HPC
User’s Guide for OpenVMS Systems

Order Number: AA-PUNZM-TK

January 2005

This guide describes using the HP C compiler on OpenVMS systems.

It contains information on HP C program development in the OpenVMS
environment, HP C features specific to OpenVMS systems, and cross-system
portability concerns.

Revision/Update Information: This revised guide supersedes the
Compaq C User’s Guide for OpenVMS
Systems Order No. AA-PUNZL-TK,

Version 6.5.

Operating System and Version: OpenVMS 164 Version 8.2 or higher
OpenVMS Alpha Version 7.3-2 or higher

Software Version: HP C Version 7.1 for OpenVMS Systems

Hewlett-Packard Company
Palo Alto, California

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties
for HP products and services are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

UNIX is a registered trademark of The Open Group.
X/Open is a registered trademark of X/Open Company Ltd. in the UK and other countries.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Printed in the US
This document is available on CD-ROM.
ZK5492

This document was prepared using DECdocument, Version 3.3-1n.

Contents

Preface XXi

1 Developing HP C Programs

1.1 DCL Commands for Program Development 1-1
1.2 Creating an HP C Program 1-3
1.2.1 Using TPU e 1-4
1.2.2 The EVE Interface to TPU 14
1.3 Compiling an HP C Program 1-4
1.3.1 The CCCommand 1-5
1.3.1.1 Including Header Files. 1-6
1.3.1.2 Listing Header Files 1-8
1.3.2 Compilation Modest . 1-9
1.3.3 Microsoft Compatibility Compilation Mode 1-12
1.3.3.1 Unnamed Nested struct or union Members 1-12
1.3.3.2 Block Scope Declaration of static Functions 1-12
1.3.3.3 Treat &* as Having No Effect 1-12
1.3.34 char is Not Treated as a Unique Type 1-13
1.3.3.5 Double Semicolons in Declarations 1-13
1.3.3.6 Declaration without a Type 1-13
1.3.3.7 Enumerators in an Enumeration Declaration 1-13
1.3.3.8 Useless Typedefs 1-13
1.3.3.9 Unrecognized Pragmas Accepted 1-14
1.34 CC Command Qualifiers 1-14
1.35 Compiler Diagnostic Messages 1-83
1.4 Linking an HP C Program 1-84
1.4A1 The LINK Command 1-85
1.4.2 LINK Command Qualifiers 1-86
1.4.3 Linker Input Files 1-87
1.4.4 Linker Output Files 1-88
1.45 Linking Against Object Module Libraries and Shareable

Images e 1-88
1.4.6 Object Module Libraries. 1-89

~

— ot ot et o e e e
NNNNNNNOo O

N = =
PR

1.7.2.1
1.7.2.2
1.7.3
1.7.4
1.7.41
1.7.4.2
1.7.5
1.7.6

Linker Error Messages.
Running an HP C Program
Passing Arguments to the main Function
64-bit Addressing Support

Qualifiers and Pragmas

The /POINTER_SIZE Qualifier
The __INITIAL_POINTER_SIZE Macro
The /CHECK=POINTER_SIZE Qualifier
Pragmas...........
Determining Pointer Size
Special Cases
Mixing Pointer Sizes
Header File Considerations
Prologue/Epilogue Files
Rationale
Using Prologue/Epilogue Files
Avoiding Problems
Examples

2 Using OpenVMS Record Management Services

21
211
21.2
213
2.2
2.3
2.4
2.5
2.5.1
2.5.2
2.5.3
254
2.6

RMS File Organization,
Sequential File Organization
Relative File Organization
Indexed File Organization

Record Access Modes

RMS Record Formats

RMS Functions

Writing HP C Programs Using RMS
Initializing File Access Blocks
Initializing Record Access Blocks
Initializing Extended Attribute Blocks..................
Initializing Name Blocks

RMS Example Program

3 Using HP C in the Common Language Environment

3.1
3.1.1
3.1.2
3.1.3
3.2
3.2.1

Basic Calling Standard Conventions
Register and Stack Usage
Return of the Function Value
The Argument List.

Specifying Parameter-Passing Mechanisms
Passing Arguments by Immediate Value

1-90
1-91
1-93
1-95
1-96
1-96
1-97
1-97
1-98
1-98
1-100
1-101
1-101
1-102
1-102
1-103
1-104
1-105

2-2
2-2
2-3
2-3
2-4
2-5
2-5
2—7

2-10
2-10
211
2-12

3-2
3-3
3-5
3-5
3—7
3-8

3.2.2
3.2.3
3.24
3.3

3.3.1
3.3.2
3.3.3
3.34
3.4

3.4.1

3.4.2
3.4.3
3.5
3.6
3.7
3.7.1
3.7.2
3.7.3
3.7.4
3.7.5
3.7.6
3.7.7
3.8
3.9
3.9.1
3.9.2
3.9.3
3.94
3.10

Passing Arguments by Reference
Passing Arguments by Descriptor
HP C Default Parameter-Passing Mechanisms

Interlanguage Calling

Calling HP FORTRAN i
Calling VAX MACRO o e
Calling HP BASIC i
Calling HP Pascal

Sharing Global Data

Sharing Program Sections with FORTRAN Common

Blocks e
Sharing Program Sections with PL/I Externals
Sharing Program Sections with MACRO Programs

OpenVMS Run-Time Library Routines
OpenVMS System Services Routines
Calling Routines

Determining the Typeof Call
Declaring an External Routine and Its Arguments
Calling the External Routine
System Routine Arguments
Symbol Definitions
Condition Values
Checking System Service Return Values

Variable-Length Argument Lists in System Services
Return Status Values

Format of Return Status Values
Manipulating Return Status Values.
Testing for Success or Failure
Testing for Specific Return Status Values

Examples of Calling System Routines

4 Data Storage and Representation

41
4.2

4.3

4.3.1
4.3.2
4.3.3
4.4

4.41
4.4.2

Storage Allocation
Standard-Conforming Method of Controlling External

ObJeCtsS . . oo
Global Storage Classesiuiiiiiinnnnenn..

The globaldef and globalref Specifiers
Comparing the Global and the External Storage Classes. . ..
The globalvalue Specifier

Storage-Class Modifiers

The noshare Modifier
The readonly Modifier

3-12
3-14
3-20
3-20
3-21
3-26
3-30
3-33
3-39

3-40
3-42
3-44
3-45
3—46
3-47
3-47
3-47
3-48
3-48
3-52
3-52
3-53
3-55
3-57
3-57
3-59
3-61
3-62
3-63

4.4.3
4.5
4.6
4.7
4.71
4.7.2
4.7.3
4.8
4.8.1
4.8.2

The _align Modifier
Floating-Point Numbers (float, double, long double)
Pointer Conversions
Structure Alignment

Bit-Field Alignment

Bit-Field Initialization

Variant Structures and Unions
Program Sections

Attributes of Program Sections

Program Sections Created by HPC

5 Preprocessor Directives

vi

5.1
5.2
5.2.1
5.2.2
5.2.3
5.24
5.3

5.4
5.4.1
5411
5412
5.4.1.3
54.1.4
5.4.2
5.4.3
544
5.4.5
5.4.5.1
5452
5.4.5.3
5454
5455
5.4.5.6
5457
5.4.5.8

54.5.9
5.4.6
5.4.7

CDD/Repository Extraction (#dictionary)
File Inclusion (#include)
Inclusion Using Angle Brackets
Inclusion Using Quotation Marks
Inclusion of Text Modules
Macro Substitution in #include Directives
Changing the Default Object Module Name and Identification
(#module)
Implementation-Specific Preprocessor Directive (#pragma)
#pragma assert Directive
#pragma assert func_attrs
#pragma assert global_status_variable
Usage Notes
#pragma assert NON_zeroii.. ...
#pragma builtins Directive.
#pragma dictionary Directive
#pragma environment Directive, ..
#pragma extern_model Directive
Syntax
#pragma extern_model common_block
#pragma extern_model relaxed_refdef
#pragma extern_model strict_refdef.............. ...
#pragma extern_model globalvalue
#pragma extern_model save
#pragma extern_model restore
Effects on the HP C Run-Time Library and User
Programs
Example........ e
#pragma extern_prefix Directive
#pragma function Directive

5.4.8
5.4.9
5.4.10
5.4.11
5.4.12

5.4.12.1
54.12.1.1
5.4.121.2
5.4.12.2

5.4.13
5.4.14

5.4.141
54142
5.4.14.3

5.4.15
5.4.16
5.4.17
5.4.18
5.4.19
5.4.20
5.4.21
5.4.22
5.4.23

#pragma [no]include_directory Directive
#pragma [no]inline Directive
#pragma intrinsic Directive
#pragma linkage Directive @ipha only)
#pragma linkage Directive @64 only) L.
#pragma linkage Format
Register Mapping,
Mapping Diagnostics
#pragma linkage_ia64 Format
#pragma [nolmember_alignment Directive.
#pragma message Directive
#pragma message optionl,
#pragma message option2
#pragma message (quoted-string)
#pragma module Directive
#pragma names Directive
#pragma optimize Directive
#pragma pack Directive
#pragma pointer_size Directive
#pragma required_pointer_size Directive
#pragma [no]standard Directive.
#pragma unroll Directive
#pragma use_linkage Directive

6 Predefined Macros and Built-In Functions

6.1
6.1.1
6.1.2
6.1.2.1
6.1.2.2
6.1.3
6.1.4
6.1.5
6.1.6
6.1.7
6.2
6.2.1

6.2.1.1
6.2.1.2
6.2.1.3
6.2.1.4

Predefined Macros e

CC$gfloat (G_Floating Identification Macro)
System Identification Macros

The DECC _VER Macroc.uuiuieean..

The __VMS_VER Macro
Standards Conformance Macros.
Floating-Point Macros
Compiler-Mode Macros.,
Pointer-Size Macro
The __HIDE_FORBIDDEN_NAMES Macro

Built-In Functions

Built-In Functions for OpenVMS Alpha Systems @ipha

ONLY) v v v e
Translation Macros for VAX C Built-in Functions
In-line Assembly Code—ASMs
Absolute Value (__ABS)
Acquire and Release Longword

5-32
5-33
5-35
5-36
5-40
5-40
5-40
5-42
5-43
5-44
5-45
5-45
5-49
5-49
5-49
5-50
5-52
5-54
5-56
5-57
5-58
5-58
5-59

O)@CDCDOPO)O)CDCD@

|
QOO OOONOPA»—=2 ==

7
—

TP
_L_L_L_IL
annnNn =

vii

Semaphore (__ACQUIRE_SEM_LONG,

__RELEASE_SEM_LONG)vu.... 6-16
6.2.1.5 Add Aligned Word Interlocked (__ADAWI) 6-16
6.2.1.6 Add Atomic Longword (__ADD_ATOMIC_LONG) 6—-17
6.2.1.7 Add Atomic Quadword (__ADD_ATOMIC_QUAD) 6-18
6.2.1.8 Allocate Bytes from Stack (__ALLOCA) 6-19
6.2.1.9 AND Atomic Longword (__AND_ATOMIC_LONG). 6-19
6.2.1.10 AND Atomic Quadword (__AND_ATOMIC_QUAD) 6—20
6.2.1.11 Atomic Add Longword (__ATOMIC_ADD_LONG) 6—20
6.2.1.12 Atomic Add Quadword (__ATOMIC_ADD_QUAD)...... 6—21
6.2.1.13 Atomic AND Longword (__ATOMIC_AND_LONG) 6-22
6.2.1.14 Atomic AND Quadword (__ATOMIC_AND_QUAD) 6-23
6.2.1.15 Atomic OR Longword (__ATOMIC_OR_LONG) 624
6.2.1.16 Atomic OR Quadword (__ATOMIC_OR_QUAD)........ 624
6.2.1.17 Atomic Increment Longword

(__ATOMIC_INCREMENT_LONG) 6-25
6.2.1.18 Atomic Increment Quadword

(__ATOMIC_INCREMENT QUAD) 6-26
6.2.1.19 Atomic Decrement Longword

(__ATOMIC_DECREMENT_LONG) 627
6.2.1.20 Atomic Decrement Quadword

(__ATOMIC_DECREMENT _QUAD) 6-27
6.2.1.21 Atomic Exchange Longword

(__ATOMIC_EXCH_LONG) oiii i 6—28
6.2.1.22 Atomic Exchange Quadword

(__ATOMIC_EXCH QUAD) 6—29
6.2.1.23 Compare Store Longword (__CMP_STORE_LONG) 6—29
6.2.1.24 Compare Store Quadword (__CMP_STORE_QUAD). . .. 6-30
6.2.1.25 Convert G_Floating to F_Floating Chopped

(__CVTGF C) ..o e 6-30
6.2.1.26 Convert G_Floating to Quadword (__CVTGQ) 6-30
6.2.1.27 Convert IEEE T_Floating to IEEE S_Floating Chopped

(__CVTTS_C) o voee e e e 6-31
6.2.1.28 Convert IEEE T_Floating to Quadword (__CVTTQ) 6-31
6.2.1.29 Convert X_Floating to Quadword (__CVTXQ)......... 6-31
6.2.1.30 Convert X_Floating to IEEE T_Floating Chopped (

__CVTXT C) oot e 6-31
6.2.1.31 Copy Sign Built-in Functions 6-32
6.2.1.32 Cosine (__COS)ot i 6-32
6.2.1.33 Double-Precision, Floating-Point Arithmetic Built-in

Functions 6-33
6.2.1.34 Floating-Point Absolute Value (__FABS) 6-33
6.2.1.35 deadz . ..o 6-33

viii

6.2.1.36

6.2.1.37
6.2.1.38

6.2.1.39
6.2.1.40

6.2.1.41
6.2.1.42
6.2.1.43
6.2.1.44
6.2.1.45
6.2.1.46
6.2.1.47
6.2.1.48
6.2.1.49
6.2.1.50
6.2.1.51
6.2.1.52
6.2.1.53
6.2.1.54
6.2.1.55
6.2.1.56
6.2.1.57
6.2.1.58
6.2.1.59
6.2.1.60
6.2.1.61
6.2.1.62
6.2.1.63
6.2.1.64
6.2.1.65
6.2.1.66
6.2.1.67
6.2.1.68
6.2.1.69
6.2.1.70
6.2.1.71
6.2.1.72
6.2.1.73
6.2.1.74
6.2.1.75

Long Double-Precision, Floating-Point Arithmetic
Built-in Functions
Longword Absolute Value (__LABS)
Lock and Unlock Longword (__LOCK_LONG,
__UNLOCK_LONG)
Memory Barrier (__MB)
Memory Copy and Set Functions (__MEMCPY,
__MEMMOVE, __MEMSET)......................
OR Atomic Longword (__OR_ATOMIC_LONG)
OR Atomic Quadword (__OR_ATOMIC_QUAD)
Privileged Architecture Library Code Instructions.
__PAL _BPT
__PAL BUGCHK.............
__PAL_ CFLUSH
__PAL.CHME
__PAL. CHMK i
__PAL_CHMS i,
__PAL CHMUt
__PAL_DRAINA
__PAL_ GENTRAP
__PAL HALT . ..
__PAL_ INSQHIL
__PAL_INSQHILR
__PAL_INSQHIQ............
__PAL_INSQHIQR
__PAL INSQTIL
__PAL_INSQTILR
__PAL_INSQTIQ
__PAL_INSQTIQR i ...
__PAL_ INSQUEL
__PAL INSQUEL D
__PAL_INSQUEQ
__PAL_INSQUEQD
__PAL IDQP.
__PAL_STQP
__PAL_ MFPR XXXX . . it
__PAL_ MTPR XXXX . . ottt
__PAL_ PROBER
__PAL_ PROBEW
__PAL.RD PS
__PAL REMQHIL
__PAL REMQHILR
__PAL REMQHIQ

6-34
6-34

6-34
6-35

6-35
6-36
6-36
6-37
6-37
6-37
6-38
6-38
6-38
6-38
6-39
6-39
6-39
6-39
6-39
6-40
6—41
6—41
642
6-42
6-43
6-43
6—44
6—44
6-45
6-45
6-46
6—-46
6—46
647
6-47
6-48
6-48
6—49
6—49
6-50

6.2.1.76
6.2.1.77
6.2.1.78
6.2.1.79
6.2.1.80
6.2.1.81
6.2.1.82
6.2.1.83
6.2.1.84
6.2.1.85
6.2.1.86
6.2.1.87
6.2.1.88
6.2.1.89
6.2.1.90
6.2.1.91
6.2.1.92

6.2.1.93

6.2.1.94

6.2.1.95

6.2.1.96

6.2.1.97
6.2.1.98
6.2.1.99
6.2.2
6.2.2.1
6.2.2.2
6.2.2.3
6.2.2.4
6.2.2.5
6.2.2.6
6.2.2.7
6.2.2.8
6.2.2.9
6.2.2.10
6.2.2.11
6.2.2.12
6.2.2.13

__PAL.REMQHIQR. . ..o veeee e
C PAL REMQTIL ...\ ooeeee e
__PAL REMQTILR\ ooeee i
__PAL REMQTIQ . .. oo ooeeeee e
__PAL.REMQTIQR . . . oo oeeeee e
__PAL.REMQUEL\t
__PALREMQUEL.Dooviainannni..
__PALREMQUEQttt
__PAL REMQUEQ.D . ..o,
CPAL_SWPCTX .. voeee e
C PAL_SWASTEN . ..ottt
L PAL_ WR.PS_SW ..ottt

LPOPPAT ot ettt e
Read Process Cycle Counter (__RPCC)..............

