11. CUE Saved Register Encodings

Name Value Use

CUES$K _REG_NONE 0 No register
CUES$K_REG_RBX 1 RBX register (% bx)
CUES$K _REG RI12 2 R12 register (% 12)

340

Appendix B. Stack Unwinding and Exception Handling on OpenVMS x86-64

Name Value Use

CUES$K _REG RI13 3 R13 register (% 13)
CUES$K_REG R14 4 R14 register (% 14)
CUES$K_REG RI15 5 R15 register (% 15)
CUESK REG_RBP 6 RBP register (% bp)

B.3.3.3. Variable-Size Frame (MODE=1)

For a variable-size frame, the remaining 24 bits are illustrated in Figure B.4 and described in
Table B.12.

Figure B.4. CUE Information for a Variable-Size Frame

FLAGS MODE=1 REP_OFFSET 0 REP_REGISTERS

Table B.12. Description of CUE Information for Variable-Size Frames

Field Name Bit Position |Description

CUES$V_RBP_FRAME <23:16> The offset (in units of quadwords) relative to RBP to

OFFSET the base of the register save area (that is, from RBP-8
to RBP-2040).

RESERVED <15> Reserved and must be zero.

CUES$V_RBP_REGISTERS |<14:0> The registers saved are encoded as five 3-bit entries
(see below).

The RBP register is pushed on the stack immediately after the return address, after which RSP is
moved to RBP. To unwind, RSP is restored with the current RPB value, then RBP is restored by
popping off the stack, and the return is done by popping the stack once more into the instruction
pointer.

If one register is saved, its code is specified in <2:0>. If two registers are saved, the first is specified in
<2:0> and the next in <5:3>. And so on.

B.3.3.4. Fixed-Size Frame (MODE=2)

For a fixed-size frame, the remaining 24 bits are encoded as illustrated in Figure B.5 and described in
Table B.13.

Figure B.5. CUE Information for a Fixed-Size Frame

RSP_
FLAGS | MODE=2 RSP_STACK_SIZE 0 | REG_ RSP_REG_PERM
CNT

The stack pointer RSP serves directly as the frame pointer and RBP register is available for use as a
general register. Upon entry, the stack pointer is decremented by 8*SIZE bytes (the maximum stack
allocation is thus 2040 bytes). To unwind, the stack size is added to the stack pointer, and followed by
popping the stack once more into the instruction pointer.

341

Appendix B. Stack Unwinding and Exception Handling on OpenVMS x86-64

Table B.13. Description of CUE Information for a Fixed-Size Frame

Field Name Bit Position |Description

CUES$V_RSP_STACK SIZE |<23:16> The size of the stack (in units of quadwords).
RESERVED <15:13> Reserved and must be zero.

CUES$V_RSP REG CNT <12:10> The number of registers that are saved (up to six).
CUES$V_RSP REG PERM |<9:0> The registers that are saved, encoded using

a permutation-based representation (see
Section B.3.3.7).

B.3.3.5. Large Fixed-Size Frame (MODE=3)

For a large fixed-size frame, the remaining 24 bits are encoded as illustrated in Figure B.6 and

described in Table B.14.

Figure B.6. CUE Information for a Large Fixed-Size Frame

FLAGS MODE=3

RSP_STACK_SIZE

RSP_ | RSP_
STK_ | REG_ RSP_REG_PERM
ADJ” | CNT

This case is like the previous, except the stack size is too large to encode in the compact unwind
encoding. Instead, the target function must include a "subq $nnnnnnnn, RSP" instruction in its
prologue to allocate the stack. The offset from the entry point of the function to the nnnnnnnn value in
the function is given in the CUE§V_RSP _STACK SIZE field.

Depending on the exact instructions used to save registers (PUSH versus MOV), the nnnnnnnn value
in the instruction stream may not be quite the full stack size. RSP_STK ADJ * 8 is the additional
adjustment needed to get the actual size.

Table B.14. Description of Information for a Large Fixed-Size Frame

Field Name Bit Position |Description

CUES$V_RSP_STACK SIZE |<23:16> Offset from the beginning of the containing description
to the 8-byte offset in the instruction that allocates the
stack.

CUES$V_RSP STK ADJ <15:13> Additional stack size adjustment over and above the
STACK SIZE instruction offset to determine the
actual stack size.

CUES$V_RSP REG CNT <12:10> The number of registers that are saved (up to six).

CUES$V_RSP REG PERM |<9:0> The registers that are saved, encoded using

a permutation-based representation (see
Section B.3.3.7).

B.3.3.6. DWARF Escape (MODE=4)

The frame, for whatever reason, cannot be adequately described using a compact unwind frame
description. The remaining 24-bits are an offset in the DWARF section to a DWARF FDE entry.

While supported in OpenVMS x86-64, this mode is not needed and is therefore deprecated.

342

Appendix B. Stack Unwinding and Exception Handling on OpenVMS x86-64

B.3.3.7. Register Permutation Encoding

The compact unwind encoding uses a ten-bit integer together with a three-bit count to indicate which
subset of up to six (integer) registers are preserved and in what order. The encoding is based on the
number of permutations that exist for up to six registers taken 0, 1, 2, ..., 6 at a time. In particular,
six items taken six at a time have just 6! = 720 possible orders, which can be named in just 10 bits
(210=1024). If not all of the registers are preserved, then the number of permutations is smaller. The
general rule is the number of permutations of N items taken M at a time is N!/M!.

