
VSI OpenVMS

VSI ACMS for OpenVMS
Getting Started

Document Number: DO-DACMGS-01A

Publication Date: October 2019

Revision Update Information: This is a new manual.

Operating System and Version: VSI OpenVMS Integrity Version 8.4-1H1
VSI OpenVMS Alpha Version 8.4-2L1

Software Version: ACMS for OpenVMS Version 5.3-2

VMS Software, Inc., (VSI)
Bolton, Massachusetts, USA

VSI ACMS for OpenVMSGetting Started:

Copyright © 2019 VMS Software, Inc., (VSI), Bolton Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

The VSI OpenVMS documentation set is available on DVD.

ii

VSI ACMS for OpenVMSGetting Started

Preface ... vii
1. About this manual .. vii
2. Document Structure .. vii
3. Related Documents .. viii
4. VSI Encourages Your Comments .. ix
5. Conventions ... ix

Part I. Introduction

Chapter 1. Product Overview ... 3
1.1. Transaction Processing ... 3
1.2. TP and Timesharing ... 3
1.3. ACMS TP Monitor Features ... 4

1.3.1. Configuration Options ... 5
1.3.2. Efficient Use of System Resources ... 6
1.3.3. Easy System Expansion ... 6
1.3.4. Availability ... 6
1.3.5. Queued Tasks .. 8
1.3.6. Modular Applications .. 8
1.3.7. Data and Transaction Integrity ... 9
1.3.8. Security ... 10
1.3.9. Presentation Services ... 10

1.4. OpenVMS Support ... 12
1.4.1. Data Management Products .. 12
1.4.2. CDD Data Dictionary .. 12
1.4.3. Programming Languages and Tools .. 13

1.5. Professional Services and Support ... 13
1.6. Overview of the ACMS Application Development Life Cycle 14

Chapter 2. Developing ACMS Applications ... 17
2.1. Mapping Business Functions to Tasks ... 18
2.2. Defining Tasks ... 18

2.2.1. Defining Task Steps ... 20
2.2.1.1. Writing Server Procedures ... 22
2.2.1.2. Using DCL Servers ... 23

2.2.2. Defining Workspaces ... 24
2.3. Defining Resources for Groups of Tasks .. 24
2.4. Defining Run-Time Characteristics for an Application .. 25
2.5. Defining Menus ... 25
2.6. Debugging and Testing ... 26

Chapter 3. ACMS Run-Time System .. 29
3.1. ACMS Processes .. 29

3.1.1. Transaction Processing Processes ... 29
3.1.2. Monitoring and Controlling Processes ... 30

3.2. Run-Time Processing of Tasks .. 31
3.3. Run-Time Processing in a Distributed Environment ... 31

Chapter 4. Managing ACMS Systems and Applications ... 33
4.1. Authorizing Access to ACMS ... 33
4.2. Authorizing ACMS Applications ... 34
4.3. Controlling ACMS Applications ... 34

4.3.1. Displaying System and Application Information .. 34

iii

VSI ACMS for OpenVMSGetting Started

4.3.2. Receiving ACMS Operational Messages ... 34
4.4. Monitoring ACMS Applications .. 35

4.4.1. Using the Audit Trail Logger ... 35
4.4.2. Using Oracle Trace .. 35
4.4.3. Using the Software Event Logger ... 36

4.5. Tuning the ACMS System .. 36
Chapter 5. ACMS Product Kits and Documentation .. 37

5.1. ACMS Product Kits ... 37
5.2. ACMS Documentation ... 37

5.2.1. Orientation and Installation .. 37
5.2.2. Planning and Design .. 38
5.2.3. Development and Testing ... 38

5.2.3.1. Reference Information ... 39
5.2.4. Implementation and Management ... 40

Part II. Tutorial

Chapter 6. Introduction .. 43
6.1. Before You Begin .. 43
6.2. Application Development Life Cycle ... 43
6.3. ACMS Application Development Concepts ... 44

6.3.1. Writing ACMS Definitions .. 45
6.3.2. Composition of ACMS Definitions ... 46

6.4. ACMS Integration with DECforms ... 47
6.4.1. DECforms Concepts .. 47
6.4.2. ACMS Interaction with DECforms ... 48

6.5. ACMS Integration with Resource Managers .. 49
6.5.1. Accessing a Database or a Master File .. 50
6.5.2. ACMS Interaction with a Resource Manager ... 50

6.6. Defining Fields and Records in CDD .. 51
Chapter 7. Developing the Data Entry Task ... 53

7.1. Defining a CDD Environment ... 53
7.2. Defining a CDD Record ... 55
7.3. Creating a Form Using DECforms .. 57

7.3.1. Creating a Basic Form ... 57
7.3.2. Creating a Panel .. 59
7.3.3. Editing the Form IFDL Source File .. 65
7.3.4. Creating the Binary Form File .. 68
7.3.5. Defining Additional CDD Records ... 68

7.4. Defining the Data Entry Task ... 69
7.4.1. Defining the First Exchange Step ... 69
7.4.2. Defining the Processing Step .. 70
7.4.3. Defining the Second Exchange Step ... 72
7.4.4. Defining the Block Step and Workspaces .. 72

7.5. Compiling the Task Definition in ADU ... 73
7.6. Defining a System Logical for Your Tutorial Directory ... 74
7.7. Defining the Data Entry Procedure .. 75

7.7.1. Identification Division ... 76
7.7.2. Environment Division .. 77
7.7.3. Data Division .. 77
7.7.4. Procedure Division .. 77

iv

VSI ACMS for OpenVMSGetting Started

7.7.5. Compiling the COBOL Procedure .. 78
Chapter 8. Developing the Inquiry/Update Task .. 79

8.1. Defining a DECforms Form for Inquiry/Update ... 79
8.2. Defining the Inquiry/Update Task ... 81

8.2.1. Defining the First Exchange Step ... 82
8.2.2. Defining the First Processing Step .. 82
8.2.3. Defining the Second Exchange Step ... 83
8.2.4. Defining the Second Processing Step .. 83
8.2.5. Defining the Third Exchange Step .. 84
8.2.6. Completing the Task Definition .. 84

8.3. Compiling the Task Definition .. 85
8.4. Defining COBOL Procedures .. 86

8.4.1. Defining the Retrieval Procedure .. 86
8.4.2. Compiling the Retrieval Procedure ... 88
8.4.3. Defining the Update Procedure ... 88
8.4.4. Compiling the Update Procedure .. 90

Chapter 9. Building the Task Group ... 91
9.1. Defining Startup and Cleanup Procedures .. 91

9.1.1. Defining the Initialization Procedure ... 91
9.1.2. Defining the Termination Procedure ... 92
9.1.3. Defining the Cancellation Procedure ... 94

9.2. Defining and Building the Task Group .. 96
9.2.1. Naming Forms .. 96
9.2.2. Naming the Tasks in the Task Group .. 96
9.2.3. Naming the Procedure Server and Workspaces .. 96
9.2.4. Compiling the Task Group Definition ... 97
9.2.5. Building the Task Group .. 98

9.3. Linking the Server Image ... 99
9.4. Testing a Task in the ACMS Task Debugger .. 99

Chapter 10. Defining and Building the Application ... 103
10.1. Defining the Application ... 103

10.1.1. Application Characteristics ... 103
10.1.2. Server Characteristics ... 103
10.1.3. Task Characteristics ... 104

10.2. Compiling the Application Definition .. 104
10.3. Building the Application ... 105

Chapter 11. Defining and Building the Menu ... 107
11.1. Defining the Menu .. 107
11.2. Compiling the Menu Definition ... 108
11.3. Building the Menu .. 109

Chapter 12. System Management Requirements for Installing the Tutorial
Application .. 111

12.1. System Management Overview ... 111
12.2. Creating the EMPL_SERVER and EMPLOYEE_EXC Accounts 111
12.3. Authorizing ACMS Users ... 112
12.4. Authorizing ACMS Terminals ... 114
12.5. Authorizing ACMS Applications ... 115
12.6. Defining the ACMS$DIRECTORY Logical ... 116

Chapter 13. Installing and Running the Application ... 119

v

VSI ACMS for OpenVMSGetting Started

13.1. Installing the Application .. 119
13.2. Starting the Application .. 120
13.3. Running the Application ... 120
13.4. Stopping the Application and the ACMS System .. 122

Part III. AVERTZ Sample Application

Chapter 14. Before You Begin .. 125
Chapter 15. System Manager's View ... 127

15.1. Building the AVERTZ Application and Databases .. 127
Chapter 16. User's View .. 131

16.1. Entering AVERTZ .. 131
16.2. Customer Reserves a Car .. 131
16.3. Customer Checks Out a Car (Beginning the Rental) ... 136
16.4. Customer Checks In a Car (Ending the Rental) ... 138

Chapter 17. Behind the Scenes ... 141
17.1. Applications and Procedures ... 141
17.2. Task Definition Language ... 143
17.3. More AVERTZ 146

Appendix A. Utilities for Solving Problems in an ACMS Application 147
A.1. How ACMS Runs a Task ... 147
A.2. Audit Trail Logger ... 148
A.3. Software Event Logger .. 149
A.4. DECforms Trace Facility ... 149
A.5. ACMS Help Facility .. 150

Appendix B. Source Files Used in the Tutorial .. 151
B.1. Source Files ... 151
B.2. Accessing the Source Files ... 152

vi

Preface

1. About this manual
This manual provides introductory information to help you get started with ACMS for OpenVMS. The
manual includes a step-by-step tutorial for developing a simple ACMS for OpenVMS application. It
also provides an overview of the AVERTZ car rental sample application that ships with the ACMS for
OpenVMS software kit.

2. Document Structure
This document has the following structure:

• Part I contains an overview of ACMS for OpenVMS software and documentation. It contains the
following chapters:

• Chapter 1 describes the TP style of computing, its differences from traditional timesharing
computing, and the key features of an ACMS TP system.

• Chapter 2 provides an overview of the steps required to build an ACMS application.

• Chapter 3 describes what happens as ACMS executes the series of steps that make up a task.

• Chapter 4 provides an overview of managing the ACMS system and applications, and
describes the tools ACMS provides for this work.

• Chapter 5 outlines the ACMS product packages and describes ACMS documentation.

• Part II contains a step-by-step tutorial for developing a simple ACMS application. It contains the
following chapters:

• Chapter 6 contains a list of prerequisites for performing the tutorial and an overview of ACMS
application development concepts.

• Chapter 7 describes in step-by-step detail how to write the data entry task using ACMS,
DECforms, and CDD definitions.

• Chapter 8 describes in step-by-step detail how to write the inquiry/update task using ACMS,
DECforms, and CDD definitions.

• Chapter 9 describes how to combine the data entry task and the inquiry/update task into a task
group. It also describes how to write startup and cleanup procedures, how to link the object
modules into a server image, and how to test the tasks using the ACMS Task Debugger.

• Chapter 10 describes how to write the application definition and then build this definition into
an application database that ACMS uses at run time.

• Chapter 11 describes how to write the menu definition and then build this definition into a
menu database that ACMS uses at run time.

vii

Preface

• Chapter 12 describes procedures that the system manager follows to prepare for the
installation of the tutorial application.

• Chapter 13 describes how to install and run the tutorial application.

• Part III contains an overview of the AVERTZ car rental sample application that ships with the
ACMS for OpenVMS software kit. It contains the following chapters:

• Chapter 14 describes three perspectives of an ACMS system, the system manager's view, the
user's view, and the developer's view.

• Chapter 15 helps you build, install, and set up the AVERTZ sample application.

• Chapter 16 presents a fictional conversation and transaction between a reservation clerk
working for AVERTZ operations in New England and a customer who needs a rental car.

• Chapter 17 takes a brief look at some of the work involved in designing and developing an
ACMS application.

• Appendix A describes how ACMS runs a task, and introduces some utilities that are available to
help you solve problems in running a new ACMS application.

• Appendix B lists the source files created by the tutorial in Part II and describes how to access the
online versions of these files.

3. Related Documents
The following table lists the books in the ACMS for OpenVMS documentation set.

ACMS Information Description
VSI ACMS Version 5.0 for OpenVMS Release
Notesdag

Information about the latest release of the
software

VSI ACMS Version 5.0 for OpenVMS
Installation Guide

Description of installation requirements, the
installation procedure, and postinstallation tasks.

VSI ACMS for OpenVMS Getting Started Overview of ACMS software and documentation.
Tutorial for developing a simple ACMS
application. Description of the AVERTZ sample
application.

VSI ACMS for OpenVMS Concepts and Design
Guidelines

Description of how to design an ACMS
application.

VSI ACMS for OpenVMS Writing Applications Description of how to write task, task group,
application, and menu definitions using the
Application Definition Utility. Description of how
to write and migrate ACMS applications on an
OpenVMS Alpha system.

VSI ACMS for OpenVMS Writing Server
Procedures

Description of how to write programs to use
with tasks and how to debug tasks and programs.
Description of how ACMS works with the APPC/
LU6.2 programming interface to communicate
with IBM CICS applications. Description of how

viii

Preface

ACMS Information Description
ACMS works with third-party database managers,
with Oracle used as an example.

VSI ACMS for OpenVMS Systems Interface
Programming

Description of using Systems Interface (SI)
Services to submit tasks to an ACMS system.

VSI ACMS for OpenVMS ADU Reference
Manual

Reference information about the ADU
commands, phrases, and clauses.

VSI ACMS for OpenVMS Quick Reference List of ACMS syntax with brief descriptions.
VSI ACMS for OpenVMS Managing
Applications

Description of authorizing, running, and
managing ACMS applications, and controlling
the ACMS system.

ACMS for OpenVMS Remote Systems
Management Guide

Description of the features of the Remote
Manager for managing ACMS systems, how to
use the features, and how to manage the Remote
Manager.

Online help dag Online help about ACMS and its utilities.
Available online only.

dagAvailable on line only.

For additional information on the compatibility of other software products with this version of ACMS,
refer to the VSI ACMS for OpenVMS Software Product Description (SPD 25.50.xx).

For additional information about the Open Systems Software Group (OSSG) products and services,
access the following OpenVMS World Wide Web address:

tbs

4. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who
have OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product. Users who have OpenVMS support contracts through HPE should contact their
HPE Support channel for assistance.

5. Conventions
VMScluster systems are now referred to as OpenVMS Cluster systems. Unless otherwise specified,
references to OpenVMS Cluster systems or clusters in this document are synonymous with
VMScluster systems.

The contents of the display examples for some utility commands described in this manual may differ
slightly from the actual output provided by these commands on your system. However, when the
behavior of a command differs significantly between OpenVMS Alpha and Integrity servers, that
behavior is described in text and rendered, as appropriate, in separate examples.

In this manual, every use of DECwindows and DECwindows Motif refers to DECwindows Motif for
OpenVMS software.

The following conventions are also used in this manual:

ix

Preface

Convention Meaning
Ctrl/ x A sequence such as Ctrl/ x indicates that you must hold down the key labeled

Ctrl while you press another key or a pointing device button.
PF1 x A sequence such as PF1 x indicates that you must first press and release the key

labeled PF1 and then press and release another key or a pointing device button.
Return In examples, a key name enclosed in a box indicates that you press a key on the

keyboard. (In text, a key name is not enclosed in a box.)
… A horizontal ellipsis in examples indicates one of the following possibilities:

• Additional optional arguments in a statement have been omitted.

• The preceding item or items can be repeated one or more times.

• Additional parameters, values, or other information can be entered.
.

.

.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

() In command format descriptions, parentheses indicate that you must enclose the
options in parentheses if you choose more than one.

[] In command format descriptions, brackets indicate optional choices. You can
choose one or more items or no items. Do not type the brackets on the command
line. However, you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an assignment
statement.

[|] In command format descriptions, vertical bars separate choices within brackets
or braces. Within brackets, the choices are options; within braces, at least one
choice is required. Do not type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required choices; you must
choose at least one of the items listed. Do not type the braces on the command
line.

bold text This typeface represents the introduction of a new term. It also represents the
name of an argument, an attribute, or a reason.

italic text Italic text indicates important information, complete titles of manuals, or
variables. Variables include information that varies in system output (Internal
error number), in command lines (/PRODUCER= name), and in command
parameters in text (where dd represents the predefined code for the device type).

UPPERCASE
TEXT

Uppercase text indicates a command, the name of a routine, the name of a file,
or the abbreviation for a system privilege.

Monospace
type

Monospace type indicates code examples and interactive screen displays.

In the C programming language, monospace type in text identifies the following
elements: keywords, the names of independently compiled external functions
and files, syntax summaries, and references to variables or identifiers introduced
in an example.

- A hyphen at the end of a command format description, command line, or code
line indicates that the command or statement continues on the following line.

x

Preface

Convention Meaning
numbers All numbers in text are assumed to be decimal unless otherwise noted.

Nondecimal radixes—binary, octal, or hexadecimal—are explicitly indicated.

xi

Preface

xii

Part I. Introduction
This part provides an overview of VSI ACMS for OpenVMS software and documentation.

1

2

Chapter 1. Product Overview
The ACMS transaction processing system is a TP monitor that runs on the OpenVMS operating
system. It is intended for businesses that require high performance, security, data integrity, and both
centralized and distributed processing. Retail, banking, financial services, telecommunications, health,
customer service, manufacturing, and insurance are some of the industries that can make use of the
ACMS system.

With ACMS, businesses can shrink development time for their applications, streamline application
maintenance, and lower the cost per transaction. Applications can be configured for distribution over
many systems, providing a flexible response to changes in business conditions. The open-ended
OpenVMS architecture and networking allow for growth without disruption of services.

This chapter describes the TP style of computing, its differences from traditional timesharing
computing, and the key features of an ACMS TP system.

1.1. Transaction Processing
Transaction processing allows businesses to maintain timely and accurate data about their
operations. Many users access the same database or databases to perform a series of steps related to a
business function. Each activity represents a transaction. Transactions can occur between a user and a
computer, or just among computers.

The applications written for transaction processing usually involve updating a database and notifying
the user that the change has taken place as intended. Maintaining up-to-date, accurate databases is an
essential function of transaction processing applications.

Examples of typical TP applications include processing a customer's request for withdrawal or deposit
of funds, maintaining a retail store's online inventory, and cross-referencing and updating of patients'
medical records.

In these cases, many users from different locations want access to the same database, at the same time,
for a specific business activity. As a result, high availability, rapid response time, and data integrity
are important criteria for a TP system.

Other important requirements of a TP system are:

• Systems must be capable of growing.

• Databases must be available and stay reliable throughout transaction processing.

• The TP system must allow for different levels of technical sophistication for its users.

1.2. TP and Timesharing
Before transaction processing systems became a reality, first batch processing and then timesharing
were the computing styles that handled the large volume of data transactions necessary for business.

In a timesharing system, each user has a separate process, and computer resources are parceled out
according to a schedule that makes it appear that each process has the full attention of the central
processing unit (CPU). Some processes can interact with a database; others can run word processing,
a spreadsheet, or other interactive software. Figure 1.1 shows a typical timesharing system, which has
many users using display terminal s and interacting with a CPU.

3

Chapter 1. Product Overview

Figure 1.1. Traditional Timesharing Environment

TP applications are typically high-volume, online applications with repetitive operations on data
critical to the mission of a business. In a traditional timesharing system, these applications can tax
system resources because each user requires a separate process.

Specialized transaction processing systems were developed to make more efficient use of system
resources and to provide utilities for managing and controlling these complex applications. Figure 1.2
illustrates a transaction processing system environment.

Figure 1.2. Transaction Processing System Environment

A TP system, like a typical timesharing system, has many users, but they do not each require a
separate process. Instead, a TP monitor manages access to the CPU, functioning like a specialized
operating system within your operating system.

The TP monitor can include facilities for terminal and forms management, data management, network
access, authorization and security, and restart/recovery. These facilities allow you to control what
users do, how often they do it, and when they do it.

1.3. ACMS TP Monitor Features
ACMS is a TP monitor that provides a development, run-time, and application management system
for TP applications. It is designed for a modular, flexible development style and efficient use of
system resources in large on-line applications.

4

Chapter 1. Product Overview

ACMS combines a structured, high-level application definition language and utilities to build,
manage, and control complex applications. The modular nature of ACMS applications makes them
more efficient to develop and run, and easier to maintain than traditional applications programs.
ACMS applications can be modified by changing individual components, rather than rewriting the
entire application.

ACMS is also part of an integrated application development environment which includes presentation
services, transaction and database management, programming languages, and tools.

1.3.1. Configuration Options
Terminal, menu, and other input/output (I/O) functions are separated in ACMS from database or file
processing and computational functions. The terminal and menu functions are handled on the front
end of the transaction processing system, while the data processing and computation are performed
on the back end of the system. Figure 1.3 illustrates the operation of ACMS front-end and back-end
processing.

Figure 1.3. Front-End/Back-End Processing in a Local ACMS System

The separation of functions in ACMS makes it possible for you to distribute ACMS applications
across a network of computers, installing front-end functions on one or more nodes and back-
end functions on another set of nodes in the network. In a distributed transaction processing
environment, the front end is also called the submitter node, because it is the node from which tasks
are selected and sent to the back-end node. The back end is also called the application node, because
it is the node on which the application execution and data processing are performed.

Figure 1.4 illustrates an ACMS system environment distributed across a network.

Figure 1.4. Distributed ACMS System

5

Chapter 1. Product Overview

1.3.2. Efficient Use of System Resources
Most TP applications put heavy demands on computer processing power and memory resources. An
important requirement for TP applications is that they make efficient use of the resources available.
With a traditional TP system, structuring applications to minimize the strain on a system can demand
additional design and programming time. ACMS is designed to use computer resources, such as
memory and CPU, efficiently to help maximize run-time performance.

ACMS uses dedicated OpenVMS processes to manage terminal I/O, execute processing and data
manipulation subroutines, and control the application run-time system.

ACMS has a multithreaded internal design. In a system that uses multithreaded processes, a single
process can manage more than one user or process at the same time. On the front end of an ACMS
system, a single process can display forms and menus for many users rather than have each user need
a separate process to do this work. On the back end, a single process can handle the flow control, or
the complex coordination of data processing and computations, of each user's work rather than have
OpenVMS manage each user's process separately. Also on the back end, rather than each user using
a separate process to access the database, a single process can manage paths into the database for
many users at one time. To help you manage heavy system use, ACMS allows you to create additional
processes on the back end as the need arises.

The separation of functions in ACMS makes it possible to increase the speed and reliability of
ACMS transactions by distributing the front-end and back-end functions across a network. You can
offload forms processing to a smaller front-end computer, like a MicroVAX, and use more powerful
computers, like a VAX 8800 or a VAX 9000, for back-end data processing. You can configure each
node in the distributed system for the processing of specific tasks.

1.3.3. Easy System Expansion
It is easy to expand an ACMS system to meet your growing business needs. Without rewriting your
application code, you can distribute existing ACMS applications or add nodes to an existing network
of distributed ACMS applications.

You can install and run ACMS applications on the full range of VAX and Alpha computers, from the
small MicroVAX to the powerful VAX 9000 mainframe.

To accommodate more users, you can add small clusters of VAX and/or Alpha computers as front-
end nodes to handle additional terminal and forms processing. To increase application processing
capabilities, you can add high-performance VAX and/or Alpha computers as back-end nodes.

1.3.4. Availability
By distributing the forms processing functions of an ACMS application, you can make the system
more available in the event of system failures. Using the features of DECnet network software,
OpenVMS Cluster networks, and volume shadowing, ACMS eliminates single points of system
failure and significantly increases the amount of time your applications are available to you.

Figure 1.5 illustrates a configuration in which an ACMS system uses MicroVAX computers in a local
area OpenVMS Cluster network as front-end submitter nodes, and uses a back-end OpenVMS Cluster
for database or file functions.

The configuration in Figure 1.5 ensures that an application is available under the following
circumstances:

6

Chapter 1. Product Overview

• If one node in the local area OpenVMS Cluster becomes unavailable, users are automatically
routed to an available front-end node in the OpenVMS Cluster. The front-end terminal I/O is
automatically handled by the available node. Using LAT terminals can provide additional failover
capabilities on a front end.

• If one back-end node becomes unavailable, ACMS routes transactions to another back-end node.
Database or file recovery is provided for the failed node, restoring the database or file to its
original condition.

• If a single disk becomes unavailable, volume shadowing transparently provides a replacement for
it.

For more information on configuring your ACMS system for high availability, see VSI ACMS for
OpenVMS Managing Applications.

Figure 1.5. OpenVMS Cluster Configuration in a Distributed ACMS System

7

Chapter 1. Product Overview

1.3.5. Queued Tasks
Some ACMS applications use data that is collected and processed interactively. The application
displays a menu or a form on a video terminal through which users enter data. Then the application
processes the data and either displays the results of the processing or requests more data.

Other ACMS applications require that data be collected once and then stored in a temporary storage
area, or queue, for the application to process at another time. For these types of applications, data
can be collected using a device other than a terminal, such as a card-punch time clock, and sent to a
special ACMS queuing facility. The ACMS queuing facility lets you place tasks in a queue and then
submit the tasks for processing at another time. Using the queuing facilities provided by ACMS, you
can design applications to immediately process in real-time (such as capturing data), and alternatively
defer processing of work that does not require real-time processing until later.

Applications that benefit from queuing have the following types of requirements:

• Data capture and deferred processing of data

An example of this type of application is one that processes hundreds of time cards in a very short
time during a shift change. In this type of application, processing each data item immediately
can affect system performance and be costly in the use of system resources. Employees would
have to wait in line while each time card was read into the system and then processed. The ACMS
queuing facility lets you capture the data quickly and store it for future processing.

• High application availability

In a distributed environment, if the back-end node becomes unavailable, the front-end node can
continue to submit tasks to queues. When the back-end node becomes available, the ACMS
queuing facility automatically submits the tasks for processing.

• Data and transaction integrity

If the system becomes unavailable while processing a queued task, the ACMS Queued Task
Initiator (QTI) continues trying to submit that task. As with all ACMS queued tasks, the dequeue
(removal from the queue) and database updates are all tied together as a single transaction,
ensuring that database updates will take place once and only once. The changes that the task was
making to the database at the time of failure are not made permanent until the task succeeds. This
is one way that ACMS can ensure the integrity of your database.

For more information on ACMS queues, see VSI ACMS for OpenVMS Writing Applications.

1.3.6. Modular Applications
ACMS applications are made up of a set of component definitions that describe and control the
work of an application, and a set of subroutines that access databases and files. You use the ACMS
Application Definition Utility(ADU) for creating and processing the component definitions of an
ACMS application. To write application subroutines, called server procedures, you can use any
third-generation language that conforms to the OpenVMS Calling Standard, such as C or COBOL.

ADU includes a high-level, English-like definitional language. You use the statements and clauses
of the language to create definitions for each application component of an ACMS application. In
addition, you use ADU commands to process the definitions. When you process a definition, you
build a binary file from the definition that is interpreted at run time.

8

Chapter 1. Product Overview

ACMS applications are easier to develop and maintain than traditional applications because modular
definitions replace system programming calls. Developing sets of component definitions and
application subroutines emphasizes the principles of structured programming. As a result, you can
divide responsibilities for developing parts of an application among many programmers.

The modularity of ACMS applications also makes maintenance easier. Terminal I/O is separate
from data processing, and application logic is separate from system and application management. To
change an application, you make changes to a component's definition, rather than rewrite the entire
application.

Chapter 2 provides an introduction to developing ACMS applications. For detailed information on
developing applications using ADU, see VSI ACMS for OpenVMS ADU Reference Manual and VSI
ACMS for OpenVMS Writing Applications.

1.3.7. Data and Transaction Integrity
TP systems must ensure that data remains consistent and work remains intact if the system or database
becomes unavailable. Using data management products and the DECdtm Services for OpenVMS(a
collection of OpenVMS services that provide for the management of distributed transactions), ACMS
provides full data and transaction integrity and consistency.

A resource manager controls shared access to a set of recoverable resources, such as a database. In
an application that accesses a single database or set of files, resource managers ensure integrity by
providing rollback recovery. Resource managers available to ACMS include RMS, Rdb, and DBMS.
When a database transaction updates a database, the resource manager commits the change when
the transaction ends. Committing the change makes it permanent. If the system or database becomes
unavailable before the database transaction ends, the resource manager rolls back the database,
returning it to the state it was in before the transaction started.

For applications that use distributed transactions, that is, a single grouping of operations on more
than one recoverable resource or resource manager, the DECdtm services provide rollback recovery
following a two-phase commit protocol. Two-phase commit protocol ensures that, when changes
are made to data during a distributed transaction, either all resource managers commit the distributed
transaction or all work will be rolled back.

The two phases of the protocol are:

• Prepare phase, in which each resource manager indicates a willingness to commit

• Commit phase, in which each resource manager is instructed by the controlling transaction
manager to either commit and roll forward, or abort and roll back

Typically, you use DECdtm services when you design an application that:

• Processes data in more than one database or file on a single node or across a network

If a transaction is prevented from completing anywhere on a network, the entire transaction is
rolled back to its starting point, and your work can be recovered.

• Queues tasks and their data

DECdtm services guarantee that a queued task is entered on the queue and that the task is not
removed from the queue until the data is processed successfully exactly once.

9

Chapter 1. Product Overview

DECdtm components include a transaction manager and resource managers. The transaction manager
oversees the phases of a two-phase commit for either a database transaction or an ACMS queuing
facility operation. Resource managers (such as Rdb, DBMS, and RMS) manage the access to their
recovery data and databases.

Each node in the network has its own DECdtm transaction manager and one or more of the supported
resource managers. For each transaction, a DECdtm transaction manager tracks which resource
managers are being used to process data. If an event on the system keeps the transaction from
completing anywhere on a network, all databases affected by that transaction are rolled back to their
original state.

You can also design applications that use the ACMS queuing facility to place tasks in a queue file.
The ACMS queuing facility uses DECdtm services to ensure that every task on the queue is processed
exactly once. In a distributed system, tasks and their data can be entered on the front-end queue. If the
back-end node becomes unavailable, the tasks and their data are held in the queue. When the back-end
node becomes available again, the tasks are submitted for processing.

1.3.8. Security
ACMS ensures that your data remains secure by giving you control over which users have access to
ACMS. Using OpenVMS and ACMS authorization facilities, you can:

• Authorize users to use ACMS

• Control terminals connecting to ACMS

• Limit the applications a user can run

For example, you can give a personnel employee access to a task that updates a confidential file, but
ensure that the employee cannot view sensitive information in the file, make unauthorized changes to
the file, or gain access to the file outside the context of the task.

For a more detailed introduction to defining access to ACMS and applications, see Chapter 4. For
details on managing an ACMS system, see VSI ACMS for OpenVMS Managing Applications.

1.3.9. Presentation Services
Users select and run ACMS tasks from menus. Figure 1.6 shows a sample ACMS menu.

10

Chapter 1. Product Overview

Figure 1.6. Sample ACMS Menu

To create menus, ACMS supports DECforms, a forms product running on the OpenVMS operating
system, as its primary presentation service. In addition, ACMS provides support for VAX Terminal
Data Management System (TDMS). DECforms is the first commercial implementation of the
proposed ANSI/ISO standard Form Interface Management System (FIMS), a system for interaction
between applications and display devices. Using DECforms, you can write a forms application
program (which describes the function of a display) separately from the user interface of the display
(such as a menu or form).

ACMS uses standard menus in both DECforms format and TDMS format. You can easily customize
these standard menus. For more information on using DECforms or TDMS, see the appropriate
product documentation. For an example of using DECforms to create standard ACMS menus, see
Chapter 11.

ACMS provides support for other presentation service products. Using the ACMS Request Interface
and the ACMS Systems Interface, you can create applications that use forms management products,
such as FMS, or special devices, such as electronic badge readers.

The Request Interface allows you to use presentation services other than DECforms or TDMS for I/
O functions limited to one user per process. ACMS provides an easy-to-use programming interface
with the Request Interface to forms products such as FMS (Forms Management System), SMG
(Screen Management Facility), terminal interface products from other vendors, and menus in an ALL-
IN-1 office integration system.