Sine (_ _SIN) . .ot
Single-Precision, Floating-Point Arithmetic Built-in
Functions
Test for Bit Clear then Clear Bit Interlocked
(__INTERLOCKED_TESTBITCC_QUAD)
Test for Bit Clear then Clear Bit Interlocked
(__TESTBITCCI)
Test for Bit Set Then Set Bit Interlocked
(__INTERLOCKED_TESTBITSS_QUAD)
Test for Bit Set then Set Bit Interlocked
(__TESTBITSSI) e
trailz. ..
Trap Barrier Instruction (__TRAPB)
Unsigned Quadword Multiply High (__UMULH)
Built-In Functions for 164 Systems @64 onty)
Builtin Differences on 164 Systems
Built-in Functions Specific to 164 Systems............
Get Hardware Register Value (__getReg)
Set Hardware Register Value (__setReg)
Get Index Register Value (__getIndReg)
Set Index Register Value (__setIndReg)
Generate Break Instruction (__break)
Serialize Data (_ _dsrlz)
Flush Cache Instruction (_ _fe)
Flush Write Buffers (__fwb)
Invalidate ALAT (__invalat)
Invalidate ALAT (__invala)
Execute Serialize (_ _isrlz)

6-50
6-51
6-51
6-52
6-53
6-53
6-54
6-54
6-55
6-55
6-55
6-56
6-56
6-56
6-56
6-56

6-57

6-57

6-58

6-58

6-59
6-60
6-60
6-60
6-60
6-61
6-62
6-63
6-65
6-65
6-66
6-66
6-66
6-67
6-67
6-67
6-67
667

6.2.2.14 Insert Data Address Translation Cache (__ited) 667

6.2.2.15 Insert Instruction Address Translation Cache (_ _itei). . 6-68
6.2.2.16 Insert Data Translation Register (__itrd) 6-68
6.2.2.17 Insert Instruction Translation Register (__itri)........ 668
6.2.2.18 Purge Translation Cache Entry (__ptece) 6—69
6.2.2.19 Purge Global Translation Cache (__pteg) 6—69
6.2.2.20 Purge Local Translation Cache (__ptel) 6-69
6.2.2.21 Purge Global Translation Cache and ALAT (__ptega) . . . 6-69
6.2.2.22 Purge Data Translation Register (__ptrd)............ 6-70
6.2.2.23 Purge Instruction Translation Register (__ptri) 6-70
6.2.2.24 Reset System Mask (__rsm) 6-70
6.2.2.25 Reset User Mask (__rum) 671
6.2.2.26 Set System Mask (__ssm)........................ 6-71
6.2.2.27 Set User Mask (__sum)0 ... 6—71
6.2.2.28 Enable Memory Synchronization (__synci) 6—71
6.2.2.29 Translation Hashed Entry Address (__thash)......... 6-71
6.2.2.30 Translation Hashed Entry Tag (__ttag) 6-72
6.2.2.31 Atomic Compare and Exchange (

_InterlockedCompareExchange_acq) 6-72
6.2.2.32 Atomic Compare and Exchange (

_InterlockedCompareExchange64_acq)............... 6-73
6.2.2.33 Atomic Compare and Exchange (

_InterlockedCompareExchange_rel) 6-73
6.2.2.34 Atomic Compare and Exchange (

_InterlockedCompareExchange64_rel) 6-73
6.2.2.35 Conditional Atomic Compare and Exchange Longword

(__CMP_SWAP_LONG)ot 6-73
6.2.2.36 Conditional Atomic Compare and Exchange Quadword

(__CMP_SWAP_ QUAD)t 6-74
6.2.2.37 Conditional Atomic Compare and Exchange

Longword with Acquire Semantics (

__CMP_SWAP LONG_ACQ) 6-74
6.2.2.38 Conditional Atomic Compare and Exchange

Quadword with Acquire Semantics (

__CMP_SWAP QUAD_ACQ)cciviiiiann. .. 6-75
6.2.2.39 Conditional Atomic Compare and Exchange

Longword with Release Semantics (

__CMP_SWAP_LONG REL) 6-76
6.2.2.40 Conditional Atomic Compare and Exchange

Quadword with Release Semantics (

Xi

__CMP_SWAP_QUAD_REL)

6.2.2.41 Return Address (__RETURN_ADDRESS)............
6.2.2.42 Implement Alpha __PAL._GENTRAP and

__PAL_BUGCHK Builtins (__break2)
6.2.2.43 Flush Register Stack (__flushrs)...................
6.2.2.44 Load Register Stack (__loadrs)
6.2.2.45 Probe Read-Access Permission (__prober)............
6.2.2.46 Probe Write-Access Permission (__probew)...........
6.2.2.47 Translation Access Key (__tak)....................
6.2.2.48 Translate to Physical Address (__tpa)...............
6.2.3 Built-In Functions for OpenVMS VAX Systems (VAX only)
6.2.3.1 Allocate Bytes from Stack (__ALLOCA)
6.2.3.2 Add Aligned Word Interlocked (_ADAWI)
6.2.3.3 Branch on Bit Clear-Clear Interlocked (_BBCCI)
6.2.3.4 Branch on Bit Set-Set Interlocked (_BBSSI)..........
6.2.3.5 Find First Clear Bit (_FFC)
6.2.3.6 Find First Set Bit (_FFS)
6.2.3.7 Halt (_HALT) i
6.2.3.8 Insert Entry into Queue at Head Interlocked (

JINSQHI) . .o
6.2.3.9 Insert Entry into Queue at Tail Interlocked (

JINSQTI) .o
6.2.3.10 Insert Entry in Queue (_INSQUE)
6.2.3.11 Locate Character (_ LOCC)
6.2.3.12 Move from Processor Register (_MFPR)
6.2.3.13 Move Character 3 Operand (_MOVC3)
6.2.3.14 Move Character 5 Operand (_MOVC5)
6.2.3.15 Move from Processor Status Longword (_MOVPSL)
6.2.3.16 Move to Processor Register (_MTPR)
6.2.3.17 Probe Read Accessibility (_PROBER)
6.2.3.18 Probe Write Accessibility (_PROBEW)
6.2.3.19 Read General-Purpose Register (_READ_GPR)........
6.2.3.20 Remove Entry from Queue at Head Interlocked (

_REMQHI)
6.2.3.21 Remove Entry from Queue at Tail Interlocked (

_REMQTI) e
6.2.3.22 Remove Entry from Queue (_REMQUE).............
6.2.3.23 Scan Characters (_SCANC).
6.2.3.24 Skip Character (_SKPC)
6.2.3.25 Span Characters (_SPANC).......................

Xii

A Migrating from VAX C

AA
A1,

Features Affecting the Compiler

1

A12

A1,

3

A1.4
A15

A,
A1,
A1,
A1,
A,
A,
A1
A
A1

A
A
A
A1
A1
A1
A
A1,
A1
A1
A1
A
A
A
A1
A1

A1
A

6
7
8
9
10
11

A1
1.2
11.3

A2
13
.13.1
13.2
.13.3
.13.4
14

15

.16
A7
.18
.18.1
.18.2
.19
1941
.19.2

.19.3
.19.4

A.1.20
A1.21
A1.22
A1.23
A.1.231
A1.23.2

HP C Qualifiers
Comment Processing
String Literal Concatenation
Recursive main() Function.
Trigraph Sequences
Alert Escape Sequence
Hexadecimal Escape Sequence
Invalid Escape Sequences
$in Macro Namesooo v,
Null Arguments to Macros
Standard C Name Space Conformance..........

Nonstandard Keywords

Nonstandard Predefined Macros

Nonstandard Identifiers in Standard-Specified Header

Files
HP C Predefined Macros
HP CTypes

signed Reserved Word

Removal of the long float Type

Addition of the long double Type

Addition of Processor-Specific Integer Data Types

Type Compatibility.
Composite Typesc. ...
Enumerations Have Typeint
long double Constants
Implicit Unsigned Integer Constants
OpenVMS VAX Systems
OpenVMS Alpha Systems
Multibyte and Wide Character Support
The Wide Character Type
Multibyte Characters in Comments, Character
Constants, and String Literals.............
Wide Character Constants
Wide String Literals.
Usual Arithmetic Conversions
Indexing as a Commutative Operator
CastOperators..............,
FunctionCalls
Assignment Compatibility Argument Checking
Passing Narrow Types to Old Syntax Functions

A-2
A-2
A4
A-5
A-5
A-5
A-6
A-6
A-6
A-6
A6
A-7
A-7
A-8

A-9

A-9

A-9
A-10
A-10
A-10
A-10
A-12
A-13
A-13
A-13
A-14
A-14
A-14
A-14
A-15

A-15
A-15
A-15
A-16
A-16
A-16
A-16
A-16
A-17

Xii

Xiv

A.1.24 “Address of” Operator

A.1.25 Unary Plus.
A.1.26 Relational Operators
A.1.27 Assignment Compatibility
A.1.28 Declarations
A.1.28.1 Implementation Limits
A.1.28.2 Identifier Name Length
A.1.28.3 Diagnosing Empty Declarations
A.1.28.4 Restriction on Placement of Storage-Class Specifiers
A.1.28.5 Diagnosing Old-Style Function Declarations
A.1.28.6 Function Definitions Using typedef-names
A.1.28.7 Initialization
A.1.29 Bit-Field Initialization
A.1.30 The Preprocessor
A.1.30.1 White Space Appearing Beforethe #
A.1.30.2 The #define Directive and Macro Substitution
A.1.30.3 The #line Directive
A.1.30.4 The #error Directive
A.1.30.5 The #pragma builtins Directive
A.1.30.6 The #pragma dictionary Directive
A.1.30.7 The #pragma extern_model Directive.
A.1.30.8 The #pragma linkage Directive @ipha onty)
A.1.30.9 The #pragma use_linkage Directive @Aipha only)
A.1.30.10 The #pragma message Directive
A.1.30.11 The #pragma module Directive
A2 Features Affecting the HP C Run-Time Library and Include
Fileso e
A2.1 <stddefh>
A22 <ctype.h> e
A23 <fp_classh>
A2.4 <localeh>.
A25 <math.h>
A2.6 <signal.h>
A2.7 <stdio.h>
A28 <stdlib.h>.
A29 <string.h>
A.2.10 <time.h>.
A3 Unsupported Features

A-17
A-17
A-17
A-18
A-18
A-18
A-18
A-18
A-19
A-19
A-19
A-19
A-19
A-19
A-20
A-20
A-21
A-21
A-21
A-21
A-22
A-22
A-22
A-22
A-22

A-22
A-22
A-22
A-23
A-23
A-23
A-23
A-23
A-24
A-24
A-24
A-25

B Common Pitfalls

C Programming Tools

C.1
C.1A1
C1.2
C.1.3
C.1.31
C.1.3.2
C.1.33
C.1.34
C.1.35
C.1.3.6
c.2
C.3
C.3.1
Cc3.2
C.3.3
C.34
C.35
C.3.5.1
C.35.2
C4
C.41
c4.2
C.4.3

OpenVMS Debugger .

Compiling and Linking to Prepare for Debugging
Starting and Terminating a Debugging Session
Notes on HP C Support
Debugger Command-Line Options
Accessing Scalar Variables
Accessing Arrays
Accessing Character Strings
Accessing Structures and Unions
Sample Debugging Session.
OpenVMS Text Processing Utility
Language-Sensitive Editor and the Source Code Analyzer.
Preparing an SCA Library
Starting and Terminating an LSE or an SCA Session

Programming Lan
Compiling Source
LSE Examples . .

guage Placeholders and Tokens
Code i

Compilation Unit
Preprocessor Lines,

CDD/Repository

Using CDD/Repository,

Accessing CDD/Re

pository from HP C Programs

Support for CDD/Repository Data Types

D HP C Compiler Messages

E HP C Limits

E.1
E.2

Contents of <float.h>
Contents of <limits.h>

C-1
Cc-2
Cc-2
C-3
c4
c4
C-6
C-7

c-14
c-18
c-18
C-20
Cc-21
C-21
C-24
C-24
C-25
C-25
C-26
C-26
c-27
c-27

XV

HP C Glossary

Index

Examples

XVi

1-1
1-2
1-3
1-4
21
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
3-1
3-2
3-3
3-4
3-5
3-6
3-7

3-8

3-9

3-10
3—11
3-12
3-13
3-14

3-15

Echo Program Using Command-Line Arguments..........
Watch Out for Pointers to Pointers (**)
Trivial 64-Bit Exploitation
Preceding Example No Longer Trivial
External Data Declarations and Definitions.
Main Program Section
Function Initializing RMS Data Structures
Internal Functions
Utility Function: Adding Records
Utility Function: Deleting Records
Utility Function: Typing the File......................
Utility Function: Printing the File.
Utility Function: Updatingthe File....................
Passing Floating-Point Arguments by Immediate Value
Passing Arguments by Reference
Passing Arguments by Descriptor
Passing Compile-Time String Descriptors
HP C Function Calling a HP FORTRAN Subprogram
HP FORTRAN Subprogram Calling a HP C Function

HP C Function Emulating a HP FORTRAN
CHARACTER*(*) Function

VAX MACRO Program Calling a HP C Function
HP C Program Calling a VAX MACRO Program
HP C Function Calling a HP BASIC Function............
HP BASIC Program Calling a HP C Function
HP C Function Calling a HP Pascal Routine
HP Pascal Program Calling a HP C Function

Sharing Data with a FORTRAN Program in Named Program
SeCtionSot e

Sharing Data with a FORTRAN Program in a HP C
Structure

3-16

3-17
3-18

3-19
3-20
3-21
3-22
3-23
3-24
3-25
4-1
5-1
o
c-2
c-3
o
c-5
C-6
C-7

Figures

1-1
3-1
3-2
3-3
3-4
3-5
3-6
4—1
4-2

Sharing Data with a PL/I Program in Named Program
SeCtionsot

Sharing Data with a PL/I Program in a HP C Structure

Sharing Data with a MACRO Program in a HP C
Structure

Checking System Service Return Values
Using Variable-Length Argument Lists
Testing for Success it
Testing for Specific Return Status Values
Passing Arguments to System Services
Determining $QIO Completion.
Using Time Routines
Using Global Variables.
#pragma extern_model Example
Debugging Sample Program SCALARS.C
Debugging Sample Program ARRAY.C..................
Debugging Sample Program STRING.C.................
Debugging Sample Program STRUCT.C
Debugging Sample Program ARSTRUCT.C
Debugging Sample Program POWER.C
A Sample Debugging Session

DCL Commands for Developing Programs
The Call Stack
Structure of an OpenVMS VAX Argument List
Example of an OpenVMS VAX Argument List
Passing Arguments by Immediate Value
Bit Fields Within a Return Status Value
Internal Representation of a Status Value
VAX Structure Alignment
OpenVMS Bit-Field Alignment

3-42
3-43

3-44
3-54
3-56
3-61
3-63
3-64
3-65
3-66

4-5
5-29

c4

C-6

C-8
C-10
C-13
C-15
C-15

1-2
3-5
3-6
3—7
3-10
3-58
3-60
4-16
4-17

XVii

Tables

XViii

|
a b~ ODN

G G U G G T G 'Y
- = O 00 N O

1-12
1-13
1-14
1-15
1-16
1-17
1-18
1-19
1-20
1-21
1-22
1-23
1-24
1-25
1-26
21

2-2

2-3

3-1

3-2

3-3

3-5

Conventions Used in this Guide
/ACCEPT Qualifier Options
/ANNOTATIONS Qualifier Options
/ARCHITECTURE Qualifier Options
/ASSUME Qualifier Options.
/CHECK=POINTER_SIZE Qualifier Options
/COMMENTS Qualifier Options
Debugger Compilation Options
/EXTERN_MODEL Qualifier Options
/FLOAT Qualifier Options
/IEEE_MODE Options0iiiieineen...
/MACHINE_CODE Qualifier Options VAX only)
/MMS_DEPENDENCIES Qualifier Options
/NAMES Qualifier Optionl Values
/NAMES Qualifier Option2 Values
/NESTED_INCLUDE_DIRECTORY Qualifier Options.
/OPTIMIZE Qualifier Options
/PDSC_MASK Qualifier Options
/POINTER_SIZE Qualifier Options
/PRECISION Qualifier Options
/PREFIX_LIBRARY_ENTRIES Qualifier Options
/PROTOTYPE Qualifier Options
/REENTRANCY Qualifier Options
/SHOW Qualifier Options
/STANDARD Qualifier Options
/WARNINGS Qualifier Options
OpenVMS Linker Default File Types for Input Files
Common RMS Run-Time Processing Functions
HP CRMS Header Files
RMS Data Structures.
VAX Register Usagettt i ie i
Alpha Register Usage.
Status Values of SYS$SETEF
Status Values of SYSSREADEF
Valid Class Codes.

XXiv
1-16
1-18
1-20
1-22
1-33
1-36
1-37
1-42
1-44
1-47
1-54
1-55
1-56
1-57
1-58
1-59
1-67
1-68
1-69
1-70
1-72
1-73
1-75
1-77
1-81
1-88

2-6

2-7

2-8

3-3

3-3

3-9

3-12
3-15

3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
41
4-2
4-3
4-4
4-5

Atomic Data Types i,
Status Values of SYS$SETPRN
Valid Parameter-Passing Mechanisms in HPC
Default Passing Mechanisms
OpenVMS Run-Time Library Facilities
OpenVMS System Servicesc.uiiinen...
HP C Implementation
Possible Severity Values.
Facility Codes
Location, Lifetime, and the Storage-Class Keywords
Floating-Point Formats
Program-Section Attributes
External Models and Definitions

Combinations of Storage-Class Specifiers and Modifiers @ipha,
I6D) o v et e e

Combinations of Storage-Class Specifiers and Modifiers vax
ONLY) v v o e

Combination Attributes
Comparison of Mixing Different extern_models
Integer Register Mapping
Floating-Point Register Mapping
Predefined System Identification Macros
__DECC_VER Version-Type Encodings
Standards Macros—All platforms
Trigraphs
Nonstandard Keywords
New and Traditional Spellings of Macros................
Commands to Manipulate Tokens and Placeholders
Mapping Between CDD/Repository and HP C Data Types . . .

3-16
3-17
3-20
3-21
3-45
3-46
3-48
3-59
3-62

4-2
4-15
4-22
4-24

4-26

4-26
4-27
5-27
5-41
5-42
62
6-5
6-7
A-5

A-8

c-22
C-28

XiX

Preface

This guide contains the information necessary for developing and debugging
HP C (formerly Compaq C) programs on the OpenVMS operating system.

HP C provides a conforming implementation of ISO/IEC 9899:1990 [1994],
sometimes informally called C89, C90, ANSI C, or standard C. It also provides
complete language support for ISO/IEC 9899:1999, informally called C99,
although not all run-time library routines are currently implemented, floating-
point environment access controls are not effective, and Annex F (the optional
__STDC_IEC_559__ extension) is not supported.

HP C is a standard-conforming C compiler for the OpenVMS operating system
on VAX, Alpha, and Intel® Itanium® processors and for the Tru64 UNIX®
operating system on Alpha processors. HP OpenVMS Industry Standard 64 for
Integrity Servers is the full product name of the OpenVMS operating system
on Intel Itanium processors. The shortened forms, OpenVMS 164 and 164, are
also used throughout this manual.

Through use of command-line options, HP C is compatible with older dialects
of C, including common usage C and VAX C.

This guide also includes HP C language features specific to OpenVMS systems,
as well as information about porting C programs to and from OpenVMS and
other operating systems. For more information about porting programs to
and from other operating systems, see the HP C Run-Time Library Reference
Manual for OpenVMS Systems.

You may send comments or suggestions regarding this guide or any HP C
document by sending electronic mail to the following Internet address:

c_docs@hp.com

XXi

Intended Audience

This guide is intended for experienced programmers who need to develop HP C
programs on OpenVMS systems, for users who need to know the difference
between HP C and other implementations, and for experienced C users

who need to reference language information specific to OpenVMS systems.
You should be familiar with one high-level language and should have some
familiarity with the Digital Command Language (DCL). If you are not familiar
with or need to reference information about the DCL, see Chapter 1.