A permutation number (PN) is defined to identify which of the possible permutations describes

a given register save sequence. The computation of the PN proceeds as follows: Initially PN is

zero. Number the registers in a standard order from 0 to N-1. Select a register from 0 to N-1; there
are, of course, just N possibilities. Multiply the previous PN by N and add the selected number to
compute the new PN. Renumber the remaining N-1 registers from 0 to N-2, keeping the same order
as previously. Select a register from 0 to N-2 (there are N-1 possibilities), multiply the previous PN
number by N-1 and add the selected number result to compute the new PN. Proceed in similar fashion
until the last preserved register is encoded.

Consider an example using the set of six preserved registers RBX, R12, R213, R14, R15, RBP. For
this example, suppose that the registers R13, RBX, and RBP are preserved in that order. There are
6!/3! = 6*5*4 = 120 possible orders of these 6 items taken 3 at a time.

In step 1, R13 has position 2 in the possible selections sequence. Multiply the previous PN (0) by the
number of possible selections (6), add this position (2) and assign the result (2) to PN. That leaves
possible selections RBX, R12, R14, R15, RBP (in that order) which we then encode as 0..4.

In step 2, RBX has position 0. Multiply the previous PN (2) by the number of possible selections (5),
add this position (0) and assign the result (10) to PN. That leaves possible selections R12, R14, R15,
RBP (in that order) which we then encode as 0..3.

In step 3, RBP has position 3. Multiply the previous PN (10) by the number of possible selections (4),
add this position (3) and assign the result (43) to PN.

That completes computation of the permutation encoding.

These steps are summarized as follows.

Step Registers to be Encoded in Order Selection |(Prior PN* PN
Selections) +
Position

0 0

1 RBX=0, R12=1, R13=2, R14=3, R15=4, RBP=5 |R13=2 (0*6)+2 2

2 RBX=0, R12=1, R14=2, R15=3, RBP=4 |RBX=0 (2*¥5)+0 10

3 R12=0, R14=1, R15=2, RBP=3 |RBP=3 (10*4)+3 43

B.3.3.8. Operating System Specific Extensions for OpenVMS

If the CUESV_HAS OSSD flag is set, then the compact unwind encoding logically extends into
an additional quadword, CUD$Q_OSSD (see Section B.3.3.1 and Section B.3.4). This additional
information serves three purposes:

1. Encodes information that helps guide the flow of execution during OpenVMS handling for an
exception.

343

Appendix B. Stack Unwinding and Exception Handling on OpenVMS x86-64

2. Provides a register save mask to describe which pseudo-registers are saved in the current region.

3. Optionally provides a description of certain epilogue code sequences that may occur at the end
(exclusive of any inter-procedure gap) of the containing region. This may permit certain size
optimizations in the run-time exception handling lookup tables. Details are beyond the scope of

this Appendix.

This information is organized as illustrated in Figure B.7 and described in Table B.15.

Figure B.7. Optional OSSD Information

MBZ

EXCEPTION_INFO PSDO_REG_MASK

Table B.15. Description of Optional OSSD Information

INFO

Field Bit Position |Description
RESERVED <63:32> Reserved and must be zero.
OSSD$W_EXCEPTION _ |<31:16> Additional exception handling information. The

contents of this field (including field names, position
and description) is the same as bits <31:16> as shown
in Table A.14.

MASK

OSSD$W_PSDO_REG _

<15:0> Bit mask indicating which pseudo-registers are saved.

B.3.4. Compact Unwind Descriptor Structure

The overall structure of a compact unwind description is illustrated in Figure B.8 and described in

Table B.16.

Figure B.8. Compact Unwind Descriptor Structure

START_ADDRESS

LENGTH

CUE

HAMDLER

LSDA

055D

Table B.16. Description of Compact Unwind Descriptor Structure

Field

Description

CUD$SQ_START ADDRESS

The lowest address of a region of code, often a complete procedure.

CUDSL_LENGTH

The number of bytes included in this region, often all and only the
code of a procedure.

344

Appendix B. Stack Unwinding and Exception Handling on OpenVMS x86-64

Field Description

CUDSL_CUE The compact unwind encoding information for a procedure (see
Section B.3.3).

CUD$Q HANDLER A procedure value that points to the personality routine

applicable to this region. This field is present if and only if the
CUE$V_UNWIND HAS HANDLER flag is set in the compact
unwind encoding (CUDSL CUE).

CUD$Q LSDA The address of a language specific data area to be passed to the
handler (personality routine) for this region. This field is present if and
only if the CUESV_UNWIND HAS LSDA flag is set in the compact
unwind encoding (CUDS$L_CUE). See Section B.3.3.1.

CUD$Q_OSSD OpenVMS-specific data that extends the compact unwind encoding
information. This field is present if and only if the CUE$V_OSSD
flag is set in the compact unwind encoding (CUDSL_CUE). See
Section B.3.3.1.

Note that the first three fields are always present, while the presence or absence of each of the final
three fields is indicated by a flag in the compact unwind encoding.

B.4. Default Unwind Information

A null frame procedure may have no corresponding unwind dispatch table entry, hence no unwind
descriptor, if all of the following apply:

» It has no stack and preserves no context of its caller (these are properties of all null frame
procedures), hence requires no unwind descriptors. The only preserved state is the return address
which is pushed on the top of the stack as a result of the CALL instruction.

* It has no condition handler, hence also no language-specific data area.
+ It has no operating system-specific data area.

Such a procedure is necessarily a leaf procedure, that is, a procedure that makes no calls, either
explicitly or implicitly.

Conversely, if the dispatcher or unwinder encounters a PC for the top-most procedure on the call
stack that is not represented in the unwind tables, it assumes that the PC corresponds to a null frame
leaf procedure that satisfies the properties described above. The presumed return address is (virtually
or actually) popped from the top of the IP stack and looked up. This second attempted lookup must
succeed, in which case processing continues normally. A failed lookup is a severe error.