The Systems Interface allows you to use presentation services for single-user or multiple-user I/
O functions. The Systems Interface provides a set of software system services that give systems
programmers the flexibility to design customized interfaces for complex systems or devices, such as
badge or bar code readers.

For more information on using the Request Interface, see VSI ACMS for OpenVMS Writing
Applications. For more information on using the Systems Interface, see VSI ACMS for OpenVMS
Systems Interface Programming.

11

Chapter 1. Product Overview

1.4. OpenVMS Support
ACMS is part of a family of software products designed to help you manage data in all areas of your
organization. Layered on the OpenVMS operating1 system, these products work together with high-
level programming languages to provide a total information management system you can tailor to
your needs. Depending on your needs, you can choose from a variety of products for front-end I/O
functions as well as back-end data management functions.

The following sections introduce some of the products you can use with ACMS to build a transaction
processing system.

1.4.1. Data Management Products
DECdtm services for OpenVMS, the distributed transaction manager, ensures the integrity of data on
back-end nodes in an ACMS application. The application and databases can be installed on a single
node or distributed in a VSI network. DECdtm services support the following data management
systems, which you can use individually or in combination:

• Rdb, a relational database management system

Rdb is a full-function relational database management system for general purpose, multiuser,
centralized or distributed TP applications. It is relatively easy to use, yet provides high
performance and the ability to restructure data relationships.

Use Rdb if the structure of your database is expected to change significantly over time. You can
use the SQL data definition and manipulation language with Rdb databases.

• DBMS, a CODASYL-compliant network database management system

DBMS is a high-performance database management system for general purpose, multiuser TP
applications in which the relationships between different parts of the database are very complex.

Use DBMS for applications that involve complex but relatively stable data relationships and
predictable information requests.

• RMS, a record management system

RMS is the OpenVMS operating system's default file management system with optional
journaling. (Journaling is the process of recording information about operations on a file into a
recoverable resource.) Access to data stored in RMS files can be either sequential or random, with
the random access being either by key (for indexed files) or by record number (for relative files).

• Other database products or file management systems that support the OpenVMS Calling Standard

1.4.2. CDD Data Dictionary
The CDD data dictionary system provides a central storage location for data descriptions and
definitions shared by ACMS, other related products, and programming languages.

The CDD data dictionary:

• Ensures the integrity of shared metadata and the procedures used to analyze, maintain, manage,
and design business metadata

• Provides a centralized repository for information management shops

12

Chapter 1. Product Overview

• Offers a dynamic aid to software application development

1.4.3. Programming Languages and Tools
As a member of a family of layered software products, ACMS makes use of high-level programming
languages and tools.

You can write and debug application programs using a variety of high-level programming languages,
including COBOL, FORTRAN, and C, and the OpenVMS Debugger. You can use any high-level
language that adheres to the OpenVMS Calling Standard.

VSI also provides a group of programming productivity tools, called DECset, that help you code, test,
manage, and maintain applications. DECset tools include:

• DEC/Code Management System (CMS)

CMS is a program source file library for software management and version tracking.

• DEC/Module Management System (MMS)

MMS is a tool that automates and simplifies the building of software systems.

• Language-Sensitive Editor (LSE)

The Language-Sensitive Editor (LSE) is a multilanguage editor that helps you quickly and
accurately write application programs. Templates for commands and statements in a variety of
languages and layered products, including ACMS, SQL, and DECforms, are provided with LSE.

• Source Code Analyzer (SCA)

SCA is a multilanguage, interactive cross-reference and static analysis tool that can help you
understand the complexities of a large software project.

• Performance and Coverage Analyzer (PCA)

PCA is a tool that analyzes program test coverage and the run-time behavior of your application.

• DEC/Test Manager (DTM)

DEC/Test Manager is a tool that organizes and automates the performance and evaluation of
software tests.

For more information about programming productivity tools, see A Methodology for Software
Development Using OpenVMS Tools, or the documentation for each individual product.

Oracle Trace is a tool that collects data and creates detailed reports on events that occur when an
ACMS application runs. The information you collect with Oracle Trace can help you tune your
ACMS system and improve performance.

For information on using Oracle Trace with ACMS applications, see VSI ACMS for OpenVMS
Managing Applications.

1.5. Professional Services and Support
VSI offers services to help with the design and development of ACMS applications, as well as support
during the implementation and management of applications during run time. Services include:

13

Chapter 1. Product Overview

• Training for application designers, developers, and system mangers

• Training on related OpenVMS layered products

• Design and development consulting services

• Software support and problem-solving

• Software tool kits designed to help in the building of a TP system

For information on available TP system support services, see your VSI representative.

1.6. Overview of the ACMS Application
Development Life Cycle
The application development life cycle is an approach and process for developing complex software
applications in discrete segments, called phases.

The first phase in the life cycle for ACMS applications is the preparation of the design and
development environment. This phase involves the installation of ACMS and other related software
tools.

The second phase in the life cycle is the planning and design of the forms, databases, and applications.
In building the TP system, system designers determine what business functions the application must
address, and map those business functions to software and hardware capabilities.

The third phase in the life cycle is the development and testing of the forms, databases, and
applications that were designed during the planning and design phase. In addition to developing
forms and databases, application developers also define ACMS application components, generally for
several different applications.

The fourth phase in the life cycle is the implementation and management of the TP system. System
managers set up hardware for users, and move the TP applications into the user environment. Once
the applications are in the users environment, the system manager maintains that environment.

Figure 1.7 shows how the phases fit together for a complete transaction processing development
system.

The next three chapters describe the development, implementation, and management of ACMS
applications.

14

Chapter 1. Product Overview

Figure 1.7. Interaction of the Phases of the ACMS Application Development Life Cycle

15

Chapter 1. Product Overview

16

Chapter 2. Developing ACMS
Applications
With the ACMS software you can develop applications to automate business functions. An ACMS
application is made up of a set of components and third-generation programming language code.

The components of an ACMS application are:

• Task definitions to describe units of work

• Task group definitions to describe the resources required by a group of tasks

• Application definition to describe the environment and control characteristics of tasks and task
groups

• Menu to display a list from which terminal users can choose an available task

You use the ACMS Application Development Utility (ADU) to develop these components. ADU
provides a high-level English-like definitional language that you use to write definitions for each
component. After you write the component definitions, you use ADU to create binary versions of the
files. These binary files are called database files. Although these binary files are known as database
files or databases, they differ from traditional databases in which you can store and access data. For
example, after you write a menu definition, you use ADU to build the menu database. At run time,
ACMS uses the database files to run and control the application.

Figure 2.1 shows the relationships of the component definitions. One or more tasks make up a task
group, and one or more task groups make up an application.

Figure 2.1. ACMS Application Components

Because ACMS applications are made up of sets of components, they are more efficient to run and
easier to maintain than traditional application programs. ACMS task definitions separate forms
processing from data processing. At run time, this separation helps ensure an efficient use of system
resources. Maintaining the application is also simplified. Because each application component is a
separate definition, you can modify applications by changing individual components, rather than
rewriting the entire application.

This chapter provides an overview of the steps you take to build an ACMS application:

1. Map business functions to tasks.

2. Define the tasks.

3. Define the resources for groups of tasks.

4. Define the run-time characteristics for an application.

17

Chapter 2. Developing ACMS Applications

5. Define the forms and menus.

6. Debug and test the application.

2.1. Mapping Business Functions to Tasks
Each application is designed to meet a business need and automate a business function. In ACMS,
the functions of a business relate to the tasks in an application. By analyzing the business needs, an
application designer can make decisions about how best to map the business functions to ACMS
tasks. The application design takes into consideration how users will work with the application as well
as how the application will use system resources. When the design is complete, the job of defining
ACMS application components and writing programming language code begins.

For more information on ACMS application design decisions, see VSI ACMS for OpenVMS
Concepts and Design Guidelines.

2.2. Defining Tasks
In ACMS, a set of tasks in an application relates to a set of business functions. Tasks in a retail sales
application might be recording a new sale and updating the inventory database. Each task, in turn, is
made up of a series of steps that perform the actual work. The user can select one of these tasks from
a menu. Figure 2.2 shows the basic structure of an ACMS transaction processing application.

18

Chapter 2. Developing ACMS Applications

Figure 2.2. Structure of an ACMS Application

Tasks are the building blocks of an ACMS application. They are the units of work a user selects from
an ACMS menu.

From a user's point of view, a task is a single business transaction performed repeatedly during the
course of a day, such as recording a sale or updating an inventory database or file. Figure 2.3 shows
a simple menu that a sales or inventory clerk using a retail sales application might see. The clerk can
choose between tasks for recording a sale or updating inventory records.

19

Chapter 2. Developing ACMS Applications

Figure 2.3. Simple ACMS Menu

Although tasks appear as individual items on the menu, they are typically made up of a series of steps
that result in a change to a database or file. To share data among the parts of an application, ACMS
provides special buffers called workspaces. Workspaces, for example, pass data between steps in
the task and between tasks that work together in an application. The steps involved in updating an
inventory database or file, for example, might retrieve the current record of an item, enter the updated
information, and receive notification that the change was made correctly. ACMS uses workspaces to
pass the updated information and notification.

The following sections provide an introduction to task steps and workspaces.

2.2.1. Defining Task Steps
Task steps perform the basic work involved in each of the events that make up a business transaction.
You can separate the work to be accomplished by a task into the following types of task steps:

• Exchange steps handle data input/output, interacting with DECforms or TDMS forms, or with
other presentation services and devices using the ACMS Request Interface.

• Processing steps handle computation or interaction with databases or files. Processing steps
can use either a procedure written in a high-level programming language (such as COBOL,
FORTRAN, or BASIC), DCL commands, or OpenVMS images.

• Block steps collect the task steps (exchange and processing) into functional groups. Grouping task
steps makes the structure of the task definition more modular and, therefore, easier to develop and
maintain.

You use the ACMS task definition language to define these steps in an ACMS task definition. Task
definitions describe the exchange of information between the terminal user and the application,
and the processing of that information against the file or database. Typically, you define a task that
includes more than one step. For example, you can define a two-step data entry task that consists of:

20

Chapter 2. Developing ACMS Applications

• An exchange step to display a form that prompts the user to supply information such as a stock
number and a description of an inventory item

• A processing step to write the information the user supplies to a database or file

Figure 2.4 shows a form you might see after selecting the Sale task from the menu in Figure 2.3. An
exchange step displays the form and prompts the sales clerk to enter a stock number, a description of
the item, and whether the sale is cash or charge. A processing step records the sale, subtracts the item
from the store's inventory, and prints an invoice for the customer.

Figure 2.4. Simple Form for a Sales Task

You can define more complex tasks in multiple-step tasks, which contain a sequence of exchange
and processing steps. For example, a task that displays and updates an inventory record is made up of
two exchange steps and two processing steps:

1. An exchange step in which the user supplies information to a form on a terminal, in this case the
item whose inventory record is to be updated

2. A processing step in which a procedure reads the item's inventory record from the database or file

3. An exchange step in which the inventory record is displayed in a second form on the terminal and
the user updates the record

4. A processing step in which the updated record is written to the database or file

Figure 2.5 shows the sequence of exchange and processing steps for a simple inventory update task a
warehouse clerk might select from the menu in Figure 2.3.

21

Chapter 2. Developing ACMS Applications

Figure 2.5. Task Steps for an Inventory Update Task

After the warehouse clerk selects the inventory update task, an exchange step displays a query form
and prompts the clerk to supply the inventory item to be updated, in this case widgets. A processing
step calls a procedure that reads the widget inventory record. A second exchange step displays the
inventory, in this case 0 widgets, in an update form, and allows the warehouse clerk to update the
record to reflect the arrival of 100 widgets. The final processing step calls a procedure that stores the
updated record in the inventory database or file.

2.2.1.1. Writing Server Procedures

Processing steps can run server procedures written in a high-level programming language.
ACMS supports all programming languages that conform to the OpenVMS Calling Standard, such
as COBOL, FORTRAN, or C. You use OpenVMS utilities to write, debug, and compile server
procedures.

When all the procedures you need for a task or group of tasks are ready, you link the procedures to
create a single procedure server image. At run time, ACMS creates at least one special process
called a procedure server process, and activates and loads the procedure server image. When a user
selects a task that uses the procedures, ACMS runs the programs. Figure 2.6 shows the parts of a
procedure server.

22

Chapter 2. Developing ACMS Applications

Figure 2.6. Parts of a Procedure Server

In addition to the step procedures that run in processing steps, you can write special procedures to
maximize system resources, including:

• Initialization procedures to open all the files and to ready any databases needed by a group of
tasks

• Termination procedures to close at one time all the files and any databases used by a group of
tasks

• Cancel procedures to clean up context held by a task in a server when the task cancels before
completing successfully

When you create a procedure server, you include any initialization, termination, and cancel procedures
as part of the procedure server image. These special procedures can help conserve system resources
because the work they do is done once for the group of tasks that use the procedure server.

For more information on creating procedure servers, see VSI ACMS for OpenVMS Writing Server
Procedures.

2.2.1.2. Using DCL Servers
Processing steps can run OpenVMS images, DIGITAL Command Language (DCL) commands,
and DCL command procedures. Tasks with these types of processing steps require a DCL server.
You define a DCL server in a task group definition.

DCL servers are useful for running:

• OpenVMS utilities, such as MAIL

23

Chapter 2. Developing ACMS Applications

• Existing programs you want to run under ACMS without converting immediately into ACMS
multiple-step tasks

• Third-party software required by some ACMS application users, such as spreadsheets

For more information on defining servers in task groups, see VSI ACMS for OpenVMS Writing
Applications.

2.2.2. Defining Workspaces
Workspaces are temporary storage areas used to pass information in an application. Workspaces can
pass data between:

• Steps in tasks

• Tasks in a task group

• Forms and tasks

• Processing steps and databases or files

For example, you use workspaces when you pass data from a form on a terminal to and from a
database or file. A workspace can contain data provided by a user at a terminal through an exchange
step or a processing step in the same task group. Tasks read information from workspaces and write
information to them.

ACMS maintains three system workspaces that are available to tasks. Each system workspace has a
different purpose:

• When a user selects a task, ACMS stores any text the user supplied in the ACMS
$SELECTION_STRING system workspace.

For example, when a user selects a task from a menu by entering a number and then text, the text
is stored in the ACMS$SELECTION_STRING system workspace. The task the user selected can
access the string stored in the workspace.

• When a task runs, ACMS stores the status of task steps in the ACMS$PROCESSING_STATUS
system workspace.

You can use the workspace to check for the status of a task step and take appropriate action.

• ACMS stores information about a user and the user's device in the ACMS
$TASK_INFORMATION system workspace.

For example, you can define a task that uses information about the user to determine what type of
work to perform.

2.3. Defining Resources for Groups of Tasks
All tasks belong to one or more task groups. A task group is a collection of one or more related tasks
that have similar processing requirements and share resources. A task group definition contains such
information as:

• Procedures called by the tasks in the group.

• DECforms forms used by the tasks in the group.

24

Chapter 2. Developing ACMS Applications

• TDMS request libraries used by the tasks in the group.

• Message files used by the tasks in the group.

• Procedure servers available to the task group and any special server attributes, including server
name and server image file specification, names of all step procedures handled by the server, and
optional initialization, termination, or cancellation procedures.

• Workspaces available to the task group.

See VSI ACMS for OpenVMS Writing Applications for information on defining task groups.

2.4. Defining Run-Time Characteristics for an
Application
The application definition describes the run-time characteristics for an ACMS application, its servers,
and its tasks. The run-time characteristics include information about which users can access tasks in
the application and whether an audit of the application runs.

Defining the control characteristics of an application separately from its tasks and task groups allows
you to use the tasks in different run-time environments.

You create an application definition using ADU. After you create the definition, you use ADU to
build the definition into a binary application database file. ADU compiles information from the task
group database file and the application definition to provide the ACMS run-time system with control
information, pointers to task groups, and information required to run tasks.

You can change many of the characteristics of an application while the application is running. The
changes remain in effect until the application is stopped. You make the changes permanent by
modifying the application definition.

For more detailed information on defining ACMS applications using ADU, see VSI ACMS for
OpenVMS Writing Applications and VSI ACMS for OpenVMS ADU Reference Manual. For
information on changing the characteristics of a running application, see VSI ACMS for OpenVMS
Managing Applications.

2.5. Defining Menus
Users select and run ACMS tasks from menus similar to those shown in Figure 2.3. Menus can
include two types of entries: tasks and other menus. Tasks do the work of an application; menus
display other tasks and other menus. Because a user can select one menu from another, application
programmers can build menu hierarchies or trees. One menu tree can make tasks from many
applications available, so users can access many applications from a single menu.

ACMS uses two presentation services, DECforms and TDMS, to display menus. The ACMS software
kit includes a DECforms form and a TDMS form for displaying standard menus. You can easily revise
the standard format to customize it to your application. You can also use the ACMS Request Interface
to include other menu formats in your applications, such as menus in an ALL-IN-1 office integration
system.

You create a menu definition for each menu you want to display. The definition describes the
characteristics of the menu, including the list of items on the menu and a description of each item.

25

Chapter 2. Developing ACMS Applications

In the standard DECforms and TDMS formats, the only information required in a menu definition
is the list of entries that appears on the menu. The menu definition includes an entry name for each
entry as it appears on the menu, and an entry type, which tells ACMS whether the entry is a task or
another menu. In Figure 2.7, the entry names are Sale, Inventory, Cancel, Return, and Complaint. The
entry type is indicated by the letters T, for task, and M, for menu, following the entry name. You can
include additional information in a menu, such as a menu title and text describing the entries.

Figure 2.7. Retail Transaction Menu with Task and Menu Entries

A menu can include tasks from more than one application. To execute a task from a menu, you can
select a task by

• Entry number

• Entry name

Depending on the design of your application, you can supply additional information to a selected
task following the task name or number in a menu. In Figure 2.7, for example, you can specify the
Inventory task followed by an inventory item number at the Selection: prompt.

For more information on ACMS menus, see VSI ACMS for OpenVMS Writing Applications.

2.6. Debugging and Testing
Before you include a task group in your application, use the ACMS and OpenVMS debugging tools to
test and debug the task group, its member tasks, and procedures called by the tasks. The ACMS Task
Debugger allows you to examine individual tasks and find out how ACMS manages the branching
from one task to another. You use the OpenVMS Debugger to check whether or not procedures and
forms are correct.

The ACMS Task Debugger is the primary tool for debugging tasks because it lets you control tasks
while they are running. For example, you can pause at each step in a task. You can look at the values

26

Chapter 2. Developing ACMS Applications

in the task workspaces, change these values if necessary, and resume task execution where you left
off.

The ACMS Task Debugger helps you verify:

• Workspace contents at the beginning and end of a step

• Actions taken by task and server cancel procedures

• Recovery operations performed by ACMS

The ACMS Task Debugger uses the OpenVMS Debugger to debug procedures in processing steps.
You use the OpenVMS Debugger to check whether or not procedures execute and variables contain
the values you expect. For example, you can pause after a procedure reads a record, check the values
in a task workspace, and then resume task execution.

ACMS also provides a way to debug running applications. You can debug servers while they are
running and obtain server process dumps for servers that stop unexpectedly.

For information on testing and debugging, see VSI ACMS for OpenVMS Writing Server Procedures.
For a step-by-step introduction to developing an ACMS application, see Part II.

27

Chapter 2. Developing ACMS Applications

28

Chapter 3. ACMS Run-Time System
ACMS applications run under the control of the ACMS run-time system. The run-time system
executes tasks according to the control characteristics in the application definition.

This chapter describes what happens as ACMS executes the series of steps that make up a task.
Each part of the task is discussed in terms of the OpenVMS and ACMS run-time processes and their
functions.

3.1. ACMS Processes
The ACMS run-time system is made up of eight specialized processes. Four processes manage the
processing of a transaction; four monitor and control the run-time system. Figure 3.1 shows the
processes that make up the ACMS run-time system. The following sections explain these specialized
processes.

Figure 3.1. ACMS Run-Time Processes

3.1.1. Transaction Processing Processes
The ACMS processes that manage the work of an ACMS transaction are:

• Command Process (CP)

• Queued Task Initiator (QTI)

• Application Execution Controller (EXC)

• Server process (SP)

29

Chapter 3. ACMS Run-Time System

A Command Process (CP) manages logins and interaction between terminals and ACMS. CPs
display menus, accept and interpret terminal user commands, and communicate with the Application
Execution Controller. An ACMS system can include more than one CP.

A CP separates an application's interactions with the terminal from its processing work. This
separation makes it possible to distribute the application, off-loading forms and menus to a front-end,
or submitter node, and concentrating computations and data processing on one or more back-end, or
application nodes.

The ACMS Queued Task Initiator (QTI) dequeues task elements that were placed in a queue by an
ACMS programming service, and initiates tasks in an application. For example, you can design a task
that places another task in a queue, allowing users and the application to continue working without
waiting for the queued task to complete. The QTI later executes the queued task.

The Application Execution Controller(EXC) processes the definitions of the tasks in an application,
managing all the tasks in an application simultaneously. The EXC is responsible for task security,
allocating workspaces, and scheduling, creating, and communicating with servers. The EXC
accepts messages from the CP or QTI (which invoke tasks on behalf of the user), passes forms for
exchange steps to the CP, creates server processes that call procedures in processing steps, and creates
workspaces for sharing data by tasks.

Each application on an ACMS system has its own execution controller. You can run more than one
application on a node and have more than one active EXC at a time.

The server process (SP) carries out the high-level programming language routines or DCL routines
that handle a task's processing work and database or file I/O. The SP calls the appropriate subroutine
for a task. The EXC uses the results to determine what to do next and passes the final task results to
the CP or QTI. Each application can use more than one server process.

The CP uses the menu database to display menus for a user. The EXC uses the task group database
to determine flow control for tasks and which server to call for a particular task. The EXC uses the
application database to determine such information as the process characteristics for server process
and security through an access control list (ACL) for a task. The ACL specifies which users can
execute a task.

3.1.2. Monitoring and Controlling Processes
The ACMS processes that monitor and control the run-time system are:

• ACMS Central Controller (ACC)

• Terminal Subsystem Controller (TSC)

• Audit Trail Logger (ATL)

• Software Event Logger (SWL)

The ACMS Central Controller (ACC) is the central control point for the ACMS run-time system. It
starts and controls the Terminal Subsystem Controller, the QTI, the EXC, and the Audit Trail Logger
(ATL).

The Terminal Subsystem Controller (TSC) is responsible for creating and controlling the number of
active CPs and for assigning terminals to CPs. The TSC starts and stops CPs as needed within limits
that you define. It also controls which terminals can access ACMS.

30

Chapter 3. ACMS Run-Time System

The Audit Trail Logger (ATL) is responsible for writing information about a running ACMS system
to the audit trail log file. The ATL keeps a record of when the ACMS system starts and stops, when
users log in, and when applications and tasks start and stop. The ACC always starts the ATL when the
ACMS system is started. With the Audit Trail Report Utility (ATR), you can create summary reports
based on information recorded by the ATL.

The Software Event Logger (SWL) records all software errors and event messages that occur during
the execution of ACMS application programs. The Software Event Log Utility Program (SWLUP)
allows you to create reports containing selected information recorded by the SWL.

3.2. Run-Time Processing of Tasks
When users log in to the OpenVMS operating system, OpenVMS starts a process for each of them.
However, when users sign in to the ACMS TP monitor, they share a single ACMS Command Process
(CP). The CP first confirms that a user is authorized to access ACMS; then it displays the user's menu
and accepts task selections.

When a user selects a task, the CP:

1. Determines to which application the task belongs

2. Locates the EXC for that application

3. Passes control to the EXC, which:

• Confirms that the user has access to the task

• Determines how the task handles terminal input/output

If a user does not have access to the task, the execution controller passes an error message to the CP
for display on the user's terminal.

After determining that a user has access to a task, the EXC:

1. Finds the task definition in the task group database

2. Allocates and initializes workspaces for the task

3. Executes the task

The EXC starts and stops SPs as needed within limits set by the application definition. The task
definition and the kind of processing the task does determine when and how long an SP is allocated.

VSI ACMS for OpenVMS Writing Applications provides more detailed information on the run-time
processing of ACMS tasks.

3.3. Run-Time Processing in a Distributed
Environment
With ACMS, you can separate terminal and menu functions from the run-time processing of an
application. This separation lets you run applications on a single computer, in an OpenVMS Cluster,
or across the nodes of a network. In a distributed environment, the presentation service providing
the terminal or device interface resides on a front-end processor, while the application managers and
databases reside on a back-end processor.

31

Chapter 3. ACMS Run-Time System

Separating an ACMS application's functions using a front end that manages terminal functions and a
back end that manages data processing has many benefits. For example, you can distribute your work
among several applications, each running on its own back-end process and each available to users
from a single menu. Users can select tasks and access the applications from a single menu on the front
end. By distributing the run-time processing of tasks, you can improve system performance and the
use of system resources.

Figure 3.2 shows the run-time processing of an application with terminal I/O shifted to a separate
front-end computer or OpenVMS Cluster.

At run time, ACMS handles user logins and task requests for applications running on a network in
much the same way it handles them for a single-node application. When a user enters ACMS, the CP
controls the user's terminal, managing logins and the display of menus.

For details on applications with separate front-end processing, see VSI ACMS for OpenVMS
Managing Applications, VSI ACMS for OpenVMS Writing Applications, and VSI ACMS for
OpenVMS ADU Reference Manual.

Figure 3.2. Run-Time Processing with a Separate Front End

32

Chapter 4. Managing ACMS Systems
and Applications
The ACMS system manager is responsible for the administration, performance, and operation of the
ACMS system. After an application is defined and tested, the system manager can make it available to
users by:

• Installing the application database in a protected directory (an operating system structure that
catalogs a set of files stored on a disk or tape)

• Authorizing users and terminals to access ACMS, the application, and tasks in the application

• Starting the ACMS system and application

• Monitoring applications

• Enabling applications to run with terminal I/O shifted to a front-end computer, an OpenVMS
Cluster network, or a set of computers

• Tuning the ACMS system by setting quotas, parameters, and privileges so the system runs
efficiently

This chapter provides an overview of managing the ACMS system and applications, and describes the
tools ACMS provides for this work. For a more detailed explanation of these features, see VSI ACMS
for OpenVMS Managing Applications.

4.1. Authorizing Access to ACMS
When many users share one OpenVMS system, it is important to control the facilities each user can
access. For example, some users might need access only to ACMS, while others need access to the
OpenVMS operating system as well as to ACMS.

An ACMS system manager uses three tools to control access to the ACMS system:

• The OpenVMS Authorize Utility controls user authorization in general. The Authorize Utility
sets up user accounts and assigns OpenVMS privileges and quotas for users. Privileges are
characteristics assigned to users or programs that determine which operations they can perform.
For example, to use most of the ACMS operator commands requires the OpenVMS OPER
privilege.

• The ACMS Device Definition Utility (DDU) controls which devices on a OpenVMS system
have access to ACMS applications, and determines whether a terminal is controlled by the
OpenVMS operating system or by ACMS. Authorized ACMS users at terminals controlled
by OpenVMS have access to both the OpenVMS operating system and ACMS, while users at
terminals controlled by ACMS have access only to ACMS. System managers can also use DDU to
allow users to sign in to ACMS automatically.

• The ACMS User Definition Utility (UDU) controls which authorized OpenVMS users can sign
in to ACMS and defines characteristics for each user. For example, system managers can use
UDU to define ACMS proxies, define which menu a user sees or what a user selects upon entering
ACMS.

33

Chapter 4. Managing ACMS Systems and Applications

See VSI ACMS for OpenVMS Managing Applications for information on how to use DDU and
UDU. See your OpenVMS system management documentation for more information about the
OpenVMS Authorize Utility.

4.2. Authorizing ACMS Applications
After application definitions are created and application databases are produced with the Application
Definition Utility (ADU), the system manager installs the application databases in ACMS
$DIRECTORY (a privileged directory). The system manager defines the location of this directory.

To ensure that only valid application databases are stored in ACMS$DIRECTORY, the ACMS
system manager uses the ACMS Application Authorization Utility (AAU) to create an application
authorization. This authorization describes characteristics of an application, such as who can install
the application database in ACMS$DIRECTORY and what names are valid for the application.

4.3. Controlling ACMS Applications
The ACMS operator commands let you install, start, stop, or modify applications, as well as control
which applications are available to which users. Starting and stopping applications individually helps
you control the use of resources and the availability of required files and databases.

When you start an application, ACMS allocates the resources the application needs. The tasks in
the application are then ready for users to select. When you stop an application, ACMS releases the
resources used by the application, and the tasks in the application are no longer available.

The following sections explain the types of information you can collect about the ACMS system,
applications, and users.

4.3.1. Displaying System and Application Information
Information about the current state of the ACMS system and active applications can be useful when
you are controlling the overall operations of an ACMS application. Before you start an application,
you can use the ACMS operator commands at DCL level to check whether or not the application
is already running, which users are signed in to ACMS, and what tasks are running. With ACMS
operator commands, you can display information about:

• One or more applications, including such information as a list of active server processes

• An active application, specifying the intervals at which you want to collect information about the
application

• The ACMS system, including a list of active users and applications

• One or more active ACMS users, including the users' names, active tasks, and device names

• One or more active tasks

• One or more active servers

• Task queues that are being processed by the Queued Task Initiator (QTI)

4.3.2. Receiving ACMS Operational Messages
ACMS sends status and other operational messages to terminals that are assigned as ACMS operator
terminals.

34

Chapter 4. Managing ACMS Systems and Applications

An operator terminal receives messages from ACMS if an application, the Audit Trail Logger (ATL),
or the Terminal Subsystem Controller (TSC) stops unexpectedly. The operational messages are also
logged in the software event log (SWL) file. An ACMS operator, who is authorized to use ACMS
operator commands, can find and correct problems more quickly with an authorized operator terminal
than with an error log file only.

4.4. Monitoring ACMS Applications
An important part of managing an ACMS application is keeping track of its activity. For example, you
might want to account for the computer resources that an application uses. You might also want to
keep track of who uses the applications and what tasks they run. Monitoring an application helps you
keep a system running efficiently.

The important tools for monitoring ACMS applications are:

• Audit Trail Logger (ATL), which gathers information about an active ACMS system and writes
the information to the audit trail log file

• Oracle Trace ™, a product that collects data about events that occur during application run time
and writes the information to a data file

• Software Event Logger (SWL), which records all software errors and event messages that occur
during the execution of ACMS application programs.

The following sections discuss the ATL, Oracle Trace, and the SWL. For more information about the
ATL, Oracle Trace, and the SWL, see VSI ACMS for OpenVMS Managing Applications.

4.4.1. Using the Audit Trail Logger
The audit log includes information about system and application starts and stops, user sign-ins and
sign-outs, processing errors, user task selections, and task completions. You can use this information
to determine who is using ACMS, what applications and tasks they are running, and what tasks have
been completed or canceled.

The Audit Trail Report Utility (ATR) generates a report containing information recorded by the ATL.
The ATR lets you specify the type and extent of information you want in a report, which can be either
displayed on a terminal or written to a file. For example, you can produce a report containing a list
of all tasks selected and all logins attempted between 9 a.m. and noon. Each record in the report
includes:

• Type of information in the record

• Time the record was created

• Description of the recorded event

4.4.2. Using Oracle Trace
Oracle Trace reports on events that occur when an application is in use. The data Oracle Trace collects
includes process statistics and performance information, such as the working set size at the time an
application event occurs. With Oracle Trace, you can collect information about:

• Use of resources

35

Chapter 4. Managing ACMS Systems and Applications

You can check such statistics as response time of an application's data processing and
computational functions.

• Ease of use

For example, you can use Oracle Trace to test the design of forms, steps, and tasks by tracing the
time it takes to complete a function.

• Users and use of applications

You can collect such information as how many times users complete a form or a task.

• Auditing information

With Oracle Trace, you can collect more detailed auditing information than with ACMS auditing
tools. For example, ACMS audit reports can indicate only that a task has started or stopped. With
Oracle Trace, you can collect details about the parts of a task.