Document Structure
This guide has the following chapters and appendixes:
¢ Chapter 1 shows how to create, compile, link, and run a HP C program.
e Chapter 2 describes VAX Record Management Services (RMS).

e Chapter 3 describes interlanguage calling, and OpenVMS System Services,
Run-Time Library (RTL) routines, and calling standard conventions.

e Chapter 4 describes data storage and representation on OpenVMS systems.
e Chapter 5 describes the preprocessor directives.
e Chapter 6 describes the predefined macros and the built-in functions.

e Appendix A documents the features that distinguish HP C for OpenVMS
Systems from VAX C Version 3.2.

e Appendix B describes common pitfalls when using HP C.

e Appendix C provides an overview of the OpenVMS Debugger, Text
Processing Utility (TPU), Language-Sensitive Editor (LSE), Source Code
Analyzer (SCA), and CDD/Repository.

e Appendix D lists HP C compiler messages.

¢ Appendix E describes implementation-specific limits and parameters for
HP C on OpenVMS systems.

¢ The glossary provides an alphabetical listing of key terms.

XXii

Associated Documents

You may find the following documents useful when programming in HP C:

DEC C Migration Guide for OpenVMS VAX Systems—To help OpenVMS
VAX application programmers migrate from VAX C to HP C. vaX only)

HP C Installation Guide for OpenVMS VAX Systems—For OpenVMS
system programmers who install the HP C software on VAX systems. vax
only)

HP C Installation Guide for OpenVMS Alpha Systems—For OpenVMS
system programmers who install the HP C software on Alpha systems.
(Alpha only)

HP C Language Reference Manual—Provides language reference
information for HP C on HP systems.

HP C Run-Time Library Reference Manual for OpenVMS Systems—
Provides information on using the HP C Run-Time Library (RTL) functions
and macros, and information about porting programs to and from other
operating systems.

The C Programming Language by Ritchie —Provides an excellent tutorial
of the C language. Because HP C contains features and enhancements to
the standard C language, use the HP C User’s Guide for OpenVMS Systems
and the HP C Language Reference Manual as the reference books for the
full description of HP C.

HP OpenVMS Calling Standard—Describes the concepts used by all
OpenVMS languages to invoke routines and pass data between them. It
also describes the differences between the OpenVMS VAX, Alpha, and 164
parameter-passing mechanisms.

Conventions Used in this Document

Table 1 lists the conventions used in this guide.

xXiii

Table 1 Conventions Used in this Guide

Convention

Meaning

HP OpenVMS Industry Standard 64
for Integrity Servers, OpenVMS 164,

164
OpenVMS systems

CtrlI/X

switch statement
fprintf function
auto storage class

argl

$ RUN CPROG

float x;

x=5;'

option, . ..

The variant of the OpenVMS operating system
that runs on the Intel Itanium architecture.

Refers to the OpenVMS operating system
on all supported platforms, unless otherwise
specified.

The symbol represents a single stroke
of the Return key on a terminal.

The symbol Ctrl/X, where the letter X
represents a terminal control character, is
generated by holding down the Ctrl key while
pressing the key of the specified terminal
character.

In syntax definitions, items appearing in
monospaced type identify language keywords
and the names of OpenVMS and HP C Run-
Time Library functions.

Italic type indicates a placeholder, such as
an argument or parameter name, and the
introduction of new terms.

Interactive examples show user input in
boldface type.

A vertical ellipsis indicates that not all of

the text of a program or program output is
illustrated. Only relevant material is shown in
the example.

A horizontal ellipsis indicates that additional
parameters, options, or values can be entered.
A comma that precedes the ellipsis indicates
that successive items must be separated by
commas.

(continued on next page)

Table 1 (Cont.) Conventions Used in this Guide

Convention

Meaning

[output-source, . . .

sc-specifier ::=
auto

static
[extern]
register

{a | b}

]

Square brackets, in function synopses and a
few other contexts, indicate that a syntactic
element is optional. Square brackets are
not optional, however, when used to delimit
a directory name in an OpenVMS file
specification or when used to delimit the
dimensions of an array in HP C source code.

In syntax definitions, items appearing
on separate lines are mutually exclusive
alternatives.

Braces surrounding two or more items
separated by a vertical bar (|) indicate
a choice; you must choose one of the two
syntactic elements.

Platform Labels

A platform is a combination of operating system and hardware that provides
a distinct environment. This guide contains information applicable to the HP
OpenVMS operating system on VAX, Alpha, and Intel Itanium processors.

The information in this guide applies to all of these processors, except when
specifically labeled as follows:

Label

Explanation

(Alpha only)

(VAX only)

(164 only)

Specific to an Alpha processor running the OpenVMS
operating system.

Specific to a VAX processor running the OpenVMS operating
system.

Specific to an Intel Itanium processor running the OpenVMS
operating system. On this platform, the product name of
the operating system is OpenVMS Industry Standard 64 (or
its abbreviated forms, OpenVMS 164 or 164).

XXV

New and Changed Features

XXVi

HP C Version 7.1 runs on OpenVMS Alpha and OpenVMS Industry Standard
64 systems. The compiler behaves much the same on both systems, with some
differences, primarily in the support for #pragma linkage, built-in functions,
default floating-point representation, and predefined macros. These differences
are noted in the relevant sections of this manual.

1

Developing HP C Programs

This chapter describes the following information about developing HP C
programs on an OpenVMS system:

Overview of the DIGITAL Command Language (DCL) commands used for
program development (Section 1.1)

Creating HP C programs (Section 1.2)

Compiling HP C programs (Section 1.3)

Linking HP C programs (Section 1.4)

Running HP C programs (Section 1.5)

Passing arguments to the main function (Section 1.6)

Using 64-bit addressing (Section 1.7)

1.1 DCL Commands for Program Development

This section provides a brief overview of the DCL commands used for program
development. The following sections provide more detailed information about
these topics.

Figure 1-1 shows the basic steps in HP C program development.

Developing HP C Programs 1-1

Figure 1-1 DCL Commands for Developing Programs

COMMANDS ACTION INPUT/OUTPUT FILES

$ EDIT AVERAGE.C
Use the file type of C to Create a AVERAGE.C
indicate that the file source program
contains an HP C program

$ CC AVERAGE
The CC command

assumes that the file type . AVERAGE.OBJ
of an input file is C Compile the '
P source program ,(AV_ERAGE'LIS)
(If you use the /LIST libraries
qualifier, the compiler
creates a listing file)
$ LINK AVERAGE
e ﬁé’;”ﬁfg@’;‘gg‘: oy Link the AVERAGE.EXE
j AVERAGE.MAP
file is OB object module (G)
(If you use the /MAP qualifier,
the linker creates a map file)
$ RUN AVERAGE Run th
The RUN command assumes un i bel
that the file type of an image execriable
is EXE Image

ZK-5167-GE

To create an HP C source program at DCL level, you must invoke a text editor.
In Figure 1-1, the EDIT command invokes the default editor TPU (OpenVMS
Text Processing Utility) to create the source program AVERAGE.C. You can
use another editor, such as EDT or the HP Language-Sensitive Editor (LSE).
(LSE is a product that must be purchased separately; see Appendix C for more

1-2 Developing HP C Programs

information.) A file type of C is used to indicate that you are creating an HP C
source program. C is the conventional file type for all HP C source programs.

When you compile your program with the CC command, you do not have to
specify the file type; by default, HP C searches for files with a file type of C.

If your source program compiles successfully, the HP C compiler creates an
object file with the file type OBJ.

However, if the HP C compiler detects errors in your source program, the
system displays each error on your screen and then displays the DCL prompt.
You can then reinvoke your text editor to correct each error.

You can specify command qualifiers on the CC command. Command qualifiers
cause the HP C compiler to perform additional actions. In the following
example, the /LIST qualifier causes the HP C compiler to produce the listing
file AVERAGE.LIS:

$ CC/LIST AVERAGE
For a complete description of all CC command qualifiers, see Section 1.3.4.

After your program has compiled successfully, invoke the OpenVMS Linker to
create an executable image file. For example:

$ LINK AVERAGE

The linker uses the object file produced by HP C as input to produce an
executable image file as output. (The executable image is a file containing
program code that can be run on the system.)

You can specify command qualifiers with the DCL command LINK. For a
complete list and explanation of all the command qualifiers available with the
LINK command, see Section 1.4.2.

After producing the executable image file, use the RUN command to execute
your program.
1.2 Creating an HP C Program

To create and modify an HP C program, you must invoke a text editor. The
OpenVMS system provides you with two text editors: EDT and the OpenVMS
Text Processing Utility (TPU). The following section discusses TPU. See the
OpenVMS EDT Reference Manual for more information on EDT.

Developing HP C Programs 1-3

1.2.1 Using TPU

TPU is a high-performance, programmable utility. It provides two editing
interfaces: the Extensible VAX Editor (EVE), described in the following section,
and the TPU EDT Keypad Emulator. You can also create your own interfaces.

Like EDT, TPU provides you with an online help facility that you can access
during your editing session. When you invoke TPU to create a file, a journal
file is automatically created. You can use this journal file to recover your edits
if the system fails during an editing session. To recover your edits, enter the
EVE/RECOVER command.

Unlike EDT, TPU provides multiple windows. This feature allows you to view
two files on your screen at the same time.

1.2.2 The EVE Interface to TPU

EVE is an interactive text editor that allows you to execute common editing
functions using the EVE keypad or to execute more advanced functions by
entering commands on the EVE command line. The following command line
invokes the EVE editor and creates the file PROG_1.C:

$ EDIT/TPU PROG_1.C

You can define a global symbol for the EDIT/TPU command by placing a
symbol definition in your LOGIN.COM file. For example:

$ EVE == "EDIT/TPU"

After this command line is executed, you can type EVE at the DCL prompt
followed by the name of the file you want to modify or create.

For more information on using EVE, see the Guide to VMS Text Processing.

1.3 Compiling an HP C Program
The HP C compiler performs the following functions:
¢ Detects errors in your source program
e Displays each error on your screen or writes the errors to a file

¢ Generates machine-language instructions from the source
statements

e Groups these machine-language instructions into an object module for the
linker

The following sections discuss the CC command and its qualifiers.

1-4 Developing HP C Programs

1.3.1 The CC Command

To invoke the HP C compiler, enter the CC command at the DCL prompt ($).
The CC command has the following format:

CCl/qualifier...][file-spec [/qualifier...]],...

Note vax only)

This note applies to OpenVMS VAX systems that have both HP C and
VAX C installed.

The CC command is used to invoke either the VAX C or HP C compiler.
If the HP C installation procedure detects that your system already
has a VAX C compiler installed on it, the installer is given the option
to specify which compiler gets invoked by default whenever the CC
command verb is used. To invoke the compiler that is not the default,
use the CC command with the appropriate qualifier: CC/DECC for the
HP C compiler, or CC/VAXC for the VAX C compiler. Where the CC
command appears in examples in this manual, CC/DECC is assumed to
be the default.

/qualifier

An action to be performed by the compiler on all files or specific files listed.
When a qualifier appears directly after the CC command, it affects all the files
listed. When a qualifier appears after a file specification, it affects only the
file that immediately precedes it. However, when files are concatenated, these
rules do not apply.

file-spec

An input source file that contains the program or module to be compiled. You
are not required to specify a file type if you give your file a .C file extension;
the HP C compiler adopts the default file type C.

You can include more than one file specification on the same command line
by separating the file specifications with either a comma (,) or a plus sign
(+). If you separate the file specifications with commas, you can control which
source files are affected by each qualifier. In the following example, the HP C
compiler creates an object file for each source file but creates only a listing file
for the source files PROG_1 and PROG_3:

$ CC /LIST PROG_1, PROG_2/NOLIST, PROG_3

Developing HP C Programs 1-5

If you separate file specifications with plus signs, the HP C compiler
concatenates each of the specified source files and creates one object file

and one listing file. In the following example, only one object file is created,
PROG_1.0BJ, and only one listing file is created, PROG_1.LIS. Both of these
files are named after the first source file in the list, but contain all three
modules.

$ CC PROG_1 + PROG_2/LIST + PROG_3

Any qualifiers specified for a single file within a list of files separated with plus
signs affect all the files in the list. See the description of the /PLUS_LIST_
OPTIMIZE qualifier for its affect on file concatenation.

Note

Concatenating source files without using the /PLUS_LIST_OPTIMIZE
qualifier is not recommended because potential conflicts in the name
space of declared objects can result in compilation errors or incorrect
run-time behavior.

A more common use of plus-list concatenation is for specifying text libraries.
You can specify the name of a text library on the CC command line to compile
a source program. A text library is a file that contains text organized into
modules indexed by a table. Text libraries have a .TLB default file extension.
In the following example, text libraries A.TLB and B.TLB are made available
for searching for text library modules during the compilation of source file
TEST.C:

$ CC TEST.C + A.TLB/LIB + B.TLB/LIB

1.3.1.1 Including Header Files

Header files are pieces of source code that typically contain declarations shared
among C programs. A header file often declares a set of related functions, as
well as defining any types and macros needed for their use.

To make the contents of a header file available to your program, include the
header file using the #include preprocessor directive.

The #include directive has three forms. Two of the forms are defined by the C
standard and are portable:

¢ Inclusion using angle brackets to delimit the file to be included:

#include <file-spec>

1-6 Developing HP C Programs

¢ Inclusion using quotation marks to delimit the file to be included:
#include "file-spec"

The third form is the text-module form. It is specific to OpenVMS systems and
is not portable. See Section 5.2.3 for more information on the text-module form
of inclusion.

The form of the #include directive used determines where the compiler
will look to find the file to be included. Generally, the compiler looks in the
following places, in the order listed:

1. Places named on the command line with the /INCLUDE_DIRECTORY
qualifier or the /LIBRARY qualifier

2. Places identified through logical names, such as DECC$USER_
INCLUDE, DECC$SYSTEM_INCLUDE, DECC$LIBRARY_INCLUDE,
and DECC$TEXT_LIBRARY

3. System-defined places such as the SYS§COMMON:[DECC$LIB.INCLUDE.*]
directory and the SYS$LIBRARY:DECC$RTLDEF.TLB and
SYS$LIBRARY:SYS$STARLET C.TLB text libraries

You can use the UNUSED message group described in the #pragma
message description in Section 5.4.14 to enable messages that report
apparently unnecessary #include files (and CDD records). Unlike any
other messages, these messages must be enabled on the command line
(/WARNINGS=ENABLE=UNUSED), rather than with #pragma message, to
be effective.

The HP C preprocessor is usually able to determine if a particular #include
file that has already been processed once was guarded by the conventional
sequence: #ifndef FILE_SEEN, #define FILE_SEEN, #endif.

When the compiler detects this pattern of use the first time a particular file is
included, it remembers that fact as well as the name of the macro. The next
time the same file is included, the compiler checks to see if the "FILE_SEEN"
macro is still defined and, if so, it does not reopen and reread the file. Note
that if the initial test is in the form #if !defined instead of #ifndef, then the
pattern is not recognized. In a listing file, #include directives that are skipped
because of this processing are marked with an "X" just as if the #include line
itself were excluded.

See the /INCLUDE_DIRECTORY qualifier in Section 1.3.4 for a more complete
description of the search-order rules that HP C uses to locate included files.

Developing HP C Programs 1-7

See the HP C Run-Time Library Reference Manual for OpenVMS Systems for
information on the header files required to use HP C Run-Time Library (RTL)
functions and macros.

1.3.1.2 Listing Header Files
To list the names of system header files, use the following commands:

$ LIBRARY/LIST SYS$LIBRARY:SYS$STARLET C.TLB
(OpenVMS Version 7.1 and higher)

$ LIBRARY/LIST SYS$LIBRARY:DECC$RTLDEF.TLB

$ DIR SYS$COMMON: [DECC$LIB.REFERENCE.SYS$STARLET C]*.H;
$ DIR SYS$COMMON: [DECC$LIB.REFERENCE.DECCSRTLDEF]*.H;

$ DIR SYSSLIBRARY:*.H;

These commands list, respectively:

e The names of the text-module header files for the OpenVMS system
interfaces

¢ The names of the text-module header files for the HP C language interfaces
e *h header files for the OpenVMS system interfaces
e *h header files for the HP C language interfaces

e *h header files for layered products and other applications

Note

The SYS$COMMON:[DECC$LIB.REFERENCE.DECC$RTLDEF]

and SYS$COMMON:[DECC$LIB.REFERENCE.SYS$STARLET C]
directories are only reference areas for your viewing. They are created
during the compiler installation from the content of the text libraries.
By default, the compiler searches only the text library files for headers;
it does not search these reference directories.

Be aware that OpenVMS VAX operating systems prior to Version 7.1 do not
have a file named SYS$LIBRARY:SYS$STARLET C.TLB. For these older
versions of the operating system, the STARLET header files are generated
during HP C installation and placed in SYS$LIBRARY:DECC$RTLDEF.TLB
and also in both SYS$COMMON:[DECC$LIB.REFERENCE.DECC$RTLDEF]
and SYS$COMMON:[DECC$LIB.REFERENCE.SYS$STARLET_C].

1-8 Developing HP C Programs

1.3.2 Compilation Modes

HP C has two complementary qualifiers that control which dialect of C is to be
recognized by the compiler, and which messages are generated:

e The /STANDARD qualifier controls what language features and extensions
are recognized by the compiler.

e The /[INOJWARNINGS qualifier enables or disables the generation of
warning and/or informational messages.

The /STANDARD qualifier causes the compiler to issue only those warnings
appropriate for the dialect of C being compiled. For example, VAX C
compatibility mode (/STANDARD=VAXC) does not issue warnings against
VAX C extensions, while ANSI C mode does.

To generate a list of all messages that are in effect at the start of
compilation, specify /LIST/SHOW=MESSAGES. For each message, the
identifier, severity, and message text are shown. To also show the
message description and user action for each message listed, specify
/LIST/SSHOW=MESSAGES/WARN=VERBOSE.

The HP C compiler for OpenVMS systems provides several dialects of C, which
are controlled by the /STANDARD qualifier:

e Strict ANSI C: Only the ANSI C Standard 89 (C89) language dialect is
recognized. This mode is enabled by specifying /STANDARD=ANSI89 on
the CC command line.

/STANDARD=ANSIS89 issues all diagnostics required by the ANSI C
standard as well as a number of optional diagnostics that help detect
source code constructs that are not portable under the C89 standard.
Digraph recognition from the 1994 Amendment is also supported in this
mode.

You can use /STANDARD=ANSI89 with /[NOJWARNINGS to control
issuance of informational or warning messages. However, since the
compiler does not recognize many VAX C or common C extensions when
in strict ANSI mode (for example, VAX C keywords not beginning with
two underscores), many of the messages normally associated with flagging
VAX C and common C extensions are not produced.

e Strict C99 : Only the ISO C99 dialect is recognized. This mode is enabled
by specifying /STANDARD=C99 on the CC command line.

Developing HP C Programs 1-9

/STANDARD=C99 accepts just the C99 language without extensions,
and diagnoses violations of the C99 standard. /STANDARD=C99 defines
the __STDC_VERSION_ _ macro to the C99-specified value of 199901L,
because C99 is a superset of Amendment 1 to the C89 standard, and the
default mode of RELAXED is a superset of C99.