B.5. System Unwind Routines

See the VSI OpenVMS System Services Reference Manual for descriptions of the following unwind
routines:

* SYSSSET UNWIND TABLE
*+ SYSSCLEAR UNWIND TABLE

 SYSSGET UNWIND ENTRY_ INFO

345

Appendix B. Stack Unwinding and Exception Handling on OpenVMS x86-64

See the VSI OpenVMS RTL Library (LIB$) Manual for a description of the LIBSGET UIB_INFO
routine.

346

Appendix C. Summary of Differences
from Related Industry Software
Conventions

The OpenVMS Calling Standard originated with OpenVMS on the Digital Equipment Corporation
(DEC) 32-bit VAX computer architecture. It was later adapted and extended to the DEC 64-bit
Alpha computer architecture in a way that provided high forward and backward compatibility. These
architectures were both proprietary to DEC so that compatibility with other competitive architectures
was not a significant design influence.

The OpenVMS Calling Standard was adapted and extended again when OpenVMS was ported to

the Intel Itanium architecture (referred to as 164 in this manual). And it has now been adapted and
extended for the OpenVMS port to the 64-bit variant of the Intel 64 and [A-32 architecture (referred
to as x86-64 in this manual). In both of these cases, software conventions originally developed outside
of OpenVMS served as a starting point; these were adapted and extended to achieve and maintain a
high degree of forward and backward compatibility across all variants of OpenVMS, as well as with
their industry origins.

C.1. Differences from Intel Itanium Software
Conventions

The OpenVMS Calling Standard on the Intel Itanium processor family is designed to follow the
Intel Itanium software conventions as much as possible while avoiding user-visible differences from
the OpenVMS VAX and Alpha conventions. The design methodology was basically to start with

the Intel Itanium conventions and make changes only where it was deemed necessary to maintain
compatibility with the historical OpenVMS design in ways that minimize the cost and difficulty of
porting applications and OpenVMS itself to the Intel Itanium architecture.

Following is a brief summary of the differences between the ltanium® Software Conventions and
Runtime Architecture Guide and this calling standard. This summary assumes the reader is already
familiar with the Intel Itanium processor family and related software specifications.

C.1.1. Changes from Intel Itanium Software
Conventions

Data Model—OpenVMS on Alpha systems is deliberately ambiguous about the data model in use:
many programs are compiled using what appears to be an ILP32 model, but most of the system
operates as though using either a P64 or LP64 model. The sign extension rules for integer parameters
play a key role in making this more or less transparent. OpenVMS 164 preserves this characteristic,
while the Itanium conventions define a pure LP64 data model.

Data Terminology—This specification uses the terms word and quadword to mean 2 bytes and 8
bytes, respectively, while the Itanium terminology uses these words to mean 4 bytes and 16 bytes
respectively.

General Register Usage—General registers are used for integer arithmetic, some parts of VAX
floating-point emulation, and other general-purpose computation. OpenVMS uses the same (default)
conventions for these registers except for the following cases:

347

Appendix C. Summary of Differences from Related Industry Software Conventions

* R8and R9 (only) are used for return values.
* RI10and R11 are used as scratch registers and not for return values.
* R25is used for an Al (argument information) register.

Floating-Point Register Usage—Floating-point registers are used for floating-point computations,
some parts of VAX floating-point emulation, and certain integer computations. OpenVMS uses the
same (default) conventions for these registers except for the following cases:

* F8 and F9 (only) are used for return values.
* F10 through F15 are used as scratch registers and not for return values.

Parameter Passing—OpenVMS parameter passing is similar to the [tanium conventions, but with the
following differences:

* Add an argument information register (for argument count and parameter type information).
* No argument is ever duplicated in both general and floating-point registers.

* For parameters that are passed in registers, the first parameter is passed in either the first general
register slot (R32) or the first floating-point register slot (F8), the second parameter in either the
second general register slot (R33) or second floating register (F9) slot, and so on. Floating-point
parameters are not packed into the available floating-point registers and at most eight parameters
total are passed in registers.

* For 32-bit parameters passed in the general registers, the 32-bit value is sign-extended to the full
64-bit width of the parameter slot by replicating bit 31 (even for unsigned types).

» There is no even slot alignment for arguments larger than 64-bits.

e There is no special handling for HFA (homogeneous floating-point aggregates) in general,
although some rules for complex types have a similar benefit.

e OpenVMS implements __f | oat 128 pass-by value semantics using a reference mechanism.
* OpenVMS supports only little-endian representations.

* OpenVMS supports three additional VAX floating-point types for backward compatibility:
F floating (32 bits), D_floating (64 bits), and G_floating (64 bits). Values of these types are
passed using the general registers.

Return Values—Return values up to at most 16 bytes in size may be returned in registers; larger
return values are returned using a hidden parameter method using the first or second parameter slot.

C.1.2. Extensions to Intel Itanium Software
Conventions

Some differences are not changes but rather additions or extensions. These include:

Floating-Point Data Types — The calling standard for OpenVMS 164 includes support for the VAX
F floating (32-bit), D floating (64-bit) and G_floating (64-bit) data types found on VAX and Alpha
systems; it omits support for the Itanium 80-bit double-extended floating-point type.

VAX Compatible Record Layout—The OpenVMS standard adds a user optional VAX compatible
record layout.

348

Appendix C. Summary of Differences from Related Industry Software Conventions

Linkage Options—OpenVMS allows additional flexibility and user control in the use of the static
general registers as inputs, outputs, global registers and whether used at all.

Memory Stack Overflow Checking—OpenVMS defines how memory stack overflow checking
should be performed.

Function Descriptors—OpenVMS defines extended forms of function descriptors to support
additional functionality for bound procedure values and translated image support.