4.4.3. Using the Software Event Logger
The Software Event Logger (SWL), which records all run-time software error and event messages, is
another useful tool for tracking errors that occur when an ACMS application is executing.

Each time an error occurs, ACMS writes a message to the SWL log file with information including:

• User information

• Process information

• System time

• Extended error information

The Software Event Log Utility (SWLUP) allows you to create reports using information recorded
by the SWL.

4.5. Tuning the ACMS System
Once you set your system parameters and quotas, you may have to tune your system occasionally.
ACMS provides two command procedures, ACMSPARAM.COM and ACMEXCPAR.COM, to
determine ACMS quotas and parameters after an ACMS installation or upgrade.

Performance of an ACMS application depends mainly on the design of the application and the amount
of resource sharing that takes place when the application is executing. In general, using ACMS
processes efficiently yields the best performance. When you want to improve system performance:

• Make sure you have adequate hardware resources for your workload

• Examine the design of your application in addition to tuning your operating system

VSI ACMS for OpenVMS Concepts and Design Guidelines contains information on how to design
your application to avoid performance problems.

See VSI ACMS for OpenVMS Managing Applications for information on fine tuning your
applications. Additional information to help you design your ACMS system and applications to run
efficiently appears throughout the ACMS documentation set.

36

Chapter 5. ACMS Product Kits and
Documentation
This chapter outlines the ACMS product kits and describes ACMS documentation. It summarizes the
contents and intended audience of each book in the documentation set.

5.1. ACMS Product Kits
ACMS is available in three software kits:

• ACMS Development System

The ACMS development system contains all the components you need to create and control
ACMS applications. You can define, build, and debug multiple-step tasks and task groups, as well
as menus and applications.

You must have the CDD dictionary installed on your system to run the full development kit.

The development system includes both the run-time option and the remote access option software.
This manual concentrates on the features of the development system.

• ACMS Run-Time Option

The ACMS run-time option lets you run existing ACMS applications or programs and change
application attributes (for example, menu definitions). With the run-time option, you can define
menus and applications, as well as tasks and task groups that use DCL servers.

The run-time option includes all the facilities of the development software except the ACMS
Task Debugger, and the ability to define multiple-step tasks that use server procedures. To modify
definitions, you must have installed CDD, which is optional with the run-time option. The run-
time option includes the remote access option software.

• ACMS Remote Access Option

The ACMS remote access option allows you to access ACMS applications running on other nodes
in a DECnet network from nodes that do not necessarily have any ACMS applications running
on them. The remote access option software lets you place users and the terminal input/output
associated with their tasks on one system (a front-end, or submitter, node) and the data storage
files on another (a back-end, or application, node).

5.2. ACMS Documentation
The following sections describe the ACMS documentation set. Each section is based on a phase of the
application development life cycle, and describes the appropriate documents for that phase of the life
cycle. The life cycle is illustrated in Figure 1.7.

5.2.1. Orientation and Installation
VSI ACMS for OpenVMS, Version 5.0 Release Notes

37

Chapter 5. ACMS Product Kits and Documentation

Audience
All ACMS users

Content
Includes specific information about the current ACMS release and contains material added too late for
publication in the ACMS documentation. The release notes are available on line only.

VSI ACMS Version 5.0 for OpenVMS Installation Guide

Audience
System managers

Content
Describes how to install ACMS and run the Installation Verification Procedure (IVP).

VSI ACMS for OpenVMS Getting Started (this manual)

Audience
Application designers, programmers, system/application managers

Content
Provides an introduction to the basic elements of the ACMS transaction processing system. The
book explains the concepts of transactions and transaction processing, describes the ACMS run-
time system, and introduces the utilities and tools for creating, controlling, and managing ACMS
applications. It also includes a glossary of ACMS terms. Uses a simple application and a step-by-step
approach to allow the user to develop a complete ACMS application that uses DECforms. Provides
an overview of the AVERTZ sample application from the perspectives of designers, developers, users,
and system managers.)

5.2.2. Planning and Design
VSI ACMS for OpenVMS Concepts and Design Guidelines

Audience
Application designers, programmers

Content
Explains ACMS concepts and provides guidelines for designing an ACMS application.

5.2.3. Development and Testing
VSI ACMS for OpenVMS Writing Applications

Audience
Application designers, TP system managers, programmers

38

Chapter 5. ACMS Product Kits and Documentation

Content

Explains how to use the ACMS Application Definition Utility (ADU) to define tasks, task groups,
applications, and menus. This book describes how to queue and dequeue tasks, perform exception
handling, and define distributed transactions.

Describes how to write ACMS applications to run on OpenVMS Alpha and how to migrate ACMS
applications from OpenVMS VAX to OpenVMS Alpha.

VSI ACMS for OpenVMS Writing Server Procedures

Audience

Application designers, programmers

Content

Explains how to write, debug, and run procedures for ACMS applications, including step procedures
that access Rdb, DBMS, and RMS resource managers; initialization procedures; termination
procedures; and cancellation procedures. The book also describes how to create message files and
how to debug ACMS applications.

Describes how ACMS works with the APPC/LU6.2 programming interface to communicate with
IBM CICS applications.

Describes how ACMS works with third-party database managers, with Oracle used as an example.

VSI ACMS for OpenVMS Systems Interface Programming

Audience

System designers, programmers

Content

Describes the ACMS Systems Interface (SI) and explains the interface services to submit tasks to
an ACMS system from outside ACMS. This guide also explains how to pass data entered by users
between task submitters and their tasks.

5.2.3.1. Reference Information

VSI ACMS for OpenVMS ADU Reference Manual

Audience

Application designers, TP system managers, programmers

Content

Provides reference information about the phrases, clauses, and commands of the Application
Definition Utility (ADU).

VSI ACMS for OpenVMS Quick Reference

39

Chapter 5. ACMS Product Kits and Documentation

Audience

All ACMS users

Content

Lists the syntax for all the ACMS utilities. The book also provides a summary of the steps involved
in developing an ACMS application, and includes a table that indicates what additional components
must be changed when you make changes to any application component.

5.2.4. Implementation and Management
VSI ACMS for OpenVMS Managing Applications

Audience

System/application managers, ACMS operators

Content

Describes how to authorize, install, run, and manage ACMS applications, and how to set up
distributed ACMS applications. The book provides information on monitoring and tuning ACMS
system performance, including setting OpenVMS and ACMS system parameters and process quotas.

ACMS for OpenVMS Remote Systems Management Guide

Audience

System managers, application managers, ACMS operators

Content

Description of the features of the Remote Manager for managing ACMS systems, how to use the
features, and how to manage the Remote Manager.

40

Part II. Tutorial
This part is intended for application programmers who are using ACMS software for the first time.
The book contains a step-by-step tutorial for developing a simple ACMS application. This application
involves the integration of several products: ACMS, DECforms, RMS, and Oracle CDD/Repository
software.

41

42

Chapter 6. Introduction
This chapter gives introductory material and lists the prerequisites for performing a step-by-step
tutorial for developing a simple ACMS application. This chapter also provides an overview of ACMS
application development concepts. The tutorial begins in Chapter 7.

6.1. Before You Begin
Before you begin, check the following list of prerequisites to ensure that you have everything you
need to perform the tutorial application:

• Make sure that your system is running compatible versions of the following software:

• OpenVMS Alpha or OpenVMS VAX

• ACMS

• DECforms

• CDD

See the ACMS Software Product Description (SPD) for information about the compatible
software versions.

• Become familiar with the OpenVMS operating system and with a text editor such as the
Language-Sensitive Editor (LSE). You use a text editor to create and edit the program source
elements in this manual.

• Acquire a personal OpenVMS account on a system that is running ACMS, DECforms, and
CDD software. Check with your system manager to ensure that your account has the necessary
privileges to access these products. To run the ACMS Task Debugger as described in Section 9.4,
make sure that your OpenVMS account has a BYTLM quota of 50,000.

All the source code developed in this tutorial is available on line. You can view the source files to
compare them with those that you create here, or you can copy the online source files instead of
typing them yourself. Appendix B lists these files and describes how to access them.

The procedures in this tutorial are written in COBOL. You can, however, write procedures in any
high-level language that adheres to the OpenVMS Calling Standard. Also, it is not necessary to be
familiar with COBOL to perform the tutorial.

This tutorial application uses an RMS master file to store and retrieve records. RMS is a file
management system that is supplied with the OpenVMS operating system. If you are already running
database software such as Rdb, you may wish to convert this tutorial application at some later time to
one that accesses an Rdb database. In this case, refer to the appropriate database documentation for
creating the database and for writing the statements that access it.

6.2. Application Development Life Cycle
Several phases make up the life cycle of an application. For an overall perspective of application
development, it is helpful to know where the development phase fits into this life cycle and what
assumptions this tutorial makes about the other phases.

43

Chapter 6. Introduction

Figure 1.7 identifies the phases of the application development life cycle. Section 5.2 lists the ACMS
documentation that is useful for each phase. Note that you may have to revisit the intermediate phases
several times during the course of developing a complex application.

During the orientation and installation phase, you install the product and deliver training in the
development of applications.

During the planning and design phase, you perform requirements analysis, functional analysis, and
prototyping for an application.

For the purpose of this tutorial application, assume that the planning and design phase has already
been completed. The designers have decided on a nondistributed environment and a simple ACMS
application that meets the needs of their personnel administration system. In this system, a user adds
a new employee record to a master file or updates an existing employee record. The designers have
determined which fields of data an employee record should contain, how those fields should appear
on the data entry form, what error checking the application should contain, and other relevant design
criteria.

During the development and testing phase, you write and test the code that implements the design of
the application. This manual steps you through the coding process. For this tutorial application, you
write CDD definitions, DECforms IFDL code, ACMS definitions, and COBOL procedures.

The development phase also includes testing the application. This manual steps you through
the process of testing your task definitions in the ACMS Task Debugger prior to completing the
application. You then have an opportunity to run and test the application more fully at the conclusion
of code development.

During the implementation and management phase, you transfer an application from your
development system to a production system and fulfill system management requirements for the
application. Chapter 12, describes the steps a system manager performs to authorize an ACMS user
and an ACMS application on an OpenVMS system. Until your system manager performs these
management functions, you cannot install and run this tutorial application.

6.3. ACMS Application Development
Concepts
An ACMS application consists of a set of tasks that relate to the functions of a business. A task is the
unit of work that a user selects from an ACMS menu. Each task usually comprises a sequence of steps
that perform this unit of work. You use the ACMS task definition language to define tasks.

Figure 6.1 illustrates the basic principles of the ACMS task definition language (TDL) used to
write a task definition. The task definition specifies an interface to the presentation service (forms
management system) for communication with a terminal or other device. The task definition also
specifies an interface to a procedure server for executing procedures (user-written subroutines) that
handle database I/O and computational work.

The semantics of the ACMS task definition language are based on a call and return model. Task
definition steps perform calls to the presentation service in exchange steps, and to the procedure
server in processing steps. The presentation service and procedure server perform a function and
return control to the task definition. Upon return of control to the task definition, subsequent parts of a
step can evaluate the results of the call and, if necessary, handle any error conditions.

Figure 6.1 shows a sample execution flow of a task definition:

44

Chapter 6. Introduction

1. In the first exchange step, the task definition calls the presentation service to display a form on
the terminal screen (for example, a form to add a new employee record to a database). When the
terminal user finishes filling in the form, the user presses a specified key (or keys) that allows the
task definition to receive the input data.

2. In the processing step, the task definition then calls Procedure 1 in the procedure server to write
that input data to the database. Procedure 1 then returns its results (either success or failure). If
Procedure 1 fails to write to the database, step 2 then passes control to step 3.

Figure 6.1. Execution Flow of an ACMS Task Definition

3. In the second exchange step, the task definition calls the presentation service to send an error
message to the terminal screen (for example, that the employee number of the new record
duplicates an existing employee number). The presentation service then returns control to step 3.

6.3.1. Writing ACMS Definitions
The ACMS task definition language allows you to write an ACMS definition as a series of simple,
English-like statements. The four types of ACMS definitions are:

• A task definition describes, in steps, the work to be accomplished in the task. For example, a
task can collect information from a user and call a procedure to store the information in a file or
database.

• A task group definition specifies similar tasks for control purposes and defines resources
common to all tasks in the group.

• An application definition describes the environment and control characteristics of tasks and task
groups.

• A menu definition describes how users access one or more applications. Usually this definition
allows users to access one or more tasks from an ACMS menu.

You build the task, task group, and application definitions into an application that runs under the
control of the ACMS run-time environment. You build a menu definition separately, because it is not
necessarily tied to a single application.

Figure 6.2 illustrates the ACMS development components for this tutorial application. This
application is a simple personnel system that contains two tasks:

45

Chapter 6. Introduction

• The first task asks the user to enter employee data. The user can then save this data in a master
file.

• The second task displays an employee record from the master file when the user enters an existing
employee number. After examining the record, the user can change the information in it and write
the changed record back to the file.

Figure 6.2. ACMS Application Components

Figure 6.2 does not show that there can be more than one task group definition specified for a single
application. Also, more than one menu definition can specify tasks that point to the same application.
Conversely, a single menu definition can specify tasks in different applications.

Because ACMS applications are modular, you develop each part of an application independently.
If you need to change a task definition later, the change does not necessarily affect the task group,
application, or menu definitions. Many types of changes do not affect other modules.

6.3.2. Composition of ACMS Definitions
A task definition controls the exchange of information with the user, and the processing of that
information against the file or database. Each ACMS task definition is made up of one or more steps.
ACMS breaks the work to be accomplished by a task into two types of steps:

• Exchange steps usually interact with the Form Manager to handle forms I/O (that is, the input and
output between the task and the user). An exchange step can interact with DECforms or TDMS
forms, or interface with other devices using the ACMS Request Interface or the ACMS Systems
Interface for communicating with nonstandard devices. Figure 6.1 illustrates an execution flow
with two exchange steps.

• Processing steps call step procedures (user-written subroutines) to handle computations
and interactions with databases or files, typically using procedures written in a high-level
programming language (any language adhering to the OpenVMS Calling Standard). ACMS uses
two types of servers: procedure servers for executing a procedure, and DCL servers for invoking
images or DCL commands. Figure 6.1 illustrates an execution flow with one processing step.

A server process may perform an initialization routine of common work when the server is
started, rather than each time a task is selected. ACMS manages pools of servers to save on image
activation.

Servers are serially reusable (that is, while attached to a task, a server process is not available
to other tasks until the task call has completed). A single server process can be called by many
different ACMS tasks in a serial fashion. Once the call is complete, the server is then available to
be called by another ACMS task.

When ACMS starts a processing step, it allocates a procedure server process to a task to execute
the procedure in that step. This single-threaded process remains allocated to the task for the
duration of one or more processing steps.

46

Chapter 6. Introduction

In ACMS, a workspace is a buffer used to pass data between the task and processing steps, and
between the task and exchange steps.

Task group definitions combine similar tasks of an application that need to share common resources
such as workspaces, a library of presentation services requests, and procedure servers.

The application definition describes:

• Task groups that belong to an application

• Characteristics that control the tasks, such as security restrictions on which users can select a
particular task

• Servers, such as the number of server processes that can be active at the same time

• The application, such as whether application activity is recorded in the audit trail log

Menu definitions list both tasks and additional menus that a user can select from a menu. For
example, the tasks on a menu can include adding new employee records, displaying employee
information, and entering labor data.

When you write definitions for ACMS tasks, ACMS automatically stores the definitions in a CDD
dictionary. At run time, the definitions are represented in binary form in ACMS-defined databases.
For example, a task group definition is represented by a task group database that contains a binary
representation of the task group definition.

6.4. ACMS Integration with DECforms
Although ACMS supports several presentation services, ACMS supports DECforms as its
primary presentation service. DECforms provides such features as FIMS compliance, device-class
independence, storage of form context between exchanges, input verification (values, ranges, and
types), and escape routines.

6.4.1. DECforms Concepts
DECforms architecture provides a full separation of form from function. This separation allows you
to write an application program (the function) without being concerned with the intricacies of the user
interface (the form) for that program.

Normally, the term form means a document with blanks for the insertion of information. In
DECforms, however, the form is a specification that may govern the complete user interface to an
application program. The form specification completely describes all terminal screen interactions, the
data that is transferred to and from the screen, and any display processing that takes place.

A panel consists of the information and images that are physically displayed on the user's terminal
screen. A panel is composed of such items as fixed background information (literals), fields (blanks
for insertion of information), attributes, function key control, and customized help messages.

You can partition the display into rectangular areas called viewports by specifying viewport
declarations within the form definition. You can adjust the viewport to any size and locate it anywhere
on the display (such that viewports overlap one another). For a panel to be visible, it must be
associated with a viewport.

47

Chapter 6. Introduction

Figure 6.3 illustrates the concept of specifying panel declarations and viewport declarations within the
DECforms form definition. You specify a viewport name within each panel declaration. By doing this,
you map each panel to a specific viewport. At run time, each panel appears on the terminal screen
within its viewport.

Figure 6.3. Panels and Viewports

The DECforms Form Manager is the run-time component that provides the interface between the
terminal display and an ACMS application. The Form Manager controls panel display, user input,
and data transfer between the form and ACMS. A DECforms form is loaded by the Form Manager at
execution time under the direction of an ACMS application program.

ACMS begins a session with DECforms when an ACMS application program first references the
form. The syntax that references the form is contained in the ACMS task definition.

Note

In normal DECforms programming practice, both panels of this tutorial application are defined in
a single form. However, the tutorial application defines a separate form for each panel simply to
illustrate how ACMS handles multiple forms. For advanced DECforms design and programming, see
DECforms Guide to Commands and Utilities.

6.4.2. ACMS Interaction with DECforms
In DECforms, the form record is a structure that controls data transfer between ACMS and the form.
The form record identifies which form data items (variables associated with the form) are to be
returned to ACMS.

Figure 6.4 shows the interaction between DECforms and ACMS when ACMS requests information
from DECforms.

48

Chapter 6. Introduction

Figure 6.4. DECforms Interaction with ACMS

The following steps are the sequence of events that occur when ACMS requests information from
DECforms:

1. To request information, ACMS calls the Form Manager with a RECEIVE or TRANSCEIVE call.
In that call, ACMS performs the following operations:

a. Tells the Form Manager the name of the form needed to collect data.

b. Tells the Form Manager the record identifier being received.

c. Gives the Form Manager the ACMS workspaces used to transfer data.

2. The Form Manager displays a panel on the user's terminal screen. The displayed panel is specified
in the form that ACMS names in its RECEIVE or TRANSCEIVE call to DECforms.

3. The Form Manager accepts input from the user's terminal.

4. The Form Manager uses the form record to store the user's input data in the appropriate form data
items.

5. The Form Manager completes the request by returning data to the ACMS workspaces.

6.5. ACMS Integration with Resource
Managers
Resource managers (RMs) are the software products that store and manage the data accessed by
ACMS applications. A resource manager controls shared access to a set of recoverable resources, such
as a database.

All VSI resource managers provide access to recoverable data. Step procedures can access the
following resource managers either locally or remotely:

• Rdb database management system

• DBMS database management system

• RMS file management system

• ACMS queuing facility

49

Chapter 6. Introduction

6.5.1. Accessing a Database or a Master File
VSI's resource managers are not an integral part of the TP system, but are instead under the control of
the operating system (OS). This OS control of resource managers permits database sharing among TP
and non-TP applications, decision support systems, and remote nodes requesting data.

ACMS supports Rdb as its primary database management system. For Rdb conceptual information,
refer to the Rdb documentation.

For the sake of simplicity, this tutorial application uses an RMS master file to store and retrieve
records. RMS is an OpenVMS-supplied file management system that supports sequential, relative, or
indexed files. The initialization procedure in this tutorial creates the RMS file (EMPLOYEE.DAT)
when you run the application for the first time.

6.5.2. ACMS Interaction with a Resource Manager
To access a database, ACMS interacts with a procedure server process. The procedure server process,
in turn, interacts with the resource manager of the database. As shown in Figure 6.5, processing steps
call step procedures (user-written subroutines) to handle interactions with the resource managers of
databases or files.

ACMS uses a procedure server process for executing a procedure. When starting a processing step,
ACMS allocates a procedure server process to execute the procedure in that step. The procedure
server process remains allocated to the task for the duration of one or more processing steps in the
task.

In an update task, you need at least one exchange step to prompt the user for a key value, and another
to display the requested record for modification. You need one processing step to retrieve the record
from the database, and another to write the record back to the database with the user's changes.
Figure 6.5 shows the interactions among ACMS, the procedure server, and the resource manager to
execute a simple update task.

Figure 6.5. A Resource Manager Interacting with ACMS

The following steps are the sequence of events that executes the update task:

1. An exchange step calls the Form Manager (not shown) to display a panel on which the user can
supply a key value (for example, an employee number).

2. A processing step calls procedure 1, which in turn retrieves an employee record from the database
through its resource manager. The record retrieved matches the employee number that the user
entered.

50

Chapter 6. Introduction

3. An exchange step calls the Form Manager to display a panel with the information contained in
the employee record. The user can modify this information (for example, change the employee's
address).

4. A processing step calls procedure 2, which in turn writes the modified employee record to the
database.

For a full picture of the ACMS execution flow that includes the Form Manager's role in exchange
steps, refer to Figure 6.1.

6.6. Defining Fields and Records in CDD
The CDD dictionary system provides a central storage repository for shareable data definitions. CDD
is an active dictionary system that provides the user interface known as CDO (Common Dictionary
Operator).

The dictionary contains metadata (descriptions of data) in the form of dictionary definitions. The most
commonly used dictionary definitions are fields, records, and databases.

A field definition describes the data that can be stored in a specific field in your application. Field
definitions typically include information such as data type and size. The tutorial application defines
the following fields: employee number, name, street address, city, state, and zip code.

A record definition typically consists of a grouping of field definitions. The tutorial application
defines a record named EMPLOYEE_INFO_RECORD, which contains a group of field definitions
corresponding to the preceding fields.

This tutorial application creates your personal CDD dictionary. It also sets up your default CDD
directory so that all your definitions are located there automatically. By setting a default CDD
directory, the tutorial application can identify EMPLOYEE_INFO_RECORD by its name alone
(without having to use its full path name).

51

Chapter 6. Introduction

52

Chapter 7. Developing the Data Entry
Task
This chapter describes in step-by-step detail how to write the Data Entry Task using ACMS,
DECforms, and CDD definitions. Before you begin, check the prerequisites for this tutorial listed in
Section 6.1.

7.1. Defining a CDD Environment
This tutorial application requires you to create a personal CDD directory. You then need to define this
directory to be your default CDD directory, so that all your definitions are located there automatically.

Your system manager can help you decide where to locate your CDD directory by choosing one of the
following alternatives:

• Create your personal subdirectory under CDD$COMPATIBILITY (a system logical that on most
systems points to the system dictionary directory SYS$COMMON:[CDDPLUS]).

• Or, define a directory in your own account to be your dictionary (for example, USER$1:
[JONES.CDD]).

The directory used as your CDD dictionary in this tutorial is represented by the placeholder disk:
[cdd_directory]. When this specification appears on subsequent pages, you are required to enter
the disk name and directory name where your CDD dictionary is located (for example, USER$1:
[JONES.CDD]).

If your system manager determines that you should define a dictionary in your own OpenVMS
account, you must first create a subdirectory for this purpose (for example, a subdirectory named
CDD in an account such as USER$1:[JONES]). For example:

$ CREATE/DIRECTORY [JONES.CDD]

This subdirectory must remain dedicated to your CDD dictionary; CDD stores its files there. Do not
store your source files or any other OpenVMS files in this directory.

To set up your personal CDD directory, follow these steps:

1. Enter the CDD Dictionary Operator Utility by issuing the following command:

$ DICTIONARY OPERATOR
CDO>

CDD responds by displaying the CDO> prompt.

2. This step is required only if you are creating a CDD dictionary in your own OpenVMS
account. (If you are attaching your personal CDD directory to the system dictionary, CDD
$COMPATIBILITY, skip this step). Note that the following command line ends with a period:

CDO> DEFINE DICTIONARY disk:[cdd_directory].
CDO>

For cdd_directory, substitute the name of the directory that you created as your CDD dictionary
(for example, [JONES.CDD]).

53

Chapter 7. Developing the Data Entry Task

3. Set your default directory to the directory that will be your CDD directory:

CDO> SET DEFAULT disk:[cdd_directory]
CDO>

Issue the SHOW DEFAULT command to verify this:

CDO> SHOW DEFAULT
disk:[cdd_directory]
CDO>

4. Create a CDD subdirectory to use as your personal directory. Substitute your directory name for
d_name in this example and elsewhere in this manual (for example PJ_DICTIONARY). Note that
this command line ends with a period:

CDO> DEFINE DIRECTORY disk:[cdd_directory]d_name.
CDO>

A dictionary directory is a named section of a dictionary that you use to hold your field and record
definitions. Issue the DIRECTORY command to check that the subdirectory you created is listed
in your anchor directory:

CDO> DIRECTORY

CDO displays the contents of disk:[cdd_directory]; your personal subdirectory (dictionary) is
listed as a directory.

Directory disk:[cdd_directory]
 .
 .
 .
d_name DIRECTORY
CDO>

5. Exit from CDO:

CDO> EXIT
$

6. Using a text editor, edit your login command file to define the logical name CDD$DEFAULT. The
CDO uses this logical name to set your default CDD directory whenever you invoke CDO. Also,
to enter CDO more quickly, define a symbol for the DICTIONARY OPERATOR command. Add
the following lines to your login command file:

$ DEFINE CDD$DEFAULT disk:[cdd_directory]d_name
$ CDO :== DICTIONARY OPERATOR

Save your login command file and exit the editor.

7. Issue the following commands to execute your edited login command file and to make sure that
your default directory is set correctly:

$ @LOGIN.COM
$ CDO
CDO> SHOW DEFAULT
CDD$DEFAULT
 = disk:[cdd_directory]d_name
CDO>

54

Chapter 7. Developing the Data Entry Task

8. Exit from CDO:

CDO> EXIT
$

7.2. Defining a CDD Record
In this chapter, you create your first source files: CDD files, DECforms files, ACMS files, and
COBOL files. The easiest way to manage these files is to create them all in the same OpenVMS
directory.

This manual assumes that you are using your default OpenVMS directory (udisk:[uname]) to hold
your source files. In this manual, udisk represents your OpenVMS disk name, and uname represents
your OpenVMS directory name (for example, USER$1:[JONES]). Make sure that you are located in
your default OpenVMS directory when you create a source file.

To define fields and records in your CDD dictionary, follow these steps:

1. Using a text editor, create a source file, EMPLOYEE_FIELDS.CDO, in your OpenVMS default
directory. (All source files are available on line, if you choose to copy them instead of typing them
yourself. See Appendix B for their location.) Type in your field definitions as follows:

DEFINE FIELD EMPL_NUMBER DATATYPE TEXT SIZE 10.
DEFINE FIELD EMPL_NAME DATATYPE TEXT SIZE 30.
DEFINE FIELD EMPL_STREET_ADDRESS DATATYPE TEXT SIZE 30.
DEFINE FIELD EMPL_CITY DATATYPE TEXT SIZE 20.
DEFINE FIELD EMPL_STATE DATATYPE TEXT SIZE 2.
DEFINE FIELD EMPL_ZIP_CODE DATATYPE TEXT SIZE 10.

Because input records of this format are eventually filled in with alphabetic and numeric data
typed at the terminal, the data type of all the fields is TEXT, which can be either alphabetic
or numeric. In a more complex application, you would probably use other data types such as
NUMERIC. The SIZE information specifies the maximum number of characters that the value of
a field can have.

Save this file and exit the editor.

2. Execute the source file to place these field definitions in your dictionary:

$ CDO
CDO> @EMPLOYEE_FIELDS
CDO>

If you do not have the necessary privileges to define an object in CDO, or if you have not turned
on your privileges (with the SET PROCESS/PRIV=xxxx command), you receive an "insufficient
privileges" message here. If so, see your system manager about required privileges.

To check that a field is in your CDD directory, you can issue the SHOW FIELD command. For
example:

CDO> SHOW FIELD EMPL_NUMBER
Definition of field EMPL_NUMBER
| Datatype text size is 10 characters
CDO>

3. Exit from CDO. Create a source file named EMPLOYEE_INFO_RECORD.CDO. Type the
following lines:

55

Chapter 7. Developing the Data Entry Task

DEFINE RECORD EMPLOYEE_INFO_RECORD.
 EMPL_NUMBER.
 EMPL_NAME.
 EMPL_STREET_ADDRESS.
 EMPL_CITY.
 EMPL_STATE.
 EMPL_ZIP_CODE.
 END RECORD.

Save this file and exit the editor.

4. Execute the source file:

$ CDO
CDO> @EMPLOYEE_INFO_RECORD
CDO>

Issue the SHOW RECORD command to check that your record is accurate:

CDO> SHOW RECORD EMPLOYEE_INFO_RECORD
Definition of record EMPLOYEE_INFO_RECORD
| Contains field EMPL_NUMBER
| Contains field EMPL_NAME
| Contains field EMPL_STREET_ADDRESS
| Contains field EMPL_CITY
| Contains field EMPL_STATE
| Contains field EMPL_ZIP_CODE
CDO>

You can display the data type and length of each field in the record by using the /FULL qualifier
after the SHOW RECORD command.

To display a list of all fields and records in your default CDD directory, issue the DIRECTORY
command:

CDO> DIRECTORY
Directory disk:[cdd_directory]d_name
EMPLOYEE_INFO_RECORD;1 RECORD
EMPL_CITY;1 FIELD
EMPL_NAME;1 FIELD
EMPL_NUMBER;1 FIELD
EMPL_STATE;1 FIELD
EMPL_STREET_ADDRESS;1 FIELD
EMPL_ZIP_CODE;1 FIELD
CDO>

5. Exit from CDO. Create a source file named EMPLOYEE_INFO_WKSP.CDO. Type the following
lines:

 DEFINE RECORD EMPLOYEE_INFO_WKSP.
 EMPL_NUMBER.
 EMPL_NAME.
 EMPL_STREET_ADDRESS.
 EMPL_CITY.
 EMPL_STATE.
 EMPL_ZIP_CODE. END RECORD.

56

Chapter 7. Developing the Data Entry Task

Save this file and exit the editor.

6. Enter the EMPLOYEE_INFO_WKSP definition in CDD by executing the source file:

$ CDO
CDO> @EMPLOYEE_INFO_WKSP
CDO>

7. Exit from CDO.

Note

In this tutorial, the record EMPLOYEE_INFO_RECORD is the same as the workspace
(EMPLOYEE_INFO_WKSP) that ACMS passes to DECforms. In many ACMS applications these
records are not identical. You often pass a workspace that contains fewer fields than the record
definition. Both the record and the workspace definitions are included in this tutorial as examples of
the usual practice in ACMS application definitions.

7.3. Creating a Form Using DECforms
The easiest way to design DECforms panels in a form is to use the DECforms Panel Editor in the
Form Development Environment (FDE). The definition of the panel that you create is automatically
stored in a form source file with the file type of .IFDL (Independent Form Description Language).

7.3.1. Creating a Basic Form
To enter FDE and create a basic form and source file, follow these steps:

1. Edit your login command file to define a symbol for the FORMS DEVELOP command:

$ FDE :== FORMS DEVELOP

Save your login command file and exit the editor.

2. Execute your edited login command file:

$ @LOGIN.COM

3. Enter the FDE symbol to enter the DECforms interactive environment:

$ FDE

If the DECforms system starts successfully, the system prompts you for a file name. However, if
DECforms does not recognize your device type, the system responds that this operation must be
done with a 100, 200, or 300 series terminal. In this case, issue the SET TERMINAL/INQUIRE
command at the dollar ($) prompt and repeat this step.