Only when the ISOC94 keyword is specified alone or with the ANSI89,
MIA, RELAXED, MS, COMMON, or PORTABLE modes does the
__STDC_VERSION_ _ macro take on the Amendment 1 value of 199409L.

The __STDC_VERSION_ _ macro is undefined for the VAXC keyword or for
keywords ANSI89, MIA, or COMMON without ISOC94 specified.

/STANDARD=C99 also defines the __STDC_HOSTED__ macro to 1. This
macro is defined only for /STANDARD=LATEST and /STANDARD=C99.

Note

/STANDARD=C99 is not fully supported on VAX systems. Specifying
/STANDARD=C99 on OpenVMS VAX systems produces a warning and
puts the compiler into /STANDARD=RELAXED mode.

e Latest C standard dialect . /STANDARD=LATEST is currently equivalent
to /STANDARD=C99, but is subject to change when newer versions of the
C standard are released.

e Relaxed: This is the default mode on OpenVMS systems, and is specified
by /INOSTANDARD or /STANDARD=RELAXED on the CC command line.
The /STANDARD=RELAXED mode accepts C89 and C99 features, as well
as nearly all language extensions (such as additional HP C keywords and
predefined macros that do not begin with an underscore). It excludes
only K&R (COMMON mode), VAX C, and Microsoft features that conflict
with standard C. The purpose of the /STANDARD=RELAXED mode is to
support everything from the most current C standard, in addition to all
extensions that do not specify different semantics for the same constructs.

/STANDARD=RELAXED defines the __STDC_VERSION___ macro to the
C99-specified value of 199901L.

e Microsoft compatibility: This mode interprets source programs according
to certain language rules followed by the C compiler provided with the
Microsoft Visual C++ compiler product. This mode is enabled by specifying
/STANDARD=MS on the CC command line. /STANDARD=MS defines the
__STDC_VERSION_ _ macro to the C99-specified value of 199901L. See
Section 1.3.3 for more information about Microsoft compatibility mode.

1-10 Developing HP C Programs

e ISO C 94: This mode is enabled by specifying /SSTANDARD=ISOC94. It
can be specified alone or with any other /STANDARD option except VAXC.
If it is specified alone, the default major mode is RELAXED.

Specifying /STANDARD=ISOC94 enables digraph processing. Also,

as specified by Amendment 1 to the C89 standard, it defines the
__STDC_VERSION_ _ macro to 199409L if specified alone or in
combination with any of the following /STANDARD keywords: ANSI89,
MIA, RELAXED, MS, COMMON, or PORTABLE.

The __STDC_VERSION_ _ macro is undefined for the VAXC keyword or for
keywords ANSI89, MIA, or COMMON without ISOC94 specified.

e VAX C compatibility: This mode is enabled by specifying /STANDARD=VAXC.

It allows the same language as the C standard, but also supports VAX C
extensions that are incompatible with the C standard and that change the
language semantics. This mode provides compatibility for programs that
depend on old VAX C behavior.

e Portable: This mode is enabled by specifying /STANDARD=PORTABLE.
It places the compiler in RELAXED mode and enables the issuance of
diagnostics that warn about any nonportable usages encountered.

/STANDARD=PORTABLE is supported for VAX C compatibility
only. It is equivalent to the recommended combination of qualifiers

/STANDARD=RELAXED/WARNINGS=ENABLE=PORTABLE.

¢ Common usage C: This mode is enabled by specifying
/STANDARD=COMMON. It enforces K & R programming style; that is,
compatibility with older UNIX compilers such as pcc and gcc. This mode
is close to a subset of /STANDARD=VAXC mode.

e MIA conformance: This mode is enabled by specifying /STANDARD=MIA.
This is strict ANSI C with some differences required by the Multivendor
Integration Architecture (MIA) standard. Compiling a program with
/STANDARD=MIA sets the __MIA predefined macro to 1.

With one exception, the /STANDARD qualifier options are mutually
exclusive. Do not combine them. The exception is that you can specify
/STANDARD=ISOC94 with any other option except VAXC.

HP C modules compiled in different modes can be linked and executed together.
The /STANDARD qualifier is further described in Section 1.3.4.
Also see the __HIDE_FORBIDDEN_NAMES predefined macro (Section 6.1.7).

Developing HP C Programs 1-11

1.3.3 Microsoft Compatibility Compilation Mode

The /STANDARD=MS qualifier instructs the HP C compiler to interpret

your source code according to certain language rules followed by the C
compiler provided with the Microsoft Visual C++ compiler product. However,
compatibility with this implementation is not complete. The following sections
describe the compatibility situations that HP C recognizes. In most cases,
these situations consist of relaxing a standard behavior and suppressing a

diagnostic message.
1.3.3.1 Unnamed Nested struct or union Members

Allow a declaration of a structure with no name within another structure. You
can reference all members of the inner structure as members of the named
outer structure. This is similar to the C++ treatment of nested unions lacking
a name, but extended to both structures and unions. A similar capability is
provided by the VAX C variant_struct and variant_union types.

For example:

struct{
struct{
int a;
int b;
}; /*No name here */
int c¢;
}d; /* d.a, d.b, and d.c are valid member names. */
1.3.3.2 Block Scope Declaration of static Functions

Allow a static function declaration in block scope (that is, inside another
function).

For example:

£0){
static int a(int b);
}

1.3.3.3 Treat &* as Having No Effect

Standard C does not allow the & operator to produce an lvalue expression. The
Microsoft relaxation allows & to produce an lvalue in certain cases.

For example:
int *a, *b;
£0 o

&*a=b;

1-12 Developing HP C Programs

1.3.3.4 char is Not Treated as a Unique Type

Treat the char type as either signed char or unsigned char, depending on the
default in effect.

For example, a pointer to char can be assigned to a pointer to signed char,
assuming the command-line default of /NOUNSIGNED_CHAR:

signed char *a;
char *b;

£0) |
b=a;
}

1.3.3.5 Double Semicolons in Declarations

Suppress warning messages for declarations that contain two semicolons.
(That is, allow completely empty declarations at file scope.)

For example:
int a;;
1.3.3.6 Declaration without a Type

Suppress warning messages for declarations that contain a variable name but
no type.

For example:
b;

1.3.3.7 Enumerators in an Enumeration Declaration

Ignore any extra comma at the end of the last enumerator in an enumeration
declaration.

For example:
enum E {a, b, c,}; /* Ignore the comma after "c". */

1.3.3.8 Useless Typedefs

Allow typedefs that have a type specifier but no identifier name declaring the
new type.

For example:

typedef struct { int a; };

Developing HP C Programs 1-13

1.3.3.9 Unrecognized Pragmas Accepted

Suppress warning messages when one of the following unsupported Microsoft

pragmas is encountered:

#pragma code_seg
#pragma warning

1.3.4 CC Command Qualifiers

The following list shows all the command qualifiers and their defaults available
with the CC command. A description of each qualifier follows the list.

You can place command qualifiers either on the CC command line itself or on
individual file specifications (with the exception of the /[LIBRARY qualifier). If
placed on a file specification, the qualifier affects only the compilation of the
specified source file and all subsequent source files in the compilation unit.

If placed on the CC command line, the qualifier affects all source files in all
compilation units unless it is overridden by a qualifier on an individual file

specification.

Command Qualifiers

/ACCEPT=(option[,option])
/INOJANALYSIS_DATA[=file-spec]
/INOJANNOTATIONS[=(option,...)]
/INOJANSI_ALIAS
/ARCHITECTURE=0ption
/ASSUME=(option[, ...])
/[INO]JCHECK([=(option,...)]
/INO]JCOMMENTS=option
/INO]JCROSS_REFERENCE

/[NO]JDEBUG(=(option], . . .])]
/DECC
/[NO]DEFINE=(identifier[=definition][, . . .])

/INO]DIAGNOSTICS][=file-spec]
/ENDIAN=0ption
/INOJERROR_LIMIT[=n]
/EXTERN_MODEL=option
/INOJFIRST_INCLUDE-=(file[, . ..])
/FLOAT=option

/GRANULARITY=option
/INOJINCLUDE_DIRECTORY=(pathname[, ...])
/IEEE_MODE[=0ption]

1-14 Developing HP C Programs

Default

See text.

/NOANALYSIS_DATA
/NOANNOTATIONS

See text.
/ARCHITECTURE=GENERIC
See text.

/NOCHECK

See text.
/NOCROSS_REFERENCE
/DEBUG=(TRACEBACK,
NOSYMBOLS)
/DEBUG=(TRACEBACK,NOINLINE,
NOSYMBOLS) (VAX only)

See text.

/NODEFINE
/NODIAGNOSTICS
/ENDIAN=LITTLE
/ERROR_LIMIT=30
/EXTERN_MODEL=RELAXED_REFDEF
/NOFIRST_INCLUDE
/FLOAT=G_FLOAT (Aipha only)
/FLOAT=IEEE_FLOAT (164 only)
/FLOAT=D_FLOAT (VAX only)
/GRANULARITY=QUADWORD
/NOINCLUDE_DIRECTORY
/IEEE_MODE=FAST (Aipha only)

/L_DOUBLE_SIZE=option
/LIBRARY
/INOILINE_DIRECTIVES
/INO]LIST[=file-spec]

/INOJMACHINE_CODE[=option]
/INOJMAIN=POSIX_EXIT
/INOIMEMBER_ALIGNMENT

/INOJIMMS_DEPENDENCIES=option
/NAMES=(option1,option2)
/NESTED_INCLUDE_DIRECTORY[=option]

/INO]JOBJECT][=file-spec]
/INOJOPTIMIZE[=(option[, . . .])]
/PDSC_MASK=option
/INOJPLUS_LIST_OPTIMIZE
/INOJPOINTER_SIZE=0ption
/PRECISION[=0ption]
/INOJPREFIX_LIBRARY_ENTRIES

[=(option[, ... 1]
/INO]JPREPROCESS_ONLY[=filename]
/INOJPROTOTYPES[=(option][, . ..])]

/PSECT_MODEL=[NO]JMULTILANGUAGE
/REENTRANCY=option
/REPOSITORY=option
/ROUNDING_MODE=0ption
/INOJSHARE_GLOBALS
/SHOWI[=(option][, . ..])]

/[NOJSTANDARDI[=(option], . . .])]

/INOITIE
/INOJUNDEFINE=(identifier[, . . .])
/INOJUNSIGNED_CHAR

INAXC (VAX only)

/IEEE_MODE=DENORM_RESULTS (164 only)
/L_DOUBLE_SIZE=128

See text.

/LINE_DIRECTIVES

/NOLIST (interactive mode)

/LIST (batch mode)
/NOMACHINE_CODE

/NOMAIN

/MEMBER_ALIGNMENT
/NOMEMBER_ALIGNMENT (VAX only)
/NOMMS_DEPENDENCIES
/NAMES=UPPERCASE, TRUNCATED
/NESTED_INCLUDE_DIRECTORY
=INCLUDE_FILE

/OBJECT

/OPTIMIZE

See text.

/NOPLUS_LIST_OPTIMIZE
/NOPOINTER_SIZE

See text.

See text.
/NOPREPROCESS_ONLY
/NOPROTOTYPES
/NOMULTILANGUAGE
/REENTRANCY=TOLERANT
/See text.
/ROUNDING_MODE=NEAREST
/NOSHARE_GLOBALS
/SHOW=(NOBRIEF,
NOCROSS_REFERENCE,
NODICTIONARY,
NOEXPANSION,
NOINCLUDE,
NOINTERMEDIATE,
NOMESSAGE,
NOSTATISTICS,
NOSYMBOLS,
NOTRANSLATION,
SOURCE,

TERMINAL)

/NOSTANDARD (equivalent to
/STANDARD=RELAXED)
/NOTIE

/NOUNDEFINE
/NOUNSIGNED_CHAR

See text.

Developing HP C Programs 1-15

/[NOJ]VERSION
/[NO]WARNINGS[=(option], . . .])]

/NOVERSION
/WARNINGS

IACCEPT=(option[,option])
Allows the compiler to accept C language syntax that it might not normally

accept.

HP C accepts slightly different syntax depending upon the compilation mode
specified with the /STANDARD qualifier. The /ACCEPT qualifier can fine tune
the language syntax accepted by each /STANDARD mode.

The following qualifier options can be specified:

Table 1-1 /ACCEPT Qualifier Options

Option

Usage

[NO]JC99_KEYWORDS

[NOJGCCINLINE

[NOJRESTRICT_
KEYWORD

1-16 Developing HP C Programs

Controls whether or not the C99 Standard keywords inline
and restrict (which are are in the C89 namespace for user
identifiers) are accepted without double leading underscores.
The spelling with two leading underscores (__inline,
__restrict) is in the namespace reserved to the compiler
implementation and is always recognized as a keyword
regardless of this option.

The gce compiler implements an inline function qualifier
for functions with external linkage that gives similar
capabilites as the C99 extern inline feature for
functions, but the usage details are somewhat different:
the combination of extern and inline keywords makes an
inline definition, instead of the exlusive use of the inline
keyword without the extern keyword. This option controls
which variation of the feature is implemented. The default
in all compiler modes is NOGCCINLINE.

Controls whether or not the compiler recognizes the C99
standard restrict keyword regardless of the /STANDARD
mode used.

This only affects recognition of the spelling of the keyword
as proposed for inclusion in the C99 standard. The spelling
with two leading underscores, __restrict, is in the
namespace reserved to the compiler implementation and is
always recognized as a keyword regardless of this option.

Note that [NOJRESTRICT_KEYWORD is a subset of
[NO]C99_KEYWORDS. They have the same compiler-mode
defaults.

(continued on next page)

Table 1-1 (Cont.) /ACCEPT Qualifier Options
Option Usage

[NOJTRIGRAPHS Turns trigraph processing on or off. In COMMON and
VAXC modes, trigraphs are disabled by default. In all other
modes, they are enabled by default.

[NOJVAXC_KEYWORDS Controls whether or not the compiler recognizes the VAX C
keywords (such as "readonly") regardless of the /STANDARD
mode used.

The default values are based upon the settings of the /STANDARD qualifier:

e For /STANDARD=RELAXED, the default is:
/ACCEPT=(VAXC_KEYWORDS,C99_KEYWORDS,NOGCCINLINE,TRIGRAPHS)

e For /STANDARD=VAXC, the default is:
/ACCEPT=(VAXC_KEYWORDS,NOC99_KEYWORDS,NOGCCINLINE,NOTRIGRAPHS)

e For /STANDARD=COMMON, the default is:
/ACCEPT=(NOVAXC_KEYWORDS,NOC99_KEYWORDS,NOGCCINLINE,NOTRIGRAPHS)

e For /STANDARD=C99 or /STANDARD=LATEST, the default is:
/ACCEPT=(NOVAXC_KEYWORDS,C99_KEYWORDS,NOGCCINLINE, TRIGRAPHS)

e In all other modes, the default is:
/ACCEPT=(NOVAXC_KEYWORDS,NOC99_KEYWORDS,NOGCCINLINE,TRIGRAPHS)

/[NOJANALYSIS_DATA[=file-spec]

Generates a file of source-code analysis information. The default file name
is the file name of the primary source file; the default file type is .ANA.
The .ANA file is reserved for use with HP layered products. The default is
/NOANALYSIS_DATA. For more information, see Appendix C.

/INOJANNOTATIONS[=0ption]

Controls whether or not the source listing file is annotated with indications
of specific optimizations performed or, in some cases, not performed. These
annotations can be helpful in understanding the optimization process.

If annotations are requested (and the /LISTING qualifier appears on the
command line), the source listing section is shifted to the right and annotation
numbers are added to the left of source lines. These numbers refer to brief
descriptions that appear later in the source listing file.

Developing HP C Programs 1-17

Select one or more of the /ANNOTATIONS qualifier options shown in

Table 1-2.

Table 1-2 /ANNOTATIONS Qualifier Options

Option

Usage

ALL

[NOICODE

[NO]DETAIL

[NOJFEEDBACK

[NOIINLINING

[NOJLOOP_TRANSFORMS

[NOJLOOP_UNROLLING

[NOIPREFETCHING

[NOISHRINKWRAPPING

[NOJSOFTWARE_PIPELINING

[NOJTAIL_CALLS

1-18 Developing HP C Programs

Selects all annotations. This output can be
quite verbose because it includes detailed
output for all annotations. For more concise
output for each kind of annotation, use
/ANNOTATIONS=(ALL,NODETAIL), or just
/ANNOTATIONS with no qualifier options.

Annotates the machine-code listing with
descriptions of special instructions used

for prefetching, alignment, and so on. The
/MACHINE_CODE qualifier must also be
specified for ANNOTATION=CODE to have
any visible effect.

Provides additional level of annotation detail,
where available.

Indicates use of profile-directed feedback
optimizations. Feedback optimizations are
not implemented on OpenVMS systems, so
this keyword has no visible effect.

Indicates where code for a called procedure
was expanded inline.

Indicates optimizations such as loop
reordering and code hoisting.

Indicates where advanced loop nest
optimizations have been applied to improve
cache performance (unroll and jam, loop
fusion, loop interchange, and so on).

Indicates where special instructions were
used to reduce memory latency.

Indicates removal of code establishing
routine context when it is not needed.

Indicates where loops have been scheduled to
hide functional unit latency.

Indicates an optimization where a call from
routine A to B can be replaced by a jump.

(continued on next page)

Table 1-2 (Cont.) /ANNOTATIONS Qualifier Options

Option Usage

[NO]JTAIL_RECURSION Indicates an optimization that eliminates
unnecessary routine context for a recursive
call.

NONE Same as /NOANNOTATIONS.

The default is /NOANNOTATIONS.

Specifying /ANNOTATIONS with no keywords is the same as specifying
/ANNOTATIONS=(ALL,NODETAIL).

/[NOJANSI_ALIAS
Directs the compiler to assume the standard C aliasing rules. By so doing, the
compiler has the freedom to generate better optimized code.

The aliasing rules referred to are explained in Section 3.3, paragraphs 20 and
25 of the C Standard, reprinted as follows:

An object shall have its stored value accessed only by an lvalue
that has one of the following types:

e the declared type of the object,
e a qualified version of the declared type of the object,

e a type that is the signed or unsigned type corresponding to
the declared type of the object,

e a type that is the signed or unsigned type corresponding to
a qualified version of the declared type of the object,

® an aggregate or union type that includes one of the
aforementioned types among its members (including,
recursively, a member of a subaggregate or contained
union), or

e a character type.

If your program does not access the same data through pointers of a different
type (and for this purpose, signed and qualified versions of an otherwise same
type are considered to be the same type), then assuming standard C aliasing

rules allows the compiler to generate better optimized code.

Developing HP C Programs 1-19

If your program does access the same data through pointers of a different type
(for example, by a "pointer to int" and a "pointer to float"), then you must not
allow the compiler to assume standard C aliasing rules. Otherwise, incorrect
code might be generated.

The default is INOANSI_ALIAS for the /STANDARD=VAXC and
/STANDARD=COMMON compiler modes. The default is /ANSI_ALIAS for all
other modes.