Unwind Information—OpenVMS adds an operating system-specific data area to the Itanium unwind
information block. The presence of an operating system-specific data area is indicated by a flag in the
unwind information header.

Handler Invocation—OpenVMS does not invoke a handler while control is in either a prologue
or epilogue region of a routine. This difference in behavior is indicated by a flag in the unwind
information header.

Translated Images—OpenVMS adds support (signature information and special ABIs) for calls
between native and translated VAX or Alpha images.

C.2. Differences from Industry x86-64
Software Conventions

The OpenVMS Calling Standard on the Intel 64 and AMD64 processor families is designed to closely
follow the industry Linux Standard Base, Version 5.0 and System V Application Binary Interface,
AMDG64 Architecture Processor Supplement, Version 1.0 software conventions as much as possible
while avoiding user-visible differences from earlier OpenVMS conventions. The design methodology
was basically to start with the industry conventions and make changes only where deemed necessary
to maintain compatibility with the historical OpenVMS design in ways that minimize the cost and
difficulty of porting applications and OpenVMS itself to the Intel 64 architecture.

Following is a brief summary of the differences between the industry software conventions and this
calling standard. This summary assumes the reader is already familiar with the x86-64 processor
family and related software specifications.

C.2.1. Changes from Industry x86-64 Software
Conventions

Memory Model—OpenVMS uses a memory model distinct from the small, medium and large
models described in the AMD64 specification. It is basically a small memory model combined with
indirect addressing of both code and data outside of the same module; the combination gives the
power and benefits of the medium model.

Data Model—OpenVMS on Alpha and [tanium systems is deliberately ambiguous about the data
model in use: many programs are compiled using what appears to be an ILP32 model, but most of
the system operates as though using either a P64 or LP64 model. The sign extension rules for integer
parameters play a key role in making this more or less transparent. OpenVMS x86-64 preserves this
characteristic flexibility.

Image Base Address—An OpenVMS image may be composed of more than one segment, which
may be independently relocated by the system loader. This means there may not be a unique base

349

Appendix C. Summary of Differences from Related Industry Software Conventions

address for an image; rather each segment has its own base address. As a result, the PC-relative
addressing may not be used between segments and (the GOT-mediated) indirect addressing must be
used instead.

Data Terminology—This specification uses the terms word, longword and quadword to mean 2
bytes, 4 bytes and 8 bytes, respectively, while the Intel and AMD64 terminology is different.

Procedure Terminology—This specification uses the terms variable-size stack, fixed-size stack and
null frame procedure for consistency with historical OpenVMS usage instead of the industry terms
normal, framepointerless and frameless procedures, respectively.

C.2.2. Extensions to Industry x86-64 Software
Conventions

Some differences are not changes but rather additions or extensions. These include:

Floating-Point Data Types—The calling standard for OpenVMS x86-64 includes support for the
VAXF floating (32-bit), D_floating (64-bit) and G_floating (64-bit) data types found on VAX
and Alpha systems. The calling standard does not preclude use of the Intel 80-bit double-extended
floating-point type, but OpenVMS does not provide any direct or run-time support for this type.

VAX Compatible Record Layout—The OpenVMS standard adds a user optional VAX compatible
record layout.

Parameter Passing—OpenVMS parameter passing is highly similar to the industry conventions, but
with the following differences:

» Extended argument information in %rax (for argument count and parameter type information).

» For 32-bit parameters passed in the general-purpose registers, the 32-bit value is sign-extended to
the full 64-bit width of the parameter slot by replicating bit 31 (even for unsigned types).

* OpenVMS supports three additional VAX floating-point types for backward compatibility:
F floating (32 bits), D_floating (64 bits), and G_floating (64 bits). Values of these types are
passed using the general-purpose registers.

Procedure (Function) Values—OpenVMS procedure values are always representable in 32 bits
(even bound procedure values). Linker and run-time support achieve this transparently. This facilitates
flexible intermixing of code compiled for 32-bit environments and 64-bit environments.

Legacy Pseudo-Registers—OpenVMS adds 32 general-purpose pseudo-registers (memory locations
that are managed like general-purpose registers) to emulate the behavior of Alpha general-purpose
registers. Use of these registers is limited to compiled MACRO code as well as BLISS and VSI C
code that uses non-default linkages. Use of such registers other for legacy applications from other
OpenVMS environments is deprecated.

Memory Stack Overflow Checking—OpenVMS defines how memory stack overflow checking
should be performed.

Unwind Information—Unwind information is based on DWARF with extensions:

* OpenVMS adds an operating system-specific data area to the DWARF unwind information. The
possible presence of an operating system-specific data area is indicated by the letter ‘v’ instead of
‘z’ in the augmentation string of a call frame information descriptor.

350

Appendix C. Summary of Differences from Related Industry Software Conventions

* OpenVMS augments DWARF unwind information with a form of compact unwind descriptor that
improves performance of exception handling.

Asynchronous Exceptions—OpenVMS requires that unwind information provide a complete and
accurate state of each procedure frame in both prologue and epilogue regions, in addition to the body
of a procedure. Without this, foreign object modules may not function correctly during an unwind in
asynchronously invoked code.

Handler Invocation—OpenVMS does not invoke a handler while control is in either a prologue or
epilogue region of a routine, based on the unwind information.

