
State of the Port to x86_64
July 2017

July 7, 2017



Update Topics
• Executive Summary

− Development Plan
− Release Plan

• Engineering Details
− Compilers

− Objects & Images

− Binary Translator
− Early Boot Path

• Boot Manager
• SYSBOOT

• Virtual Machines
• Condition Handling

− Dump Kernel

− Software Interrupt Services (SWIS)
− Drivers and Device Management

− XDELTA-lite
− Cross Build

− Conditional Code Verification



Executive Summary - Development
The Development Plan consists of five strategic work areas for porting the operating system to 
the x86_64 architecture.
• OpenVMS supports nine programming languages, six of which use a DEC-developed, 

proprietary back-end code generator on both Alpha and Itanium. We are creating a converter 
to internally connect these compiler front-ends to the open source LLVM back-end code 
generator, which targets x86_64 as well as many other architectures. (The other three 
compilers have their own individual pathways to the new architecture.) LLVM implements the 
most current compiler technology and associated development tools and it provides a direct 
path for porting to other architectures in the future. 

• Operating system components are being modified to implement the industry standard x86_64 
calling conventions and executable image format. We moved away from proprietary 
conventions and format in porting from Alpha to Itanium so there is much less work in these 
areas in porting to x86_64.

• As in any port to a new architecture we are implementing a number of architecture-defined 
interfaces that are critical to the inner workings of the operating system.

• OpenVMS is currently built for Alpha and Itanium from common source code. We are adding 
support for x86_64 so all conditional assembly directives must be verified.

• The boot manager for x86_64 has been upgraded to take advantage of new features and 
methods which did not exist when our previous implementation was created for Itanium. This 
will streamline the entire boot path and make it more flexible and maintainable.



Executive Summary - Release
The Release Plan includes multiple stages.
• Once we achieve First Boot we will work towards an Early Adopter Release. We define 

First Boot as being able to bring the system up to the point of logging in and successfully 
executing a DIRECTORY command. That may not sound like much but most of the 
architecture-specific aspects of the operating system must be working as well as being 
able to compile, link, load, and execute non-privileged code.

• The Early Adopter Release is for our partners. There will be some system components, 
most layered products, and analysis tools not in place or not yet complete but it will be 
enough for partners to start verifying their code on some x86 systems.

• There may be another less-than-complete system release depending on our own testing 
and feedback from our partners.

• The full production General Release will be the complete system as it ships today on 
Alpha and Itanium.



Compilers
Reminder: The GEM-to-LLVM (G2L) converter translates GEM tuples (GEM’s 
internal language) into LLVM’s internal language.

As work progresses on both C and BLISS compilers, the converter becomes more 
streamlined and functional. The GEM and LLVM internal representations are not 
one-to-one mappings so there is a fair amount of invention in the converter to make 
some translations. G2L generates LLVM bitcodes which, if needed, can now call 
GEM’s internal library routines. This will make many things easier as development 
proceeds.

Some argument-passing constructs are particularly challenging. For the VSI C 
compiler changes are being made to the front-end in order to get the correct 
information in place to pass along to LLVM. We periodically compare VSI C with 
Clang since we intend to offer both on x86. For a given source, the two must 
produce functionally equivalent objects.

There is now G2L support for string and bit manipulation needed by BLISS. A little 
more work in these areas and we will be ready for the next round of serious BLISS 
testing in the system build.

XMACRO compiler work continues on 1) translating operand formats and 2) 
instruction substitution. Condition code handling is complete. Next up is PSECT 
mapping and label processing.



Objects & Images
Linker – The linker now creates OpenVMS x86 ELF images loadable by the 
Boot Manager. Many details are in place compared to just a few weeks ago. 
Also, we will not need “the big SYSBOOT single image” we used in the Itanium 
port for many months. The linker will be able to handle execlets and the base 
image from the beginning when we are in position to build the entire system. A 
remaining category of work involves the list of data items the compiler 
frontends must pass through LLVM to get into the object file for the linker, for 
example source module name and version number.

Librarian – complete

ANALYZE / OBJECT and /IMAGE – complete

Image Activator – Design changes are complete and implementation details 
are in progress.