/ARCHITECTURE

Determines the Alpha or Intel processor instruction set to be used by the
compiler. The /ARCHITECTURE qualifier uses the same keyword options
(keywords) as the /OPTIMIZE=TUNE qualifier.

Where the /OPTIMIZE=TUNE qualifier is primarily used by certain higher-
level optimizations for instruction scheduling purposes, the /ARCHITECTURE
qualifier determines the type of code instructions generated for the program
unit being compiled.

OpenVMS Version 7.1 and subsequent releases provide an operating system
kernel that includes an instruction emulator. This emulator allows new
instructions, not implemented on the host processor chip, to execute and
produce correct results. Applications using emulated instructions will run
correctly, but may incur significant software emulation overhead at runtime.

All Alpha processors implement a core set of instructions. Certain Alpha
processor versions include additional instruction extensions.

Select one of the /ARCHITECTURE qualifier options shown in Table 1-3.

Table 1-3 /ARCHITECTURE Qualifier Options
Option Usage

GENERIC Generates code that is appropriate for all Alpha and Itanium
processor generations. This is the default.

HOST Generates code for the processor generation in use on the system
being used for compilation.

Running programs compiled with this option on other imple-
mentations of the Alpha or Itanium architecture may encounter
instruction-emulation overhead.

(continued on next page)

1-20 Developing HP C Programs

Table 1-3 (Cont.)

/ARCHITECTURE Qualifier Options

Option

Usage

EV4 Aipha only)

EV5 @Aipha only)

EV56 Alpha only)

PCA56 (Alpha only)

EV6 (Alpha only)

EV67 Alpha only)

ITANIUM2 (164
only)

Generates code for the 21064, 21064A, 21066, and 21068
implementations of the Alpha architecture.

Running programs compiled with the EV4 option will run without
instruction-emulation overhead on all Alpha processors.

Generates code for some 21164 chip implementations of the Alpha
architecture that use only the base set of Alpha instructions (no
extensions).

Running programs compiled with the EV5 option will run without
instruction-emulation overhead on all Alpha processors.

Generates code for some 21164 chip implementations that use the
byte and word-manipulation instruction extensions of the Alpha
architecture.

Running programs compiled with the EV56 option might incur
emulation overhead on EV4 and EV5 processors, but will still run
correctly on OpenVMS Version 7.1 (or higher) systems.

Generates code for the 21164PC chip implementation that uses
the byte- and word-manipulation instruction extensions and
multimedia instruction extensions of the Alpha architecture.

Running programs compiled with the PCA56 option might incur
emulation overhead on EV4, EV5, and EV56 processors, but will
still run correctly on OpenVMS Version 7.1 (or higher) systems.

Generates code for the first-generation 21264 implementation of
the Alpha architecture.

Generates code for the second-generation 21264 implementation of
the Alpha architecture.

Generates code for the Intel Itanium 2 processor.

/ASSUME=(option,...)
Controls compiler assumptions. You can select one or more of the qualifier
options described in Table 1-4.

Developing HP C Programs 1-21

Table 1-4 /ASSUME Qualifier Options
Option Usage

[NOJACCURACY_SENSITIVE Specifies whether certain code transforma-
tions that affect floating-point operations
are allowed. These changes may or may
not affect the accuracy of the program’s

results.

[NOJALIGNED_OBJECTS Controls an optimization for dereferencing
pointers.

[NOJCLEAN_PARAMETERS Controls compiler assumptions about short-
integer formal parameters.

[NOJEXACT CDD_OFFSETS Controls the alignment of Control Data
Dictionary records.

[NOJHEADER_TYPE_DEFAULT Controls whether or not the default file-
type mechanism for header files is enabled.

[NOIMATH_ERRNO Controls whether or not intrinsic code is

generated for math functions that set the
errno variable.

[NOJPOINTERS_TO_GLOBALS Controls whether or not the compiler can
safely assume that global variables have
not had their addresses taken in code that
is not visible to the current compilation.

[NOIWEAK_VOLATILE Affects the generation of code for
assignments to objects that are less than
or equal to 16 bits in size that have been
declared as volatile.

[NOJIWHOLE_PROGRAM Asserts to the compiler that except for
"well-behaved library routines," the whole
program consists only of the single object
module being produced by this compilation.

[NOJWRITABLE_STRING_LITERALS Stores string constants in a writable psect.
Otherwise, such constants are placed in a
nonwritable psect.

The following sections describe these options in greater detail.

[NOJACCURACY_SENSITIVE
The default is ACCURACY_SENSITIVE.

If you specify NOACCURACY_SENSITIVE, the compiler is free to reorder
floating-point operations based on algebraic identities (inverses, associativity,
and distribution). This allows the compiler to move divide operations outside of
loops, which improves performance.

1-22 Developing HP C Programs

The default, ACCURACY_SENSITIVE, directs the compiler to use only certain
scalar rules for calculations. This setting can prevent some optimizations.

If you use the /ASSUME=NOACCURACY_SENSITIVE qualifier, HP C
might reorder code (based on algebraic identities) to improve performance.
The results can be different from the default (ASSUME=ACCURACY_
SENSITIVE) because of how the intermediate results are rounded. However,
the NOACCURACY_SENSITIVE results are not categorically less accurate
than those gained by the default.

[NOJALIGNED_OBJECTS
The default is /ASSUME=ALIGNED_OBJECTS.

On OpenVMS Alpha and 164 systems, dereferencing a pointer to a longword-
or quadword-aligned object is more efficient than dereferencing a pointer to
a byte- or word-aligned object. Therefore, the compiler can generate more
optimized code if it makes the assumption that a pointer object of an aligned
pointer type does point to an aligned object.

Since the compiler determines the alignment of the dereferenced object from
the type of the pointer, and the program is allowed to compute a pointer

that references an unaligned object (even though the pointer type indicates
that it references an aligned object), the compiler must assume that the
dereferenced object’s alignment matches or exceeds the alignment indicated

by the pointer type. Specifying /ASSUME=ALIGNED_OBJECTS (the default)
allows the compiler to make such an assumption. With this assumption made,
the compiler can generate more efficient code for pointer dereferences of aligned
pointer types.

To prevent the compiler from assuming the pointer type’s alignment for objects
that it points to, use the /ASSUME=NOALIGNED_OBJECTS qualifier.

Before deciding whether to specify /ASSUME=NOALIGNED_OBJECTS or
/ASSUME=ALIGNED_OBJECTS, you need to know what programming
practices will affect your decision.

The compiler assumes that pointers point to objects that are aligned at least as
much as the alignment of the pointer type. For example:

e A pointer of type short points to objects that are at least short-aligned.
e A pointer of type int points to objects that are at least int-aligned.

e A pointer of type struct foo points to objects that have an alignment
of struct foo (that is, the alignment of the strictest member alignment,
or byte alignment if you have specified #pragma nomember_alignment for
struct foo).

Developing HP C Programs 1-23

If your module breaks this rule, your program will suffer alignment faults at
runtime that can seriously degrade performance. If you can identify the places
in your code where the rule is broken, use the __unaligned type qualifier.
Otherwise, the /ASSUME=NOALIGNED_OBJECTS qualifier effectively treats
all dereferences as if they were unaligned.

On OpenVMS Alpha and 164 systems, HP C aligns all nonmember declarations
on natural boundaries, so by default all objects do comply with the previous
assumption. Also, the standard library routine malloc on OpenVMS systems
returns quadword-aligned heap memory.

A program can violate the previous assumption in any of the following ways:

e By explicitly specifying a lesser alignment for an object than the pointer
type’s alignment

e By casting a pointer to a pointer type of stricter alignment
¢ By enclosing a member-aligned object inside a nonmember-aligned object

The following example explicitly specifies a lesser alignment for an object than
the pointer type’s alignment, which occurs when the address of an unaligned
int member of a struct with #pragma nomember_alignment is used in a pointer
dereference:

#pragma nomember_alignment
struct foo {

char C;

int i; /* 1 is unaligned because of char C */
bi

struct foo st;
int *1_p;

i_p = &st.i;

L *iip ... /* An expression containing a dereferenced i_p */
This example casts a pointer to a pointer type with stricter alignment:
int *1_p;
char *c_p;

ip = (int *)c_p;

L *iip ... /* An expression containing a dereferenced i_p */

1-24 Developing HP C Programs

The following example encloses a member-aligned object inside a nonmember-
aligned object:

#pragma member_alignment
struct inside {
int i; /* this type asserts that its objects have at least
longword alignment (int is a longword)... */

}i

#pragma nomember_alignment
struct outside {

char C;

struct inside s; /* ...but foo_ptr -> s is only byte-aligned! */
} *foo_ptr;

The expression foo_ptr -> s has a type whose alignment is explicitly specified
to be longword (because longword is the strictest alignment of the structure’s
members), but the expression type is only guaranteed to be byte-aligned.

Also note that just as the pointer type information can direct the compiler to
generate the appropriate code to dereference the pointer (code that does not
cause alignment faults), it can also direct the compiler to generate even better
code if it indicates that the object is at least longword-aligned.

[NO]JCLEAN_PARAMETERS
The default is /ASSUME=CLEAN_PARAMETERS.

The OpenVMS Alpha and 164 Calling Standards require integers less than
64 bits long that are passed by value to have their upper bits either zeroed
or sign-extended to make full 64-bit values. These are referred to as clean
parameters. Some old code does not follow this convention. This can cause
problems if the called program assumes that the caller followed the Calling
Standard by passing only clean parameters.

Specifying /ASSUME=NOCLEAN_PARAMETERS allows a program to be
called by old code that might pass unclean integer parameters. It directs the
compiler to generate run-time code to clean the short integers so they comply
with the Calling Standard.

[NOJEXACT_CDD_OFFSETS

The default is /ASSUME=NOEXACT_CDD_OFFSETS.

If /ASSUME=EXACT_CDD_OFFSETS is specified, the records input from the
CDD are given the exact alignment (relative to the start of the record) specified
by the CDD definition. This alignment is independent of the current compiler
member-alignment setting.

Developing HP C Programs 1-25

If /ASSUME=NOEXACT_CDD_OFFSETS is specified, the compiler may
modify the offsets specified in a CDD record according to the current member-
alignment setting.

[NOJHEADER_TYPE_DEFAULT
The default is /ASSUME=HEADER_TYPE _DEFAULT.

In past versions of the C compiler, the #include directive always supplied a
default file type of .h for C compilations. Similarly, the C++ compiler supplied
a default file type of .hxx for C++ compilations.

However, the C++ standard requires that, for example, #include <iostream>
be distinguishable from #include <iostream.hxx>. This is not possible with
the header file-type default mechanism in effect.

You can disable the type default mechanism for either HP C or HP C++ by
specifying /ASSUME=NOHEADER_TYPE_DEFAULT.

With /ASSUME=NOHEADER_TYPE_DEFAULT specified, an #include
directive written with the standard syntax for header name (enclosed in
quotes or angle brackets) will use the filename as specified, without supplying
a default file type. More precisely stated, the default file type will be empty
(just ".").

For example, a directory might contain three files named IOSTREAM,,
IOSTREAM.HXX, and IOSTREAM.H. By default, the C++ compiler processes
#include <iostream> such that the file IOSTREAM.HXX is found, while the C
compiler would find IOSTREAM.H.

However, if /ASSUME=NOHEADER_TYPE_DEFAULT is specified, the same
directive causes the file IOSTREAM. to be found by both compilers, and the
only way to include the file named IOSTREAM.HXX or IOSTREAM.H is to
specify the .hxx or .h file type explicitly in the #include directive. Be aware
that while the OpenVMS operating system treats filenames as case-insensitive
and normally displays them in uppercase, filenames in #include directives
should use lowercase for best portability. This is more in keeping with other C
and C++ implementations.

[NOJMATH_ERRNO

The default is /ASSUME=MATH_ERRNO, which does not allow intrinsic code
for such math functions to be generated, even if /OPTIMIZE=INTRINSICS is
in effect. Their prototypes and call formats, however, are still checked.

1-26 Developing HP C Programs

[NOJPOINTERS_TO_GLOBALS

The default is /ASSUME=POINTER_TO_GLOBALS, which directs the compiler
to assume that global variables have had their addresses taken in separately
compiled modules and that, in general, any pointer dereference could be
accessing the same memory as any global variable. This is often a significant
barrier to optimization.

The /ANSI_ALIAS command-line qualifier allows some resolution based on
data type, but /ASSUME=NOPOINTER_TO_GLOBALS provides significant
additional resolution and improved optimization in many cases.

/ASSUME=NOPOINTER_TO_GLOBALS tells the compiler that any global
variable accessed through a pointer in the compilation must have had its
address taken within that compilation. The compiler can see any code that
takes the address of an extern variable. If it does not see the address of the
variable being taken, the compiler can assume that no pointer points to the
variable.

Consider the following code sequence:

extern int x;

int *p;

P =3

Under /ASSUME=NOPOINTERS_TO_GLOBALS, the compiler can assume

that x is not changed by the assignment through p when generating code. This
can lead to faster code.

In combination with the /PLUS_LIST_OPTIMIZE qualifier, several source
modules can be treated as a single compilation for the purpose of this analysis.
Because run-time libraries such as the HP C RTL do not take the addresses
of global variables defined in user programs, source modules can often be
combined into a single compilation that allows /ASSUME=NOPOINTER_TO_
GLOBALS to be used effectively.

Be aware that /ASSUME=NOPOINTERS_TO_GLOBALS does not tell the
compiler that the compilation never uses pointers to access global variables
(which is seldom true of real C programs).

[NOJWEAK_VOLATILE

This option affects the generation of code for assignments to objects that are
less than or equal to 16 bits in size (for example: char, short) that have been
declared as volatile.

Developing HP C Programs 1-27

Specifying /ASSUME=WEAK_VOLATILE directs the compiler to generate code
for volatile assignments to single bytes or words without using the load-locked
store-conditional sequences that, in general, are required to assure volatile
data integrity when direct byte or word memory-access instructions are not
being used.

This option is intended for use in special I/O hardware access situations, and
should not generally be used.

The default is /ASSUME=NOWEAK_VOLATILE, which uses interlocked
instructions for sub-longword volatile accesses when byte or word instructions
are not enabled.

[NOJWHOLE_PROGRAM
The default is /ASSUME=NOWHOLE_PROGRAM.

The optimizations enabled by /ASSUME=WHOLE_PROGRAM include all those
enabled by /ASSUME=NOPOINTER_TO_GLOBALS, and possibly additional
optimizations as well.

[NOJWRITABLE_STRING_LITERALS

For /STANDARD=VAXC or /STANDARD=COMMON, the default is
/ASSUME=WRITABLE_STRING_LITERALS.

For all other compiler modes, the default is /ASSUME=NOWRITABLE_
STRING_LITERALS.

/[NOJCHECK[=ALL INONE| ([NOJUNINITIALIZED_VARIABLES,[NO]JBOUNDS
[NO]JPOINTER_SIZE[=(option,...)],[NO]JFP_MODE (64 only), [NOJARG_INFO (64
only))]

This qualifier is for use as a debugging aid.

/CHECK=NONE | ALL

/CHECK=NONE is equivalent to /NOCHECK.

For OpenVMS Alpha systems, /CHECK=ALL is equivalent to
/CHECK=(UNINITIALIZED_VARIABLES,BOUNDS,POINTER_SIZE=ALL).

For OpenVMS 164 systems, /CHECK=ALL is equivalent to
/CHECK=(UNINITIALIZED_VARIABLES,BOUNDS,POINTER_SIZE=ALL,
FP_MODE,ARG_INFO).

1-28 Developing HP C Programs

/CHECK=UNINITIALIZED_VARIABLES

/CHECK=UNINITIALIZED VARIABLES initializes all automatic variables

to the value 0x7{f580057ff58005. This value is a double signaling NaN

and, if used as a floating-point value in certain double operations, causes a
floating-point trap if traps are enabled. Traps are not enabled if the program is
compiled /FLOAT=IEEE and the /IEEE value is something other than FAST.

On 164 systems:
e Traps are not caused when values are converted to an integer type.
e The float type does not trap.

/ICHECK=BOUNDS

/CHECK=BOUNDS enables run-time checking of array bounds. Array-bounds
processing is performed in the following way:

e Checks are done only when accessing an array.

¢ Checks are not done when accessing a pointer, even if that access is done
using the subscript operator. This means that checks are not done on
arrays declared as formal parameters because they are considered pointers
in the C language. If a formal parameter is a multi-dimension array, all
bounds except the first are checked.

e If an array is accessed using the subscript operator (as either the left or
right operand), and the subscript operator is not the operand of an address-
of operator, the check is for the index to be between 0 and the number of
array elements minus one, inclusive.

e If an array is accessed using the subscript operator (as either the left or
right operand), and the subscript operator is the operand of the address-of
operator, the check is for the index to be between 0 and the number of
elements in the array, inclusive.

The reason for treating the address-of case differently is that it is common
programming practice to have a loop such as:

int a[l10];
int *b;
for (b=a; b < &[10] ; b++) { }

In this case, access to &a[10] is allowed even though it is outside the range
of the array.

e Ifthe array is being accessed using pointer addition, the check is for the
value being added to be between 0 and the number of elements in the
array, inclusive.

Developing HP C Programs 1-29

e If the array is being accessed using pointer subtraction (that is, the
subraction of an integer value from a pointer, not the subtraction of
one pointer from another), the check is for the value being subtracted
to be between the negation of the number of elements in the array and 0,
inclusive.

e In the previous three cases, an optional compile-time message (ident
SUBSCRBOUNDS2) can be enabled to detect the case where an array
has been accessed using either a constant subscript or constant pointer
arithmetic, and the element accessed is exactly one past the end of the
array.

e Bounds checking is not done for arrays declared with one element.
(Because standard C does not allow arrays without dimensions inside
structs, it is common practice to declare such arrays with a bounds
specifier of 1.)

In this case, an optional compile-time message (ident SUBSCRBOUNDS1)
can be enabled to detect the case where an array declared with a single
element is accessed using either a constant subscript or constant pointer
arithmetic, and the element accessed is not part of the array.

e HP C emits run-time checks for arrays indexed by constants, even though
the compiler can and does detect this situation at compile-time. An
exeption is that no run-time check is made if the compiler can determine
that the access is valid.

e Here are examples of some array references:

int a[l0];
int *b;
int c¢;
int *d;
int vlalc];
int one[l];

1-30 Developing HP C Programs

; // check ¢ is from 0-9
; // no check
; // check ¢ is from 0-9
] // check ¢ is from 0-10
1; // check ¢ is from 0-10
1; // check ¢ is from -10 to 0
c; // check that ¢ is from 0-10
b+ c; // no check
=1; // no run-time check - know access is valid
=1; // run-time check

QOO O QO WD

<
—_ = —_ —
T R S (R TR I I TR VR o W0

; // run-time check (and compiler diagnostic)

0; // no run-time check, optional SUBSCRBOUNDS2
// message can be enabled

c = one[5]; // no run-time check, optional SUBSCRBOUNDS1

// message can be enabled

o

If a multi-dimension array is accessed, the compiler performs checks

on each of the subscript expressions, making sure each is within the
corresponding bound. So for the following code, the compiler checks that
both x and y are between 0 and 9. It does not check that 10 * x + y is
between 0 and 99:

int a[10][10];
int x,v,z;

x = alx]lyl;

Notes

e Because of operating system differences, the behavior of the run-
time array-bounds checking is different on Tru64 UNIX systems
than on OpenVMS systems.