351

Appendix C. Summary of Differences from Related Industry Software Conventions

352

	VSI OpenVMS Calling Standard
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Related Documents
	5. VSI Encourages Your Comments
	6. How to Order Additional Documentation
	7. Typographical Conventions

	Chapter 1. Introduction
	1.1. Applicability
	1.2. Architectural Level
	1.3. Goals
	1.4. Definitions

	Chapter 2. OpenVMS VAX Conventions
	2.1. Register Usage
	2.1.1. Scalar Register Usage
	2.1.2. Vector Register Usage

	2.2. Stack Usage
	2.3. Calling Sequence
	2.4. Argument List
	2.4.1. Argument List Format
	2.4.2. Argument Lists and High-Level Languages
	2.4.2.1. Order of Argument Evaluation
	2.4.2.2. Language Extensions for Argument Transmission

	2.5. Function Value Returns
	2.5.1. Returning a Function Value on Top of the Stack
	2.5.1.1. Returning a Fixed-Length or Varying String Function Value

	2.6. Vector and Scalar Processor Synchronization
	2.6.1. Memory Synchronization
	2.6.2. Exception Synchronization

	Chapter 3. OpenVMS Alpha Conventions
	3.1. Register Usage
	3.1.1. Integer Registers
	3.1.2. Floating-Point Registers

	3.2. Address Representation
	3.3. Procedure Representation
	3.4. Procedure Types
	3.4.1. Stack Frame Procedures
	3.4.2. Procedure Descriptor for Procedures with a Stack Frame
	3.4.3. Stack Frame Format
	3.4.3.1. Fixed-Size Stack Frame
	3.4.3.2. Variable-Size Stack Frame
	3.4.3.3. Fixed Temporary Locations for All Stack Frames
	3.4.3.4. Register Save Area for All Stack Frames

	3.4.4. Register Frame Procedure
	3.4.5. Procedure Descriptor for Procedures with a Register Frame
	3.4.6. Null Frame Procedures
	3.4.7. Procedure Descriptor for Null Frame Procedures

	3.5. Procedure Call Stack
	3.5.1. Current Procedure
	3.5.2. Procedure Call Tracing
	3.5.2.1. Referring to a Procedure Invocation from a Data Structure
	3.5.2.2. Invocation Context Block
	3.5.2.3. Getting a Procedure Invocation Context with a Routine
	3.5.2.4. Walking the Call Stack

	3.5.3. Invocation Context Access Routines
	3.5.3.1. LIB$GET_INVO_CONTEXT
	3.5.3.2. LIB$GET_CURR_INVO_CONTEXT
	3.5.3.3. LIB$GET_PREV_INVO_CONTEXT
	3.5.3.4. LIB$GET_INVO_HANDLE
	3.5.3.5. LIB$GET_PREV_INVO_HANDLE
	3.5.3.6. LIB$PUT_INVO_REGISTERS

	3.6. Transfer of Control
	3.6.1. Call Conventions
	3.6.2. Linkage Section
	3.6.3. Calling Computed Addresses
	3.6.4. Simple and Bound Procedures
	3.6.4.1. Bound Procedure Descriptors
	3.6.4.2. Bound Procedure Value

	3.6.5. Entry and Exit Code Sequences
	3.6.5.1. Entry Code Sequence
	3.6.5.2. Exit Code Sequence

	3.7. Data Passing
	3.7.1. Argument Passing Mechanisms
	3.7.2. Argument List Structure
	3.7.3. Argument Lists and High-Level Languages
	3.7.4. Unused Bits in Passed Data
	3.7.5. Sending Data
	3.7.5.1. Sending Mechanism
	3.7.5.2. Order of Argument Evaluation

	3.7.6. Receiving Data
	3.7.7. Returning Data
	3.7.7.1. Function Value Return by Immediate Value
	3.7.7.2. Function Value Return by Reference
	3.7.7.3. Function Value Return by Descriptor

	3.8. Data Allocation
	3.8.1. Data Alignment
	3.8.2. Record Layout Conventions
	3.8.2.1. Aligned Record Layout
	3.8.2.2. OpenVMS VAX Compatible Record Layout

	3.9. Multithreaded Execution Environments
	3.9.1. Stack Limit Checking
	3.9.1.1. Methods for Stack Limit Checking
	3.9.1.2. Stack Overflow Handling

	Chapter 4. OpenVMS I64 Conventions
	4.1. I64 Register Usage
	4.1.1. I64 Register Classes
	4.1.2. I64 General Register Usage
	4.1.3. I64 Floating-Point Register Usage
	4.1.4. I64 Predicate Register Usage
	4.1.5. I64 Branch Register Usage
	4.1.6. I64 Application Register Usage
	4.1.7. Floating-Point Status
	4.1.8. User Mask
	4.1.9. Additional Register Usage Information

	4.2. Address Representation
	4.3. Procedure Representation
	4.4. Procedure Types
	4.5. Memory Stack
	4.5.1. Procedure Frames
	4.5.2. Stack Overflow Detection
	4.5.2.1. Stack Limit Checking
	4.5.2.1.1. Methods for Stack Limit Checking

	4.6. Register Stack
	4.6.1. Input and Local Registers
	4.6.2. Output Registers
	4.6.3. Rotating Registers
	4.6.4. Frame Markers
	4.6.5. Backing Store for Register Stack

	4.7. Procedure Linkage
	4.7.1. The GP Register
	4.7.2. Types of Calls
	4.7.3. Calling Sequence
	4.7.3.1. Direct Calls
	4.7.3.2. Indirect Calls

	4.7.4. Parameter Passing
	4.7.5. Parameter Passing Mechanisms
	4.7.5.1. Allocation of Parameter Slots
	4.7.5.2. Normal Register Parameters
	4.7.5.3. Argument Information (AI) Register
	4.7.5.4. Memory Stack Parameters
	4.7.5.5. Variable Argument Lists
	4.7.5.6. Pointers to Formal Parameters
	4.7.5.7. Languages Other than C
	4.7.5.8. Rounding Floating-point Values
	4.7.5.9. Order of Argument Evaluation
	4.7.5.10. Examples