4. Type the name EMPLOYEE_INFO_FORM at the prompt:

_Input_File: EMPLOYEE_INFO_FORM

After you enter your form name, DECforms displays two messages:

57

Chapter 7. Developing the Data Entry Task

Form Development Environment starting...
 Creating a new form file called: UDISK:[UNAME]EMPLOYEE_INFO_FORM.FORM

DECforms then displays a screen that prompts you to accept a default layout for your panel (see
Figure 7.1).

Note

If you copied the online IFDL source files to your default directory before starting this tutorial,
DECforms translates the existing IFDL file here and loads the resulting FORM file. It displays the
Main Menu instead of Figure 7.1. In this case, use the arrow keys to choose the Exit option and press
Select. Proceed to Section 7.3.4, step 2.

Figure 7.1. DECforms LAYOUT Screen

On DECforms screens, use the arrow keys to move the cursor among the options that are
displayed. Then press Select to register your choice of options.

5. Press Select to accept the default of Yes, because the example in this tutorial uses just one layout
for all types of terminals and users. DECforms next displays the FDE Main Menu, shown in
Figure 7.2.

Figure 7.2. FDE Main Menu

58

Chapter 7. Developing the Data Entry Task

6. Using the arrow keys, move the cursor to the EXIT option. Then press Select. DECforms saves all
the entries you made and then displays the following messages notifying you that your form has
been saved in a form source file and in a binary file:

IFDL saved in file: UDISK:[UNAME]EMPLOYEE_INFO_FORM.IFDL;1.
Form saved in file: UDISK:[UNAME]EMPLOYEE_INFO_FORM.FORM;1.

You have now created a basic form.

7. Enter the TYPE command and your IFDL source file name to display the IFDL source file:

$ TYPE EMPLOYEE_INFO_FORM.IFDL

In the form source file, DECforms places IFDL statements that identify the form and the layout
selected. By selecting the default layout, you cause DECforms to create the following lines:

Form EMPLOYEE_INFO_FORM
<FF>
 Layout VT_LAYOUT
 Device
 Terminal
 Type %VT100
 End Device
 Size 24 Lines by 80 Columns
 End Layout
End Form

To make your form useful, create a panel that produces a display on the terminal screen. The next
section contains instructions for doing this.

7.3.2. Creating a Panel
Follow these instructions to access the Panel Editor and design a panel:

1. Reenter FDE by issuing the FDE command and your form name:

$ FDE EMPLOYEE_INFO_FORM

DECforms displays the FDE Main Menu (see Figure 7.2).

2. Press the down-arrow key to move the cursor to the third line (the Panel line), and press Select at
the first choice: Choose, Create. DECforms superimposes another panel on the FDE Main Menu
(see Figure 7.3).

3. Press Select at the menu choice: Create Panel. DECforms displays the Create Panel screen (see
Figure 7.4), containing panel attributes and their default values marked by a diamond.

59

Chapter 7. Developing the Data Entry Task

Figure 7.3. Choose/Create Panel Menu

Figure 7.4. Create Panel Screen

4. The Panel Name field is highlighted on your screen. Type the name of the panel you are creating:

Panel Name: EMPLOYEE_INFO_PANEL

Press Return. The cursor moves to the Data Entry field. The panel type specifies whether the
panel is for entering data or displaying help. The diamond before Data Entry indicates that the
panel is a data entry panel.

5. Press the down-arrow key to move the cursor to Yes-Remove under Erase on Exit. Press Select.
This has the effect of removing the panel from the screen when the user finishes entering data and
exits the panel.

6. Press the up-arrow key to move the cursor to the OK option in the top right-hand corner. Press
Select. This means that you accept all the values on the screen, including the default viewport
size.

60

Chapter 7. Developing the Data Entry Task

Note

DECforms displays a panel within a viewport. To specify a viewport size other than the default 24 X
80 dimension, you must first enter a viewport name on the Create Panel screen and then specify line
and column numbers to indicate the size of the viewport in which the panel is to be displayed.

After you select OK, DECforms redisplays the FDE Main Menu, shown in Figure 7.2.

7. Move to the Panel Editor menu choice and press Select. DECforms invokes the Panel Editor and
places the cursor in the top left-hand corner of a blank screen. You are now ready to format your
panel.

Note

Always use the arrow keys to move the cursor within the panel. Do not use the space bar to position
the cursor; the space bar creates literal spaces on the panel.

8. Position the cursor with the arrow keys and type the literals on the screen as shown in Figure 7.5.
DECforms displays the panel to users exactly as you format it.

Figure 7.5 is an example of a data entry panel composed only of literals. The panel includes a
message to users indicating how to navigate between fields (using Return and F12), how to save
the data (using Ctrl/Z), and how to quit the screen (using PF4). You define PF4 later in this
chapter. Because Return, F12, and Ctrl/Z are predefined in DECforms, you do not need to define
them for use in this tutorial application.

Figure 7.5. Sample DECforms Panel

You must now create the fields that correspond to the literals. A field is that space following the
literal in which the user enters the information. For example, a defined space after the Employee
name literal is a field in which to enter the employee name.

9. Use the arrow key to position the cursor two spaces after the Employee number literal, and press
Do. DECforms displays the Command> prompt.

10. Type CREATE FIELD after the Command> prompt and press Return:

61

Chapter 7. Developing the Data Entry Task

Command> CREATE FIELD

DECforms then displays the Create Field Menu (see Figure 7.6).

Figure 7.6. Create Field Menu

11. Enter the field name and press Return:

Field Name: EMPL_NUMBER

Note

Field names that you specify must correspond to field names that you entered in the CDD record
definition. In the menu, the numbers that appear after Line and Column indicate where the cursor was
when you began to create the field.

12. Press Select at the Data Type prompt (the field is highlighted) to display a list of valid data types:
atomic, character, and date/time. In the list of character types, move the cursor to Character and
press Select to register your choice.

DECforms then superimposes the Data Type Character window, shown in Figure 7.7, on the
menu.

62

Chapter 7. Developing the Data Entry Task

Figure 7.7. Data Type Character Window

13. Enter the size of the field:

Size(a): 10

Use the arrow keys to move the cursor to OK, and press Select to confirm your entry.

DECforms again displays the Create Field Menu, shown in Figure 7.6.

14. Enter the field picture:

Picture : X(10)

15. Move the cursor to the OK icon and press Select.

DECforms returns you to your panel and displays a success message at the bottom of your
screen. It also displays Xs to indicate the length of the character picture for that field, as shown in
Figure 7.8.

63

Chapter 7. Developing the Data Entry Task

Figure 7.8. Sample Panel with One Data Field Picture

16. Create character fields of the following lengths and pictures in the same manner as in steps 9
through 15:

EMPL_NAME X(30)
EMPL_STREET_ADDRESS X(30)
EMPL_CITY X(20)
EMPL_STATE X(2)
EMPL_ZIP_CODE X(10)

Figure 7.9 shows the results of defining all the fields in the panel.

Note

DECforms can validate a field of data as soon as the user exits that field. For example, you can write
DECforms code that checks whether the user entered a valid zip code and, if not, prompts the user to
reenter the zip code. This tutorial application, however, does not perform DECforms validation. For
advanced DECforms design and programming, see DECforms Guide to Commands and Utilities.

64

Chapter 7. Developing the Data Entry Task

Figure 7.9. Sample Panel with Data Field Pictures

17. Press Ctrl/Z to exit from the Panel Editor when you finish creating the panel. DECforms displays
the following message:

Panel editing finished.

DECforms redisplays the FDE Main Menu, shown in Figure 7.2.

18. Test the form by selecting the Test option on the FDE Main Menu. DECforms displays a Testing
Menu with three more options.

19. Press Select to choose the Test Panel option.

FDE displays the panel and prompts you to enter a value for the Employee number field.

20. Type a sample entry for each field in the panel, pressing Return after you complete each one.
Press Ctrl/Z when you complete the panel.

DECforms redisplays the Main Menu, shown in Figure 7.2.

21. Use the arrow keys to move the cursor to the Exit icon. Press Select. DECforms displays messages
indicating that it has saved the IFDL and FORM files containing your panel.

7.3.3. Editing the Form IFDL Source File
You now edit the form IFDL source file to include other definitions and special instructions. Note that
DECforms automatically added a number of statements to your IFDL file when you exited FDE. For
example, the Form Data section and the field descriptions in that file are a result of the data fields that
you created interactively with DECforms.

To edit the form IFDL source file, follow these steps:

1. Use a text editor to open your IFDL source file named EMPLOYEE_INFO_FORM.IFDL. When
using the LSE editor, for example, enter the following command:

$ LSEDIT EMPLOYEE_INFO_FORM.IFDL

65

Chapter 7. Developing the Data Entry Task

2. Enter a form record description in the IFDL source file following the declaration of the form data
items. Enter the following lines after the line "End Data":

Form Record EMPLOYEE_INFO_RECORD
 Copy
 EMPLOYEE_INFO_RECORD From Dictionary
 End Copy
End Record

The fields in the form record description here must correspond to the form data items defined
above the description in the file. In this tutorial, you create a one-to-one correspondence between
the form data items and the fields in EMPLOYEE_INFO_RECORD, which you previously
entered in CDD. The COPY...FROM DICTIONARY clause copies that record from CDD.

This one-to-one correspondence of record fields and data items is not a requirement, however. In
more complex applications, the fields in a form record description are usually a subset of the list
of form data items.

3. Immediately following this definition, enter another form record definition to correspond to a
workspace definition that you enter later in CDD (in Section 7.3.5):

Form Record CONTROL_WORKSPACE
 ERROR_STATUS_FIELD Character(4)
 MESSAGEPANEL Character(80)
End Record

In the data entry task, you need to inform users if they enter an employee number that already
exists. A COBOL procedure called from the task checks for this error condition. If the error
occurs, the procedure moves the value DUPL into the field ERROR_STATUS_FIELD in the
record CONTROL_WORKSPACE.

In your task, you can test the field ERROR_STATUS_FIELD for the DUPL value. If this
value is in the field, you can place an error message in the MESSAGEPANEL field of
CONTROL_WORKSPACE. (The processing step in the task definition discusses this error
handling in more detail; see Section 7.4.2.)

A MESSAGEPANEL is a special field in a form record. When you specify a MESSAGEPANEL
field in a form record, any data associated with this field is automatically displayed in a message
panel, which appears on any panel you have created. If you do not create your own message panel
(this tutorial does not), DECforms uses the default message panel, which is the last line (line 24)
on a panel display.

4. Enter the following lines after the line "Size 24 Lines by 80 Columns":

Function QUIT_KEY Is %PF4 End Function

This declares a function named QUIT_KEY and binds that name to PF4. By declaring a function
response for QUIT_KEY in the next step, you allow the user to stop the task by pressing PF4.

5. A function response describes the action you want to occur when a user presses a function key.
Enter the following lines after the line "End Function".(Note that there is a space before the F in
FQUT.)

Function Response QUIT_KEY Remove All Return " FQUT" End
 Response

66

Chapter 7. Developing the Data Entry Task

If a user presses PF4 while entering employee information in the panel, the function response
directs DECforms to remove all viewports from the screen and return the value " FQUT" to
ACMS. Within ACMS, the task definition tests a control-key workspace and performs some
action based on receiving that value. The space and the F in " FQUT" conform to a special
DECforms format required to return a receive-control text string. The QUT in this 5-character
string are arbitrary characters.

6. To describe other actions that you want to occur at certain times while the application is running,
enter the following response lines in the IFDL source file after the line "End Response" of the
QUIT_KEY function response:

Disable Response
 Request Exit Response
 Remove All
 End Response End Response

Receive Response EMPLOYEE_INFO_RECORD
 Reset All
 Display EMPLOYEE_INFO_PANEL
 Activate Panel EMPLOYEE_INFO_PANEL
End Response

Transceive Response EMPLOYEE_INFO_RECORD EMPLOYEE_INFO_RECORD
 Display EMPLOYEE_INFO_PANEL
 Activate Panel EMPLOYEE_INFO_PANEL
 Deactivate Field EMPL_NUMBER on EMPLOYEE_INFO_PANEL
 Position to Field EMPL_NAME on EMPLOYEE_INFO_PANEL
End Response

Send Response CONTROL_WORKSPACE
 Activate Wait
 Signal
End Response

The Disable Response removes the current screen display by removing all viewports when the
form is disabled. This prevents old data from appearing on the screen during transitions from one
form to another.

The Receive Response prepares a DECforms panel for user input whenever the data entry task
definition (Section 7.4) executes its RECEIVE FORM RECORD EMPLOYEE_INFO_RECORD
statement. The Receive Response resets all data fields to spaces (clearing any old data). It then
displays the specified panel in its viewport and activates all the data fields on that panel (allowing
user input to every field on the panel).

The Transceive Response prepares a DECforms panel for user input whenever the Inquiry/
Update Task definition (Section 8.2) executes its TRANSCEIVE FORM RECORD
EMPLOYEE_INFO_RECORD statement. The Transceive Response displays the specified panel
and activates all the data fields on that panel. Because the employee number is the record's key
field, it cannot be modified. The Deactivate statement prevents the user from modifying the
EMPL_NUMBER field when that record is displayed. The Position statement places the cursor on
the first field, EMPL_NAME, that the user is allowed to modify.

The Send Response causes DECforms to wait for the user to press a function key whenever
ACMS sends DECforms a message via the record CONTROL_WORKSPACE. For example,
ACMS sends DECforms an error message if the user tries to add an employee number that already

67

Chapter 7. Developing the Data Entry Task

exists. DECforms displays the message, activates a wait, and produces an audible signal. The user
can then press PF4 to cancel the transaction, or Ctrl/Z to begin again.

7. Your EMPLOYEE_INFO_FORM.IFDL file is now complete. Save the edits made in the IFDL
file, and exit from the text editor.

7.3.4. Creating the Binary Form File
Whenever you edit your IFDL source file, you must translate that file into an updated binary form
file to reflect the edits made in the IFDL file. DECforms stores a form internally in a binary form file
(with file type .FORM).

You also need to create an object module and a shareable image of the form to use in your ACMS
application.

To create a new binary form file, an object module, and a shareable image of your form, follow these
steps:

1. Issue the following command to create a new binary form file:

$ FORMS TRANSLATE EMPLOYEE_INFO_FORM.IFDL
$

When you issue this command, DECforms uses the most recent version of your IFDL file to create
a new binary file.

2. Issue the EXTRACT OBJECT command as the first step in creating a shareable image of a form:

$ FORMS EXTRACT OBJECT EMPLOYEE_INFO_FORM.FORM
$

This command creates a form object module, or .OBJ file. Issue the LINK/SHARE command to
link the form object module into a shareable image:

$ LINK/SHARE EMPLOYEE_INFO_FORM.OBJ
$

3. The result of the LINK/SHARE command is an image (.EXE) of the file that can be shared by
multiple users.

7.3.5. Defining Additional CDD Records
You must now define the additional fields and records for a control workspace and a quit workspace.
The following steps explain how to create the source files and how to enter these definitions in your
CDD dictionary.

1. Using a text editor, create a source file called EMPLOYEE_CONTROL_FIELDS.CDO and enter
the following lines. Then exit the file:

DEFINE FIELD ERROR_STATUS_FIELD
 DATATYPE TEXT SIZE 4
 INITIAL_VALUE IS " ".

DEFINE FIELD MESSAGEPANEL
 DATATYPE TEXT SIZE 80.

68

Chapter 7. Developing the Data Entry Task

2. Create a source file called EMPLOYEE_CONTROL_WKSP.CDO, enter the following lines, and
exit the file:

DEFINE RECORD CONTROL_WORKSPACE.
 ERROR_STATUS_FIELD.
 MESSAGEPANEL.
END RECORD.

3. Create a source file called EMPLOYEE_QUIT_FIELD.CDO, enter the following lines, and exit
the file:

DEFINE FIELD QUIT_KEY DATATYPE TEXT SIZE 5 INITIAL_VALUE IS " ".

4. Create a source file called EMPLOYEE_QUIT_WKSP.CDO, enter the following lines, and exit
the file:

DEFINE RECORD QUIT_WORKSPACE. QUIT_KEY. END RECORD.

5. Execute these four source files by issuing the following commands at the CDO> prompt:

$ CDO
CDO> @EMPLOYEE_CONTROL_FIELDS
CDO> @EMPLOYEE_CONTROL_WKSP
CDO> @EMPLOYEE_QUIT_FIELD
CDO> @EMPLOYEE_QUIT_WKSP
CDO>

6. Exit from CDO.

7.4. Defining the Data Entry Task
The data entry task definition in this tutorial contains three kinds of steps:

• Exchange steps, during which information is exchanged between the terminal user and the ACMS
application.

• A processing step that calls a COBOL procedure to handle the I/O interactions between the
application and the database (in this case, an RMS master file). The procedures that you call from
processing steps are subroutines that you write and link together with a main program module
supplied by ACMS.

• A block step, which groups the exchange steps and processing steps into a unit.

The first exchange step displays a form where the user enters new data. The processing step adds
a new record to the RMS file with the information the user supplied in the first exchange step. The
second exchange step displays a message, if an error is encountered in the processing step.

To define a task, you use commands and clauses of the ACMS Application Definition Utility (ADU).
The easiest way to use ADU is to create a source file of ADU commands with a text editor such as
LSE. Then submit the file as a command file to ADU, which compiles the task definition.

7.4.1. Defining the First Exchange Step
You begin an exchange step by identifying it with the ADU keyword EXCHANGE. Following the
keyword, you use a SEND, RECEIVE, or TRANSCEIVE call to DECforms, identifying the direction
of exchange:

69

Chapter 7. Developing the Data Entry Task

• SEND indicates that you want to send information from the ACMS application to the form.

• RECEIVE indicates that you want to receive information in the ACMS application from the form.

• TRANSCEIVE indicates that you want both to send information to the form and receive
information from the form, in that order.

To define the first exchange step in the data entry task definition, follow these steps:

1. Using an editor such as LSE, create a source file for your task definition. Name the source file
EMPLOYEE_INFO_ADD_TASK.TDF.

$ LSEDIT EMPLOYEE_INFO_ADD_TASK.TDF

2. In this file, enter the following lines of this exchange step:

GET_EMPL_INFO:
 EXCHANGE
 RECEIVE FORM RECORD EMPLOYEE_INFO_RECORD
 RECEIVING EMPLOYEE_INFO_WKSP
 WITH RECEIVE CONTROL QUIT_WORKSPACE;

Use label names (such as GET_EMPL_INFO) to mark exchange and processing steps in a task.
During debugging, you can then reference each step by its label name rather than by line number.

The purpose of the first exchange step in the data entry task is to obtain user input—users enter
data in response to prompts displayed on the terminal screen. In this case, the ACMS application
needs to receive information from the form.

A form record name or form record list name must appear after a SEND, RECEIVE, or
TRANSCEIVE call to DECforms. That name must correspond to a form record defined in the
form source IFDL. This tutorial application, for example, uses EMPLOYEE_INFO_RECORD
here and in your form source file.

You must also include one or more workspace names after the keyword RECEIVING. DECforms
uses these workspaces to pass user-entered data to ACMS.

The WITH RECEIVE CONTROL clause specifies the record containing the name of the function
key defined in the form source file. In this tutorial, the function QUIT_KEY is a field in the record
QUIT_WORKSPACE.

3. Next, enter a CONTROL FIELD statement:

CONTROL FIELD IS QUIT_WORKSPACE.QUIT_KEY
 " FQUT" : EXIT TASK;
END CONTROL FIELD;

The CONTROL FIELD clause tests the contents of a workspace field. Here it tests the value of the
QUIT_KEY field in the record QUIT_WORKSPACE. The clause lists a value that this field can
have: FQUT. If the value is FQUT, the action taken is EXIT TASK, which is the ADU clause that
ends the current task.

7.4.2. Defining the Processing Step
You begin a processing step by identifying it with the keyword PROCESSING. This processing step
calls a procedure that adds information to an RMS file.

70

Chapter 7. Developing the Data Entry Task

The processing step is located after the exchange step. Add the processing step as follows:

1. Add these clauses as the first part of your processing step:

PROCESS_EMPL_INFO:
 PROCESSING
 CALL ADD_EMPL_INFO IN EMPL_SERVER
 USING EMPLOYEE_INFO_WKSP, CONTROL_WORKSPACE;

As mentioned previously, when ACMS starts a processing step, it allocates a server process to
handle the procedure in that step. A server process is a specialized OpenVMS process with a user
name, privileges, and quotas, just like your own OpenVMS process. (This manual often refers to a
server process simply as a server.)

In the CALL clause, you specify the procedure name and the name of the server in which the
procedure executes. The server process (named EMPL_SERVER here) can have any name you
choose. The procedure (named ADD_EMPL_INFO here) must correspond to the PROGRAM-ID
name that you specify in the COBOL procedure later in this chapter.

The CALL clause also includes a USING phrase that names the two workspaces that this
procedure uses: EMPLOYEE_INFO_WKSP, which stores the user input to be passed to the
procedure for processing; and CONTROL_WORKSPACE, which holds status values and error
messages.

2. Add these clauses to your processing step to handle duplicate employee number errors:

IF (CONTROL_WORKSPACE.ERROR_STATUS_FIELD EQ "DUPL")
 THEN
 MOVE "Employee number already exists. Ctrl/Z to repeat, PF4 to quit."
 TO CONTROL_WORKSPACE.MESSAGEPANEL;
 ELSE
 EXIT TASK;
END IF;

In the data entry task, you need to include a method for reporting any errors that can occur
when the processing step attempts to write the new information to the RMS file. When the
ADD_EMPL_INFO procedure finishes executing, it returns a status value that indicates whether
or not the procedure completed successfully.

A common error in a data entry task occurs when the user tries to enter information for a primary
key that already exists. For example, in this tutorial application, every employee is uniquely
identified by an employee number (the EMPL_NUMBER field of EMPLOYEE_INFO_WKSP).
If a user tries to write a new record to the RMS file with an employee number that already exists,
the user receives an error message on the terminal screen.

The ADD_EMPL_INFO procedure tests the return status value of the write operation. If the status
value corresponds to the COBOL code for the duplicate primary key error, the procedure stores
the value DUPL in a workspace field.

The processing step in this task tests the field ERROR_STATUS_FIELD, using an IF clause. If
that field contains DUPL, the processing step directs ACMS to move an error message to the field
MESSAGEPANEL, and the task continues to a second exchange step to display the message.
Otherwise, if the DUPL value is not in the workspace field, control passes to the ELSE statement,
and the task ends successfully.

71

Chapter 7. Developing the Data Entry Task

7.4.3. Defining the Second Exchange Step
The purpose of the second exchange step is to display an error message if the user tries to enter an
employee number that already exists in the RMS file (DUPL error). Add the second exchange step as
follows:

1. The SEND statement specifies the name of the form record (CONTROL_WORKSPACE):

DISPLAY_ERROR_MESSAGE:
 EXCHANGE
 SEND FORM RECORD CONTROL_WORKSPACE

2. The SENDING statement specifies the name of the workspace that ACMS uses to pass the error
message to the form. The RECEIVE CONTROL clause specifies the name of the record that
contains the QUIT_KEY field:

 SENDING CONTROL_WORKSPACE
 WITH RECEIVE CONTROL QUIT_WORKSPACE;

The record CONTROL_WORKSPACE contains the field MESSAGEPANEL, which stores the
error message corresponding to the DUPL error. DECforms receives the message from ACMS,
displays the message in its default message panel, and waits for the user to take some action.

3. Enter the following ACTION clause to complete the exchange step:

 ACTION IS
 IF (QUIT_WORKSPACE.QUIT_KEY EQ " FQUT")
 THEN EXIT TASK;
 ELSE REPEAT TASK;
 END IF;

The IF clause tests the value of the field QUIT_KEY. If the value is FQUT (that is, if the user
presses PF4), the action is to exit the task. Otherwise, if the user executes the transmit function
(presses Ctrl/Z), the action is to repeat the task, sending control back to the first exchange step. In
this way, the user can read the error message and choose one of two actions: to end the task or to
repeat it.

7.4.4. Defining the Block Step and Workspaces
After defining the exchange and processing steps of a task, you use a block step to place those steps in
a group. A block step can have three parts:

• Attributes, an optional part of the block that describes the characteristics of the steps in a block

• Work, a required part of the block that comprises the exchange and processing steps of the task

• Actions, an optional part of the block that describes the action to be taken after the work is done

To define the block step and the remaining elements of this task definition, you need to add some lines
at the beginning of your file and at the end of your file.

1. Enter the following lines at the beginning of your file:

REPLACE TASK EMPLOYEE_INFO_ADD_TASK
DEFAULT FORM IS EMPLOYEE_INFO_LABEL;

72

Chapter 7. Developing the Data Entry Task

USE WORKSPACES
 EMPLOYEE_INFO_WKSP,
 QUIT_WORKSPACE,
 CONTROL_WORKSPACE;

BLOCK WORK WITH FORM I/O

REPLACE is an ADU command that stores a new task definition in CDD (creating a new
definition or replacing an old one). Placing this command inside the task definition allows you
to run this task definition (EMPLOYEE_INFO_ADD_TASK) as a command file in ADU (see
Section 7.5).

The DEFAULT FORM clause is an option that specifies a label name used within ACMS to
refer to a DECforms form. EMPLOYEE_INFO_LABEL is mapped to the actual form name
(EMPLOYEE_INFO_FORM) through the FORMS clause in the task group definition. This label
name can be identical to the form name. If you do not enter the DEFAULT FORM clause at the
beginning of a task definition, you need to include the form label name as part of each SEND,
RECEIVE, and TRANCEIVE clause in the task definition. For example, RECEIVE FORM
RECORD EMPLOYEE_INFO_RECORD IN EMPLOYEE_INFO_LABEL.

Those steps that you include in the block step share some characteristics such as the list of the
workspaces used in the task to pass information between the task and exchange steps, and between
the task and processing steps.

The BLOCK WORK clause marks the beginning of the work that takes place within the block
step. Because the task communicates with DECforms for terminal I/O operations, include the
words WITH FORM I/O.

2. Enter the following lines at the end of your file:

END BLOCK WORK;
END DEFINITION;

The END BLOCK WORK clause ends the work done within the block step.

3. Your task definition for the Data Entry Task, EMPLOYEE_INFO_ADD_TASK.TDF, is now
complete. Save your file and exit the editor.

7.5. Compiling the Task Definition in ADU
Compiling the task definition in ADU allows ADU to check for syntax errors in the source file
EMPLOYEE_INFO_ADD_TASK.TDF. If there are no errors, ADU inserts your task definition into
CDD. To do this, perform the following steps:

1. Edit your login command file to define ADU as a global symbol. Then exit the editor and
reinitialize your edited login command file:

$ ADU :== $ACMSADU

$ @LOGIN.COM

2. Invoke ADU:

$ ADU

3. Type the SET LOG and SET VERIFY commands at the ADU> prompt:

73

Chapter 7. Developing the Data Entry Task

ADU> SET LOG
ADU> SET VERIFY

SET LOG causes ADU to write the task definition to the ADULOG.LOG file as ADU compiles
it, including any error messages. Each time you issue an ADU command, ADU appends log
information to this file.

SET VERIFY causes ADU to display the task definition on your terminal screen as ADU
compiles it. If your task definition compiles successfully (no error messages), ADU inserts it into
your default CDD directory. If there are errors, messages appear in the text of the definition as
ADU displays it on your terminal screen.

4. Submit the file EMPLOYEE_INFO_ADD_TASK.TDF, as follows:

ADU> @EMPLOYEE_INFO_ADD_TASK.TDF

If ADU detects syntax errors in your task definition, exit ADU and edit the source file to correct
the errors. Then reenter ADU and resubmit the file. Repeat editing the source file and resubmitting
it to ADU until the file processes without errors. If you get error messages, make sure you typed
the definition exactly as shown. In particular, check that you used the appropriate punctuation.

5. Exit from ADU:

ADU> EXIT
$

6. Check that your task definition is now located in your default CDD directory. (In Section 7.1,
step 6, you defined CDD$DEFAULT in your login command file.) Enter CDO and issue the CDO
DIRECTORY command:

$ CDO
CDO> DIRECTORY
Directory disk:[cdd_directory]d_name
 .
 .
 .
EMPLOYEE_INFO_ADD_TASK;1 ACMS$TASK
CDO>

7.6. Defining a System Logical for Your
Tutorial Directory
To complete the data entry task, you need to create a procedure that writes a new record to an RMS
master file. In this tutorial, the name of this RMS file is EMPLOYEE.DAT.

So that ACMS can find this file, your COBOL procedures need to specify where EMPLOYEE.DAT
is located. The easiest way to do this is to define a system logical that points to its location (your
OpenVMS directory of source files). Your system logical must be unique so that it does not conflict
with logicals used by others who may be entering this same tutorial on your system.

Define the system logical as follows, substituting your initials or other unique characters for xxx.
(Remember that udisk and uname represent the disk and user-name directory where your application
files are located.)

$ DEFINE/SYSTEM xxx_FILES udisk:[uname]

74

Chapter 7. Developing the Data Entry Task

If you do not have the necessary privileges to define a system logical, you receive an "insufficient
privileges" message here. If so, see your system manager about defining your system logical.

If your account is on an OpenVMS Cluster system, you can be logged in to any of several nodes. In
this case, define your logical on each node in the cluster.

You can verify your system logical by issuing the following command:

$ SHOW LOGICAL xxx_FILES

By defining the system logical xxx_FILES, you can use it whenever your procedures and definitions
refer to the location of EMPLOYEE.DAT and other files used in this tutorial application (substituting
your unique logical wherever xxx_FILES occurs). For example, in your COBOL procedures:

ASSIGN TO "xxx_FILES:EMPLOYEE.DAT".

Note

If you copied the online source files to your default directory before starting this tutorial, edit each file
that contains the logical xxx_FILES and substitute your unique logical. Section B.2 lists those files
that contain the term xxx_FILES.

7.7. Defining the Data Entry Procedure
This section describes how to define the COBOL procedure that, when called by the data entry task,
writes a new record to the RMS master file.

Create the Data Entry COBOL procedure as follows:

1. Example 7.1 contains the COBOL procedure. Create a source file named
EMPLOYEE_INFO_ADD.COB and type in the procedure as shown in this example.

Note

If you copied this file from the online source files, edit the file and substitute your unique logical for
the xxx_FILES logical in the file. Section B.2 lists other files that contain the logical xxx_FILES.

2. Save the file and exit the editor.

Example 7.1. COBOL Data Entry Procedure

IDENTIFICATION DIVISION.
PROGRAM-ID. ADD_EMPL_INFO.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT EMPLOYEE-FILE
 ORGANIZATION INDEXED
 ACCESS RANDOM
 FILE STATUS IS FILE-STAT
 ASSIGN TO "xxx_FILES:EMPLOYEE.DAT".

75

Chapter 7. Developing the Data Entry Task

I-O-CONTROL.
 APPLY LOCK-HOLDING ON EMPLOYEE-FILE.

DATA DIVISION.
FILE SECTION.
FD EMPLOYEE-FILE EXTERNAL
 DATA RECORD IS EMPLOYEE_INFO_WKSP
 RECORD KEY EMPL_NUMBER OF EMPLOYEE_INFO_WKSP.

COPY "EMPLOYEE_INFO_WKSP" FROM DICTIONARY.

WORKING-STORAGE SECTION.
01 FILE-STAT PIC XX IS EXTERNAL.
 88 OK VALUE "00".
 88 DUPL-PRIMARY VALUE "22".
 88 REC-LOCK VALUE "92".

LINKAGE SECTION.
COPY "EMPLOYEE_INFO_WKSP" FROM DICTIONARY REPLACING
 ==EMPLOYEE_INFO_WKSP. == BY ==EMPLOYEE_INFO_LINKAGE_WKSP. ==.
COPY "CONTROL_WORKSPACE" FROM DICTIONARY.