Stack Unwinding – Investigation is underway. We will be using new support 
routines since x86 is sufficiently different from Itanium.



Binary Translator

Reminder: The Alpha-to-x86 binary translator parses an Alpha image and generates x86 
instructions via LLVM. The prototype translator runs on linux and Windows/cygwin.

Many experiments have been conducted to evaluate memory mapping alternatives and RTL 
jacketing techniques. 

Standard benchmark tools such as dhrystone and primes have been used along with a 
variety of C, FORTRAN, BASIC, and COBOL programs, for example a FORTRAN version of 
Adventure. Each test provides more insight into the variety of information the translator must 
support - image initialization, string operations, floating point, use of math libraries and 
language RTLs, to name just a few.

The work to date has focused on analyzing the images running in emulation, using simh as 
a base. Work recently started on creating LLVM internal representation to generate the x86 
code.

NOTE: The Itanium-to-x86 translator work will follow the Alpha-to-x86 work.



Reminder: The early boot path is being streamlined and modernized to be more suitable 
for the UEFI / ACPI environment. The functions of the former OpenVMS primary 
bootstraps (VMB / APB / IPB) have been merged into the boot manager
VMS_BOOTMGR and the OpenVMS loader SYSBOOT. The major goals of the new work 
for x86 are:
• Always boot using memory disk
• Never write another boot driver
• Eliminate the need for updating the primitive file system

Many I/O improvements have been made to enhance the Boot Manager, SYSBOOT, and 
debugger interfaces, both command line and graphical interfaces. 

Refinement of network booting continues and we always test all aspects of the boot 
process on physical systems and virtual machines.

We discovered that virtual machines vary in their emulation of environment variables so 
we created a file-based implementation of our own to guarantee uniform persistence over 
reboots in all environments.

We are organizing the boot flags into phases (SYSBOOT, EXEC_INIT, SYSINIT), each 
with verbosity level options, to better manage the informational output during normal 
system startup and system debugging.

Early Boot Path



Reminder: The x86 SYSBOOT code is initially being developed like the Boot Manager - in 
Microsoft C, built with Windows Visual Studio, then transferred to the appropriate platform for 
debugging. We have also occasionally compiled the SYSBOOT code on OpenVMS with the 
new x86 LLVM-based VSI C compiler so there are no surprises when we eventually move to 
building everything on OpenVMS.

Work continues on filling in the infrastructure needed later on in the system.

Work has started on moving the current SYSBOOT work from Visual Studio to the OpenVMS 
cross build. This is a big job but given the advancing states of the VSI C compiler, linker and 
librarian, we are now in position to start the transition.

The lack of “load/store physical” on x86 caused some of the traditional OpenVMS techniques 
for memory management to be very awkward, so there was some rethinking and prototyping 
of a slightly different approach for x86. By taking advantage of the boot-time UEFI physical 
memory map, we were able to reduce the complexity and likely improve performance a little. 

Next up for SYSBOOT is loading and slicing x86 execlet images.

Early Boot Path, continued



Early Boot Path, continued 
Reminder: Most of the code in the x86 condition handler EXCEPTION.EXE will be in C. 
Since this code has few dependencies on the rest of the system, it presents another 
opportunity to take advantage of Visual Studio and the boot environment. Normally, interrupts 
are fielded by SWIS and sent off to the appropriate handlers, many of which go through 
EXCEPTION. We are “borrowing” that initial vectoring from SWIS and temporarily putting it in 
the new x86 EXCEPTION to facilitate some early debugging. This image can be loaded and 
started directly by the boot manager. With a little creativity we can force the EXCEPTION 
code into the various condition handlers and do a lot of debugging natively on x86 now.

The design is complete and has been reviewed. Data structures definitions are now in place 
and implementation is in progress. We have simplified the OpenVMS dispatch table to be 
more in line with the architectural definition.



Dump Kernel
Reminder: During normal system boot a second, minimalist OS instance is 
loaded into memory but not started. When the system goes down the Primary
Kernel gathers and stores information; BUGCHECK then notifies the Boot 
Manager to boot the Dump Kernel which writes the crash dump using the runtime 
driver and finally initiates a shutdown.