	4.7.6. Return Values
	4.7.7. Simple and Bound Procedures

	4.8. Procedure Call Stack
	4.8.1. Current Procedure
	4.8.2. Procedure Call Tracing
	4.8.2.1. Invocation Context Block
	4.8.2.2. Invocation Context Handle

	4.8.3. Invocation Context Block Access Routines
	4.8.3.1. Initializing the Invocation Context Block
	4.8.3.2. Walking the Call Stack
	4.8.3.3. LIB$I64_CREATE_INVO_CONTEXT
	4.8.3.4. LIB$I64_FREE_INVO_CONTEXT
	4.8.3.5. LIB$I64_INIT_INVO_CONTEXT
	4.8.3.6. LIB$I64_GET_INVO_CONTEXT
	4.8.3.7. LIB$I64_GET_CURR_INVO_CONTEXT
	4.8.3.8. LIB$I64_GET_PREV_INVO_CONTEXT
	4.8.3.9. LIB$I64_GET_INVO_HANDLE
	4.8.3.10. LIB$I64_GET_CURR_INVO_HANDLE
	4.8.3.11. LIB$I64_GET_PREV_INVO_HANDLE
	4.8.3.12. LIB$I64_PREV_INVO_END
	4.8.3.13. LIB$I64_PUT_INVO_REGISTERS

	4.8.4. Supplemental Invocation Context Access Routines
	4.8.4.1. LIB$I64_GET_FR
	4.8.4.2. LIB$I64_SET_FR
	4.8.4.3. LIB$I64_GET_GR
	4.8.4.4. LIB$I64_SET_GR
	4.8.4.5. LIB$I64_SET_PC
	4.8.4.6. LIB$I64_GET_UNWIND_LSDA
	4.8.4.7. LIB$I64_GET_UNWIND_OSSD
	4.8.4.8. LIB$I64_GET_UNWIND_HANDLER_FV
	4.8.4.9. LIB$I64_IS_EXC_DISPATCH_FRAME
	4.8.4.10. LIB$I64_IS_AST_DISPATCH_FRAME

	4.8.5. Invocation Context Callback Routines
	4.8.5.1. The Get Unwind Information Routine
	4.8.5.2. The Get Initial Context Routine
	4.8.5.3. The Read Memory Routine
	4.8.5.4. The Write Memory Routine
	4.8.5.5. The Write Register Routine
	4.8.5.6. The Memory Allocation Routine
	4.8.5.7. The Memory Deallocation Routine

	4.9. Data Allocation
	4.9.1. Data Alignment
	4.9.2. Global Data
	4.9.3. Local Static Data
	4.9.4. Constants and Literals
	4.9.5. Record Layout Conventions
	4.9.5.1. Aligned Record Layout
	4.9.5.2. OpenVMS VAX Compatible Record Layout

	4.9.6. Sample Code Sequences
	4.9.6.1. Addressing Own Data in the Short Data Area
	4.9.6.2. Addressing External Data or Data in a Long Data Area
	4.9.6.3. Addressing Literals in the Text Segment
	4.9.6.4. Materializing Function Pointers
	4.9.6.5. Jump Tables

	Chapter 5. OpenVMS x86-64 Conventions
	5.1. x86-64 Register Usage
	5.1.1. x86-64 Register Classes
	5.1.2. x86-64 General-Purpose Register Usage
	5.1.3. x86-64 Floating-Point Register Usage (SSE)
	5.1.4. x86-64 Floating-Point Register Usage (FPU)
	5.1.5. Floating-Point Status Management on OpenVMS
	5.1.6. x86-64 Segment Register Usage
	5.1.7. x86-64 Bound Register Usage
	5.1.8. Legacy Pseudo-Registers

	5.2. Address and Pointer Representation
	5.3. Procedure Values
	5.4. Procedure Types
	5.4.1. Variable-Size Stack Procedures
	5.4.2. Fixed-Size Stack Procedures
	5.4.3. Null Frame Procedures

	5.5. Stack Overflow Detection on OpenVMS x86-64
	5.5.1. Stack Limit Checking
	5.5.1.1. Methods for Stack Limit Checking

	5.6. Procedure Call and Return
	5.6.1. Direct Local Calls to an Unbound Procedure
	5.6.2. Direct Local Calls to a Bound Procedure
	5.6.3. Direct Local Calls to a Non-Local Procedure
	5.6.4. Indirect Calls to an Unbound Procedure
	5.6.5. Indirect Calls to a Bound Procedure
	5.6.6. Returns

	5.7. Parameter and Return Value Passing
	5.7.1. Scalar Argument Types
	5.7.2. Aggregate Argument Types
	5.7.3. Unused Bits in Passed Data
	5.7.4. Argument Information Register (AI)
	5.7.5. Variable Argument Lists
	5.7.5.1. Standard Variable Arguments
	5.7.5.2. OpenVMS Variable Argument Lists

	5.7.6. Procedure Return Values
	5.7.7. Parameter Passing and Return Result Examples

	5.8. Procedure Call Stack
	5.8.1. Current Procedure
	5.8.2. Procedure Call Tracing
	5.8.2.1. Invocation Context Block
	5.8.2.2. Invocation Context Handle

	5.8.3. Invocation Context Block Access Routines
	5.8.3.1. Initializing the Invocation Context Block
	5.8.3.2. Walking the Call Stack
	5.8.3.3. LIB$X86_CREATE_INVO_CONTEXT
	5.8.3.4. LIB$X86_FREE_INVO_CONTEXT
	5.8.3.5. LIB$X86_INIT_INVO_CONTEXT
	5.8.3.6. LIB$X86_GET_INVO_CONTEXT
	5.8.3.7. LIB$X86_GET_CURR_INVO_CONTEXT
	5.8.3.8. LIB$X86_GET_PREV_INVO_CONTEXT
	5.8.3.9. LIB$X86_GET_INVO_HANDLE
	5.8.3.10. LIB$X86_GET_CURR_INVO_HANDLE
	5.8.3.11. LIB$X86_GET_PREV_INVO_HANDLE
	5.8.3.12. LIB$X86_PREV_INVO_END
	5.8.3.13. LIB$X86_PUT_INVO_REGISTERS