PROCEDURE DIVISION USING EMPLOYEE_INFO_LINKAGE_WKSP, CONTROL_WORKSPACE.
DECLARATIVES.
EMPLOYEE-USE SECTION.
 USE AFTER STANDARD ERROR PROCEDURE ON EMPLOYEE-FILE.
EMPLOYEE-CHECKING.
 EVALUATE TRUE
 WHEN DUPL-PRIMARY
 MOVE "DUPL" TO ERROR_STATUS_FIELD
 WHEN OTHER
 CALL "ACMS$RAISE_NONREC_EXCEPTION" USING
 BY REFERENCE RMS-STS OF EMPLOYEE-FILE
 END-EVALUATE.
END DECLARATIVES.

MAIN SECTION.
000-SET-STATUS.
 MOVE SPACES TO ERROR_STATUS_FIELD.

010-WRITE-RECORD.
 WRITE EMPLOYEE_INFO_WKSP FROM EMPLOYEE_INFO_LINKAGE_WKSP
 ALLOWING NO OTHERS.

100-EXIT-PROGRAM.
 UNLOCK EMPLOYEE-FILE.
 EXIT PROGRAM.

The following sections discuss various elements in this COBOL program. For complete reference
information on VAX COBOL, see VAX COBOL Reference Manual.

7.7.1. Identification Division
In the Identification Division of this program, you give the COBOL procedure a name to complete the
PROGRAM-ID statement. This name must be unique among all the procedures that run in the same
server, and it must be the same name that you specified previously in your task definition's CALL
statement to this procedure.

76

Chapter 7. Developing the Data Entry Task

In this tutorial, the name of the COBOL procedure is ADD_EMPL_INFO.

7.7.2. Environment Division
The Environment Division defines the RMS file named EMPLOYEE.DAT and specifies its
location. EMPLOYEE-FILE is the procedure's internal name for referencing the external file
EMPLOYEE.DAT, where the procedure stores the information that the user enters. (The file
EMPLOYEE.DAT is created by the COBOL initialization procedure defined in Chapter 9.)

You use the SELECT clause to assign the internal name to the RMS file, describe the organization and
access of the file, provide a FILE STATUS buffer, and assign the OpenVMS file specification for the
RMS file.

The FILE STATUS clause identifies the FILE-STAT data item, where the status value of the write
operation is stored. In the I-O-CONTROL section, the APPLY statement enables record locking for
EMPLOYEE-FILE.

7.7.3. Data Division
In the Data Division, you define the personnel records that make up the RMS file, naming one field
as the primary key. An RMS file in an ACMS application contains records whose definitions reside
in CDD. Therefore, the Data Division need not list every field in the record, but can instead include a
COPY ... FROM DICTIONARY clause for the record definition.

This procedure identifies EMPLOYEE-FILE as EXTERNAL because the file is accessed externally.
The RECORD KEY clause establishes the employee number field, EMPL_NUMBER, as the
primary key of the record. The COPY statement directs the procedure to find the definition of
EMPLOYEE_INFO_WKSP in the CDD dictionary when you compile this COBOL program.

The Data Division also sets up condition values for you to use in error handling. A user might try to
add a new record to the file using an employee number that already exists. The COBOL condition
code for the duplicate key error is 22. In the Data Division, you declare the FILE-STAT data item
and associate it with the names of the condition values (DUPL_PRIMARY, for example) that your
procedure tests during its execution.

Another possible error is when a second user tries to access the record while the procedure is
processing the record for the first user. Because the procedure locks the record during I/O processing,
the second user encounters a locked-record condition. The COBOL condition code for the locked-
record error is 92. You must also associate FILE-STAT with the REC-LOCK condition.

The Linkage Section of this procedure lists the workspaces passed between the task and the
procedure. COPY statements describe which CDD record definitions correspond to the workspaces
you need. Because the linkage record and the file record must have different names, the COPY
statement for EMPLOYEE_INFO_WKSP must use a REPLACING clause to assign a different name
to the workspace. This new name is used only in the Procedure Division of the procedure.

7.7.4. Procedure Division
The main action of the Procedure Division is to write a new record to the RMS file. ACMS
passes the user input to the procedure in the EMPLOYEE_INFO_WKSP workspace, renamed
to EMPLOYEE_INFO_LINKAGE_WKSP in the Linkage Section. The procedure uses
CONTROL_WORKSPACE to report any errors. As required, the USING clause lists both workspaces
in the same order as the CALL clause listed them in the task definition.

77

Chapter 7. Developing the Data Entry Task

The Declaratives Section handles any errors in the procedure. If a duplicate primary key error occurs
when the procedure tries to write a new record to the file, FILE-STAT is assigned the condition
value DUPL-PRIMARY. The EVALUATE statement tests whether the DUPL-PRIMARY condition
is true. If true, the value DUPL is moved to the field ERROR_STATUS_FIELD in the record
CONTROL_WORKSPACE, and the ACMS task definition takes some action (sends an error
message) based on finding the DUPL value. If any other error condition is true, the procedure cancels
the task with the ACMS$RAISE_NONREC_EXCEPTION service. See VSI ACMS for OpenVMS
Writing Applications for information about recoverable and nonrecoverable exceptions.

The Main Section of this procedure performs these simple actions:

• Initializes the field ERROR_STATUS_FIELD to spaces (some value other than DUPL)

• Writes the new record to the file, locking it to prevent any access by other users while the write
action is occurring

• Unlocks the record before exiting the program

This procedure does not create the RMS file, nor does it open the file once it exists. A separate
initialization procedure (described in Chapter 9) performs these operations. Also, this procedure does
not handle the user's interactions with the terminal; DECforms does this.

7.7.5. Compiling the COBOL Procedure
Use the COBOL command to compile this procedure. By appending the /DEBUG qualifier to this
command, you create the capability to debug the procedure later with the OpenVMS Debugger. By
appending the /LIST qualifier, you generate a listing of your program showing any errors. (The listing
file has the file type .LIS.)

Compile the source file EMPLOYEE_INFO_ADD.COB as follows:

$ COBOL/DEBUG/LIST EMPLOYEE_INFO_ADD

If the source file contains syntax errors, you must edit the file and recompile it until the COBOL
compiler signifies that the program compiles successfully by returning to the $ prompt without any
error messages. If you get error messages, make sure you typed the definition exactly as shown in
Example 7.1. In particular, check that you used the appropriate punctuation.

See the COBOL documentation for information on compiling COBOL programs and interpreting
COBOL error messages.

78

Chapter 8. Developing the Inquiry/
Update Task
This chapter describes in step-by-step detail how to write the inquiry/update task using ACMS,
DECforms, and CDD definitions.

8.1. Defining a DECforms Form for Inquiry/
Update
In the inquiry portion of the task, the user needs to see a panel that prompts for the employee number.
In the update portion of the task, the user sees the same panel developed for the data entry task. (In the
update task, the fields are already filled in with employee data when the panel appears.)

Use the same steps as in Section 7.3 to create a form and panel for the inquiry portion of this task.
This panel prompts the user to enter an employee number. Abbreviated versions of these steps are as
follows:

1. Enter FDE and type the name of your new form:

$ FDE
_Input_File: EMPLOYEE_INFO_PROMPT_FORM

Note

If you copied the online IFDL source files to your default directory before starting this tutorial,
DECforms translates the existing IFDL file here and loads the resulting FORM file. It displays the
Main Menu instead of Figure 7.1. In this case, use the arrow keys to choose the Exit option and press
Select. Proceed to step 10.

2. Select Yes to accept the default layout; select the panel option Choose, Create; select the option
Create Panel; enter the name of your panel as show below; select Yes-Remove; and then select
OK.

Panel Name: EMPLOYEE_PROMPT_PANEL

3. Select the Panel Editor menu choice. Format your panel as shown in Figure 8.1 (remembering to
use the arrow keys to position the cursor).

79

Chapter 8. Developing the Inquiry/Update Task

Figure 8.1. Employee Number Panel

4. Position the cursor after "Employee Number of Record to Update:" on the panel. Press Do and
issue the CREATE FIELD command to create a field there:

Command> CREATE FIELD

5. Enter the field name on the Create Field Menu and press Return.

Field Name : EMPL_NUMBER

As before, press Select at the Data Type prompt, select the Character data type, and enter a size
of 10. Select OK. Enter X(10) for the field picture and then select OK to leave the Create Field
Menu.

6. Press Ctrl/Z to exit from the Panel Editor, test this panel through the Test option on the FDE Main
Menu, press Ctrl/Z to exit the test, and then exit from FDE by selecting Exit.

7. Use a text editor to edit the IFDL source file created by DECforms. This file is named
EMPLOYEE_INFO_PROMPT_FORM.IFDL.

Enter a form record description. Add the following lines after the line, "End Data":

Form Record EMPLOYEE_INFO_RECORD
 Copy
 EMPLOYEE_INFO_RECORD From Dictionary
 End Copy
End Record

Enter a function key declaration, a function response, and, to perform cleanup activities, a disable
response. Add the following lines after the line, "Size 24 Lines by 80 Columns":

Function QUIT_KEY
 Is %PF4
End Function

Function Response QUIT_KEY
 Remove All
 Return

80

Chapter 8. Developing the Inquiry/Update Task

 " FQUT" End Response

Disable Response
 Request Exit Response
 Remove All
 End Response
End Response

Add the following lines under "Field EMPL_NUMBER" after the line specifying "Column ...":

Entry Response Reset EMPL_NUMBER End Response

The Reset clause deletes old data that may be in the EMPL_NUMBER field.

8. Your EMPLOYEE_INFO_PROMPT_FORM.IFDL is now complete. Save the edits made in the
IFDL file and exit from the text editor.

9. Create a new binary form file to match your IFDL source file by issuing the following command:

$ FORMS TRANSLATE EMPLOYEE_INFO_PROMPT_FORM.IFDL
$

10. Enter the DECforms EXTRACT OBJECT command to create a form object module, or .OBJ file:

$ FORMS EXTRACT OBJECT EMPLOYEE_INFO_PROMPT_FORM.FORM
$

11. Enter the LINK/SHARE command to link the form object module into a shareable image:

$ LINK/SHARE EMPLOYEE_INFO_PROMPT_FORM.OBJ
$

The result of the LINK/SHARE command is an image (.EXE) of the form that can be shared by
multiple users.

8.2. Defining the Inquiry/Update Task
The inquiry/update task allows a user to display an employee record from the RMS master file
EMPLOYEE.DAT. The user can then modify the contents of that record (for example, changing
the employee's address) and write the revised record back to the RMS master file. This task first
displays a panel to prompt the user for the employee number, then displays the employee record for
that number, and then writes the modified record to the RMS file.

The inquiry/update task contains three exchange steps and two processing steps:

• The first exchange step collects the employee number of the record to be updated.

• The first processing step calls a COBOL procedure that retrieves the specified employee record
from the RMS file.

• The second exchange step collects the modified employee data from the user.

• The second processing step calls a COBOL procedure that replaces the original employee record
with the modified record.

• The third exchange step sends error messages, if any, back to the form, where they are displayed
to users.

81

Chapter 8. Developing the Inquiry/Update Task

The inquiry/update task does not cover all possible error conditions. For illustration purposes, this
task contains error handling for a condition in which two users are modifying the same record at
approximately the same time. The task informs one of the users that another user has changed that
record and gives the notified user a chance to repeat the task with the most recent version of the
record.

8.2.1. Defining the First Exchange Step
The first exchange step directs DECforms to display a panel that prompts the user for the employee
number of the record to be updated. This employee number is passed to the first processing step,
which retrieves the specified record from the RMS file and displays it to the user.

To define the first exchange step:

1. Use a text editor to create a source file for the inquiry/update task definition. Name the source file
EMPLOYEE_INFO_UPDATE_TASK.TDF.

2. Enter the first exchange step in your task definition file:

GET_EMPL_NUMBER:
EXCHANGE
 RECEIVE FORM RECORD EMPLOYEE_INFO_RECORD
 IN EMPLOYEE_INFO_PROMPT_LABEL
 RECEIVING EMPLOYEE_INFO_WKSP
 WITH RECEIVE CONTROL QUIT_WORKSPACE;

Unlike the data entry task, this exchange step explicitly states the name of the form
(EMPLOYEE_INFO_PROMPT_LABEL) used to enter the employee number. Otherwise,
ACMS displays the data entry form, which you specify as the default form later in the task group
definition. Specifying a form here overrides the default form.

As in the data entry task, the RECEIVE CONTROL statement names the ACMS workspace
(QUIT_WORKSPACE) to which DECforms returns the value FQUT when the user presses PF4.

3. Add the following lines to your task definition:

CONTROL FIELD IS QUIT_WORKSPACE.QUIT_KEY
 " FQUT" : EXIT TASK;
END CONTROL FIELD;

The CONTROL FIELD statement associates the value FQUT with the ACMS command
EXIT TASK. Because you have already defined the field QUIT_KEY and the record
QUIT_WORKSPACE in CDD for the data entry task, you do not need to define them again for
the inquiry/update task.

8.2.2. Defining the First Processing Step
The first processing step calls a COBOL procedure that retrieves an employee record from the RMS
master file. The retrieved record corresponds to the employee number that the user entered. The user
then has an opportunity to modify employee information on the panel that displays this record.

Add the following processing step next as the second step in your task definition file. To simplify
referencing this step in the task, begin the step with the label RETRIEVE_UPDATE_INFO:

RETRIEVE_UPDATE_INFO:

82

Chapter 8. Developing the Inquiry/Update Task

PROCESSING
 CALL GET_EMPL_INFO IN EMPL_SERVER
 USING EMPLOYEE_INFO_WKSP, EMPLOYEE_INFO_COMPARE_WKSP,
 CONTROL_WORKSPACE;

GET_EMPL_INFO is the name of the COBOL procedure that retrieves a record from the RMS file. It
runs in the server EMPL_SERVER and uses three workspaces. The procedure and these workspaces
are discussed later in the chapter.

8.2.3. Defining the Second Exchange Step
The second exchange step directs DECforms to display the retrieved employee record on a panel. The
user can then modify that information. When the user finishes modifying employee information, this
exchange step then directs DECforms to return the updated information to ACMS.

Next, add the second exchange step to your task definition file. To simplify referencing this step in the
task, begin the step with the label GET_UPDATE_INFO_FROM_USER:

GET_UPDATE_INFO_FROM_USER:
EXCHANGE
 TRANSCEIVE FORM RECORD EMPLOYEE_INFO_RECORD, EMPLOYEE_INFO_RECORD
 IN EMPLOYEE_INFO_LABEL
 SENDING EMPLOYEE_INFO_WKSP
 RECEIVING EMPLOYEE_INFO_WKSP
 WITH RECEIVE CONTROL QUIT_WORKSPACE;

 CONTROL FIELD IS QUIT_WORKSPACE.QUIT_KEY
 " FQUT" : EXIT TASK;
 END CONTROL FIELD;

The second exchange step begins with a TRANSCEIVE FORM RECORD call to DECforms naming
the SEND record and the RECEIVE record involved in the TRANSCEIVE operation (in both cases
here, EMPLOYEE_INFO_RECORD). The name EMPLOYEE_INFO_LABEL specifies which form
to use.

The SENDING clause names the workspace sent to the form: EMPLOYEE_INFO_WKSP. The
RECEIVING clause names the workspace received from the form: also EMPLOYEE_INFO_WKSP.
The latter workspace contains any modifications that a user makes to the data items displayed on the
form.

As you did for the first exchange step, include a CONTROL FIELD clause in your task definition so
that the user can press a key to exit from the task without saving any entries.

8.2.4. Defining the Second Processing Step
The second processing step calls a COBOL procedure that processes the update information and
places it in the RMS file.

Next, add the second processing step to your task definition file. To simplify referencing this step in
the task, begin the step with the label PROCESS_UPDATE_INFO:

PROCESS_UPDATE_INFO:
PROCESSING
 CALL PUT_EMPL_INFO IN EMPL_SERVER
 USING EMPLOYEE_INFO_WKSP, EMPLOYEE_INFO_COMPARE_WKSP,
 CONTROL_WORKSPACE;

83

Chapter 8. Developing the Inquiry/Update Task

 IF (CONTROL_WORKSPACE.ERROR_STATUS_FIELD EQ "CHNG")
 THEN
 MOVE "Changed by another user. Ctrl/Z to repeat, PF4 to quit." TO
 CONTROL_WORKSPACE.MESSAGEPANEL;
 ELSE
 EXIT TASK;
 END IF;

PUT_EMPL_INFO is the name of the COBOL procedure that writes a changed record to the RMS
file. It runs in EMPL_SERVER and uses the same workspaces as the retrieval procedure. The
procedure and these workspaces are discussed later in the chapter.

The procedure PUT_EMPL_INFO reads this record from the RMS file and locks it. The procedure
then compares this record to a copy of the original record stored in a workspace.

If the two records do not match, the record in the RMS file has been changed since the user first saw
it. In that case, the user is attempting to modify an outdated version of the record. The user is notified
(by means of the "changed" message) and given the opportunity to repeat (with the current version of
the record) or quit (cancel the task).

If the records do match, the procedure writes the modified record to the RMS file.

The IF THEN ELSE clause tests for the CHNG value in the field ERROR_STATUS_FIELD. If the
value is present, a message is stored in the MESSAGEPANEL field, and the task moves on to the
third exchange step to display the message. Otherwise, if the CHNG value is not in the workspace
field, control passes to the ELSE statement and ends the task successfully.

8.2.5. Defining the Third Exchange Step
The third exchange step is nearly the same as the second exchange step in the data entry task
discussed in Chapter 7. The purpose of this step is to display an error message, if the user tries to
modify a record that another user just changed.

Add the following lines to your source file. To simplify referencing this step in the task, begin with
the label DISPLAY_ERROR_MESSAGE:

DISPLAY_ERROR_MESSAGE:
 EXCHANGE
 SEND FORM RECORD CONTROL_WORKSPACE IN EMPLOYEE_INFO_LABEL
 SENDING CONTROL_WORKSPACE
 WITH RECEIVE CONTROL QUIT_WORKSPACE;
 ACTION IS
 IF (QUIT_WORKSPACE.QUIT_KEY EQ " FQUT")
 THEN EXIT TASK;
 ELSE REPEAT TASK;
 END IF;

8.2.6. Completing the Task Definition
To complete the inquiry/update task definition, you need to add some lines at the beginning of your
file and at the end of your file. These lines define the block step and the remaining elements of the
definition. As described in Section 7.4.4, the block step consists of the exchange and processing steps,
which constitute the block work.

1. Add these lines at the beginning of your file:

84

Chapter 8. Developing the Inquiry/Update Task

REPLACE TASK EMPLOYEE_INFO_UPDATE_TASK
USE WORKSPACES
 EMPLOYEE_INFO_WKSP,
 EMPLOYEE_INFO_COMPARE_WKSP,
 QUIT_WORKSPACE,
 CONTROL_WORKSPACE;
BLOCK WORK WITH FORM I/O

REPLACE is an ADU command that stores a new task definition in CDD (creating a new
definition or replacing an old one). Placing this command inside the task definition allows you to
run this task definition (EMPLOYEE_INFO_UPDATE_TASK) as a command file in ADU (see
Section 8.3).

The WORKSPACES clause names the workspaces used in the task. In the processing steps, you
use EMPLOYEE_INFO_COMPARE_WKSP as the workspace that stores a copy of the displayed
record.

The BLOCK WORK clause marks the beginning of the work that takes place within the block
step.

2. Add these lines at the end of your file:

END BLOCK WORK; END DEFINITION;

The END BLOCK WORK clause ends the work done within the block step.

3. Your definition for the inquiry/update task, EMPLOYEE_INFO_UPDATE_TASK.TDF, is now
complete. Save your file and exit the editor.

8.3. Compiling the Task Definition
Compiling the task definition in ADU allows ADU to check for syntax errors in the source file
EMPLOYEE_INFO_UPDATE_TASK.TDF. If there are no errors, ADU inserts your task definition
into CDD. To do this, perform the following steps:

1. Invoke ADU:

$ ADU

2. When you issue the SET LOG and SET VERIFY commands, ADU simultaneously writes its
output to the terminal screen and to the ADULOG.LOG file. Enter the SET LOG and SET
VERIFY commands:

ADU> SET LOG
ADU> SET VERIFY

3. Submit the task definition file to ADU:

ADU> @EMPLOYEE_INFO_UPDATE_TASK.TDF

If ADU detects syntax errors in your task definition, exit ADU and edit the source file to correct
the errors. Then reenter ADU and resubmit the file. Repeat editing the source file and resubmitting
it to ADU until the file processes without errors. If you get error messages, make sure you typed
the definition exactly as shown. In particular, check that you used the appropriate punctuation.

4. Exit from ADU.

85

Chapter 8. Developing the Inquiry/Update Task

8.4. Defining COBOL Procedures
The procedures used in the inquiry/update task are similar in many respects to the COBOL procedure
EMPLOYEE_INFO_ADD.COB, which is called from the data entry task discussed in Chapter 7.
Consequently, this section does not discuss the basic details again. This section concentrates instead
on the processing and error handling in the Procedure Division of each program.

The first processing step in the inquiry/update task calls a COBOL procedure that retrieves a record
from an RMS file. (You must retrieve the record before calling DECforms to display it.) This COBOL
procedure is called EMPLOYEE_INFO_UPDATE_GET.COB.

The second processing step calls a COBOL procedure that writes the updated record to the RMS file.
This COBOL procedure is called EMPLOYEE_INFO_UPDATE_PUT.COB. The following sections
explain these two procedures.

8.4.1. Defining the Retrieval Procedure
The Identification Division, the Environment Division, and the File Section of the Data Division for
the retrieval procedure are almost identical to those for the data entry procedure (see Example 7.1).
The only difference is the PROGRAM-ID, which for the retrieval procedrue is GET_EMPL_INFO.
Because the data entry and retrieval procedures use the same RMS file, they must define the file
identically in the SELECT and FD statements.

Create the COBOL retrieval procedure as follows:

1. Example 8.1 contains the COBOL retrieval procedure. Create a source file named
EMPLOYEE_INFO_UPDATE_GET.COB and type in the procedure as shown in this example.

2. Save the file and exit the editor.

Example 8.1. COBOL Retrieval Procedure

IDENTIFICATION DIVISION.
PROGRAM-ID. GET_EMPL_INFO.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT EMPLOYEE-FILE
 ORGANIZATION INDEXED
 ACCESS RANDOM
 FILE STATUS IS FILE-STAT
 ASSIGN TO "xxx_FILES:EMPLOYEE.DAT".
I-O-CONTROL.
 APPLY LOCK-HOLDING ON EMPLOYEE-FILE.

DATA DIVISION.
FILE SECTION.
FD EMPLOYEE-FILE EXTERNAL
 DATA RECORD IS EMPLOYEE_INFO_WKSP

86

Chapter 8. Developing the Inquiry/Update Task

 RECORD KEY EMPL_NUMBER OF EMPLOYEE_INFO_WKSP.
COPY "EMPLOYEE_INFO_WKSP" FROM DICTIONARY.

WORKING-STORAGE SECTION.
01 FILE-STAT PIC XX IS EXTERNAL.
 88 OK VALUE "00".
 88 REC-LOCK VALUE "92".

LINKAGE SECTION.
COPY "EMPLOYEE_INFO_WKSP" FROM DICTIONARY REPLACING
 ==EMPLOYEE_INFO_WKSP. == BY ==EMPLOYEE_INFO_LINKAGE_WKSP. ==.
COPY "EMPLOYEE_INFO_WKSP" FROM DICTIONARY REPLACING
 ==EMPLOYEE_INFO_WKSP. == BY ==EMPLOYEE_INFO_COMPARE_WKSP. ==.
COPY "CONTROL_WORKSPACE" FROM DICTIONARY.

PROCEDURE DIVISION USING EMPLOYEE_INFO_LINKAGE_WKSP,
 EMPLOYEE_INFO_COMPARE_WKSP, CONTROL_WORKSPACE.
DECLARATIVES.
EMPLOYEE-USE SECTION.
 USE AFTER STANDARD ERROR PROCEDURE ON EMPLOYEE-FILE.
EMPLOYEE-CHECKING.
 EVALUATE TRUE
 WHEN REC-LOCK
 MOVE "LOCK" TO ERROR_STATUS_FIELD
 END-EVALUATE.
END DECLARATIVES.

MAIN SECTION.
000-SET-STATUS.
 MOVE SPACES TO ERROR_STATUS_FIELD.

010-GET-RECORD.
 MOVE EMPL_NUMBER OF EMPLOYEE_INFO_LINKAGE_WKSP TO EMPL_NUMBER OF
 EMPLOYEE_INFO_WKSP.
 READ EMPLOYEE-FILE INTO EMPLOYEE_INFO_LINKAGE_WKSP
 ALLOWING NO OTHERS.
 MOVE EMPLOYEE_INFO_WKSP TO EMPLOYEE_INFO_COMPARE_WKSP.

100-EXIT-PROGRAM.
 UNLOCK EMPLOYEE-FILE.
 EXIT PROGRAM.

Recall that the Linkage Section lists the workspaces that ACMS passes to the procedure. The linkage
workspace and the file workspace must have different names; therefore, the COPY statement includes
the REPLACING clause to assign a different name to the EMPLOYEE_INFO_WKSP workspace.
Like the data entry procedure, the retrieval procedure also uses CONTROL_WORKSPACE for error
handling and reporting.

In the retrieval procedure, you make a copy of the record displayed to the user and store it in another
workspace. The copied record is called EMPLOYEE_INFO_COMPARE_WKSP, and ACMS passes
it to the update procedure to be compared with the corresponding record in the RMS file. If the record
in the RMS file has changed since this task began, ACMS notifies the user that the displayed record is
no longer current.

In the Main Section of the Procedure Division, the retrieval procedure performs the following actions:

• Initializes ERROR_STATUS_FIELD with spaces

87

Chapter 8. Developing the Inquiry/Update Task

• Reads the record from the RMS file, locks it, and stores it in EMPLOYEE_INFO_WKSP, which
is passed to DECforms and displayed on the screen

• Copies the contents of EMPLOYEE_INFO_WKSP into another workspace,
EMPLOYEE_INFO_COMPARE_WKSP, so that the update procedure can later compare the
record that the user saw to the record currently in the RMS file

• Unlocks the record before exiting the program

8.4.2. Compiling the Retrieval Procedure
Use the COBOL command to compile the retrieval procedure. By appending the /DEBUG qualifier to
this command, you create the capability to debug the procedure later with the OpenVMS Debugger.
By appending the /LIST qualifier, you generate a listing of your program showing any errors. (The
listing file has the file type .LIS.)

Compile the source file EMPLOYEE_INFO_UPDATE_GET.COB as follows:

$ COBOL/DEBUG/LIST EMPLOYEE_INFO_UPDATE_GET
$

If the source file contains syntax errors, continue to edit the source file and recompile it until the
program compiles successfully.

8.4.3. Defining the Update Procedure
Except for the PROGRAM-ID, the update procedure is identical to the retrieval procedure until the
Main Section of the Procedure Division.

Create the update procedure as follows:

1. Example 8.2 contains the update procedure. Create a source file named
EMPLOYEE_INFO_UPDATE_PUT.COB and type in the procedure as shown in this example.

2. Save the file and exit the editor.

Example 8.2. COBOL Update Procedure

IDENTIFICATION DIVISION. PROGRAM-ID. PUT_EMPL_INFO.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT EMPLOYEE-FILE
 ORGANIZATION INDEXED
 ACCESS RANDOM
 FILE STATUS IS FILE-STAT
 ASSIGN TO "xxx_FILES:EMPLOYEE.DAT".
I-O-CONTROL.
 APPLY LOCK-HOLDING ON EMPLOYEE-FILE.

DATA DIVISION.
FILE SECTION.
FD EMPLOYEE-FILE EXTERNAL
 DATA RECORD IS EMPLOYEE_INFO_WKSP
 RECORD KEY EMPL_NUMBER OF EMPLOYEE_INFO_WKSP.

88

Chapter 8. Developing the Inquiry/Update Task

 COPY "EMPLOYEE_INFO_WKSP" FROM DICTIONARY.

WORKING-STORAGE SECTION.
01 FILE-STAT PIC XX IS EXTERNAL.
 88 OK VALUE "00".
 88 REC-LOCK VALUE "92".

LINKAGE SECTION.
COPY "EMPLOYEE_INFO_WKSP" FROM DICTIONARY REPLACING
 ==EMPLOYEE_INFO_WKSP. == BY ==EMPLOYEE_INFO_LINKAGE_WKSP. ==.
COPY "EMPLOYEE_INFO_WKSP" FROM DICTIONARY REPLACING
 ==EMPLOYEE_INFO_WKSP. == BY ==EMPLOYEE_INFO_COMPARE_WKSP. ==.
COPY "CONTROL_WORKSPACE" FROM DICTIONARY.

PROCEDURE DIVISION USING EMPLOYEE_INFO_LINKAGE_WKSP,
 EMPLOYEE_INFO_COMPARE_WKSP, CONTROL_WORKSPACE.
DECLARATIVES.
EMPLOYEE-USE SECTION.
 USE AFTER STANDARD ERROR PROCEDURE ON EMPLOYEE-FILE.
EMPLOYEE-CHECKING.
 EVALUATE TRUE
 WHEN REC-LOCK
 MOVE "LOCK" TO ERROR_STATUS_FIELD
 END-EVALUATE. END DECLARATIVES.

MAIN SECTION.
000-SET-STATUS.
 MOVE SPACES TO ERROR_STATUS_FIELD.

010-GET-RECORD.
 MOVE EMPL_NUMBER OF EMPLOYEE_INFO_LINKAGE_WKSP TO EMPL_NUMBER OF
 EMPLOYEE_INFO_WKSP.
 READ EMPLOYEE-FILE ALLOWING NO OTHERS.
 IF ERROR-STATUS_FIELD EQUAL "LOCK"
 THEN
 GO TO 100-EXIT-PROGRAM.

020-CHECK-FOR-CHANGES.
 PERFORM 070-CHECK-RECORD.
 IF ERROR-STATUS_FIELD EQUAL "CHNG"
 THEN
 MOVE EMPLOYEE_INFO_WKSP TO EMPLOYEE_INFO_LINKAGE_WKSP
 MOVE EMPLOYEE_INFO_WKSP TO EMPLOYEE_INFO_COMPARE_WKSP
 GO TO 100-EXIT-PROGRAM.

030-REWRITE-RECORD.
 REWRITE EMPLOYEE_INFO_WKSP FROM EMPLOYEE_INFO_LINKAGE_WKSP
 ALLOWING NO OTHERS.
 GO TO 100-EXIT-PROGRAM.

070-CHECK-RECORD.
 EVALUATE
 EMPLOYEE_INFO_WKSP EQUAL EMPLOYEE_INFO_COMPARE_WKSP
 WHEN FALSE MOVE "CHNG" TO ERROR_STATUS_FIELD
 END-EVALUATE.

100-EXIT-PROGRAM.

89

Chapter 8. Developing the Inquiry/Update Task

 UNLOCK EMPLOYEE-FILE.
 EXIT PROGRAM.

In the Procedure Division, the update procedure performs the following actions:

• Initializes ERROR_STATUS_FIELD with spaces.

• Retrieves and locks the modified record. If the record is already locked, the procedure stores an
error value in ERROR_STATUS_FIELD and exits from the program.

• Checks the contents of the record in the RMS file against the record displayed to the user, a copy
of which was stored in EMPLOYEE_INFO_COMPARE_WKSP by the retrieval procedure. If the
two records do not match, the procedure stores an error value in ERROR_STATUS_FIELD and
exits from the program.

• Writes the modified record back to the RMS file.

• Unlocks the record before exiting the program.

8.4.4. Compiling the Update Procedure
Use the COBOL command to compile the update procedure. By appending the /DEBUG qualifier to
this command, you create the capability to debug the procedure later with the OpenVMS Debugger.
By appending the /LIST qualifier, you generate a listing of your program showing any errors. (The
listing file has the file type .LIS.)

Compile the source file EMPLOYEE_INFO_UPDATE_PUT.COB as follows:

$ COBOL/DEBUG/LIST EMPLOYEE_INFO_UPDATE_PUT
$

If the source file contains syntax errors, continue to edit the source file and recompile it until the
COBOL compiler completes successfully.