If there is no handler, an OpenVMS program fails with:
$SYSTEM-F-SUBRNG, arithmetic trap, subscript out of range at
PC=xxx, PS=xxx

$TRACE-F-TRACEBACK, symbolic stack dump follows

On Tru64 UNIX systems, the output would be:

Trace/BPT trap (core dumped)

Furthermore, to trap the error on OpenVMS systems, a user needs
to write:

signal (SIGFPE, handler);
While on Tru64 UNIX systems, the equivalent line would be:

Developing HP C Programs 1-31

signal (SIGTRAP, handler);

e When run-time checking is enabled, the HP C compiler emits a bad
check in certain cases. These cases arise when an array is accessed
using pointer arithmetic and run-time array-bounds checking is
enabled. In such a case, the compiler can output only the checking
code for the first pointer-arithmetic operation performed on the
array. This can result in an incorrect check if the resulting pointer
value is again operated on by pointer arithmetic.

Consider the following expression where a is a pointer, b is an
array, and c and d are integers:

a=Db+c-d;

When bounds checking is enabled, the compiler outputs a check to
verify that ¢ is within the bounds of the array. This leads to an
incorrect run-time trap in cases where c is outside the bounds of
the array and c - d is not.

In these cases, the compiler outputs a diagnostic noting that the
check code it produced is bad. You can then recode the pointer
expression so that the integer part is in parentheses. In this way,
the expression will contain only one pointer-arithmetic operation,
and the compiler will output the correct check. In the previous
example, the expression would be changed to:

a=b+ (c -4d);

/CHECK=POINTER_SIZE

/CHECK=POINTER_SIZE directs the compiler to generate code that checks
64-bit pointer values (used in certain contexts where 32-bit pointers are also
present) to make sure they will fit in a 32-bit pointer. If such a value cannot

be represented by a 32-bit pointer, the run-time code signals a range error
(SS$_RANGEERR).

To control the types of pointer-size checks you want made, use one or more of
the POINTER_SIZE option keywords shown in Table 1-5.

1-32 Developing HP C Programs

Table 1-5 /CHECK=POINTER_SIZE Qualifier Options
Option Usage

[NOJASSIGNMENT Check whenever a 64-bit pointer is assigned to a 32-bit
pointer (including use as an actual argument).

[NOJCAST Check whenever a 64-bit pointer is cast to a 32-bit pointer.
[NOIINTEGER_CAST Check whenever a long pointer is cast to a 32-bit integer.
[NOJPARAMETER Check all formal parameters at function startup to make sure

that all formal parameters declared to be 32-bit pointers are
32-bit values.

ALL Do all checks.
NONE Do no checks.

Specifying /CHECK=POINTER_SIZE defaults to /CHECK=POINTER _
SIZE=(ASSIGNMENT,PARAMETER).

For information about compiler features that affect pointer size, see the
following:

e /POINTER_SIZE

e #pragma pointer_size

e #pragma required_pointer_size

e _ INITIAL_POINTER_SIZE predefined macro

The following contrived program contains a number of pointer assignments.
The comment on each line indicates what /CHECK=POINTER_SIZE keyword
to specify to enable checking for that line.

#pragma required_pointer_size long
int *a;

char *b;

typedef char * 1_char ptr;

#pragma required_pointer_size short
char *c;
int *d;

Developing HP C Programs 1-33

foo(int * e) /* Check e if PARAMETER is specified. */
{

d=a; /* Check a if ASSIGNMENT is specified. */
¢ = (char *) a; /* Check a 1f CAST is specified. */

c = (char *) d; /* No checking ever. */

foo(a); /* Check a if ASSIGNMENT is specified. */
bar(a); /* No checking ever - no prototype */

b = (1_char_ptr) a; /* No checking ever. */

¢ = (l_char_ptr) a; /* Check a if ASSIGNMENT is specified */
b = (char *) a; /* Check if CAST is specified. */

}

/CHECK=[NO]JARG_INFO (164 oniy)

/CHECK=ARG_INFO generates code to verify the input parameters to
functions defined in the compiled source. This code checks for datatype
consistency between the caller and its called function.

When the runtime does parameter-type checking, only the following types are
considered:

VAX single-precision floating-point

VAX double-precision floating-point - D_floating
VAX double-precision floating-point - G_floating
IEEE single-precision floating-point

IEEE double-precision floating-point
none-of-the-above "bucket"

It is only a mismatch of these types that is considered. So while the run-time
code will catch a case of a VAX D_floating number passed to a function that
expects a VAX single-precision number, it will not detect the case of an int
passed to a function that expects a long double type (because both int and
long double are viewed as the same type - that is, they both fall into the
none-of-the-above bucket).

When a mismatch is found, a %2SYSTEM-I-ARGTYP1 message is output at
runtime for each argument slot whose type does not match the expected type.

This checking applies only to arguments passed in the first eight argument
slots, and does not check that the number of arguments passed matches the
number expected.

/ICHECK=[NO]FP_MODE (164 only)

/CHECK=FP_MODE generates code in the prologue of every function defined
in the compilation to compare the current values of certain fields in the
processor’s floating-point status register (FPSR) with the values expected

in those fields based on the command-line qualifiers with which the function
was compiled.

1-34 Developing HP C Programs

The values checked are the rounding mode and the trap-enable bits:

e If the rounding mode is not consistent with the value of the /ROUNDING_
MODE qualifier specified at compile time, an informational message
SYSTEM-I-FPMODERC is issued at runtime, citing the current
mode and the compile-time specified mode (Note that /ROUNDING_
MODE=DYNAMIC is treated the same as /ROUNDING_MODE=NEAREST
for this purpose).

e If the trap-enable flags are not consistent with the setting of the /IEEE
qualifier (for /FLOAT=IEEE_FLOAT compilations) or with the setting used
to implement VAX floating types (for /FLOAT=G_FLOAT or /FLOAT=D_
FLOAT compilations), an informational message SYSTEM-I-FPMODECTL
is issued at run time, citing the current trap-enable flags as well as the
trap-enable flags expected by the compilation. To identify the point of
failure, you need to rerun the program under DEBUG and issue "SET
BREAK/EXCEPTION".

Note that the checking code generated for /CHECK=FP_MODE includes a
standard call to OTS$CHECK_FP_MODE within the prologue of each function,
and OTS$CHECK_FP_MODE itself assumes the standard calling conventions
(described in the OpenVMS Calling Standard). Because of this, it is not
possible to use this checking option when compiling function definitions that
have a nonstandard linkage (see #pragma linkage and #pragma use_linkage)
specifying conventional scratch registers with the PRESERVED or NOTUSED
attribute. Doing so will cause the compiler to issue the "REGCONFLICT"
E-level diagnostic at the opening brace of such function definitions. To compile
such functions successfully, the FP_MODE keyword must be removed from the
list of /CHECK= keywords.

Defaults

Omitting this qualifier defaults to /NOCHECK, which equates to
/CHECK=(NOUNINITIALIZED_VARIABLE,NOBOUNDS,NOPOINTER_
SIZE,NOFP_MODE,NOARGINFO).

Specifying /CHECK defaults to /CHECK=(UNINITIALIZED_VARIABLES,BOUNDS,
POINTER_SIZE=(ASSIGNMENT,PARAMETER),FP_MODE,ARG_INFO).

/[NOJCOMMENTS=option

Governs whether or not comments appear in preprocess output files and, if
they are to appear, whether they appear themselves or are replaced by a single
space.

Developing HP C Programs 1-35

Table 1-6 shows the /COMMENTS qualifier options.

Table 1-6 /COMMENTS Qualifier Options
Option Usage

AS_IS Specifies that the comment appears in the output file.
SPACE Specifies that a single space replaces the comment in the output file.

/NOCOMMENTS specifies that nothing replaces the comment in the output
file. This can result in inadvertent token pasting.

The HP C preprocessor might replace a comment at the end of a line or on a
line by itself with nothing, even if /COMMENTS=SPACE is specified. Doing so
does not change the meaning of the program.

The default is /COMMENTS=SPACE for the ANSI89, RELAXED, and MIA
modes of the compiler. The default is /NOCOMMENTS for all other compiler
modes.

Specifying /COMMENTS on the command line defaults to /COMMENTS=AS_IS.

/INO]JCROSS_REFERENCE
Specifies whether the compiler generates cross-references for variable names.

If you specify /CROSS_REFERENCE, the compiler lists, for each variable
referenced in the procedure, the line numbers of the lines on which the variable
is referenced.

This qualifier has no effect unless you also specify /LIST and either
/SHOW=SYMBOLS or /SHOW=BRIEF. The default is/ NOCROSS_REFERENCE.

/[INO]DEBUGI[=(option][, . ..])]

Includes information in the object module for use by the OpenVMS Debugger.
If the /DEBUG qualifier is not specified, the default is:

e /DEBUG=(TRACEBACK,NOSYMBOLS) on Alpha systems.

e /DEBUG=(TRACEBACK,NOINLINE,NOSYMBOLS) on VAX systems.
Specifying /DEBUG with no keywords is equivalent to specifying /DEBUG=ALL.
Table 1-7 describes the debugger options.

1-36 Developing HP C Programs

Table 1-7 Debugger Compilation Options

Option Usage

ALL Includes symbol table records and traceback records for both
VAX and Alpha systems. On VAX systems, this also selects
the behavior of the INLINE keyword.

On Alpha and 164 systems, /DEBUG=ALL is equivalent to
/DEBUG=(TRACEBACK,SYMBOLS).

On VAX systems, /DEBUG=ALL is equivalent to
/DEBUG=(TRACEBACK,SYMBOLS,INLINE).

INLINE (VAX only) Generates debug information to cause a STEP command to
STEP/INTO an inlined function call.

NOINLINE (VAX only) Generates debug information to cause a STEP command to
STEP/OVER an inlined function call.

NONE Does not include any debugging information. This is
equivalent to /NODEBUG.

NOTRACEBACK Suppresses generation of traceback records.

NOSYMBOLS Suppresses generation of symbol table records.

SYMBOLS Generates symbol table records.

TRACEBACK Generates traceback records.

/DECC

Invokes the HP C compiler.

On OpenVMS VAX systems, the CC command is used to invoke either the VAX
C or HP C compiler. If your system has a VAX C compiler already installed
on it, the HP C installation procedure provides the option of specifying which
compiler will be invoked by default when just the CC command is used. To
invoke the compiler that is not the default, use the CC command with the
appropriate qualifier: CC/DECC for the HP C compiler, or CC/VAXC for the
VAX C compiler. If your system does not have a VAX C compiler installed on
it, the CC command will invoke the HP C compiler.

On OpenVMS Alpha and 164 systems, specifying /DECC is equivalent to not
specifying it; this qualifier is supported to provide compatibility with HP C on
OpenVMS VAX systems.

/[NO]DEFINE=(identifier[=definition][, . . .])

/[NOJUNDEFINE=(identifier[, . . .])

Performs the same functions as the #define and #undef preprocessor
directives. The /DEFINE qualifier defines a macro to be substituted for
every occurrence of a given identifier in the compilation unit or units. The

Developing HP C Programs 1-37

/UNDEFINE qualifier cancels a previous definition (but not subsequent ones).
When both /DEFINE and /UNDEFINE are present in a compilation unit or on
the CC command line, /DEFINE is evaluated before /UNDEFINE.

Since /DEFINE and /UNDEFINE are not part of the source file, they are not
associated with a listing line number or source line number. Therefore, when
an error occurs in a command-line definition, the message displayed at the
terminal does not indicate a line number. In the listing file, these diagnostic
messages are placed before the source listing in the order that they were
encountered. When the expansion of a definition causes an error at a specific
source line in the program, the diagnostics—both at the terminal and in the
listing file—are associated with that source line.

A command line containing the /DEFINE and the /UNDEFINE qualifiers can
be long. Continuation characters cannot appear within quotes or they will be
included in the macro stream. The length of a CC command line cannot exceed
the maximum length allowed by DCL.

The /NODEFINE and /NOUNDEFINE qualifiers are provided for compatibility
with other DCL qualifiers. You can use these qualifiers to cancel /DEFINE

or /UNDEFINE qualifiers that you have specified in a symbol that you use to
compile HP C programs.

The defaults are INODEFINE and /NOUNDEFINE.

Usage and Examples

Since the CC command line must be compatible with DCL, the syntax of the
/DEFINE and /UNDEFINE qualifiers differs from the syntax of the #define
and #undef preprocessor directives in the following way:

¢ An equal sign is required after /DEFINE; a space is required after #define.
For example, the following are equivalent:

$ CC/DEFINE=TRUE
#define TRUE 1

Note that the value of TRUE on the /DEFINE qualifier is automatically set
to 1. Any other value must be specified. For example, the following are
equivalent:

$ CC/DEFINE=MAYBE=2
#define MAYBE 2

1-38 Developing HP C Programs

DCL converts all input to uppercase unless it is enclosed in quotation
marks. For example, the following are equivalent:

$ CC/DEFINE=true
#define TRUE 1

The macro defined on the /DEFINE qualifier must be enclosed in quotation
marks if at least one of the following is true:

— You want to preserve lowercase

— The macro definition contains spaces or characters that would not be
valid on the DCL command line.

— The macro is a function-like macro

For example:

$ CC/DEFINE="true" | Preserves lowercase

$ CC/DEFINE="blank=' '" ! Contains and preserves the blank
$ CC/DEFINE="fl=a+b" ! Contains a '+’ character

$ CC/DEFINE="funct(a)=2" ! Defines a function-like macro

Within a macro definition and inside quotation marks, a delimiter can be
either an equal sign or a space, whichever comes first. If an equal sign is
the delimiter, the following examples are equivalent:

$ CC/DEFINE="true=1"

#define true 1

If a space is the delimiter, the following examples are equivalent:
$ CC/DEFINE="true =1"

#define true =1

In this example, the space, preserved by the quotation marks, serves as the
delimiter, assigning true a value of =1, which is clearly not intended.

Within a definition and outside quotation marks, the only allowed
delimiter is an equal sign; a space terminates the definition. The following
definitions, for example, are not recognized by DCL:

$ CC/DEFINE= TRUE
$ CC/DEFINE=(FALSE 0)

In the first example, DCL interprets TRUE as a file specification; in the
second, DCL flags an invalid value specification.

Developing HP C Programs 1-39

¢ When more than one /DEFINE is present on the CC command line or in a
single compilation unit, only the last /DEFINE is used. Similarly, only the
last /UNDEFINE on the CC command line or the compilation unit is used.

You can pass an equal sign to the compiler in any of the following ways:
$ CC/DEFINE=(EQU==,"equ =", "equal=="

In the first definition, the first equal sign is removed by DCL as the delimiter;
the second equal sign is passed to the compiler. In the second example, the
space is recognized as a delimiter because the definition is inside quotes;
therefore, only one equal sign is required. In the third definition, the first
equal sign is recognized as the delimiter and is removed; the second equal sign
is passed to the compiler.

You can pass quotation marks in any of the following ways:
$ CC/DEFINE=(QUOTES="""", "funct (b)=printf(")")

In both examples, DCL removes the first and last quotation marks before
passing the definition to the compiler.

Here is a simple use of the /UNDEFINE qualifier to cancel a previous definition
of TRUE:

$ CC/UNDEFINE=TRUE

The /UNDEFINE qualifier is useful for undefining the predefined HP C
preprocessor constants. For example, if you use a preprocessor system
identification macro (such as __vaxc, __VAXC, __DECC, or __vms) to
conditionally compile segments of HP C specific code, you can undefine that
constant to see how the portable sections of your program execute. Consider
the following program:

main()

{

#if __DECC

printf("I'm being compiled with HP C on an OpenVMS system.");
telse

printf("I'm being compiled on some other compiler.");

#endif

}

This program produces the following output:

1-40 Developing HP C Programs

$ CC EXAMPLE.C [Retum]

$ LINK EXAMPLE.OBJ [Return]

$ RUN EXAMPLE.EXE [Retur]

I'm being compiled with HP C on an OpenVMS system.

$ CC/UNDEFINE="__ _ DECC" EXAMPLE [Retum|
$ LINK EXAMPLE.OBJ [Fetum]

$ RUN EXAMPLE.EXE [Retum]
I'm being compiled on some other compiler.

/[NO]DIAGNOSTICS[=file-spec]

Creates a file containing compiler messages and diagnostic information. The
default file extension for a diagnostics file is .DIA. The diagnostics file is
used with the HP Language-Sensitive Editor (LSE). To display a diagnostics
file, enter the command REVIEW/FILE=file-spec while in LSE. For more
information, see Appendix C. The default is INODIAGNOSTICS.

/ENDIAN=o0ption
This qualifier takes the options BIG or LITTLE.

It controls whether big or little endian ordering of bytes is carried out in
character constants. For example, consider the following declaration:

int foo = 'ABCD’;

Specifying /ENDIAN=LITTLE places A’ in the first byte, ‘B’ in the second byte,
and so on.

Specifying /ENDIAN=BIG places 'D’ in the first byte, ’C’ in the second byte,
and so on.

The default is /ENDIAN=LITTLE.

/[NOJERROR_LIMIT[=n]

This qualifier limits the number of Error-level diagnostic messages that are
acceptable during program compilation. Compilation terminates when the
limit n is exceeded. /NOERROR_LIMIT specifies that there is no limit on error
messages.

The default is /ERROR_LIMIT=30, which specifies that compilation terminates
after 31 error messages.

/EXTERN_MODEL=option

In conjunction with the /[NOJ[SHARE_GLOBALS qualifier, controls the initial
compiler model for external objects. Conceptually, the compiler behaves as if
the first line of the program being compiled was a #pragma extern_model with
the model and psect name, if any, specified by the /EXTERN_MODEL qualifier

Developing HP C Programs 1-41

and with the shr or noshr keyword specified by the /[NOJ[SHARE_GLOBALS

qualifier.

For example, assume the command line contains the following qualifiers:

/EXTERN_MODEL=STRICT REFDEF="MYDATA" /NOSHARE

The compiler will behave as if the program begins with the following line:

#pragma extern_model strict_refdef "MYDATA" noshr
Table 1-8 describes the /EXTERN_MODEL qualifier options.

Table 1-8 /EXTERN_

MODEL Qualifier Options

Option

Usage

COMMON_BLOCK

RELAXED_REFDEF

STRICT_REFDEF
[="name"]

1-42 Developing HP C Programs

Sets the compiler’s extern_model to the common_block
model. This is the model traditionally used for extern data by
VAX C.