	5.8.4. Supplemental Invocation Context Access Routines
	5.8.4.1. LIB$X86_GET_GR
	5.8.4.2. LIB$X86_SET_GR
	5.8.4.3. LIB$X86_GET_XMM
	5.8.4.4. LIB$X86_SET_XMM
	5.8.4.5. LIB$X86_GET_YMM
	5.8.4.6. LIB$X86_SET_YMM
	5.8.4.7. LIB$X86_GET_ZMM
	5.8.4.8. LIB$X86_SET_ZMM
	5.8.4.9. LIB$X86_SET_IP
	5.8.4.10. LIB$X86_GET_UNWIND_LSDA
	5.8.4.11. LIB$X86_GET_UNWIND_OSSD
	5.8.4.12. LIB$X86_GET_UNWIND_HANDLER_PV
	5.8.4.13. LIB$X86_IS_EXC_DISPATCH_FRAME
	5.8.4.14. LIB$X86_IS_AST_DISPATCH_FRAME

	5.8.5. Invocation Context Callback Routines
	5.8.5.1. The Get Unwind Information Routine
	5.8.5.2. The Get Initial Context Routine
	5.8.5.3. The Read Memory Routine
	5.8.5.4. The Write Memory Routine
	5.8.5.5. The Write Register Routine
	5.8.5.6. The Memory Allocation Routine
	5.8.5.7. The Memory Deallocation Routine

	5.9. Data Alignment and Layout
	5.9.1. Scalars
	5.9.2. Record Layout Conventions
	5.9.2.1. Aligned Record Layout
	5.9.2.2. OpenVMS VAX Compatible Record Layout

	5.10. Addressing
	5.10.1. Memory Models
	5.10.2. Inter-Segment Addressing

	Chapter 6. Signature Information and Translated Images (Alpha and I64 Systems)
	6.1. Overview
	6.1.1. Translated VAX Images on Alpha Systems
	6.1.1.1. Direct Calls From Translated to Native Code
	6.1.1.2. Direct Calls From Native to Translated Code
	6.1.1.3. Indirect Calls From Native to Translated Code

	6.1.2. Translated Images on I64 Systems
	6.1.2.1. Calls From Translated to Native I64 Code
	6.1.2.2. Direct Calls From Native I64 Code to Translated Code
	6.1.2.3. Indirect Calls From Native to Translated Code

	6.1.3. Signature Information Fields in Function Descriptors

	6.2. Signature Information Blocks
	6.2.1. Signature Information on Alpha Systems
	6.2.2. Signature Information on I64 Systems
	6.2.3. Signature Information Block Content
	6.2.4. Call Parameter PSIG Conversions
	6.2.4.1. Native-Alpha-to-Translated-VAX PSIG Conversions
	6.2.4.2. Translated-VAX-to-Native-Alpha PSIG Conversions
	6.2.4.3. Native-I64-to-Translated-Alpha PSIG Conversions
	6.2.4.4. Translated-Alpha-to-Native-I64 PSIG Conversions

	6.2.5. Default Signature Information

	Chapter 7. OpenVMS Argument Data Types
	7.1. Atomic Data Types
	7.2. String Data Types
	7.3. Miscellaneous Data Types
	7.4. Reserved Data-Type Codes
	7.4.1. Facility-Specific Data-Type Codes

	7.5. Varying Character String Data Type (DSC$K_DTYPE_VT)

	Chapter 8. OpenVMS Argument Descriptors
	8.1. Descriptor Prototype
	8.2. Fixed-Length Descriptor (CLASS_S)
	8.3. Dynamic String Descriptor (CLASS_D)
	8.4. Array Descriptor (CLASS_A)
	8.5. Procedure Argument Descriptor (CLASS_P)
	8.6. Decimal String Descriptor (CLASS_SD)
	8.7. Noncontiguous Array Descriptor (CLASS_NCA)
	8.8. Varying String Descriptor (CLASS_VS)
	8.9. Varying String Array Descriptor (CLASS_VSA)
	8.10. Unaligned Bit String Descriptor (CLASS_UBS)
	8.11. Unaligned Bit Array Descriptor (CLASS_UBA)
	8.12. String with Bounds Descriptor (CLASS_SB)
	8.13. Unaligned Bit String with Bounds Descriptor (CLASS_UBSB)
	8.14. Reserved Descriptor Class Codes
	8.14.1. Facility-Specific Descriptor Class Codes

	Chapter 9. OpenVMS Conditions
	9.1. Condition Values
	9.1.1. Interpretation of Severity Codes
	9.1.2. Use of Condition Values

	9.2. Condition Handlers
	9.3. Condition Handler Options
	9.4. Operations Involving Condition Handlers
	9.4.1. Establishing a Condition Handler
	9.4.2. Reverting to the Caller's Handling
	9.4.3. Signaling a Condition
	9.4.4. Signaling a Condition Using GENTRAP (64-Bit Systems)
	9.4.5. Signaling a Condition Using BREAK (I64 Only)
	9.4.6. Condition Handler Search

	9.5. Properties of Condition Handlers
	9.5.1. Condition Handler Parameters and Invocation
	9.5.1.1. Signal Argument Vector
	9.5.1.2. Mechanism Argument Vector
	9.5.1.2.1. VAX Mechanism Vector Format
	9.5.1.2.2. Alpha Mechanism Vector Format
	9.5.1.2.3. I64 Mechanism Vector Format
	9.5.1.2.4. x86-64 Mechanism Vector Format