90

Chapter 9. Building the Task Group
This chapter describes how to combine the data entry task and the inquiry/update task into a task
group. It also describes how to write startup and cleanup procedures, how to link the object modules
into a server image, and how to test the tasks using the ACMS Task Debugger.

9.1. Defining Startup and Cleanup Procedures
Because ACMS can use one server process to handle several procedures, any startup and cleanup
operations can be done just once during the lifetime of the process rather than at every processing
step. The following sections have you define the initialization, termination, and cancellation
procedures that perform startup and cleanup for the tasks.

9.1.1. Defining the Initialization Procedure
The initialization procedure in this tutorial performs any work that must be done before the data entry,
retrieval, and update procedures in the server process can execute. For example, this initialization
procedure opens an RMS file and leaves it open until the process stops. This is more efficient than
opening and closing the file every time a task calls one of the three processing procedures.

Therefore, the processing procedures in this tutorial do not open and close the RMS file; instead, the
file is opened in the initialization procedure and closed in the termination procedure. The initialization
procedure tests the status of the open operation and stops the server process if the file was not opened
successfully.

In this tutorial application, the RMS file is created the first time you use the application. Because the
file being opened does not exist yet, the SELECT OPTIONAL statement in COBOL creates it.

Create the COBOL initialization procedure as follows:

1. Example 9.1 contains the COBOL initialization procedure. Create a source file named
EMPLOYEE_INFO_INIT.COB and type in the procedure as shown in this example.

2. Save the file and exit the editor.

Example 9.1. COBOL Initialization Procedure

IDENTIFICATION DIVISION.
PROGRAM-ID. INIT_EMPL_INFO.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT OPTIONAL EMPLOYEE-FILE
 ORGANIZATION INDEXED
 ACCESS RANDOM
 FILE STATUS IS FILE-STAT

91

Chapter 9. Building the Task Group

 ASSIGN TO "xxx_FILES:EMPLOYEE.DAT".
I-O-CONTROL.
 APPLY LOCK-HOLDING ON EMPLOYEE-FILE.

DATA DIVISION.
FILE SECTION.
FD EMPLOYEE-FILE EXTERNAL
 DATA RECORD IS EMPLOYEE_INFO_WKSP
 RECORD KEY EMPL_NUMBER OF EMPLOYEE_INFO_WKSP.

COPY "EMPLOYEE_INFO_WKSP" FROM DICTIONARY.

WORKING-STORAGE SECTION.
01 STATUS-RESULT PIC S9(9) COMP.
01 FILE-STAT PIC XX IS EXTERNAL.

PROCEDURE DIVISION GIVING STATUS-RESULT.
DECLARATIVES.
PERS-USE SECTION.
 USE AFTER STANDARD ERROR PROCEDURE ON EMPLOYEE-FILE.
PERS-CHECKING.
 MOVE RMS-STS OF EMPLOYEE-FILE TO STATUS-RESULT.
END DECLARATIVES.

MAIN SECTION.
000-SET-STATUS.
 SET STATUS-RESULT TO SUCCESS.

010-OPEN-FILES.
 OPEN I-O EMPLOYEE-FILE ALLOWING ALL.

100-EXIT-PROGRAM.
 EXIT PROGRAM.

Use the COBOL command to compile this procedure. By appending the /DEBUG qualifier to this
command, you create the capability to debug the procedure later with the OpenVMS Debugger. By
appending the /LIST qualifier, you generate a listing of your program showing any errors. (The listing
file has the file type .LIS.)

Compile the source file EMPLOYEE_INFO_INIT.COB as follows:

$ COBOL/DEBUG/LIST EMPLOYEE_INFO_INIT
$

If the source file contains syntax errors, continue to edit the source file and recompile it until the
program compiles successfully.

9.1.2. Defining the Termination Procedure
The termination procedure performs any work that must be done when the server process stops.
(ACMS stops a server process when you stop an application that uses the server.) For example,
closing an RMS file in a termination procedure is more efficient than opening and closing the file
every time the task calls one of the three processing procedures.

92

Chapter 9. Building the Task Group

Note

If the server runs down because a cancel occurs, ACMS does not execute the termination procedure
unless you include the statement ALWAYS EXECUTE TERMINATION PROCEDURE in the server
clause of the task group definition (see Section 9.2.3).

Create the COBOL termination procedure as follows:

1. Example 9.2 contains the COBOL termination procedure. Create a source file named
EMPLOYEE_INFO_TERM.COB and type in the procedure as shown in this example.

2. Save the file and exit the editor.

Example 9.2. COBOL Termination Procedure

IDENTIFICATION DIVISION.
PROGRAM-ID. TERM_EMPL_INFO.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT EMPLOYEE-FILE
 ORGANIZATION INDEXED
 ACCESS RANDOM
 FILE STATUS IS FILE-STAT
 ASSIGN TO "xxx_FILES:EMPLOYEE.DAT".
I-O-CONTROL.
 APPLY LOCK-HOLDING ON EMPLOYEE-FILE.

DATA DIVISION.
FILE SECTION
FD EMPLOYEE-FILE EXTERNAL
 DATA RECORD IS EMPLOYEE_INFO_WKSP
 RECORD KEY EMPL_NUMBER OF EMPLOYEE_INFO_WKSP.

COPY "EMPLOYEE_INFO_WKSP" FROM DICTIONARY.

WORKING-STORAGE SECTION.
01 STATUS-RESULT PIC S9(9) COMP.
01 FILE-STAT PIC XX IS EXTERNAL.

PROCEDURE DIVISION GIVING STATUS-RESULT.
DECLARATIVES.
PERS-USE SECTION.
 USE AFTER STANDARD ERROR PROCEDURE ON EMPLOYEE-FILE.
PERS-CHECKING.
 MOVE RMS-STS OF EMPLOYEE-FILE TO STATUS-RESULT.
END DECLARATIVES.

93

Chapter 9. Building the Task Group

MAIN SECTION.
000-SET-STATUS.
 SET STATUS-RESULT TO SUCCESS.

010-CLOSE-FILES.
 CLOSE EMPLOYEE-FILE.

100-EXIT-PROGRAM.
 EXIT PROGRAM.

Use the COBOL command to compile this procedure. By appending the /DEBUG qualifier to this
command, you create the capability to debug the procedure later with the OpenVMS Debugger. By
appending the /LIST qualifier, you generate a listing of your program showing any errors. (The listing
file has the file type .LIS.)

Compile the source file EMPLOYEE_INFO_TERM.COB as follows:

$ COBOL/DEBUG/LIST EMPLOYEE_INFO_TERM
$

If the source file contains syntax errors, continue to edit the source file and recompile it until the
program compiles successfully.

9.1.3. Defining the Cancellation Procedure
The cancellation procedure performs any work that must be done if a cancel occurs while the server
process is active. For example, the processing procedures lock a record to process it. If a cancel occurs
(for example, if the user presses Ctrl/C) while the record is locked, the record remains locked until
the server process stops unless you unlock it in a cancellation procedure. By unlocking the record
quickly with a cancellation procedure, you avoid delays to other users trying to access the record.

Note

Often a cancellation procedure is not recommended in more complex applications, either for design
reasons, or because you can accomplish any necessary server cleanup activity in your termination
procedure.

Create the COBOL cancellation procedure as follows:

1. Example 9.3 contains the COBOL cancellation procedure. Create a source file named
EMPLOYEE_INFO_CANCEL.COB and type in the procedure as shown in this example.

2. Save the file and exit the editor.

Example 9.3. COBOL Cancellation Procedure

IDENTIFICATION DIVISION.
PROGRAM-ID. CANCEL_EMPL_INFO.

ENVIRONMENT DIVISION.

94

Chapter 9. Building the Task Group

CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT EMPLOYEE-FILE
 ORGANIZATION INDEXED
 ACCESS RANDOM
 FILE STATUS IS FILE-STAT
 ASSIGN TO "xxx_FILES:EMPLOYEE.DAT".
I-O-CONTROL.
 APPLY LOCK-HOLDING ON EMPLOYEE-FILE.

DATA DIVISION.
FILE SECTION.
FD EMPLOYEE-FILE EXTERNAL
 DATA RECORD IS EMPLOYEE-INFO_WKSP
 RECORD KEY EMPL_NUMBER OF EMPLOYEE_INFO_WKSP.

COPY "EMPLOYEE_INFO_WKSP" FROM DICTIONARY.

WORKING-STORAGE SECTION.
01 STATUS-RESULT PIC S9(9) COMP.
01 FILE-STAT PIC XX IS EXTERNAL.

PROCEDURE DIVISION GIVING STATUS-RESULT.
DECLARATIVES.
PERS-USE SECTION.
 USE AFTER STANDARD ERROR PROCEDURE ON EMPLOYEE-FILE.
PERS-CHECKING.
 MOVE RMS-STS OF EMPLOYEE-FILE TO STATUS-RESULT.
END DECLARATIVES.

MAIN SECTION.
000-SET-STATUS.
 SET STATUS-RESULT TO SUCCESS.

010-UNLOCK-FILES.
 UNLOCK EMPLOYEE-FILE.

100-EXIT-PROGRAM.
 EXIT PROGRAM.

Use the COBOL command to compile this procedure. By appending the /DEBUG qualifier to this
command, you create the capability to debug the procedure later with the OpenVMS Debugger. By
appending the /LIST qualifier, you generate a listing of your program showing any errors. (The listing
file has the file type .LIS.)

Compile the source file EMPLOYEE_INFO_CANCEL.COB as follows:

$ COBOL/DEBUG/LIST EMPLOYEE_INFO_CANCEL
$

If the source file contains syntax errors, continue to edit the source file and recompile it until the
program compiles successfully.

95

Chapter 9. Building the Task Group

9.2. Defining and Building the Task Group
To define the task group in this tutorial, you specify the tasks that belong to the group, the server in
which the tasks run, and the workspaces that the tasks use. Because the application uses DECforms
to get information from the terminal user, you must also specify the form file name, form file
specification, and form file label of the forms used in the task group definition.

You define a task group with commands and clauses of the Application Definition Utility (ADU) in
the same manner that you created the two task definitions earlier.

9.2.1. Naming Forms
To begin defining the task group definition, follow these steps:

1. Use a text editor to create a source file for the task group definition. Name the source file
EMPLOYEE_INFO_TASK_GROUP.GDF.

2. Begin your file by entering the following lines:

REPLACE GROUP EMPLOYEE_INFO_TASK_GROUP
FORM IS EMPLOYEE_INFO_FORM IN "xxx_FILES:EMPLOYEE_INFO_FORM"
 WITH NAME EMPLOYEE_INFO_LABEL;
FORM IS EMPLOYEE_INFO_PROMPT_FORM
 IN "xxx_FILES:EMPLOYEE_INFO_PROMPT_FORM"
 WITH NAME EMPLOYEE_INFO_PROMPT_LABEL;

The task group definition lists the OpenVMS file specifications of DECforms
form files used in the task group. These are EMPLOYEE_INFO_FORM and
EMPLOYEE_INFO_PROMPT_FORM, created in Chapter 7 and Chapter 8, and stored in the
directory specified by your logical xxx_FILES.

The WITH NAME phrase specifies the form label name for each form. These names were used
earlier within the ACMS task definitions to refer to the form.

9.2.2. Naming the Tasks in the Task Group
You can now add the following TASKS ARE clause to the source file:

TASKS ARE
 EMPLOYEE_INFO_ADD_TASK : TASK IS EMPLOYEE_INFO_ADD_TASK;
 EMPLOYEE_INFO_UPDATE_TASK : TASK IS EMPLOYEE_INFO_UPDATE_TASK;
END TASKS;

The task name on the right hand side of the colon is as you defined it in CDD. The task name on the
left hand side of the colon can be any unique name you create to identify the task and does not need
to match the task name on the right hand side, but using different names is more often confusing
than useful. You use the task names on the left hand side later in the application definition to assign
different characteristics to individual tasks.

9.2.3. Naming the Procedure Server and Workspaces
All the COBOL procedures run in the same procedure server, which you define by adding a SERVER
IS clause to your source file.

1. Add the following lines to your file:

96

Chapter 9. Building the Task Group

SERVER IS
 EMPL_SERVER:
 DEFAULT OBJECT FILE IS EMPL_SERVER;
 PROCEDURE SERVER IMAGE IS "xxx_FILES:EMPL_SERVER";
 INITIALIZATION PROCEDURE IS INIT_EMPL_INFO;
 TERMINATION PROCEDURE IS TERM_EMPL_INFO;
 CANCEL PROCEDURE IS CANCEL_EMPL_INFO;
 PROCEDURES ARE
 ADD_EMPL_INFO,
 GET_EMPL_INFO,
 PUT_EMPL_INFO;
END SERVER;

WORKSPACES ARE
 EMPLOYEE_INFO_WKSP,
 EMPLOYEE_INFO_WKSP WITH NAME EMPLOYEE_INFO_COMPARE_WKSP,
 QUIT_WORKSPACE,
 CONTROL_WORKSPACE;
END DEFINITION;

The SERVER IS clause identifies the procedure server for the task group and lists all
procedures that run in the server. You list each procedure by its PROGRAM-ID (for example,
ADD_EMPLOYEE_INFO), including any initialization, termination, and cancellation procedures
you have written.

The DEFAULT OBJECT FILE statement names the procedure server object module (.OBJ),
while the PROCEDURE SERVER IMAGE statement names the executable image (.EXE). In this
tutorial, the server object module and the executable image are both called EMPL_SERVER. The
system logical xxx_FILES specifies the directory in which to place the procedure server image.

The WORKSPACES clause defines the workspaces used in the tasks. In the inquiry/update task,
both EMPLOYEE_INFO_WKSP and EMPLOYEE_INFO_COMPARE_WKSP need to use
the EMPLOYEE_INFO_WKSP definition. However, ACMS requires that workspace names be
unique; therefore, you use the WITH NAME keywords in the WORKSPACES clause to rename
one of the EMPLOYEE_INFO_WKSP definitions.

2. Your definition for the task group definition, EMPLOYEE_INFO_TASK_GROUP.GDF, is now
complete. Save your file and exit the editor.

9.2.4. Compiling the Task Group Definition
Compiling the task group definition allows ADU to check for syntax errors in the source file
EMPLOYEE_INFO_TASK_GROUP.GDF. If there are no errors, ADU inserts your task group
definition into CDD. To do this, perform the following steps:

1. Invoke ADU:

$ ADU

2. When you use the SET LOG and SET VERIFY commands, ADU simultaneously writes its output
to the terminal screen and to the ADULOG.LOG file. Enter the SET LOG and SET VERIFY
commands:

ADU> SET LOG
ADU> SET VERIFY

97

Chapter 9. Building the Task Group

3. Submit the task group definition file to ADU:

ADU> @EMPLOYEE_INFO_TASK_GROUP.GDF

If ADU detects syntax errors in your task definition, exit ADU and edit the source file to correct
the errors; then reenter ADU and resubmit the file. Repeat editing the source file and resubmitting
it to ADU until the file processes without errors. If you get error messages, make sure that
you typed the definition exactly as shown. In particular, check that you used the appropriate
punctuation.

4. Exit from ADU.

Your default CDD directory now contains the task group definition, the task definitions created for the
data entry and inquiry/update tasks, and the record definitions for these tasks. You can use the CDO
DIRECTORY command to verify that these definitions exist (a partial directory listing is as follows).

$ CDO
CDO> DIRECTORY
 CONTROL_WORKSPACE;1 RECORD
 EMPLOYEE_INFO_ADD_TASK;1 ACMS$TASK
 EMPLOYEE_INFO_TASK_GROUP;1 ACMS$TASK_GROUP
 EMPLOYEE_INFO_UPDATE_TASK;1 ACMS$TASK
 EMPLOYEE_INFO_WKSP;1 RECORD
 .
 .
 .
CDO>

The DIRECTORY command displays the names of items in CDD and indicates the type of each item:
CDD record or field, ACMS task or task group.

9.2.5. Building the Task Group
You can now build the task group with the ADU BUILD command. This command produces two new
files: a task group database file and a procedure server object module. The task group database is an
RMS file that contains binary versions of the tasks and information about how to process them. At
run time, ACMS executes the tasks in their binary form rather than as ADU source commands. The
procedure server object module controls the procedures that run in the same server.

To build the task group, use the BUILD command with the GROUP keyword. Include the /DEBUG
qualifier to test the task group in the ACMS Task Debugger (described at the end of this chapter).
Build the task group as follows:

$ ADU
ADU> BUILD GROUP EMPLOYEE_INFO_TASK_GROUP/DEBUG
ADU>

If the BUILD command succeeds, ADU displays a "Writing TDB...object module created"
sequence of messages. When ADU processes this command, it creates the task group database file
EMPLOYEE_INFO_TASK_GROUP.TDB. It also creates a procedure server transfer module called
EMPL_SERVER.OBJ. In the following section, you link this object module with all the procedure
object modules to produce the procedure server image.

If the BUILD command fails, ADU issues error messages and redisplays the ADU> prompt. Correct
the errors and resubmit the task group definition to ADU, repeating this sequence until the definition
processes without errors.

98

Chapter 9. Building the Task Group

Exit from ADU.

9.3. Linking the Server Image
You can now link the procedure server object module with the object modules of all the procedures in
the task group. Use the DCL LINK command. Include the /DEBUG qualifier to test the task group in
the ACMS Task Debugger (described at the end of this chapter):

$ LINK/DEBUG EMPL_SERVER, EMPLOYEE_INFO_ADD, EMPLOYEE_INFO_INIT, -
_$ EMPLOYEE_INFO_TERM, EMPLOYEE_INFO_CANCEL, EMPLOYEE_INFO_UPDATE_GET, -
_$ EMPLOYEE_INFO_UPDATE_PUT
$

If your LINK command succeeds, DCL returns the $ prompt without any error messages.

The VAX Linker automatically uses the first object module listed after the LINK command as
the name of the server image. The tutorial lists the EMPL_SERVER object module first, so that
the server image has the same name as the procedure server. This produces a server image named
EMPL_SERVER.EXE.

(Notice that you use the DCL file names for the COBOL procedures in the LINK command.)

9.4. Testing a Task in the ACMS Task
Debugger
With the ACMS Task Debugger you can simulate how a task runs as part of an application, even
though you have not yet defined the application and its menus. You run one task at a time and, in
this way, test how an individual task works. The ACMS Task Debugger uses the task group database
(.TDB) file and the server image (.EXE) file to run the tasks in a task group.

Note

The ACMS Task Debugger works within your OpenVMS process. To accommodate the Task
Debugger, your OpenVMS account needs a minimum BYTLM quota of 50,000. Otherwise, you
receive an EXBYTLM error in step 2.

If you want to create a DECforms trace file that records form processing whenever an ACMS task
calls a DECforms request, turn on tracing here before entering the Task Debugger (see Section A.4).

To use the ACMS Task Debugger, follow these steps:

1. To start the Task Debugger, issue the ACMS/DEBUG command followed by the name of the
task group. To examine the contents of workspaces while stepping through a task, include the /
WORKSPACE qualifier:

$ ACMS/DEBUG EMPLOYEE_INFO_TASK_GROUP /WORKSPACE
ACMSDBG>

2. Issue the START command to start EMPL_SERVER. The Task Debugger returns several
messages and the DBG> prompt:

ACMSDBG> START EMPL_SERVER

99

Chapter 9. Building the Task Group

Terminal is in SERVER EMPL_SERVER
 I64 DEBUG Version ...

%DEBUG-I-INITIAL, language is COBOL, module set to EMPL_SERVER
DBG>

3. Issue the GO command to run the initialization procedure, EMPLOYEE_INFO_INIT.COB:

DBG> GO
Server EMPL_SERVER has been started
ACMSDBG>

To verify that EMPL_SERVER is active as you are testing, you can enter the SHOW SERVERS
command:

ACMSDBG> SHOW SERVERS
EMPL_SERVER
ACMSDBG>

4. (Optional) Set breakpoints for EMPLOYEE_INFO_ADD_TASK at the GET_EMPL_INFO and
PROCESS_EMPL_INFO lines in the task, using the $ACTION symbol. Breakpoints stop a task at
a specified line so that you can examine the contents of a field in one of the workspaces:

ACMSDBG> SET BREAK EMPLOYEE_INFO_ADD_TASK GET_EMPL_INFO $ACTION
ACMSDBG> SET BREAK EMPLOYEE_INFO_ADD_TASK PROCESS_EMPL_INFO $ACTION
ACMSDBG>

5. (Optional) Issue the SHOW BREAK command to check the breakpoints you have set:

ACMSDBG> SHOW BREAK

task breakpoint at EMPLOYEE_INFO_ADD_TASK\GET_EMPL_INFO\$ACTION
task breakpoint at EMPLOYEE_INFO_ADD_TASK\PROCESS_EMPL_INFO\$ACTION

ACMSDBG>

6. Enter the SELECT command with the name of the task that you want to start:

ACMSDBG> SELECT EMPLOYEE_INFO_ADD_TASK
Task is in the task debugger

This command begins the task. The EMPLOYEE_INFO_FORM appears on your screen.

7. Enter data in all the fields on the form. (Make note of the employee number that you enter here
to test the inquiry/update task next.) Then press Ctrl/Z. If you set breakpoints, the system returns
this message:

Task breakpoint at EMPLOYEE_INFO_ADD_TASK\GET_EMPL_INFO\$ACTION

(If you did not set breakpoints, the message is "Task ended," and you can proceed to step 11.)

8. Issue the EXAMINE command to check that the information you entered on the form was
transmitted to the workspace EMPLOYEE_INFO_WKSP:

ACMSDBG> EXAMINE EMPLOYEE_INFO_WKSP

The Task Debugger displays the employee data as it appears in the workspace.

9. Enter GO to continue to your second breakpoint:

100

Chapter 9. Building the Task Group

ACMSDBG> GO

Task is in SERVER EMPL_SERVER Task is in the task debugger
Task breakpoint at EMPLOYEE_INFO_ADD_TASK\PROCESS_EMPL_INFO\$ACTION

ACMSDBG>

The Task Debugger now stops at the second breakpoint (PROCESS_EMPL_INFO) in your task.

10. Enter GO to complete the task:

ACMSDBG> GO
Task ended

11. If you wish to test EMPLOYEE_INFO_UPDATE_TASK, you can use the employee number that
you just entered during the data entry test above. (If you wish to set breakpoints for this task, do so
before selecting the task.) Enter the SELECT command with the name of the task:

ACMSDBG> SELECT EMPLOYEE_INFO_UPDATE_TASK
Task is in the task debugger

This command begins the task. The EMPLOYEE_INFO_PROMPT_FORM appears on your
screen. Type in the employee number and press Ctrl/Z. The employee data that you entered in the
data entry test should appear on your screen. You can now modify that data and save it by pressing
Ctrl/Z.

12. When you are finished testing your tasks ("Task ended"), issue the STOP command to stop
EMPL_SERVER:

ACMSDBG> STOP /ALL
Terminal is in SERVER EMPL_SERVER
Server EMPL_SERVER stopped
ACMSDBG>

13. Exit from the ACMS Task Debugger:

ACMSDBG> EXIT
$

For more information on testing and debugging tasks, see VSI ACMS for OpenVMS Writing Server
Procedures. For information on using the OpenVMS Debugger, consult the OpenVMS Debugger
Manual.

101

Chapter 9. Building the Task Group

102

Chapter 10. Defining and Building the
Application
In this chapter, you learn how to write the application definition. You then build this definition into an
application database that ACMS uses at run time.

10.1. Defining the Application
An ACMS application controls one or more task groups, each of which contains related tasks that
may share servers. In the application definition, you describe characteristics that control the tasks, the
servers, and the application. ACMS provides defaults for most of the control characteristics that an
application requires.

You create the application definition as a source file of ADU commands in the same manner that you
created the task and task group definitions earlier.

10.1.1. Application Characteristics
To begin writing the application definition, follow these steps:

1. Use a text editor to create a source file for the application definition. Name the file
EMPLOYEE_INFO_APPL_xxx.ADF, filling in your initials or other unique characters
for the xxx part of the name. Creating a unique application name avoids conflicts with the
applications of others who may be entering this tutorial on your system. (If you copy the file
EMPLOYEE_INFO_APPL_xxx.ADF from the online source files, rename it to substitute your
initials for xxx. Also, edit this file to make the same name change in the first line of the file.)

2. Begin your file by entering the following lines:

REPLACE APPLICATION EMPLOYEE_INFO_APPL_xxx
 AUDIT;
 APPLICATION USERNAME IS EMPLOYEE_EXC;

The AUDIT clause directs ACMS to collect audit trail information for the application.
This information is useful for determining how an ACMS system and its tasks and
applications are being used. The ACMS Audit Trail Logger gathers statistics about an active
ACMS system and records them in the audit trail log file. This file, which is named SYS
$ERRORLOG:ACMSAUDIT.LOG by default, records such information as task selections, task
cancellations, user logins and logouts, and application starts and stops.

At run time, ACMS uses an OpenVMS process called an Application Execution Controller
(EXC) for each application. The EXC executes the task and performs task flow control. The
APPLICATION USERNAME clause specifies the user name EMPLOYEE_EXC for the
Application Execution Controller. Chapter 12 describes how your system manager creates the
account EMPLOYEE_EXC.

10.1.2. Server Characteristics
Every server in an application has an OpenVMS user name. By default, a server uses the application
user name as its OpenVMS user name. For most applications, however, use a different OpenVMS
account for the server, because the server usually requires fewer privileges and lower quotas than an

103

Chapter 10. Defining and Building the Application

application. The application definition specifies the name EMPL_SERVER. Chapter 12 describes how
your system manager creates the account EMPL_SERVER.

Add the following lines to your source file:

SERVER DEFAULTS ARE
 AUDIT;
 USERNAME IS EMPL_SERVER;
 MINIMUM SERVER PROCESSES IS 1;
 MAXIMUM SERVER PROCESSES IS 1;
END SERVER DEFAULTS;

The AUDIT clause generates audit trail information for the server. The USERNAME clause names
EMPL_SERVER as the account in which the server runs.

ACMS lets you control both the minimum and maximum number of server processes used for your
application. Servers are serially reusable, so they can be created once and used several times by
the application. The MINIMUM SERVER PROCESSES and MAXIMUM SERVER PROCESSES
clauses specify that only one server process be created for the application. Specifying the same
number for the minimum and the maximum can greatly improve the performance of your application,
provided that the number of processes is adequate for the number of users.

10.1.3. Task Characteristics
The only required task characteristic is the name of every task group in the application. Optional task
characteristics specify which users can run which tasks and whether audit trail information is recorded
for the tasks. This tutorial application is simple enough that all users can be allowed access to all
tasks.

1. Add these lines to your source file:

TASK DEFAULTS ARE
 AUDIT;
END TASK DEFAULTS;

TASK GROUPS ARE
 EMPLOYEE_INFO_TASK_GROUP:
 TASK GROUP FILE IS "xxx_FILES:EMPLOYEE_INFO_TASK_GROUP.TDB";
END TASK GROUPS;
END DEFINITION;

2. Your definition for the application definition, EMPLOYEE_INFO_APPL_xxx.ADF, is now
complete. Save your file and exit the editor.

10.2. Compiling the Application Definition
Compile your source file after exiting the editor. Invoke ADU and submit the file
EMPLOYEE_INFO_APPL_xxx.ADF as follows:

$ ADU
ADU> SET LOG
ADU> SET VERIFY
ADU> @EMPLOYEE_INFO_APPL_xxx.ADF

If ADU detects syntax errors in your application definition, you must exit ADU and edit the source
file to correct the errors. Then reenter ADU and resubmit the file. Repeat this sequence until the file

104

Chapter 10. Defining and Building the Application

processes without errors. If you get error messages, make sure that you typed the definition exactly as
shown. In particular, check that you used the appropriate punctuation.

10.3. Building the Application
Next, build the application with the ADU BUILD command and the APPLICATION keyword:

ADU> BUILD APPLICATION EMPLOYEE_INFO_APPL_xxx

This command produces an application database file in your default OpenVMS directory. This
file is sometimes called the ADB file because .ADB is the default file type (in this case, your
EMPLOYEE_INFO_APPL_xxx.ADB file).

If the BUILD command succeeds, ADU displays a "Writing ADB" message.

If the BUILD command fails, ADU issues error messages and redisplays the ADU> prompt. Continue
to correct the errors and resubmit the application to ADU until the application processes without
errors.

Exit from ADU.

105

Chapter 10. Defining and Building the Application

106

Chapter 11. Defining and Building the
Menu
This chapter describes how to write the menu definition. You then build this definition into a menu
database that ACMS uses at run time.

11.1. Defining the Menu
In the menu definition, you describe the contents of the top-level menu displayed to users. You now
define the ACMS menu from which terminal users can select either the data entry task or the inquiry/
update task. ACMS provides a standard menu format.

To define a menu, specify a name for each entry and the name of the task (and application) to which
the entry corresponds. A menu entry can also be the name of another menu, which allows you to
create a hierarchy of menus for an application. However, this tutorial uses only one menu.

Create the menu definition as a source file of ADU commands in the same manner that you created
previous ACMS definitions.

To begin writing the menu definition, follow these steps:

1. Use a text editor to create a source file for the menu definition. Name the source file
EMPLOYEE_INFO_MENU.MDF.

Note

If you copied this file from the online source files, edit the file to change two occurrences of
EMPLOYEE_INFO_APPL_xxx to your unique application name.

2. Begin your file by entering the following lines:

REPLACE MENU EMPLOYEE_INFO_MENU
 HEADER IS " Personnel Administration System";

In the HEADER clause, you specify a one- or two-line title, enclosed in quotation marks, for the
top of the menu. When ACMS displays the menu, the title, Personnel Administration System,
preceded by the given number of spaces, appears at the top. Note that you must use spaces to
center a menu title; you cannot use tabs.

3. Add the following lines to your source file:

ENTRIES ARE
 "ADD" : TASK IS EMPLOYEE_INFO_ADD_TASK IN EMPLOYEE_INFO_APPL_xxx;
 TEXT IS "Add new employee record";
 "UPDATE" : TASK IS EMPLOYEE_INFO_UPDATE_TASK IN EMPLOYEE_INFO_APPL_xxx;
 TEXT IS "Display or update employee record";
END ENTRIES;

You use the ENTRIES clause to specify the entries on the menu, the type of entry, and any
explanatory text. Each entry you specify is either a task or another menu. If it is a task, ACMS
runs the specified task from the specified application when the user selects that entry. In the
ENTRIES clause here, you give each entry a name such as ADD, specifying each entry's type

107

Chapter 11. Defining and Building the Menu

(TASK), its name in the application database, and the name of the application (the menu definition
can point to tasks from different applications).

4. To end the menu definition, enter the following line at the end of the file:

END DEFINITION;

5. Your source file for the menu definition, EMPLOYEE_INFO_MENU.MDF, is now complete.
Save your file and exit the editor.

11.2. Compiling the Menu Definition
Compile your source file after exiting the editor. Invoke ADU and submit the file
EMPLOYEE_INFO_MENU.MDF as follows:

$ ADU
ADU> SET LOG
ADU> SET VERIFY
ADU> @EMPLOYEE_INFO_MENU.MDF

If ADU detects syntax errors in your menu definition, you must edit the source file to correct the
errors and resubmit it. Repeat this sequence until the file processes without errors. If you receive error
messages, make sure that you typed the definition exactly as shown. In particular, check that you used
the appropriate punctuation.

Exit from ADU.