The Dump Kernel is nearing completion. In addition to standard system disk 
testing, shadowed system disks and Dump Off System Disk (DOSD) have also 
been tested. Error log access and the dump contents have been verified. In fact, 
it has been used to analyze a real problem!

The Dump Kernel now boots entirely from the memory disk that is read in when 
the Primary Kernel boots, thus it boots very quickly.

Debugging of the Dump Kernel has been done on Itanium. The final verification 
will wait until we have other needed system components running on x86, for 
example run-time device drivers.



Software Interrupt Services (SWIS)
Reminder: SWIS is the component that provides a VAX/Alpha-like interface based 
on the current platform’s features, so that the rest of the system continues with its 
assumptions in certain areas, such as 
• 4 modes, each with its own stack
• per-process ASTs in each mode
• Software interrupts for the lower 16 IPLs
• context switching
• system service dispatching

The detailed design was done in multiple iterations, is now complete, and has had 
extensive review.

Implementation is in progress and the new code is included in the cross builds.

Much of the work requires detailed coordination with other areas of the system, 
such as memory management, condition handling, and image activation.



Drivers and Device Management
For the second time we upgraded our sources to the latest ACPI
Component Architecture version. In addition to eventually being on x86, 
the new ACPI code will be in the next Itanium release.

We are currently evaluating all existing OpenVMS device management 
code to see how best to improve it in the x86 environment, especially in 
the areas of USB support and device recognition.

Paravirtualization: The VIRTIO protocol is used by multiple hypervisors 
for enhanced performance.
The design and implementation of the OpenVMS driver continues.

• SCSI/FIBRE IOGEN configuration code - complete 
• Initialization routines - complete
• Run-time routines implementation - in progress



XDELTA-lite (a.k.a. XLDELTA)
In the two previous OpenVMS ports we did not have a debugger until very far along in 
the project. Nevertheless, ‘print statements’ took us a long way in the early system work.
For x86, we decided to evaluate how much we could do earlier, even in a stripped 
down fashion. This experiment has been a great success. We created a prototype, from 
scratch, that we call XDELTA-lite. Written in C and a little x86 assembler, it can

• set, stop at, and continue from breakpoints
• single step instructions
• examine/deposit memory
• examine/deposit registers

That may not sound like much but it is way ahead of where we have been in the past at 
the same relative point in the project. XLDELTA is built with the VSI C compiler and the 
linker and will be linked into SYSBOOT. We also created a primitive exception handler 
which is needed by the debugger. Note: XLDELTA itself was debugged in user mode on 
linux.
XLDELTA will be used in debugging the remaining work in SYSBOOT as well as some of 
the early work in exception handling and SWIS.



Cross Build
The X-Build environment (building x86 on Itanium) is rapidly taking shape 
as we create the procedures, integrate the necessary tools, verify the 
conditionalized code and data structures, and add code specific to x86.

Integrating something new at this early stage, for example an updated 
compiler, usually depends on “valuable error messages outweighing the 
noise” (those things we already know are incomplete). The “signal to noise” 
ratio is gradually increasing as we address the things the x-build reveals 
are missing or wrong.

We recently added the first x86 assembler source modules and the 
processing of header files they need, a major step in advancing the overall 
process. 



Conditional Code Verification
Reminder: There are roughly 800 code modules needed for First Boot that contain 
conditionalized code, that is code compiled differently for one or more platforms. Each 
of these source code modules must be checked to verify the conditionals produce the 
correct code for all three architectures – Alpha, Itanium and x86. It involves MACRO-32 
source, BLISS source, C source, structure definition language (SDL) source, C header 
files, BLISS require files, and MACRO include files.

This work is 85% complete; verification of the remaining modules will happen as part of 
the architecture-specific development work in areas such as memory management, 
SWIS, conditional handling, and device management.

Note that since this work immediately becomes part of the Alpha and Itanium system 
builds, the conditionals affecting those two platforms get tested in the normal regression 
testing now.

Once we get beyond First Boot, there are another 2000+ modules that need conditional 
verification.



For more information, please contact us at:

RnD@vmssoftware.com

VMS Software, Inc. • 580 Main Street • Bolton MA 01740 • +1 978 451 0110