Sets the compiler’s extern_model to the relaxed_refdef
model. Some declarations are references and some are
definitions. Multiple uninitialized definitions for the same
object are allowed and are resolved into one by the linker.
However, a reference requires that at least one definition exist.

This is the model used by the portable C compiler (pcc) on
UNIX systems.

Sets the compiler’s extern_model to the strict_refdef
model. Some declarations are references and some are
definitions. There must be exactly one definition in the
program for any symbol referenced. The optional name, in
quotation marks, is the name of the psect for any definitions.

This is the model specified by standard C. Use it in a program
that is to be a strict standard-conforming program.

This model is the preferred alternative to the nonstandard
storage-class keywords globaldef and globalref.

(continued on next page)

Table 1-8 (Cont.) /EXTERN_MODEL Qualifier Options
Option Usage

GLOBALVALUE Sets the compiler’s extern_model to the globalvalue model.
This model is similar to the strict_refdef model except that
these global objects have no storage; instead, they are link-time
constant values. There are two cases:

e If the declaration is a standard C reference, the same
object file records are produced as VAX C would produce
for an uninitialized globalvalue.

e If the declaration is a standard C definition, the same
object records are produced as VAX C would produce for an
initialized globalvalue.

This model is the preferred alternative to the nonstandard
storage-class keyword globalvalue.

The default is /EXTERN_MODEL=RELAXED_REFDEF. This is different from
VAX C, which uses the common block model for external objects.

/[NOJFIRST_INCLUDE-=(file[, . . . 1)
Includes the specified files before any source files. This qualifier corresponds to
the Tru64 UNIX -FI switch.

This qualifier is useful if you have command lines to pass to the C compiler
that are exceeding the DCL command-line length limit. Using the /FIRST_
INCLUDE qualifier can help solve this problem by replacing lengthy /DEFINE
and /WARNINGS qualifiers with #define and #pragma message preprocessor
directives placed in a /FIRST_INCLUDE file.

When /FIRST_INCLUDE=file is specified, file is included in the source as if the
line before the first line of the source was:

#include "file"

If more than one file is specified, the files are included in their order of
appearance on the command line.

The default is /NOFIRST_INCLUDE.

[FLOAT=option
Controls the format of floating-point variables.

Developing HP C Programs 1-43

Table 1-9 describes the /FLOAT qualifier options.

Table 1-9 /FLOAT Qualifier Options

Option Usage

D_FLOAT double variables are represented in D_floating format.
The __D_FLOAT macro is predefined.

G_FLOAT double variables are represented in G_floating format.
The __G_FLOAT macro is predefined.

IEEE_FLOAT float and double variables are represented in IEEE

floating-point format (S_float and T_float, respectively).
The __IEEE_FLOAT macro is predefined. Use the /IEEE_
MODE qualifier for controlling the handling of IEEE
exceptional values. If IEEE_MODE is not specified, the
default behavior is /IEEE_MODE=FAST for Alpha systems
and /IEEE_MODE=DENORM_RESULTS for 164 systems.

OpenVMS VAX Systems vax only)

On OpenVMS VAX systems, representation of double variables defaults

to D_floating format if not overridden by another format specified with
the /FLOAT or /[NO]JG_FLOAT qualifier. There is one exception: if
/STANDARD=MIA is specified, G_floating is the default. If you are linking
against object-module libraries, a program compiled with G_floating format
must be linked with the object library DECCRTLG.OLB. (VAX oniy)

OpenVMS Alpha Systems ipha oniy)

On OpenVMS Alpha systems, representation of double variables defaults
to G_floating format if not overridden by another format specified with the
/FLOAT or /[NO]G_FLOAT qualifier.

If you are linking against object-module libraries, and /PREFIX=ALL is not
specified on the command line, then a program compiled with:

e G_FLOAT format must be linked with the object library VAXCRTL.OLB
e D FLOAT format must be linked with VAXCRTLD.OLB
e JEEE FLOAT format must be linked with VAXCRTLT.OLB

The VAXCRTLX.OLB, VAXCRTLDX.OLB, and VAXCRTLTX.OLB libraries are
used for the same floating-point formats, respectively, but include support for
X_FLOAT format (/LL_DOUBLE_SIZE=128).

If /PREFIX=ALL is specified, then there is no need to link to the above-
mentioned *.OLB object libraries. All the symbols you need are in
STARLET.OLB.

1-44 Developing HP C Programs

164 Systems (164 only)

This section describes floating-point support and application porting
considerations for 164 systems.

On OpenVMS 164 systems, /FLOAT=IEEE_FLOAT is the default floating-
point representation. IEEE format data is assumed and IEEE floating-

point instructions are used. There is no hardware support for floating-point
representations other than IEEE, although you can specify the /FLOAT=D_
FLOAT or /FLOAT=G_FLOAT compiler option. These VAX floating-point
formats are supported in the 164 compiler by generating run-time code that
converts VAX floating-point formats to IEEE format to perform arithmetic
operations, and then converts the IEEE result back to the appropriate VAX
floating-point format. This imposes additional run-time overhead and some loss
of accuracy compared to performing the operations in hardware on Alpha and
VAX systems. The software support for the VAX formats is provided to meet
an important functional compatibility requirement for certain applications that
need to deal with on-disk binary floating-point data.

On 164 systems, the default for TEEE_MODE is DENORM_RESULTS, which
is a change from the default of I[EEE_MODE=FAST on Alpha systems. This
means that by default, floating-point operations may silently generate values
that print as Infinity or Nan (the industry-standard behavior), instead of
issuing a fatal run-time error as they would when using VAX floating-point
format or /IEEE_MODE=FAST. Also, the smallest-magnitude nonzero value in
this mode is much smaller because results are allowed to enter the denormal
range instead of being flushed to zero as soon as the value is too small to
represent with normalization.

The conversion of VAX floating-point formats to IEEE single and IEEE double
floating-point types on the Intel Itanium architecture is a transparent process
that will not impact most applications. All you need to do is recompile your
application. Because IEEE floating-point format is the default, unless your
build explicitly specifies VAX floating-point format options, a simple rebuild for
164 systems will use the native IEEE formats directly. For the large class of
programs that do not directly depend on the VAX formats for correct operation,
this is the most desirable way to build for 164 systems.

When you compile an OpenVMS application that specifies an option to use
VAX floating-point on an 164 system, the compiler automatically generates code
for converting floating-point formats. Whenever the application performs a
sequence of arithmetic operations, this code does the following:

1. Converts VAX floating-point formats to either IEEE single or IEEE double
floating-point formats.

2. Performs arithmetic operations in IEEE floating-point arithmetic.

Developing HP C Programs 1-45

3. Converts the resulting data from IEEE formats back to VAX formats.

Where no arithmetic operations are performed (VAX float fetches followed by
stores), no conversion will occur. The code handles such situations as moves.

VAX floating-point formats have the same number of bits and precision as their
equivalent IEEE floating-point formats. For most applications the conversion
process will be transparent and thus a non-issue.

In a few cases, arithmetic calculations might have different results because of
the following differences between VAX and IEEE formats:

e Values of numbers represented
¢ Rounding rules
¢ Exception behavior

These differences might cause problems for applications that do any of the
following:

e Depend on exception behavior

e Measure the limits of floating-point behaviors

e Implement algorithms at maximal processor-specific accuracy
¢ Perform low-level emulations of other floating-point processors

e Use direct equality comparisons between floating-point values, instead of
appropriately ranged comparisons (a practice that is extremely vulnerable
to changes in compiler version or compiler options, as well as architecture)

You can test an application’s behavior with IEEE floating-point values

by compiling it on an OpenVMS Alpha system using /FLOAT=IEEE_
FLOAT/IEEE_MODE=DENORM. If that produces acceptable results, then
simply build the application on the OpenVMS 164 system using the same
qualifier.

If you determine that simply recompiling with an /IEEE_MODE qualifier is
not sufficient because your application depends on the binary representation of
floating-point values, then first try building for your 164 system by specifying
the VAX floating-point option that was in effect for your VAX or Alpha build.
This causes the representation seen by your code and on disk to remain
unchanged, with some additional run-time cost for the conversions generated
by the compiler. If this is not an efficient approach for your application, you
can convert VAX floating-point binary data in disk files to IEEE floating-point
formats before moving the application to an 164 system.

1-46 Developing HP C Programs

/GRANULARITY=option

Controls the size of shared data in memory that can be safely accessed from
different threads. The possible size values are BYTE, LONGWORD, and
QUADWORD.

Specifying BYTE allows single bytes to be accessed from different threads
sharing data in memory without corrupting surrounding bytes. This option
will slow run-time performance.

Specifying LONGWORD allows naturally aligned 4-byte longwords to be
accessed safely from different threads sharing data in memory. Accessing data
items of 3 bytes or less, or unaligned data, may result in data items written
from multiple threads being inconsistently updated.

Specifying QUADWORD allows naturally aligned 8-byte quadwords to be
accessed safely from different threads sharing data in memory. Accessing data
items of 7 bytes or less, or unaligned data, might result in data items written
from multiple threads being inconsistently updated. This is the default.

/IEEE_MODE=option
Selects the IEEE floating-point mode to be used if /[FLOAT=IEEE_FLOAT is
specified.

Table 1-10 describes the /IEEE_MODE options.

Table 1-10 /IEEE_MODE Options
Option Usage

FAST During program execution, only finite values (no
infinities, NaNs, or denorms) are created. Underflows
and denormal values are flushed to zero. Exceptional
conditions, such as floating-point overflow, divide-by-zero,
or use of an IEEE exceptional operand are fatal.

UNDERFLOW_TO_ZERO Generate infinities and NaNs. Flush denormalized
results and underflow to zero without exceptions.

DENORM_RESULTS Same as UNDERFLOW_TO_ZERO, except that denorms
are generated.

(continued on next page)

Developing HP C Programs 1-47

Table 1-10 (Cont.) /IEEE_MODE Options
Option Usage

INEXACT Same as DENORM_RESULTS, except that inexact
values are trapped. This is the slowest mode, and
is not appropriate for any sort of general-purpose
computations.

On Alpha systems, the default is [I[EEE_MODE=FAST.
On 164 systems, the default is /[EEE_MODE=DENORM_RESULTS.

The INFINITY and NAN macros defined in <math.h> are available to programs
compiled with /FLOAT=IEEE and /IEEE_MODE={anything other than FAST},

and in a compiler mode that enables C99 extensions in the headers (any mode
other than COMMON or VAXC).

On Alpha sytems, the /[EEE_MODE qualifier generally has its greatest effect
on the generated code of a compilation. When calls are made between functions
compiled with different /IEEE_MODE qualifiers, each function produces the
/TEEE_MODE behavior with which it was compiled.

On 164 systems, the /IEEE_MODE qualifier primarily affects only the setting
of a hardware register at program startup. In general, the /IEEE_MODE
behavior for a given function is controlled by the /[IEEE_MODE option specified
on the compilation that produced the main program: the startup code for

the main program sets the hardware register according the command-line
qualifiers used to compile the main program.

When applied to a compilation that does not contain a main program, the
/TEEE_MODE qualifier does have some effect: it might affect the evaluation
of floating-point constant expressions, and it is used to set the EXCEPTION_
MODE used by the math library for calls from that compilation. But the
qualifier has no effect on the exceptional behavior of floating-point calculations
generated as inline code for that compilation. Therefore, if floating-point
exceptional behavior is important to an application, all of its compilations,
including the one containing the main program, should be compiled with the
same /ITEEE_MODE setting.

Even on Alpha systems, the particular setting of /[EEE_MODE=UNDERFLOW_
TO_ZERO has this characteristic: its primary effect requires the setting of a
run-time status register, and so it needs to be specified on the compilation
containing the main program in order to be effective in other compilations.

1-48 Developing HP C Programs

/[NO]JINCLUDE_DIRECTORY=(pathname]|, ...])

Provides similar functionality to the -I option of the cc command on 7ru64
UNIX systems. This qualifier allows you to specify additional places to search
for include files. A place can be one of the following:

e OpenVMS file-spec to be used as a default file-spec to RMS file services
(example: DISK$:[directory])

e UNIX style pathname in quotation marks (example: "/sys")
e Empty string ("")

If one of the places is specified as an empty string, the compiler does not search
any of its conventionally-named places:

DECC$USER_INCLUDE
DECC$SYSTEM_INCLUDE
DECC$LIBRARY_INCLUDE
SYS$COMMON:[DECC$LIB.INCLUDE.*]
DECC$TEXT LIBRARY
SYS$LIBRARY:DECC$RTLDEF.TLB
SYS$LIBRARY:SYS$STARLET C.TLB

Instead, it searches only places specified explicitly on the command line by
the /INCLUDE_DIRECTORY and /LIBRARY qualifiers (or by the location of
the primary source file, depending on the /NESTED_INCLUDE_DIRECTORY
qualifier). This behavior is similar to that obtained by specifying -1 without a
directory name to the Tru64 UNIX cc command.

The basic search order depends on the form of the header-file name (after
macro expansion). Additional aspects of the search order are controlled by
other command-line qualifiers and the presence or absence of logical name
definitions.

Only the portable forms of the #include directive are affected by the
pathnames specified on an /INCLUDE_DIRECTORY qualifier:

e In quotes (example: #include "stdio.h")
e In angle brackets (example: #include <stdio.h>)

However, an empty string also affects the text-module form specific to
OpenVMS systems (example: #include stdio).

Except where otherwise specified, searching a "place" means that the string
designating the place is used as the default file-spec in a call to an RMS system
service (for example, $SEARCH/$PARSE). The file-spec consists of the name
in the #include directive without enclosing delimiters. The search terminates
successfully as soon as a file can be opened for reading.

Developing HP C Programs 1-49

Note

Prior to OpenVMS VAX Version 7.1, the operating system did not
provide a SYS$LIBRARY:SYS$STARLET C.TLB nor the headers
contained therein. Instead, the compiler installation generated these
headers and placed them in SYS$LIBRARY:DECC$RTLDEF.TLB.

Quoted Form
For the quoted form of inclusion, the search order is:

1. One of the following:

e If/NESTED_INCLUDE_DIRECTORY=INCLUDE_FILE (the default) is
in effect, search the directory containing the file in which the #include
directive itself occurred. The directory containing means the RMS
resultant string obtained when the file in which the #include occurred
was opened, except that the filename and subsequent components
are replaced by the default file type for headers (".h", or just "." if
/ASSUME=NOHEADER_TYPE_DEFAULT is in effect). The resultant
string will not have translated any concealed device logical.

e If/NESTED_INCLUDE_DIRECTORY=PRIMARY_FILE is in effect,
search the default file type for headers using the context of the primary
source file. This means that just the file type (".h" or ".") is used for the
default file-spec but, in addition, the chain of "related file-specs" used
to maintain the sticky defaults for processing the next top-level source
file is applied when searching for the include file. This most closely
matches the behavior of the VAX C compiler.

e If/NESTED_INCLUDE_DIRECTORY=NONE is in effect, this entire
step (Step 1) is bypassed.

2. Search the places specified in the /INCLUDE_DIRECTORY qualifier, if any.
A place that can be parsed successfuly as an OpenVMS file-spec and that
does not contain an explicit file type or version specification is edited to
append the default header file type specification (".h" or ".").

A place containing a "/" character is considered to be a UNIX-style name.
If the name in the #include directive also contains a "/" character that is
not the first character and is not preceded by a "!" character (it is not an
absolute UNIX-style pathname), then the name in the #include directive is
appended to the named place, separated by a "/" character, before applying
the decc$to_vms pathname translation function. The result of the decc$to_
vms translation is then used as the filespec to try to open.

1-50 Developing HP C Programs

3.

If DECC$USER_INCLUDE is defined as a logical name, search
DECC$USER_INCLUDE:.H, or just DECC$USER_INCLUDE.:. if
/ASSUME=NOHEADER_TYPE_DEFAULT is in effect.

If the file is not found, follow the steps for the angle-bracketed form of
inclusion.

Angle-Bracketed Form
For the angle-bracketed form of inclusion, the search order is:

1.

Search the place "/". This is a UNIX-style name that can combine only
with UNIX names specified explicitly in the #include directive. It causes a
specification like <sys/types.h> to be considered first as /sys/types.h, which
is translated by decc$to_vms to SYS:TYPES.H.

Search the places specified in the /INCLUDE_DIRECTORY qualifier,
exactly as in Step 2 for the quoted form of inclusion.

If DECC$SYSTEM_INCLUDE is defined as a logical name, search
DECC$SYSTEM_INCLUDE:.H, or just DECC$SYSTEM_INCLUDE.:. if
/ASSUME=NOHEADER _TYPE DEFAULT is in effect.

If DECC$LIBRARY_INCLUDE is defined as a logical name and
DECC$SYSTEM_INCLUDE is not defined as a logical name, search
DECC$LIBRARY_INCLUDE:.H, or just DECC$LIBRARY_INCLUDE:.
if /ASSUME=NOHEADER_TYPE_DEFAULT is in effect.

If neither DECC$LIBRARY_INCLUDE nor DECC$SYSTEM_INCLUDE
are defined as logical names, then search the default list of places for plain
text-file copies of compiler header files as follows:

SYS$COMMON:[DECC$LIB.INCLUDE.DECC$RTLDEF|*.H
SYS$COMMON:[DECC$LIB.INCLUDE.SYS$STARLET _C]*.H

Note

The compiler installation does not create these directories of
header files. Instead, it creates [DECC$LIB.REFERENCE] for
your convenience. But if you choose to create and populate
SYS$COMMON:[DECC$LIB.INCLUDE.DECC$RTLDEF] or
SYS$COMMON:[DECC$LIB.INCLUDE.SYS$STARLET_C], the
compiler will search them.

If the file is not found, perform the text library search described in the next
step.

Developing HP C Programs 1-51

6. Extract the simple filename and file type from the #include specification
and use the filename as the module name to search a list of text libraries
associated with that file type.

For any file type, the initial text libraries searched consist of those named
on the command line with /LIBRARY qualifiers, searched in left-to-right
order.

If the /INCLUDE_DIRECTORY qualifier contained an empty string, no
further text libraries are searched. Otherwise, DECC$TEXT LIBRARY is
searched for all file types.

If DECC$LIBRARY_INCLUDE is defined as a logical name, then no
further text libraries are searched. Otherwise, the subsequent libraries
searched for each file type are:

e For a file type of ".h" or ".":

SYSSLIBRARY:DECC$RTLDEF.TLB
SYSS$LIBRARY:SYS$STARLET_C.TLB

e For a file type other then ".h" or ".":
SYS$LIBRARY:SYS$STARLET C.TLB
7. If the previous step fails, search the following:

SYS$LIBRARY:.H
Under /ASSUME=NOHEADER_TYPE_DEFAULT, the default file type is
modified as usual.
Text-Module Form
For the text-module (nonportable) form of inclusion, the name can only be an
identifier. It, therefore, has no associated file type.
The identifier is used as a module name to search the following:

1. The text libraries named on the command line with /LIBRARY qualifiers,
in left-to-right order.

2. The following list of text libraries in the order shown (unless the
/INCLUDE_DIRECTORY qualifier contains an empty string, in which
case no further text libraries are searched):

DECC$TEXT LIBRARY
SYS$LIBRARY:DECC$RTLDEF.TLB
SYS$LIBRARY:SYS$STARLET_C.TLB

The default for this qualifer is NOINCLUDE_DIRECTORY.