At this point, your default CDD directory contains the definitions for the application, the menu, the
task group, the data entry task, and the inquiry/update task. Use the CDO DIRECTORY command to
verify that these definitions exist:

$ CDO
CDO> DIRECTORY
 CONTROL_WORKSPACE;1 RECORD
 EMPLOYEE_INFO_ADD_TASK;1 ACMS$TASK
 EMPLOYEE_INFO_APPL_xxx;1 ACMS$APPLICATION
 EMPLOYEE_INFO_MENU;1 CDD$MENU
 EMPLOYEE_INFO_RECORD;1 RECORD
 EMPLOYEE_INFO_TASK_GROUP;1 ACMS$TASK_GROUP
 EMPLOYEE_INFO_UPDATE_TASK;1 ACMS$TASK
 EMPLOYEE_INFO_WKSP;1 RECORD
 EMPL_CITY;1 FIELD
 EMPL_NAME;1 FIELD
 EMPL_NUMBER;1 FIELD
 EMPL_STATE;1 FIELD
 EMPL_STREET_ADDRESS;1 FIELD
 EMPL_ZIP_CODE;1 FIELD
 ERROR_STATUS_FIELD; FIELD
 MESSAGEPANEL; FIELD
 QUIT_KEY;1 FIELD
 QUIT_WORKSPACE;1 RECORD

CDO>

To look at the contents of a field or a record, you can use the SHOW FIELD or SHOW RECORD
command, followed by the name of the record or field.

108

Chapter 11. Defining and Building the Menu

11.3. Building the Menu
Build the menu with the ADU BUILD command and the MENU keyword:

$ ADU
ADU> BUILD MENU EMPLOYEE_INFO_MENU

This command produces a menu database file in your default OpenVMS directory. The file is named
EMPLOYEE_INFO_MENU.MDB.

If the BUILD command succeeds, ADU displays a "Writing MDB" message.

If the BUILD command fails, ADU issues error messages and redisplays the ADU> prompt. You must
correct the errors and resubmit the menu to ADU, repeating this sequence until the menu processes
without errors.

Exit from ADU.

109

Chapter 11. Defining and Building the Menu

110

Chapter 12. System Management
Requirements for Installing the
Tutorial Application
This chapter describes procedures that your system manager follows to prepare for the installation of
your tutorial application. Once these procedures are completed, you can install your application and
run its tasks as described in Chapter 13.

Note

If you do not have the privileges (SYSPRV) necessary to perform the steps in this chapter, your
system manager must perform these steps for you.

To perform these steps, your system manager needs to know the name of your application
(represented here by EMPLOYEE_INFO_APPL_xxx) and the logical for your default directory
(repesented here by xxx_FILES).

12.1. System Management Overview
The system manager performs the steps in this chapter to prepare for the installation of the tutorial
application. Specifically, the system manager does the following:

• Creates two OpenVMS user accounts named EMPL_SERVER and EMPLOYEE_EXC. These
accounts are created using the OpenVMS Authorize Utility.

• Defines which users can sign in to ACMS and which menu is displayed to them when they sign in.
ACMS provides the User Definition Utility (UDU) for this purpose.

• Defines which terminals can be used to sign in to ACMS. ACMS provides the Device Definition
Utility (DDU) for this purpose.

• Defines which users can install the application in a protected directory. ACMS provides an
optional utility, the Application Authorization Utility (AAU), to make it easier to protect the
application

12.2. Creating the EMPL_SERVER and
EMPLOYEE_EXC Accounts
To set up OpenVMS user accounts, your system manager uses the OpenVMS Authorize Utility.
Here the system manager uses the OpenVMS Authorize Utility to set up the user accounts of the
server and the Application Execution Controller. In the tutorial application, the server's user name is
EMPL_SERVER, and the controller's user name is EMPLOYEE_EXC.

If you are not the first person at your site to use this tutorial, it is possible that the EMPLOYEE_EXC
and EMPL_SERVER user names already exist in the OpenVMS User Authorization File (UAF). In
that case, the system manager can check to see if the quotas are correct and can modify any that are
not.

If the EMPL_SERVER account does not exist yet, create it using the following quotas and privileges:

111

Chapter 12. System Management Requirements for Installing the Tutorial Application

Maxjobs: 0 Fillm: 200 Bytlm: 50000
Maxacctjobs: 0 Shrfillm: 0 Pbytlm: 0
Maxdetach: 0 BIOlm: 100 JTquota: 1024
Prclm: 2 DIOlm: 22 WSdef: 512
Prio: 4 ASTlm: 100 WSquo: 1024
Queprio: 0 TQElm: 100 WSextent: 4096
CPU: (none) Enqlm: 2000 Pgflquo: 60000
Authorized Privileges:
 GRPNAM GROUP SETPRV TMPMBX OPER NETMBX BYPASS
Default Privileges:
 GRPNAM GROUP TMPMBX OPER NETMBX BYPASS

If the EMPLOYEE_EXC account does not exist yet, create it using the following quotas and
privileges:

Maxjobs: 0 Fillm: 200 Bytlm: 50000
Maxacctjobs: 0 Shrfillm: 0 Pbytlm: 0
Maxdetach: 0 BIOlm: 100 JTquota: 1024
Prclm: 2 DIOlm: 22 WSdef: 512
Prio: 4 ASTlm: 100 WSquo: 1024
Queprio: 0 TQElm: 100 WSextent: 4096
CPU: (none) Enqlm: 2000 Pgflquo: 60000
Authorized Privileges:
 GRPNAM GROUP SETPRV TMPMBX NETMBX
Default Privileges:
 GRPNAM GROUP TMPMBX NETMBX

For the EMPL_SERVER and EMPLOYEE_EXC user accounts, your system manager might need
to increase some of the SYSGEN parameters. Your system manager should check the values of the
following parameters whose names have the PQL_ prefix — in particular, the PQL_MENQLM
parameter:

PQL_DASTLM PQL_DBIOLM PQL_DBYTLM PQL_DCPULM
PQL_DDIOLM PQL_DENQLM PQL_DFILLM PQL_DJTQUOTA
PQL_DPGFLQUOTA PQL_DPRCLM PQL_DTQELM PQL_DWSDEFAULT
PQL_DWSEXTENT PQL_DWSQUOTA PQL_MASTLM PQL_MBIOLM
PQL_MBYTLM PQL_MCPULM PQL_MDIOLM PQL_MENQLM
PQL_MFILLM PQL_MJTQUOTA PQL_MPGFLQUOTA PQL_MPRCLM
PQL_MTQELM PQL_MWSDEFAULT PQL_MWSEXTENT PQL_MWSQUOTA

12.3. Authorizing ACMS Users
Authorized OpenVMS users cannot sign in to ACMS until the system manager has also authorized
them as ACMS users. The User Definition Utility (UDU) provides the capability to do this. Using
the UDU, the system manager creates an ACMS database named ACMSUDF.DAT, located in the
SYS$SYSTEM directory. When adding a user to the database, the system manager also specifies the
default menu the user sees upon signing in to ACMS.

To add a new user to the ACMS database, perform the following steps:

1. Define UDU as a global symbol in your login command file. Then initialize the symbol by
executing your login command file:

$ UDU :== $ACMSUDU

112

Chapter 12. System Management Requirements for Installing the Tutorial Application

$ @LOGIN.COM

2. Set the default directory to SYS$SYSTEM:

$ SET DEFAULT SYS$SYSTEM
$

3. Invoke UDU:

$ UDU
UDU>

4. Add an OpenVMS user name (the tutorial user's uname) to the ACMS database by entering the
ADD command:

UDU> ADD uname /MDB=xxx_FILES:EMPLOYEE_INFO_MENU
UDU>

Include the MDB qualifier to specify the default menu displayed to this user when entering
ACMS. Although the menu database is often located in ACMS$DIRECTORY for security
reasons, this tutorial places it in the tutorial user's default directory (represented by uname's
system logical xxx_FILES) to avoid conflicts with others entering this tutorial on the same
system. Substitute uname's logical for xxx_FILES.

5. Enter the SHOW command to verify this entry in the ACMSUDF.DAT database:

UDU> SHOW uname
User name: UNAME DISPLAY MENU
Default menu:
Default MDB: XXX_FILES:EMPLOYEE_INFO_MENU
.
.
.
UDU>

An entry under the tutorial user's uname indicates that the uname is authorized to sign in to
ACMS. The default characteristic DISPLAY MENU causes ACMS to display the top menu in
uname's EMPLOYEE_INFO_MENU.MDB database.

6. Enter the SHOW SYSTEM command to determine if user name SYSTEM has been added to
the ACMS database (it may not, if this is the first ACMS access). If you receive a "user does not
exist" message, then add SYSTEM as follows:

UDU> ADD SYSTEM /AGENT
UDU>

Although ACMS assigns the user name SYSTEM to the Command Process (CP) when you
install ACMS, it does not automatically authorize the Command Process as an agent. Without this
authorization, ACMS cannot sign in any users. The /AGENT qualifier enables an agent to submit
a task that has a user name different from the user name of the agent process.

7. Exit from UDU.

Other UDU commands let the system manager tailor definitions for individual users, change
and remove user definitions, and change user names. See VSI ACMS for OpenVMS Managing
Applications for more information about UDU.

113

Chapter 12. System Management Requirements for Installing the Tutorial Application

12.4. Authorizing ACMS Terminals
Authorized ACMS users must sign in from terminals that have been authorized for access to
ACMS. With the Device Definition Utility (DDU), the system manager creates a database named
ACMSDDF.DAT that contains a list of authorized ACMS devices. In the simplest case, the system
manager can use one DDU definition to authorize all terminals on your system, both local and remote,
to use ACMS.

To use DDU to authorize terminals for users, follow these steps:

1. Define DDU as a global symbol in your login command file. Then initialize the symbol by
executing your login command file:

$ DDU :== $ACMSDDU

$ @LOGIN.COM

2. Set the default directory to SYS$SYSTEM:

$ SET DEFAULT SYS$SYSTEM
$

3. Invoke DDU:

$ DDU
DDU>

4. Use the ADD command to authorize a LAT terminal on your system for ACMS use. The device
name LT authorizes all LAT terminals.

DDU> ADD LT
DDU>

If the ADD LT command has been performed before for a previous tutorial user, you receive the
message, "device name already exists in the data base." In this case, you can exit from DDU and
proceed to the next section.

5. Use the SHOW command to display information about the LT entry:

DDU> SHOW LT
Device name: LT NOT CONTROLLED
No Autologin
Printfile
DDU>

When the system manager creates a new ACMSDDF.DAT database, DDU creates a DEFAULT
definition that assigns all terminals the NOT CONTROLLED characteristic. From a
CONTROLLED terminal, the user signs in directly to ACMS; from a NOT CONTROLLED
terminal, the user first logs in to the OpenVMS operating system and then signs in to ACMS from
DCL command level.

6. Exit from DDU.

Other DDU commands let the system manager tailor definitions for individual terminals, change
and remove device definitions, and change device names. See VSI ACMS for OpenVMS Managing
Applications for more information about DDU.

114

Chapter 12. System Management Requirements for Installing the Tutorial Application

12.5. Authorizing ACMS Applications
ACMS requires that the application database (.ADB) file reside in the directory associated with the
logical name ACMS$DIRECTORY. Because this directory can be protected from unauthorized use,
all application databases in ACMS$DIRECTORY remain secure.

Your application, EMPLOYEE_INFO_APPL_xxx.ADB, is currently located in your default
OpenVMS directory. However, ACMS cannot find it there. You must install your application in
ACMS$DIRECTORY after your system manager uses the Application Authorization Utility (AAU) to
authorize both you and your application.

To use AAU to authorize tutorial users to install their applications in ACMS$DIRECTORY, follow
these steps:

1. Define AAU as a global symbol in your login command file. Then initialize the symbol by
executing your login command file:

$ AAU :== $ACMSAAU

$ @LOGIN.COM

2. Set the default directory to SYS$SYSTEM:

$ SET DEFAULT SYS$SYSTEM
$

3. Invoke AAU:

$ AAU
AAU>

If an ACMSAAF.DAT file does not exist yet in the SYS$SYSTEM directory (that is, this
is the first time invoking AAU), AAU displays a message stating that it is unable to open
ACMSAAF.DAT and prompting the system manager to create a new file. If the file does exist
already, AAU returns the AAU> prompt.

Creating this database is the first step of a two-step process. The system manager first uses the
Application Authorization Utility (AAU) to create the database ACMSAAF.DAT in the SYS
$SYSTEM directory. The system manager then adds to this file a list of applications and users
who are authorized to install them.

4. By authorizing users to install applications, system managers can free themselves from having
to install all applications and from having to give those users privileged access to ACMS
$DIRECTORY. When the system manager creates a new ACMSAAF.DAT database, AAU creates
a DEFAULT authorization with an empty access control list; that is, by default no users are
authorized to install applications in ACMS$DIRECTORY.

Enter the ADD command with an /ACL qualifier to authorize the application and the user who can
install it:

AAU> ADD EMPLOYEE_INFO_APPL_xxx /ACL=(ID=[uname],ACCESS=CONTROL)
%ACMSAAU-S-APPLADD, Appl name EMPLOYEE_INFO_APPL_XXX has been added to
 the database
AAU>

This command authorizes application EMPLOYEE_INFO_APPL_xxx and authorizes user uname
to install it. The /ACL qualifier overrides the default access control list. Remember that uname is

115

Chapter 12. System Management Requirements for Installing the Tutorial Application

the tutorial user's OpenVMS account name, and EMPLOYEE_INFO_APPL_xxx represents this
user's application name (check with the tutorial user for the exact name).

5. Enter the SHOW command to verify the user's application name in the ACMSAAF.DAT database:

AAU> SHOW EMPLOYEE_INFO_APPL_xxx

===
Appl name: EMPLOYEE_INFO_APPL_XXX
Appl Username: *
Server Usernames: *
Access Control List:
 (IDENTIFIER=[ACMS,UNAME],ACCESS=CONTROL)
===
AAU>

This display verifies that user UNAME is authorized to install the application database file
EMPLOYEE_INFO_APPL_xxx.ADB. The asterisks in the application and server user name
fields mean that the user names in the .ADB file are the only user names allowed for the
application and the server.

6. Exit from AAU.

Other AAU commands let the system manager specify more characteristics of individual applications,
authorize all applications with the $ALL keyword, remove authorizations, and change authorization
names. See VSI ACMS for OpenVMS Managing Applications for more information about AAU.

12.6. Defining the ACMS$DIRECTORY Logical
The system manager needs to verify that the ACMS$DIRECTORY logical is associated with
the device and directory where ACMS applications are to be stored. In the case of a new ACMS
installation, the system manager may not yet have set up a protected directory for storing ACMS
applications. If not, the system manager must first set up such a directory before defining the logical
that points to it. Defining the ACMS$DIRECTORY logical must be done before the tutorial user can
install the tutorial application.

If other ACMS applications are already on the tutorial user's system, the ACMS$DIRECTORY
logical has been defined already. To verify the logical and define it, perform the following steps:

1. Enter the SHOW LOGICAL command to see whether ACMS$DIRECTORY has been defined on
the tutorial user's system:

$ SHOW LOGICAL ACMS$DIRECTORY

If the logical is defined, the subsequent display shows the disk and directory location that the
logical points to. If the display states that the logical is undefined, then proceed to the next step
and define it.

2. Set your default directory to SYS$MANAGER and run the ACMS_POST_INSTALL.COM
command procedure located there:

$ SET DEFAULT SYS$MANAGER
$ @ACMS_POST_INSTALL.COM

This command procedure defines all the standard ACMS logicals.

116

Chapter 12. System Management Requirements for Installing the Tutorial Application

With the successful completion of this step, the tutorial user can proceed to install the application and
run it.

117

Chapter 12. System Management Requirements for Installing the Tutorial Application

118

Chapter 13. Installing and Running
the Application
This chapter describes how to install and run your tutorial application. Before running the application,
you perform steps to start the ACMS system (if not running) and to start your specific application.
After running your application, you perform steps to stop your application and stop the ACMS system
(if no one else is using it).

13.1. Installing the Application
When you install an application, ACMS checks the ACMSAAF.DAT database to determine
whether you are authorized to install that application. If so, ACMS copies the database to ACMS
$DIRECTORY, deletes any earlier versions, and changes the user identification code (UIC) of
the .ADB file to [1,4].

If you are not authorized to install the application, ACMS returns an error message indicating that you
are not authorized. (Your system manager must have authorized you and your application with the
AAU, as explained in Section 12.5.)

You install your application database file in ACMS$DIRECTORY by executing the ACMS/INSTALL
command at DCL command level.

To install your application in ACMS$DIRECTORY, follow these steps:

1. Make sure that your system manager has defined the system logical ACMS$DIRECTORY to be
associated with the device and directory where ACMS applications are to be stored. Enter the
SHOW LOGICAL command to see whether ACMS$DIRECTORY has been defined on your
system:

$ SHOW LOGICAL ACMS$DIRECTORY

If you receive a message stating that ACMS$DIRECTORY is undefined, ask your system
manager to define it before trying to install your application.

2. To perform INSTALL, you must be in the directory where your application
(EMPLOYEE_INFO_APPL_xxx.ADB) is located. If you are not, then set the default directory to
the directory where your application files are located:

$ SET DEFAULT udisk:[uname]

3. Issue the ACMS/INSTALL command to install your application:

$ ACMS/INSTALL EMPLOYEE_INFO_APPL_xxx

%ACMSINS-S-ADBINS, Application UDISK:[UNAME]EMPLOYEE_INFO_APPL_XXX
has been installed to ACMS$DIRECTORY
$

The message indicates that you have successfully installed your
EMPLOYEE_INFO_APPL_xxx.ADB application database file in ACMS$DIRECTORY.

119

Chapter 13. Installing and Running the Application

13.2. Starting the Application
Once all authorizations and installations are complete, you can start the ACMS system and start
your application. To start and stop the ACMS system automatically with the OpenVMS system, you
can include the ACMS/START and ACMS/STOP operator commands in your system startup and
shutdown command files. However, in this tutorial, you start and stop ACMS interactively.

Any account from which the ACMS/START and ACMS/STOP commands are issued must have
OpenVMS OPER privilege to execute these commands.

To start the ACMS system (if it is currently stopped), and to start your tutorial application, perform
the following steps:

1. Issue the SHOW SYSTEM command to determine if another user has already started ACMS:

$ ACMS/SHOW SYSTEM

If the subsequent display states that "current system state" is STOPPED, proceed to the next
step and start the ACMS system. However, if the display states that the current system state is
STARTED, proceed to step 3.

2. Issue the START SYSTEM command to start the ACMS system:

$ ACMS/START SYSTEM

If the ACMS system starts successfully, the dollar ($) prompt returns with no intervening error
messages.

3. Before you can invoke a command that runs the application, you need to start the application.
Issue the START APPLICATION command with the name of your tutorial application:

$ ACMS/START APPLICATION EMPLOYEE_INFO_APPL_xxx

If the ACMS system starts successfully, the $ prompt returns with no intervening error messages.
However, if your system logical xxx_FILES is not defined on this system, you receive an error
message that states, in part, "Error opening TDB file XXX_FILES:[EMPLOYEE_EXC]..." See
Section 7.6 for information about defining your system logical.

If you receive an "invalid login attempt" message, your system manager may not have authorized
the ACMS Command Process (CP) to run as an agent (described in Section 12.3). Without this
authorization, ACMS cannot sign in any users.

The audit trail log (ATL) keeps a record of when the ACMS system starts and stops, when users sign
in, when applications and tasks start and stop, and what errors occur. To display this log, you can run
the Audit Trail Report Utility (ATR) (see Section A.2).

13.3. Running the Application
If your system manager has authorized you to use ACMS, and has authorized your terminal, you can
run your tutorial application by issuing the ACMS/ENTER command. When you enter this command,
ACMS checks the authorization files to determine whether you and your terminal are authorized.

If you pass the authorization check, ACMS displays your default menu and waits for you to select a
task. When you do, ACMS finds that task in the .TDB file and runs the task.

120

Chapter 13. Installing and Running the Application

To run your tutorial application, perform the following steps:

1. Issue the ENTER command to enter your application and display your default menu:

$ ACMS/ENTER

If this command is successful, ACMS displays your default menu. Figure 13.1 shows the selection
menu displayed for this tutorial application.

Figure 13.1. Selection Menu

2. Choose an entry from the selection menu either by name or by number. For example, to select the
ADD task, type either ADD or 1 at the Selection prompt and then press Return.

When you select a task, the form for that task appears on your screen. For example, when you
select the ADD task, the form for filling in employee information appears. When you finish filling
in the form, press Ctrl/Z to save the information in your RMS master file. To leave the form
without saving the information, press PF4.

After you complete a task (by pressing Ctrl/Z or PF4), ACMS redisplays the selection menu and
waits for you to select another task or exit from ACMS.

Before exiting from ACMS, you may wish to try several ADD tasks and several UPDATE tasks.
You may also wish to try adding an employee number that already exists in your RMS master
file so that you can see how the application responds to a duplicate-record error. Also, if you
create two OpenVMS processes and run this application in each of them, you can test how the
application responds when two users try to update the same employee record at the same time.
(The last user to save the modifications receives a message that the record has been changed since
he or she began updating it.)

3. To exit from ACMS, type EXIT at the Selection prompt and press Return.

You have now run your application and seen the results of choosing either the data entry task or the
inquiry/update task. It is often helpful, especially in problem-solving, to know the various steps that
ACMS takes to run one of these tasks. This information is available in Appendix A.

Appendix A also describes how to access various utilities that can help you solve problems that may
occur when you run an ACMS application. These utilities include:

121

Chapter 13. Installing and Running the Application

• Audit Trail Report (ATR), for a record of when applications start and stop

• Software Event Log (SWL), for a record of internal software errors

• DECforms trace facility, for a record of the form processing that occurs when the ACMS
application calls a DECforms request

• ACMS Help, for information about ACMS error messages

13.4. Stopping the Application and the ACMS
System
You can stop your application and the ACMS system with the ACMS/STOP command. Before you
stop the system, however, issue the SHOW SYSTEM command to see if another person is using the
ACMS system:

$ ACMS/SHOW SYSTEM

The system displays the names of any active applications and any active users. If no other
applications or users are active, issue both ACMS/STOP commands. Otherwise, issue only the STOP
APPLICATION command, specifying the name of your application:

$ ACMS/STOP APPLICATION EMPLOYEE_INFO_APPL_xxx
$ ACMS/STOP SYSTEM
$

ACMS waits until all active tasks have finished executing before it stops the application and the
system.

Other ACMS operator commands allow you to display information about your ACMS system and
perform application management functions. VSI ACMS for OpenVMS Managing Applications
contains a detailed discussion of ACMS operator commands.

122

Part III. AVERTZ Sample Application
This part provides an overview of the AVERTZ car rental sample application that ships with the VSI
ACMS for OpenVMS software kit.

123

124

Chapter 14. Before You Begin
The AVERTZ car company is a fictional car rental company created to illustrate how transaction
processing (TP) can solve a business problem. With AVERTZ, the business problem is how data entry
personnel can quickly and efficiently create, access, and update car rental information.

As you walk through Part III and through the AVERTZ application, you can see different perspectives
of a single TP system. This document contains the following three chapters, and is organized so that
you can get AVERTZ up and running quickly:

• System Manager's View

The system manager is concerned with the implementation and management of a TP application
in a production environment (real use, as opposed to testing). For AVERTZ, the system manager
must build the database and application, set up the AVERTZ environment, and manage users and
devices.

• User's View

The user is concerned with the business transaction that is taking place: namely, the rental of cars.
The user could be a clerk who is taking a reservation from a customer, or tallying up the bill for
a customer returning a rental; the user could also be a site manager who is responsible for the
operations of a particular field unit.

• Behind the Scenes

Application designers and developers work behind the scenes to create and modify running
transaction processing applications. The designer is concerned with computerizing manual
business transactions, or upgrading existing transaction processing systems. The developer is
concerned with developing and testing the transaction processing application outlined by the
designer.

125

Chapter 14. Before You Begin

126

Chapter 15. System Manager's View
Since the AVERTZ application is already designed and developed, the first step you should take is
to set up the application so that you can try it out. This chapter helps you build, install, and set up
AVERTZ.

Note

You cannot build the AVERTZ application under multiversion Rdb.

Before you follow the instructions in this chapter, check to make sure that the ACMS$DIRECTORY
logical name is defined. Check this by typing the following command at your DCL prompt:

$ SHOW LOGICAL ACMS$DIRECTORY

If the logical name is defined, you can proceed with the instructions in this chapter. If the logical name
is not defined, you receive the following error message:

%SHOW-S-NOTRAN, no translation for logical name ACMS$DIRECTORY

If you receive this error message, then before proceeding with the instructions in this document, you
must follow the postinstallation instructions in VSI ACMS Version 5.0 for OpenVMS Installation
Guide.

Before you try to run the AVERTZ application, you must create a transaction log for DECdtm
services. See VSI ACMS Version 5.0 for OpenVMS Installation Guide for a description of how to do
this.

15.1. Building the AVERTZ Application and
Databases
The AVERTZ environment consists of the following directories:

• Source code

• Data dictionary

• AVERTZ databases (VEHICLE_RENTALS and VEHICLE_HISTORY)

• AVERTZ images

Before you can run the AVERTZ application, you must build the databases and application. To build
the databases and application, log in to an OpenVMS account that has SYSPRV privileges, and enter
the following command:

$ SET PROCESS/PRIVILEGE=SYSPRV

If SYSPRV is not enabled for the account you use, ask your system manager to enable that privilege
using the OpenVMS Authorize Utility.

Once your account has SYSPRV enabled, enter the following command to use the directory that
contains the AVERTZ sources:

127

Chapter 15. System Manager's View

$ SET DEFAULT ACMS$EXAMPLES

To build the AVERTZ application, use the AVERTZ_BLD.COM command procedure, which is in the
ACMS$EXAMPLES directory. The AVERTZ_BLD.COM procedure:

• Creates the data dictionary and database directories

• Defines the fields and records in the data dictionary

• Compiles the tasks, form, server procedures, message file, menu, and application definition

• Builds the application (task group, application, servers, message file, and form)

• Installs the AVERTZ application (named VR_APPL) in the ACMS$DIRECTORY directory

• Builds the VEHICLE_RENTALS and VEHICLE_HISTORY databases

The AVERTZ_BLD.COM procedure requires additional files for successful execution. These files
ship with the AVERTZ application, and are located in the ACMS$EXAMPLES directory:

• BUILD_APPLICATION.COM

• BUILD_FORM.COM

• BUILD_MENU.COM

• BUILD_MESSAGE_FILE.COM

• BUILD_TASK_GROUP.COM

• COMPILE_SERVER_PROC.COM

• COMPILE_TASKS.COM

• DEFINE_CDD_ENTITIES.COM

• LINK_SERVERS.COM

• COMPILE_SERVER_PROC.COM

When you run AVERTZ_BLD.COM, you are prompted to enter a directory location for the source
code, the data dictionary, the databases, and the images.

The following example shows a sample walkthrough of AVERTZ_BLD.COM. You can follow the
instructions by entering the commands and responses that are printed in red.

1. To start the build procedure, enter the following at the DCL prompt:

$ @AVERTZ_BLD.COM

AVERTZ_BLD.COM displays the default directory and then prompts you for the source directory:

Enter name of the source directory for AVERTZ - e.g. disk1:[x.y]:

2. Enter the following:

SYS$COMMON:[SYSHLP.EXAMPLES.ACMS]

128

Chapter 15. System Manager's View

AVERTZ_BLD.COM prompts you for the data dictionary directory:

Enter name of the directory for AVERTZ CDD dictionary - e.g. disk1:
[x.y]:

3. Enter the following:

SYS$COMMON:[SYSHLP.EXAMPLES.ACMS.DICTIONARY]

AVERTZ_BLD.COM prompts you for the database directory:

Enter name of the database directory for AVERTZ - e.g. disk1:[x.y]:

4. Enter the following:

SYS$COMMON:[SYSHLP.EXAMPLES.ACMS.DATABASE]

AVERTZ_BLD.COM asks you if you want the object and image files in the source directory.

Place object and image files in the source directory? [Y]/N:

5. Enter the following if you want the object and image files in the same directory as the source files:

Y

AVERTZ_BLD.COM then displays the directory specifications and asks you if they are correct.

Are these directory names correct? - Y/[N]:

6. If the names are correct, enter Y:

Y

You are then asked if the CDD dictionary has been created. If this is your first time building the
AVERTZ application, enter N.

Have the CDD dictionary and its sub-directories been created?:

7. Enter the following if this is your first time running AVERTZ_BLD.COM:

N

AVERTZ_BLD.COM proceeds to create the directory structure for the data dictionary. Some
informational messages are displayed and you are asked if you want to define the fields and
records in the data dictionary.

Define fields and records in CDD? - Y/[N]:

8. Enter the following:

Y

After you enter Y, AVERTZ_BLD.COM defines the fields and records and then asks you if you
want to build the message file.

Build message file? - Y/[N]:

9. Enter the following:

129

Chapter 15. System Manager's View

Y

AVERTZ_BLD.COM builds the message file and then asks you if you want to compile the tasks.

Compile tasks? - Y/[N]:

10. Enter the following:

Y

AVERTZ_BLD.COM compiles the tasks, displaying informational messages, and then asks you if
you want to build the task group.

Build task group? - Y/[N]:

11. Enter the following:

Y

AVERTZ_BLD.COM builds the task group, displaying informational messages, and then asks if
you want to build the menu.

Build menu? - Y/[N]:

12. Enter the following:

Y

130

Chapter 16. User's View
To understand how the AVERTZ application looks to the user, imagine the conversation between a
reservation clerk working for AVERTZ operations in New England and a customer who needs a rental
car.

16.1. Entering AVERTZ
After his morning cup of coffee, Sparky Hartshorn, a reservation clerk at AVERTZ, enters the
AVERTZ application from his OpenVMS account:

$ ACMS/ENTER VR_APPL Return

AVERTZ displays the AVERTZ Rental Menu shown in Figure 16.1.

Figure 16.1. AVERTZ Rental Menu

To select an option, the clerk types the option number and presses Return. For example, to reserve a
car, the clerk types:

Selection:1Return

If the clerk needs online help while using AVERTZ, he can display help for any field by pressing Help
when the cursor is on that field.

The next three sections describe a sample dialog between a customer and the clerk at AVERTZ for the
following transactions:

• Reserving a car

• Checking out a car (beginning the rental)

• Checking in a car (ending the rental)

16.2. Customer Reserves a Car
Bertram Simpson needs a car. The following telephone conversation between Bertram and the
AVERTZ clerk, on April 19, shows how the reservation option is used in a real business situation.

131

Chapter 16. User's View

Integrated with the conversation are the steps the clerk must take to enter the car reservation in
AVERTZ:

Clerk: "Hello, AVERTZ Car Rental … can I help you?"
Customer: "Oh, hi. My name is Bertram Simpson and I need

to rent a car for this weekend."
Clerk: "OK, Mr. Simpson. Let me just ask you a few

questions."

The clerk enters the following at the AVERTZ
Rental Menu:

Selection: 1Return

AVERTZ displays the reservation panel shown in
the table below.

Clerk: "Have you rented a vehicle with us before?"

The clerk asks this question because, if Mr. Simpson is an existing
customer, the clerk can enter his customer ID number instead of
his name.

Customer: "No, I haven't."
Clerk: "OK, can you give me your full last name, first name, and middle

initial, please?"
Customer: "Sure. Simpson, Bertram H."
Clerk: To move to the name field and enter the customer's name, the clerk

enters the following:

TabSimpsonTabBertramTabHTab

"OK, Mr. Simpson. And from what AVERTZ location would you
like to pick up your vehicle?"

Customer: "I'm not sure. I'll be meeting a friend in Manchester, New
Hampshire. Where is the closest AVERTZ location to
Manchester?"

Clerk: "Let me get a list of the sites."

The clerk enters the following to display a list of sites:

PF1 S

132

Chapter 16. User's View

AVERTZ displays the site selection panel shown in the table
below.

Clerk: "Sir, we have three sites in New Hampshire: one at the Manchester
Airport, one at the Nashua Depot, and one in Concord. Is the
Manchester Airport location OK with you?"

Customer: "Great, that's perfect!"
Clerk: The clerk enters the following:

Select

Because the site selected is the first site on the list, the clerk does
not need to move the cursor. If, however, the clerk did need to
move the cursor, he could press the up-arrow key or the down-
arrow key to select different sites.

"OK. What day would you like to start your rental?"
Customer: "I need the car for the weekend, beginning later today."
Clerk: "OK, you want to pick up the car today, and return it on April 22.