	9.5.1.3. Mechanism Depth

	9.5.2. System Default Condition Handlers
	9.5.3. Coordinating the Handler and Establisher
	9.5.3.1. Use of Memory
	9.5.3.2. Exception Synchronization (Alpha Only)
	9.5.3.3. Continuation from Exceptions (Alpha Only)
	9.5.3.4. Floating-Point Control Status (I64 and x86-64)

	9.6. Returning from a Condition Handler
	9.7. Request to Unwind from a Signal
	9.7.1. Signaler's Registers
	9.7.2. Unwind Completion

	9.8. GOTO Unwind Operations (64-bit Systems)
	9.8.1. Handler Invocation During a GOTO Unwind
	9.8.2. Unwind Completion

	9.9. Multiple Active Signals
	9.10. Multiple Active Unwind Operations

	Appendix A. Stack Unwinding and Exception Handling on OpenVMS I64
	A.1. Unwinding the Stack
	A.1.1. Initial Context
	A.1.2. Step to Previous Frame

	A.2. Exception Handling Framework
	A.3. Coding Conventions for Reliable Unwinding
	A.3.1. Requirements for Unwinding the Stack
	A.3.2. Conventions for Prologue Regions
	A.3.3. Conventions for Body Regions
	A.3.4. Conventions for Epilogues
	A.3.5. Conventions for the Spill Area in the Memory Stack Frame

	A.4. Data Structures
	A.4.1. Unwind Table and Unwind Information Block
	A.4.1.1. Unwind Descriptor Area
	A.4.1.2. Region Header Records
	A.4.1.3. Descriptor Records for Prologue Regions
	A.4.1.4. Descriptor Records for Body Regions
	A.4.1.5. Descriptor Records for Body or Prologue Regions
	A.4.1.6. Rules for Using Unwind Descriptors
	A.4.1.7. Processing Unwind Descriptors

	A.4.2. Condition Handler
	A.4.3. Operating System-Specific Data Area
	A.4.3.1. General Information Segment
	A.4.3.2. Caller Spill Register Information

	A.4.4. Language-Specific Data Area

	A.5. Unwind Descriptor Record Format
	A.5.1. Region Header Records
	A.5.1.1. Format R1
	A.5.1.2. Format R2
	A.5.1.3. Format R3

	A.5.2. Descriptor Records for Prologue Regions
	A.5.2.1. Format P1
	A.5.2.2. Format P2
	A.5.2.3. Format P3
	A.5.2.4. Format P4
	A.5.2.5. Format P5
	A.5.2.6. Format P6
	A.5.2.7. Format P7
	A.5.2.8. Format P8
	A.5.2.9. Format P9
	A.5.2.10. Format P10

	A.5.3. Descriptor Records for Body Regions
	A.5.3.1. Format B1
	A.5.3.2. Format B2
	A.5.3.3. Format B3
	A.5.3.4. Format B4

	A.5.4. Descriptor Records for Body or Prologue Regions
	A.5.4.1. Format X1
	A.5.4.2. Format X2
	A.5.4.3. Format X3
	A.5.4.4. Format X4

	A.6. Default Unwind Information
	A.7. System Unwind Routines

	Appendix B. Stack Unwinding and Exception Handling on OpenVMS x86-64
	B.1. Unwinding the Stack
	B.1.1. Initial Context
	B.1.2. Step to Previous Frame

	B.2. Exception Handling Framework
	B.3. Data Structures
	B.3.1. Unwind Dispatch Table
	B.3.2. DWARF Unwind Descriptors
	B.3.2.1. 32-bit vs 64-bit DWARF Formats
	B.3.2.2. Common Information Entry
	B.3.2.2.1. CIE_augmentation_section

	B.3.2.3. Frame Description Entry
	B.3.2.3.1. FDE_augmentation_section

	B.3.2.4. Address/Pointer Encodings
	B.3.2.5. Call Frame Instructions
	B.3.2.5.1. Row Creation Instructions
	B.3.2.5.2. CFA Definition Instructions
	B.3.2.5.3. Register Rule Instructions
	B.3.2.5.4. Row State Instructions
	B.3.2.5.5. Padding Instruction
	B.3.2.5.6. OpenVMS-Specific Instructions

	B.3.2.6. Call Frame Instruction Usage
	B.3.2.7. Call Frame Encoding
	B.3.2.8. DWARF Register Number Mapping
	B.3.2.9. Related Assembler Directives and Implementation Notes

	B.3.3. Compact Unwind Description
	B.3.3.1. Compact Unwind Encoding
	B.3.3.2. Preserved Register Enumeration
	B.3.3.3. Variable-Size Frame (MODE=1)
	B.3.3.4. Fixed-Size Frame (MODE=2)
	B.3.3.5. Large Fixed-Size Frame (MODE=3)
	B.3.3.6. DWARF Escape (MODE=4)
	B.3.3.7. Register Permutation Encoding
	B.3.3.8. Operating System Specific Extensions for OpenVMS

	B.3.4. Compact Unwind Descriptor Structure

	B.4. Default Unwind Information
	B.5. System Unwind Routines

	Appendix C. Summary of Differences from Related Industry Software Conventions
	C.1. Differences from Intel Itanium Software Conventions
	C.1.1. Changes from Intel Itanium Software Conventions
	C.1.2. Extensions to Intel Itanium Software Conventions

	C.2. Differences from Industry x86-64 Software Conventions
	C.2.1. Changes from Industry x86-64 Software Conventions
	C.2.2. Extensions to Industry x86-64 Software Conventions