Correct?"
Customer: "Right."

The clerk enters the following:

19-APR-1991Tab22-APR-1991Tab

"And would you like a compact, mid-size, or full-size car, Mr.
Simpson?"

The clerk enters the following to display the car type codes:

Help

AVERTZ displays a message listing the car types available. The
following table lists the valid car type codes for this field:
1 Compact
2 Mid-Size

Clerk:

3 Full-Size

133

Chapter 16. User's View

Customer: "There will just be two people using the vehicle, so compact
should be fine."

Clerk: The clerk enters the following:

1Return

Because Mr. Simpson is a new customer, AVERTZ displays the
new customer panel shown in the figure below.

Clerk: If Mr. Simpson were an existing customer, the new customer panel
would display information for each field, based on the data in Mr.
Simpson's database record.
"OK, Mr. Simpson. Because you are a new customer, we would
like to collect a few more pieces of information about where you
live and how you will pay for the vehicle. First, what is your
address?"

Customer: "901 Maple Drive, Apartment 12, Nashua, New Hampshire."
Clerk: Based on the address the customer provided, the clerk completes

the panel up to the Postal Code field by entering the following:

TabTabTab901 Maple DriveTabApt.
 12TabNashuaTabNHTabUSATab

"And what is your zip code, sir?"
Customer: "03060."
Clerk: The clerk enters the following:

03060Tab

"And your phone number?"
Customer: "603-555-9966."
Clerk: The clerk enters the following:

603-555-9966Tab

"Will you be paying with cash or charge?"

The clerk enters the following to display the credit type codes:

134

Chapter 16. User's View

Help

AVERTZ displays a message listing the credit types available. The
following table lists the valid credit type codes for this field:
0 Cash
1 Globetrotter
2 Viceroy
3 PlasticMoney
4 Gourmet Gold

Customer: "Cash."
Clerk: Because 0 is the code for cash, the clerk enters the following:

0Tab

"Your driver's license number, please?"
Customer: "555-33-0000."
Clerk: The clerk enters the following:

555-33-0000Tab

"And that license is for the state of New Hampshire?"
Customer: "Actually, no. I just moved to New Hampshire a short while ago. It

is a Massachusetts license."
Clerk: The clerk enters the following:

MATabUSAReturn

AVERTZ processes the reservation. Since the reservation is
being made on the same day as the requested checkout, AVERTZ
prompts to see if the clerk wants to check out the car now (see the
figure below).

Clerk: "Mr. Simpson, your reservation for a compact car rental from
April 19, 1991, to April 22, 1991, is confirmed, with a reservation
confirmation number of 2. Please stop by our Manchester office
later today to check out the car. Thank you for calling AVERTZ!
Bye …"

135

Chapter 16. User's View

Because Mr. Simpson phoned in his reservation, the clerk knows
that he is not ready to check out the car. The clerk enters the
following:

Tab Select

AVERTZ returns to the AVERTZ Rental Menu.

16.3. Customer Checks Out a Car (Beginning
the Rental)
Bertram Simpson now has a reservation for a compact vehicle rental from April 19, 1991, until April
22, 1991. He shows up at the reservations counter at AVERTZ later in the day on April 19, after
having made his reservation earlier that day. The following dialog takes place while Bertram Simpson
checks out the car to begin the rental period:

Clerk: "Hi, can I help you?"
Customer: "Yes, my name is Bertram Simpson and I have a reservation for a

compact car for today."
Clerk: "OK, Mr. Simpson, let me call up your reservation."

The clerk enters the following at the AVERTZ Rental Menu (
Figure 16.1 shows the AVERTZ Rental Menu):

Selection: 2Return

AVERTZ displays the checkout panel shown in the figure below.

Clerk: "OK, Mr. Simpson, could I have your reservation number?"
Customer: "Sure, I have reservation number 2."
Clerk: "Thank you."

The clerk enters the following:

2Return

AVERTZ displays the checkout update panel shown in the figure
below, with the cursor positioned at the Credit Type field.

136

Chapter 16. User's View

Clerk: "Are you still planning on paying with cash, Mr. Simpson?"
Customer: "Yes, I am."
Clerk: "Great."

The clerk enters the following:

Return

AVERTZ displays a list of available vehicles, as shown in the
figure below.

"Do you have any options that you want with your vehicle?"

The clerk uses the following table to determine what each option
code means:
00 Standard transmission
01 Cruise control
02 Tape deck
03 Sunroof
04 4-wheel drive
05 Roof rack

Clerk:

06 Bulletproof glass and body
Customer: "Well, I have a bit of a drive into the mountains, so if you have a

car with a tape deck, that would be great."

137

Chapter 16. User's View

Clerk: The clerk presses the down-arrow key and the Select key to select
the first available vehicle with option 2. AVERTZ now displays the
checkout completion panel, as shown in the table below.

Clerk: The clerk enters the following to complete the checkout:

Do

AVERTZ displays a message indicating that the checkout is
completed, and then prompts the clerk to press Return to continue.

"OK, Mr. Simpson, you're all set. Here are the keys to a Chevrolet,
NH license plate 899BHV. The vehicle does have a tape deck,
and is located in the parking area just to the left of our front door.
When you return the car, please record the odometer reading
before you check the car back in. Do you have any questions?"

Customer: "No, that's great. Thank you very much."
Clerk: "You're welcome. Have a good weekend and see you on Monday."

The clerk enters the following to return to the AVERTZ Rental
Menu:

Return

AVERTZ returns to the AVERTZ Rental Menu.

16.4. Customer Checks In a Car (Ending the
Rental)
Bertram Simpson had a great weekend and is now ready to return the car to AVERTZ. He shows up
at the reservations counter at AVERTZ on April 22. The following dialog takes place while Bertram
Simpson checks in the car to end the rental period:

Clerk: "Hi, can I help you?"
Customer: "Yes, my name is Bertram Simpson and I'm

returning a car that I rented over the weekend."
Clerk: "OK, Mr. Simpson. Let me call up your

reservation."

138

Chapter 16. User's View

The clerk enters the following at the AVERTZ
Rental Menu (Figure 16.1 shows the AVERTZ
Rental Menu):

Selection: 3Return

AVERTZ displays the checkin panel shown in the
table below.

Clerk: "OK, Mr. Simpson. Could I have your reservation
number?"

Customer: "Sure, I have reservation number 2."
Clerk: "Thank you."

The clerk enters the following:

2Return

AVERTZ displays the checkin update panel
shown in the table below, with the cursor
positioned at the Credit Type field.

Clerk: "Are you still planning to pay with cash, Mr.
Simpson?"

Customer: "Yes, I am."
Clerk: "OK."

The clerk enters the following:

Return

AVERTZ moves the cursor to the Return Date
field. Because that field displays the current date

139

Chapter 16. User's View

(22-Apr-1991), the clerk enters the following to
move to the Mileage In field:

Tab

"Can you tell me what the return odometer
reading was, Mr. Simpson?"

Customer: "Yes, it was 357."
Clerk: The clerk enters the following:

357Tab

The Adjustment field allows for adjustments
to the bill due to special circumstances (such
as charges when customers return cars without
the gas tank filled). Entering a negative amount
increases the bill; a positive amount decreases
the bill. There are no special circumstances
associated with this rental, so the clerk enters the
following to process the checkin:

Return

AVERTZ flashes the total cost of the rental.

"Mr. Simpson, the total cost is $30 dollars."
Customer: "Here's the $30 and the keys. Thanks."
Clerk: "You're welcome. And thank you for renting with

AVERTZ!"

The clerk enters the following to return to the
AVERTZ Rental Menu:

Return

AVERTZ returns to the AVERTZ Rental Menu.

140

Chapter 17. Behind the Scenes
You have seen the AVERTZ application from the system manager's and user's points of view.
This chapter takes a brief look at some of the work involved in designing and developing an
ACMS application from the system designer's and application developer's views. The design and
development details of AVERTZ are discussed extensively throughout the ACMS documentation set.

Before designing a transaction processing application, you must begin by analyzing the business
problem. For AVERTZ, the business problem is how data entry personnel can quickly and efficiently
create, access, and update car rental information.

Each business problem has separate business areas that must be addressed. For AVERTZ, business
areas might include reservation processing, site management, car information, and customer accounts.
The AVERTZ sample application focuses on the business area of reservation processing.

In turn, each business area consists of business functions that support the business area. There are
three different business functions that support the reservation processing business area:

• Reserve a car

• Check out a car

• Check in a car

Once the business problem has been categorized into areas and then into functions, you can begin
solving the business problem with ACMS.

17.1. Applications and Procedures
An ACMS application consists of a set of tasks that relate to the functions of a business and can
be selected for processing by either a terminal user or another task. Figure below shows the basic
structure of an ACMS application.

141

Chapter 17. Behind the Scenes

Figure 17.1. Structure of an ACMS Application

The AVERTZ application is made up of three menu choices: RESERVE, CHECKOUT, and
CHECKIN. Each of these menu choices selects a corresponding task. The AVERTZ application also
contains two tasks that are called by tasks not visible to the clerk:

• A task that checks reservation and customer information for both the CHECKOUT and
CHECKIN tasks

• A task that completes or cancels a reservation for both the RESERVE and CHECKOUT tasks

The ability of tasks to call other tasks means that it is easy for you to design applications to share
common code.

Just as each application is made up of one or more tasks, each task is made up of one or more steps
that coordinate the work for that task. There are three types of steps within ACMS:

• Exchange steps coordinate I/O with a presentation service (such as a form).

• Processing steps coordinate I/O with a procedure (a user-written subroutine that handles database
input, output, and computations).

• Block steps group exchange and processing steps into logical groups.

A considerable amount of control must take place to manage an application like AVERTZ. ACMS is
designed to make such complex coordination and control easy to manage. The figure below illustrates
how ACMS tasks coordinate the flow between forms that collect input from users and databases that
store information.

142

Chapter 17. Behind the Scenes

Figure 17.2. Example of Execution Flow for an ACMS Task Definition

ACMS tasks are written using the ACMS Task Definition Language (TDL), which is based on a call
and return model. Task definition steps perform calls to the presentation service in exchange steps,
and to step procedures in processing steps. The presentation service and procedures perform their
work and then return control to the task definition. Upon return to the task definition, subsequent parts
of a step can evaluate the results of the call and, if necessary, handle any error conditions.

17.2. Task Definition Language
Example 17.1 shows portions of the code that are part of the reservation task in AVERTZ. Table 17.1
includes a description of each portion of code, based on the callout numbers in the example.

Example 17.1. Code from the Reservation Task Definition

REPLACE TASK avertz_cdd_task:vr_reserve_task

USE WORKSPACES vr_control_wksp,
 vr_customers_shadow_wksp,
 vr_customers_wksp,
 vr_rental_classes_wksp,
 .
 .
 .
DEFAULT FORM IS vr_form;
 .
 .
 .
get_car_now:

BLOCK WITH TRANSACTION
 .
 .
 .
 PROCESSING
 CALL PROCEDURE vr_store_cu_proc
 IN vr_cu_update_server
 USING vr_control_wksp,
 vr_customers_wksp,
 vr_trans_wksp;

143

Chapter 17. Behind the Scenes

 ACTION IS
 IF (ACMS$T_STATUS_TYPE = "B") THEN
 GET MESSAGE INTO vr_control_wksp.messagepanel;
 RAISE EXCEPTION vr_update_error;
 END IF ;
!+
! If want to check car out now (=GTCAR) then call
! vr_complete_checkout_task to do that.
!-
 PROCESSING
 CALL TASK vr_complete_checkout_task
 USING vr_sendctrl_wksp,
 vr_control_wksp,
 vr_reservations_wksp,
 vr_trans_wksp,
 vr_vehicles_wksp;
END BLOCK;

 ACTION IS
 MOVE " " TO vr_control_wksp.ctrl_key,
 "ACTWT" TO vr_sendctrl_wksp.sendctrl_key;
 COMMIT TRANSACTION;
 GOTO STEP disp_stat;
!+
! If the vr_store_cu_proc has an error because of constraint violation
! goto fix customer info exchange. If the transaction failed Retry the
! distributed transaction 5 times before canceling task. The retry_count
! is incremented in vr_store_cu_proc.
!-
 EXCEPTION HANDLER

 SELECT FIRST TRUE OF
 (ACMS$L_STATUS = vr_update_error):
 MOVE "TRAGN" TO vr_sendctrl_wksp.sendctrl_key;
 GOTO STEP fix_cust_info;
 ((ACMS$L_STATUS = ACMS$_TRANSTIMEDOUT AND
 vr_control_wksp.retry_count < 5)):
 REPEAT STEP;
 NOMATCH:
 GET MESSAGE INTO vr_control_wksp.messagepanel;
 MOVE "ACTWT" TO vr_sendctrl_wksp.sendctrl_key,
 " " TO vr_control_wksp.ctrl_key;
 GOTO STEP disp_stat;
 END SELECT;
 .
 .
 .
END DEFINITION;

Table 17.1. Description of Code Excerpt

Callout Description
The REPLACE command is the first command
in a task definition. It replaces an old dictionary
definition with the current task definition or
creates a new definition if one does not already
exist.

144

Chapter 17. Behind the Scenes

Callout Description
The USE WORKSPACES clause names one or
more workspaces to which the task needs access.
Workspaces are buffers used to pass data between
steps in a task, between a task and a procedure,
between a task and a form, and between tasks. As
you see in , some of the workspaces are used to
pass information to a step procedure.
The DEFAULT FORM clause names the
DECforms form used by the exchange steps
within the task.
The get_car_now: label is used to identify the
section of code that begins with the BLOCK
clause. Labels allow for the transfer of control to
different parts of the task.
The BLOCK clause groups multiple steps as a
logical unit. TRANSACTION is a block phrase
that marks the start of a distributed transaction
(a distributed transaction makes more than one
database update as a single "all or nothing"
transaction). This example of the BLOCK clause
consists of multiple processing steps (). The
processing steps include ACTION (), and
EXCEPTION HANDLER () clauses, which
are part of the processing steps.
The PROCESSING clause identifies
work that is part of a processing step. In
this example, the PROCESSING clause
calls the COBOL procedure named
VR_STORE_CU_PROC, which resides in a
server named VR_CU_UPDATE_SERVER.
Procedures perform all computation and database
work. (The VR_STORE_CU_PROC procedure
stores a customer record in the database, for
example). Note that the USING keyword
identifies workspaces that are passed to the
procedure as parameters.
The ACTION clause defines actions you want
ACMS to take at the end of an exchange step,
processing step, or block step. In this example,
the ACTION clause tests the return status from
the procedure. If the procedure fails for some
reason (STATUS_TYPE=B), the ACTION clause
uses the RAISE EXCEPTION clause to send
control to the exception handler ().
This PROCESSING clause calls another task,
VR_COMPLETE_CHECKOUT_TASK, to check
out the vehicle. Note that again workspaces are
identified as parameters.

145

Chapter 17. Behind the Scenes

Callout Description
This END BLOCK clause ends the entire block
step, which consists of the two processing steps,
the action parts, and the exception handler part.
This ACTION clause performs some workspace
work and then commits the transaction. The
COMMIT clause signals the end of the current
distributed transaction and makes permanent any
changes made since the start of the distributed
transaction.
By default, if ACMS encounters an error that
prevents it from executing a task, ACMS cancels
the task. The EXCEPTION HANDLER clause
lets you handle the error and continue task
execution. In this example, if the exception was
a transaction timeout, it retries the transaction
five times before cancelling the task. If the
exception was an update error, control goes to a
step labelled fix_cust_info, which allows the user
to correct the data.

17.3. More AVERTZ . . .
The AVERTZ sample application demonstrates an ACMS transaction processing application from
many perspectives. As you learn more about ACMS, you can modify the AVERTZ application to test
what you have learned. Furthermore, you can use the design model for AVERTZ as a starting point for
how to approach designing your own ACMS application.

For more detailed information on the design and coding aspects of AVERTZ, consult the following
ACMS documentation:

• VSI ACMS for OpenVMS Concepts and Design Guidelines

Explains ACMS concepts and provides guidelines for designing an ACMS application.

• VSI ACMS for OpenVMS Writing Applications

Explains how to use the ACMS Application Definition Utility (ADU) to define tasks, task groups,
applications, and menus.

• VSI ACMS for OpenVMS Writing Server Procedures

Explains how to write, debug, and run procedures for ACMS applications.

• VSI ACMS for OpenVMS Systems Interface Programming

Describes how to write ACMS code that allows nonterminal devices (such as bar-code readers and
Automatic Teller Machines) to be integrated into an ACMS system.

All these documents make extensive use of AVERTZ code examples to illustrate ACMS concepts and
features.

146

Appendix A. Utilities for Solving
Problems in an ACMS Application
This appendix describes how ACMS runs a task and introduces some utilities that are available to help
you solve problems in running a new ACMS application.

A.1. How ACMS Runs a Task
It is often helpful, especially in problem-solving, to know the various steps that ACMS takes to run a
task. Figure A.1 illustrates how ACMS responds to the ACMS/ENTER command:

1. Checks ACMSDDF.DAT, the terminal authorization file, to verify that your terminal is authorized
for use with ACMS.

2. Checks ACMSUDF.DAT, the user authorization file, to verify that you have been authorized to
use ACMS, and to determine which menu database (.MDB) file has been assigned as your default.

3. Displays your default selection menu (if you and your terminal passed the authorization checks)
and waits for you to select a task.

4. Consults the .MDB file to find out which application database (.ADB) file contains the task you
selected.

5. Consults the .ADB file to find out which task group database (.TDB) file contains the task.

6. Finds the task in the .TDB file and runs it. The .TDB file also contains the file specification of the
procedure server image and the entry points of the procedures in the image, as well as workspace
definitions.

7. Returns to step 3 when the task has finished executing.

147

Appendix A. Utilities for Solving Problems in an ACMS Application

Figure A.1. Databases in an ACMS Application

A.2. Audit Trail Logger
The Audit Trail Logger (ATL) keeps a record of when the ACMS system starts and stops, when users
log in, when applications and tasks start and stop, errors signaled by processing steps, and so forth. To
display this log, run the Audit Trail Report (ATR) Utility from the SYS$SYSTEM directory.

Issue either of the following commands to run ATR:

$ RUN SYS$SYSTEM:ACMSATR
ATR>

or:

$ MCR ACMSATR
ATR>

At the ATR> prompt, issue the LIST command with the /SINCE qualifier to see today's log of your
application:

ATR> LIST/APPLICATION=EMPLOYEE_INFO_APPL_xxx/SINCE=TODAY

For detailed information about the Audit Trail Logger and the ATR Utility, refer to VSI ACMS for
OpenVMS Managing Applications.

148

Appendix A. Utilities for Solving Problems in an ACMS Application

A.3. Software Event Logger
The Software Event Logger (SWL) records all software errors and event messages that occur during
the execution of ACMS application programs. Each time an error occurs, ACMS writes a message
to the SWL log file with information such as user name, process name, VAX condition code, and
extended error descriptions.

The Software Event Log Utility Program (SWLUP) generates reports containing information recorded
by the SWL. To read information in the SWL log file, you use SWLUP commands.

Issue either of the following commands to run SWLUP:

$ RUN SYS$SYSTEM:SWLUP
SWLUP>

or:

$ MCR SWLUP
SWLUP>

At the SWLUP> prompt, issue the LIST command with the /SINCE qualifier to display today's log of
events for user JONES:

SWLUP> LIST/USER=JONES/SINCE=TODAY

To write the log of all events for user JONES to an output file instead of to the terminal, issue the
LIST command as follows:

SWLUP> LIST/USER=JONES/OUTPUT=MY_EVENTS.LIS

For detailed information about the Software Event Log and the SWLUP Utility, refer to VSI ACMS for
OpenVMS Managing Applications.

A.4. DECforms Trace Facility
The DECforms trace facility logs form-processing information at run time to help you debug your
application program and your form. The trace facility is useful because much of the form processing
occurs each time you call a DECforms request from your ACMS application program.

You can turn tracing on before running a task in the ACMS Task Debugger (see Section 9.4). In this
way, you can debug logic problems, debug data mismatches and other run-time errors, and observe
how a user works through a series of panels.

You turn tracing on by defining the logical FORMS$TRACE as a character string value that begins
with any of the following characters: T, t, Y, y, or 1. For example:

$ DEFINE FORMS$TRACE YES

Turning on the trace facility produces a trace file with the same name as your form followed by the
TRACE extension (by default), for example, EMPLOYEE_INFO_FORM.TRACE. For a name other
than the default, define the logical FORMS$TRACE_FILE to your own trace file specification.

The trace facility is turned off when you define the FORMS$TRACE logical as a character string
value that begins with any character except those that turn tracing on. Tracing also ends when you log
out (the process logical FORMS$TRACE becomes undefined then). It is advisable to turn off the trace
facility when you are finished testing to avoid having your trace file become exceedingly large.

149

Appendix A. Utilities for Solving Problems in an ACMS Application

For detailed information about the DECforms trace facility, refer to DECforms Programmer's
Reference Manual.

A.5. ACMS Help Facility
The ACMS Help facility contains a menu of ACMS error codes, from which you can choose to view
information about a specific ACMS error. For help with ACMS error messages, issue the following
command:

$ HELP ACMS ERRORS

The ACMS Help facility also contains information about many other ACMS topics. For a Help menu
of ACMS topics, issue the following command:

$ HELP ACMS

150

Appendix B. Source Files Used in the
Tutorial
This appendix lists the source files created in the tutorial application in Part 2 and describes how to
access the online versions of these files. You can view the online source files to verify those that you
create in the tutorial, or you can copy the online source files instead of typing them yourself.

B.1. Source Files
The following list contains the names of each source file created in the tutorial. The files are listed in
the order that they appear in the manual.

• EMPLOYEE_FIELDS.CDO

• EMPLOYEE_INFO_RECORD.CDO

• EMPLOYEE_INFO_WKSP.CDO

• EMPLOYEE_INFO_FORM.IFDL

• EMPLOYEE_CONTROL_FIELDS.CDO

• EMPLOYEE_CONTROL_WKSP.CDO

• EMPLOYEE_QUIT_FIELD.CDO

• EMPLOYEE_QUIT_WKSP.CDO

• EMPLOYEE_INFO_ADD_TASK.TDF

• EMPLOYEE_INFO_ADD.COB

• EMPLOYEE_INFO_PROMPT_FORM.IFDL

• EMPLOYEE_INFO_UPDATE_TASK.TDF

• EMPLOYEE_INFO_UPDATE_GET.COB

• EMPLOYEE_INFO_UPDATE_PUT.COB

• EMPLOYEE_INFO_INIT.COB

• EMPLOYEE_INFO_TERM.COB

• EMPLOYEE_INFO_CANCEL.COB

• EMPLOYEE_INFO_TASK_GROUP.GDF

• EMPLOYEE_INFO_APPL_XXX.ADF

• EMPLOYEE_INFO_MENU.MDF

151

Appendix B. Source Files Used in the Tutorial

B.2. Accessing the Source Files
The source files are installed by the ACMS installation procedure if your system manager chooses to
install the ACMS samples. These files are located in ACMS$EXAMPLES, a logical that points to the
actual directory. The following command displays the contents of that directory:

$ DIRECTORY ACMS$EXAMPLES

The following command displays the file named EMPLOYEE_FIELDS.CDO:

$ TYPE ACMS$EXAMPLES:EMPLOYEE_FIELDS.CDO

You may wish to copy these files to your default directory instead of typing them yourself. Copying
the source code files saves time in performing the tutorial, but you may gain more by typing them
in progressive steps while reading about what the code does. Moreover, copying the two DECforms
IFDL files means that your forms and panels are already created, nullifying the portion of the tutorial
that illustrates how to create them interactively within the DECforms environment.

You can copy single files using the normal method. However, if you want to copy all the source files,
you can perform a wildcard copy with one command. Use the following commands to locate yourself
in your default directory (filling in your disk and user name) and to copy all the tutorial source files to
this directory:

$ SET DEFAULT udisk:[uname]
$ COPY ACMS$EXAMPLES:EMPLOYEE*.* *.*

If you copy the online source files, rename the application definition file
EMPLOYEE_INFO_APPL_xxx.ADF, filling in your initials or other unique characters for the xxx
part of the name. Using a unique application name avoids conflicts with applications created by others
who may be entering this tutorial on your system. When you rename this file, you must also edit this
file to make the same name change in the first line of the file (see Section 10.1.1); you must also edit
the file EMPLOYEE_INFO_MENU.MDF to make the same name change there (two occurrences).

If you copy the online source files, you must edit the files that contain the logical
xxx_FILES and replace that logical with the one that you defined for your directory in
Section 7.6. Those files that contain the xxx_FILES logical are the six .COB files (one
occurrence each), EMPLOYEE_INFO_TASK_GROUP.GDF (three occurrences), and
EMPLOYEE_INFO_APPL_XXX.ADF (one occurrence).

152

	VSI ACMS for OpenVMSGetting Started
	Table of Contents
	Preface
	1. About this manual
	2. Document Structure
	3. Related Documents
	4. VSI Encourages Your Comments
	5. Conventions

	Part I. Introduction
	Chapter 1. Product Overview
	1.1. Transaction Processing
	1.2. TP and Timesharing
	1.3. ACMS TP Monitor Features
	1.3.1. Configuration Options
	1.3.2. Efficient Use of System Resources
	1.3.3. Easy System Expansion
	1.3.4. Availability
	1.3.5. Queued Tasks
	1.3.6. Modular Applications
	1.3.7. Data and Transaction Integrity
	1.3.8. Security
	1.3.9. Presentation Services

	1.4. OpenVMS Support
	1.4.1. Data Management Products
	1.4.2. CDD Data Dictionary
	1.4.3. Programming Languages and Tools

	1.5. Professional Services and Support
	1.6. Overview of the ACMS Application Development Life Cycle

	Chapter 2. Developing ACMS Applications
	2.1. Mapping Business Functions to Tasks
	2.2. Defining Tasks
	2.2.1. Defining Task Steps
	2.2.1.1. Writing Server Procedures
	2.2.1.2. Using DCL Servers

	2.2.2. Defining Workspaces

	2.3. Defining Resources for Groups of Tasks
	2.4. Defining Run-Time Characteristics for an Application
	2.5. Defining Menus
	2.6. Debugging and Testing

	Chapter 3. ACMS Run-Time System
	3.1. ACMS Processes
	3.1.1. Transaction Processing Processes
	3.1.2. Monitoring and Controlling Processes

	3.2. Run-Time Processing of Tasks
	3.3. Run-Time Processing in a Distributed Environment

	Chapter 4. Managing ACMS Systems and Applications
	4.1. Authorizing Access to ACMS
	4.2. Authorizing ACMS Applications
	4.3. Controlling ACMS Applications
	4.3.1. Displaying System and Application Information
	4.3.2. Receiving ACMS Operational Messages

	4.4. Monitoring ACMS Applications
	4.4.1. Using the Audit Trail Logger
	4.4.2. Using Oracle Trace
	4.4.3. Using the Software Event Logger

	4.5. Tuning the ACMS System

	Chapter 5. ACMS Product Kits and Documentation
	5.1. ACMS Product Kits
	5.2. ACMS Documentation
	5.2.1. Orientation and Installation
	5.2.2. Planning and Design
	5.2.3. Development and Testing
	5.2.3.1. Reference Information

	5.2.4. Implementation and Management

	Part II. Tutorial
	Chapter 6. Introduction
	6.1. Before You Begin
	6.2. Application Development Life Cycle
	6.3. ACMS Application Development Concepts
	6.3.1. Writing ACMS Definitions
	6.3.2. Composition of ACMS Definitions

	6.4. ACMS Integration with DECforms
	6.4.1. DECforms Concepts
	6.4.2. ACMS Interaction with DECforms

	6.5. ACMS Integration with Resource Managers
	6.5.1. Accessing a Database or a Master File
	6.5.2. ACMS Interaction with a Resource Manager

	6.6. Defining Fields and Records in CDD

	Chapter 7. Developing the Data Entry Task
	7.1. Defining a CDD Environment
	7.2. Defining a CDD Record
	7.3. Creating a Form Using DECforms
	7.3.1. Creating a Basic Form
	7.3.2. Creating a Panel
	7.3.3. Editing the Form IFDL Source File
	7.3.4. Creating the Binary Form File
	7.3.5. Defining Additional CDD Records

	7.4. Defining the Data Entry Task
	7.4.1. Defining the First Exchange Step
	7.4.2. Defining the Processing Step
	7.4.3. Defining the Second Exchange Step
	7.4.4. Defining the Block Step and Workspaces

	7.5. Compiling the Task Definition in ADU
	7.6. Defining a System Logical for Your Tutorial Directory
	7.7. Defining the Data Entry Procedure
	7.7.1. Identification Division
	7.7.2. Environment Division
	7.7.3. Data Division
	7.7.4. Procedure Division
	7.7.5. Compiling the COBOL Procedure

	Chapter 8. Developing the Inquiry/Update Task
	8.1. Defining a DECforms Form for Inquiry/Update
	8.2. Defining the Inquiry/Update Task
	8.2.1. Defining the First Exchange Step
	8.2.2. Defining the First Processing Step
	8.2.3. Defining the Second Exchange Step
	8.2.4. Defining the Second Processing Step
	8.2.5. Defining the Third Exchange Step
	8.2.6. Completing the Task Definition

	8.3. Compiling the Task Definition
	8.4. Defining COBOL Procedures
	8.4.1. Defining the Retrieval Procedure
	8.4.2. Compiling the Retrieval Procedure
	8.4.3. Defining the Update Procedure
	8.4.4. Compiling the Update Procedure

	Chapter 9. Building the Task Group
	9.1. Defining Startup and Cleanup Procedures
	9.1.1. Defining the Initialization Procedure
	9.1.2. Defining the Termination Procedure
	9.1.3. Defining the Cancellation Procedure

	9.2. Defining and Building the Task Group
	9.2.1. Naming Forms
	9.2.2. Naming the Tasks in the Task Group
	9.2.3. Naming the Procedure Server and Workspaces
	9.2.4. Compiling the Task Group Definition
	9.2.5. Building the Task Group

	9.3. Linking the Server Image
	9.4. Testing a Task in the ACMS Task Debugger

	Chapter 10. Defining and Building the Application
	10.1. Defining the Application
	10.1.1. Application Characteristics
	10.1.2. Server Characteristics
	10.1.3. Task Characteristics

	10.2. Compiling the Application Definition
	10.3. Building the Application

	Chapter 11. Defining and Building the Menu
	11.1. Defining the Menu
	11.2. Compiling the Menu Definition
	11.3. Building the Menu

	Chapter 12. System Management Requirements for Installing the Tutorial Application
	12.1. System Management Overview
	12.2. Creating the EMPL_SERVER and EMPLOYEE_EXC Accounts
	12.3. Authorizing ACMS Users
	12.4. Authorizing ACMS Terminals
	12.5. Authorizing ACMS Applications
	12.6. Defining the ACMS$DIRECTORY Logical

	Chapter 13. Installing and Running the Application
	13.1. Installing the Application
	13.2. Starting the Application
	13.3. Running the Application
	13.4. Stopping the Application and the ACMS System

	Part III. AVERTZ Sample Application
	Chapter 14. Before You Begin
	Chapter 15. System Manager's View
	15.1. Building the AVERTZ Application and Databases

	Chapter 16. User's View
	16.1. Entering AVERTZ
	16.2. Customer Reserves a Car
	16.3. Customer Checks Out a Car (Beginning the Rental)
	16.4. Customer Checks In a Car (Ending the Rental)

	Chapter 17. Behind the Scenes
	17.1. Applications and Procedures
	17.2. Task Definition Language
	17.3. More AVERTZ . . .

	Appendix A. Utilities for Solving Problems in an ACMS Application
	A.1. How ACMS Runs a Task
	A.2. Audit Trail Logger
	A.3. Software Event Logger
	A.4. DECforms Trace Facility
	A.5. ACMS Help Facility

	Appendix B. Source Files Used in the Tutorial
	B.1. Source Files
	B.2. Accessing the Source Files