1-52 Developing HP C Programs

/L_DOUBLE_SIZE=option
Determines how the compiler interprets the long double type. The qualifier
options are 64 and 128.

Specifying /._DOUBLE_SIZE=64 treats all 1long double references as
G_FLOAT, D_FLOAT, or T_FLOAT, depending on the value of the /FLOAT
qualifier.

Specifying /L_DOUBLE_SIZE=128 treats all long double references as
X_FLOAT.

The default is /L_ DOUBLE_SIZE=128.

/LIBRARY

Indicates that the associated input file is a library containing modules of HP C
source text. If the library specification does not include a file extension, the CC
command line assumes the .TLB default type. You must join the /LIBRARY
qualifier with a file specification in a compilation unit using a plus sign (+);
you cannot place the qualifier at other places on the CC command line. No
matter where you place the /LIBRARY qualifier in a compilation unit, all files
in the unit may make reference to modules within that library. Consider the
following example:

$ CC ONE + TWO + THREE/LIBRARY [Retum|

Files ONE.C and TWO.C can contain references to modules in THREE.TLB.
Consider the following example:

$ CC ONE + TWO + THREE/LIBRARY, FOUR/|Return

The file FOUR.C cannot contain references to modules in THREE.TLB since
FOUR.C is located in a separate compilation unit separated by a comma.
The placement of the library file specification does not matter. The following
command lines are equivalent:

$ CC THREE/LIBRARY + ONE + TWO|[Return]
$ CC ONE + THREE/LIBRARY + TWO [Retum]
$ CC ONE + TWO + THREE/LIBRARY [Return]

/[NO]JLINE_DIRECTIVES

Governs whether or not #1ine directives appear in preprocess output files.
The default is /LINE_DIRECTIVES.

/[NO]LIST[=file-spec]

Produces a source program listing. You must specify this qualifier to get a
listing. None of the other qualifiers use /LIST by default.

Developing HP C Programs 1-53

By default, /LIST creates a listing file with the same name as the source file
and with a file extension of .LIS. If you include a file specification with the
/LIST qualifier, the compiler uses that specification to name the listing file.

In interactive mode, the default is /NOLIST. In batch mode, the default is
/LIST. See the descriptions of the qualifiers /[INOIMACHINE_CODE, and

/SHOW for related information. (For example, to suppress compiler messages
to the terminal or to a batch log file, use the /SHOW=NOTERMINAL qualifier.)

/INO]JMACHINE_CODE[=0ption]
Lists the generated machine code in the listing file. To produce the listing file,
you must also specify /LIST.

On OpenVMS VAX systems, several formats exist to list machine code.
Table 1-11 describes the /MACHINE_CODE qualifier options.

Table 1-11 /MACHINE_CODE Qualifier Options (vax only)

Option Usage

AFTER Causes the lines of machine code produced during compilation
to print after all the source code in the listing.

BEFORE Causes lines of machine code produced during compilation to
print before any source code in the listing.

INTERSPERSED Produces a listing consisting of lines of source code followed by
the corresponding lines of machine code. This is the default
option.

On OpenVMS Alpha sytems, the format of the generated machine code listing
is similar to what you would get using the AFTER keyword on OpenVMS VAX
systems.

The default is /NOMACHINE_CODE.

/INOJMAIN=POSIX_EXIT
Directs the compiler to call __posix_exit instead of exit when returning from
main.

The default is /NOMAIN.

/[[INOJMEMBER_ALIGNMENT

Controls whether the compiler naturally aligns data structure members.
Natural alignment means that data structure members are aligned on the
next boundary appropriate to the type of the member, rather than on the next
byte. For instance, a long variable member is aligned on the next longword
boundary; a short variable member is aligned on the next word boundary.

1-54 Developing HP C Programs

Any use of the #pragma member_alignment or #pragma nomember_alignment
directives within the source code overrides the setting established by this
qualifier. Specifying /NOMEMBER_ALIGNMENT causes data structure
members to be byte-aligned (with the exception of bit-field members).

On OpenVMS Alpha systems, the default is/ MEMBER_ALIGNMENT.
On OpenVMS VAX systems, the default is/ NOMEMBER_ALIGNMENT.

See the description of #pragma [no]member_alignment in Section 5.4.13.

/[[NOIJMMS_DEPENDENCIES[=(option[, . . .])]

Directs the compiler to produce a dependency file. Dependency files list all
source files and included files for each object module. Note that the /OBJECT
qualifier has no impact on the dependency file. The dependency file format is:

object_file_name :<tab><source file name>)
object_file_name :<tab><full path to first include file>)
object_file_name :<tab><full path to second include file>)

Table 1-12 shows the /MMS_DEPENDENCIES qualifier options.

Table 1-12 /MMS_DEPENDENCIES Qualifier Options

Option

Usage

FILE[=filespec]

[NOISYSTEM_INCLUDE_
FILES

Specifies where to save the dependency file. The
default file extension for a dependency file is .mms.
Other than using this different default extension,
/MMS_DEPENDENCY uses the same procedure that
the /OBJECT and /LIST qualifiers do for determining
the name of the output file.

Specifies whether or not to include dependency
information about system include files (those included
with #include <filename>.) If omitted, this option
defaults to including dependency information about
system include files.

(continued on next page)

Developing HP C Programs 1-55

Table 1-12 (Cont.) /MMS_DEPENDENCIES Qualifier Options
Option Usage

TARGET=string Specifies the target that appears in the output .mms
file. The default is TARGET="" in which case the
target is the source file name with a .OBJ extension,
as in previous versions of the compiler. If you specify
any string other than .OBJ, that string is used as
the target. For the special case of .OBJ, the compiler
uses the name of the object file (stripped of any
version number and path) for the MMS target.

Examples:

1. $CC/MMS/OBJ=0OUTPUT T.C

This command produces an .mms file with a
target of T.OBJ :

2. $ CC/MMS=(TARGET=F00) /OBJ=0UTPUT T.C

This command produces an .mms file with a
target of FOO :

3. §$ CC/MMS=(TARGET=.0BJ) /OBJ=0UTPUT T.C

This command produces an .mms file with a
target of OUTPUT.OBJ :

The default is/ NOMMS_DEPENDENCY.
INAMES=(option1,option2)

Optionl converts all definitions and references of external symbols and psects
to the case specified. Table 1-13 lists the optionl case values.

Table 1-13 /NAMES Qualifier Option1 Values

Option Usage
UPPERCASE Converts to uppercase.
AS_IS Leaves the case as specified in the source.

Option2 controls whether or not external names greater than 31 characters get
truncated or shortened. Table 1-14 lists the option2 values.

1-56 Developing HP C Programs

Table 1-14 /NAMES Qualifier Option2 Values

Option

Usage

/NAMES=TRUNCATED (default)

/NAMES=SHORTENED

Truncates long external names.
Shortens long external names.

A shortened name consists of the first 23 characters
of the name followed by a 7-character Cyclic
Redundancy Check (CRC) computed by looking

at the full name, and then a "$".

The CRC is generated by calling lib$crc as follows:

long initial crc = -1;
crc_result = lib$Scrc(good_crc_table,
&initial crc,
<descriptor of string to CRC>);

where good_crc_table is:

/~k

** Default CRC table:

* %

** This table was taken from Ada’s

** generalized name generation algorithm.
** It represents a commonly used CRC

** polynomial known as AUTODIN-II.

** For more information see the VAX

** Macro OpenVMS documentation under the
** CRC VAX instruction.

*/

static const unsigned int good_crc_table[l6] =
{0x00000000, 0x1DB71064, 0x3B6E20C8, 0x26D930AC,
0x76DC4190, 0x6B6B51F4, 0x4DB26158, 0x5005713C,
0xEDB88320, 0xF00F9344, 0xD6D6A3ES, 0xCB61B38C,

0x9B64C2B0, 0x86D3D2D4, 0xA00AE278, 0xBDBDF21C};

The default is /NAMES=(UPPERCASE,TRUNCATED), which provides the
same conversion-to-uppercase behavior as VAX C, and truncates the name to

31 characters.

Notes

On OpenVMS VAX systems, the /NAMES qualifier does not affect the
names of the $CODE and $DATA psects.

Developing HP C Programs 1-57

On OpenVMS Alpha systems, the /NAMES qualifier does not affect the
names of the ABS, BSS, $CODE$, $DATAS, $LINKS, SLITERALS$,
and $SREADONLY$ psects.

Specifying /NAMES=SHORTENED turns on the /REPOSITORY
qualifier.

/NESTED_INCLUDE_DIRECTORY[=0ption]
Controls the first step in the compiler’s search algorithm for finding files that
are included using the quoted form of the #include preprocessing directive:

#include "file-spec"

Table 1-15 describes the /NESTED_INCLUDE_DIRECTORY qualifier
options.

Table 1-15 /NESTED_INCLUDE_DIRECTORY Qualifier Options
Option Usage

PRIMARY_FILE Directs the compiler to search the default file type for headers
using the context of the primary source file (the .C file). This
means that just the file type (".h" or ".") is used for the default
file-spec, but the chain of "related file-specs" used to maintain
the sticky defaults for processing the next top-level source file
is also applied when searching for the include file. This most
closely matches the behavior of VAX C.

INCLUDE_FILE Directs the compiler to first search the directory of the source
file containing the #include directive. If the file to be included
is not found, the compiler continues searching by following
normal inclusion rules.

NONE Directs the compiler to skip the first step of processing
#include "file.h" directives. The compiler starts its search
for the include file in the /INCLUDE_DIRECTORY directories.
It does not start by looking in the directory containing the
including file or in the directory containing the top level source
file.

The default is /NESTED_INCLUDE_DIRECTORY=INCLUDE_FILE.

/[NOJOBJECT|[=file-spec]

Produces an object module. By default, /OBJECT creates an object module file
with the same name as that of the first source file of a compilation unit and
with the .OBJ file extension. If you include a file specification with /OBJECT,
the compiler uses that specification instead.

1-58 Developing HP C Programs

The compiler executes faster if it does not have to produce an object module.
Use the INOOBJECT qualifier when you need only a listing of a program or
when you want the compiler to check a source file for errors. The default is
/OBJECT.

Note that the /OBJECT qualifier has no impact on the output file of the /MMS_
DEPENDENCIES qualifier.

/[[NOJOPTIMIZE[=(option][, . ..])]
Determines whether HP C performs code optimizations.

You can specify the options described in Table 1-16.

Table 1-16 /OPTIMIZE Qualifier Options
Option Usage

[NOIDISJOINT (VAX only) Optimizes the generated machine code. For example, the
compiler eliminates common subexpressions, removes
invariant expressions from loops, collapses arithmetic
operations into 3-operand instructions, and places local
variables in registers.

When debugging HP C programs, use the
/OPTIMIZE=NODISJOINT option if you need minimal
optimization; if optimization during debugging is not
important, use the /NOOPTIMIZE qualifier.

[NOJINLINE [=keyword] Provides inline expansion of functions that yield optimized
code when they are expanded. You can specify one of the
following keywords to control inlining:

NONE No inlining is done, even if requested by
the language syntax.

MANUAL Inlines only those function calls for
which the program explicitly requests
inlining.

AUTOMATIC Inlines all of the function calls in the
MANUAL category, plus additional
calls that the compiler determines are
appropriate on this platform. On Alpha
systems, this is the same as SIZE; on
164 systems, this is the same as SPEED.
AUTOMATIC is the default.

(continued on next page)

Developing HP C Programs 1-59

Table 1-16 (Cont.) /OPTIMIZE Qualifier Options

Option

Usage

1-60 Developing HP C Programs

SIZE

SPEED

Inlines all of the function calls in the
MANUAL category plus any additional
calls that the compiler determines would
improve run-time performance without
significantly increasing the size of the
program.

Performs more aggressive inlining for
run-time performance, even when it
might significantly increase the size of
the program.

Inlines every call that can be inlined
while still generating correct code.

Recursive routines, however, will not
cause an infinite loop at compile time.

Note that /OPT=INLINE=ALL is not
recommended for general use, because
it performs very aggressive inlining
and can cause the compiler to exhaust
virtual memory or take an unacceptably
long time to compile.

The #pragma noinline preprocessor directive can be
used to prevent inlining of any particular functions under
the compiler-selected forms of inlining (SPEED, SIZE, or

AUTOMATIO).

The #pragma inline preprocessor directive (or the
__inline storage-class modifier for OpenVMS Alpha
systems) can be used to request inlining of specific
functions under the AUTOMATIC or MANUAL forms

of inlining.

(continued on next page)

Table 1-16 (Cont.) /OPTIMIZE Qualifier Options
Option Usage

[NOJINTRINSICS Controls whether or not certain functions are handled
as intrinsic functions without explicitly enabling each of
them as an intrinsic through the #pragma intrinsic
preprocessor directive. An intrinsic function is an
apparent function call that could be handled as an actual
call to the specified function, or could be handled by the
compiler in a different manner. By treating the function as
an intrinsic, the compiler can often generate faster code.
(Contrast with a built-in function, which is an apparent
function call that is never handled as an actual function
call. There is never a function with the specified name.)

See Section 5.4.10 for a list of functions that can be
handled as intrinsics.

The /OPTIMZE=INTRINSICS qualifier works together
with /OPTIMIZE=LEVEL=n and some other qualifiers to
determine how intrinsics are handled:

e If the optimization level specified is less than 4, the
intrinsic-function prototypes and call formats are
checked, but normal run-time calls are still made.

e If the optimization level is 4 or higher, intrinsic code
is generated.

e If /STANDARD=ANSI89 is specified, nonstandard
functions are not automatically intrinsic and do
not even have their prototypes checked. They are
only checked if the nonstandard functions are made
intrinsic through #pragma intrinsic.

e Intrinsic code is not generated for math functions that
set the errno variable unless /ASSUME=NOMATH_
ERRNO is specified. Such math functions, however,
do have their prototypes and call formats checked.

The default is /OPTIMIZE=INTRINSICS, which turns on
this handling.

To turn it off, specify /NOOPTIMIZE or
/OPTIMIZE=NOINTRINSICS, or specify an optimization
level less than 4.

(continued on next page)

Developing HP C Programs 1-61

Table 1-16 (Cont.) /OPTIMIZE Qualifier Options
Option Usage

LEVEL=n Selects the level of optimization. Specify an integer from 0
(no optimization) to 4 (full optimization):

0 Disables all optimizations. Does not check for
unassigned variables.

1 Enables local optimizations and recognition of
some common subexpressions. The call graph
determines the order of compilation of procedures.

2 Includes level 1 optimizations. Enables global
optimization. This includes data-flow analysis,
code motion, strength reduction and test
replacement, split lifetime analysis, and code
scheduling.

3 Includes level 2 optimizations. Enables additional
global optimizations that improve speed (at the
cost of extra code size), for example: integer
multiplication and division expansion (using
shifts), loop unrolling, and code replication to
eliminate branches.

4 Includes level 3 optimizations. Enables
interprocedural analysis and automatic inlining
of small procedures (with heuristics limiting the
amount of extra code). This is the default.

5 Includes level 4 optimizations. Activates software
pipelining, which is a specialized form of loop
unrolling that in certain cases improves run-time
performance. Software pipelining uses instruction
scheduling to eliminate instruction stalls within
loops, rearranging instructions between different
unrolled loop iterations to improve performance.

Loops chosen for software pipelining are always
innermost loops and do not contain branches or
procedure calls. To determine whether using level
5 benefits your particular program, you should
time program execution for the same program
compiled at levels 4 and 5. For programs that
contain loops that exhaust available registers,
longer execution times may result with level 5.

(continued on next page)

1-62 Developing HP C Programs

Table 1-16 (Cont.) /OPTIMIZE Qualifier Options

Option

Usage

[NOJPIPELINE

UNROLL=n

TUNE=keyword

Controls Activation of the software pipelining optimiza-
tion.

The software pipelining optimization applies instruction
scheduling to certain innermost loops, allowing
instructions within a loop to "wrap around" and execute
in a different iteration of the loop. This can reduce the
impact of long-latency operations, resulting in faster loop
execution.

Software pipelining can be more effective when you
combine /OPTIMIZE=PIPELINE with the appropriate
/OPTIMIZE=TUNE keyword for the target Alpha processor
generation.

Software pipelining also enables the prefetching of data to
reduce the impact of cache misses.

Software pipelining is a subset of the optimizations
activated by optimization level 5.

To determine whether using /OPTIMIZE=PIPELINE
benefits your particular program, you should time program
execution for the same program (or subprogram) compiled
with and without software pipelining.

For programs containing loops that exhaust available reg-
isters, longer execution times can result with optimization
level 5, requiring use of /OPTIMIZE=UNROLL=n to limit
loop unrolling.

Controls loop unrolling done by the optimizer. UNROLL=n
means to unroll loop bodies n times, where n is between 0
and 16. UNROLL=0 means the optimizer will use its own
default unroll amount. Specify UNROLL only at level 3 or
higher.

Selects processor-specific instruction tuning for imple-
mentations of the Alpha architecture. Regardless of the
setting of the /OPTIMIZE=TUNE flag, the generated code
will run correctly on all implementations of the Alpha
architecture. Tuning for a specific implementation can
provide improvements in run-time performance. Code
tuned for a specific target might run slower on another
target.

You can specify one of the following keywords:

(continued on next page)

Developing HP C Programs 1-63

Table 1-16 (Cont.) /OPTIMIZE Qualifier Options

Option Usage

GENERIC Selects instruction tuning that is
appropriate for all implementations of
the Alpha and Itanium architecture. This
option is the default.

HOST Selects instruction tuning that is
appropriate for the machine on which
the code is being compiled.

EV4 Aipha Selects instruction tuning for the 21064,

only) 21064A, 21066, and 21068 implementations
of the Alpha architecture.

EV5 @ipha Selects instruction tuning for the 21164

only) implementation of the Alpha architecture.

EV56 Alpha Selects instruction tuning for the 21164

only) chip implementations that use the byte- and
word-manipulation instruction extensions of
the Alpha architecture.
Running programs compiled with the EV56
keyword might incur emulation overhead
on EV4 and EV5 processors, but will still
run correctly on OpenVMS Version 7.1 (or
higher).

PCA56 Selects instruction tuning for the 21164PC

(Alpha only)

EV6 @ipha
only)

EV67 Aipha
only)

1-64 Developing HP C Programs

implementation that uses the byte- and
word-manipulation instruction extensions
and multimedia instruction extensions of
the Alpha architecture.

Running programs compiled with the
PCA56 keyword might incur emulation
overhead on EV4, EV5, and EV56
processors, but will still run correctly on
OpenVMS Version 7.1 (or higher).

Selects instruction tuning for the first-
generation 21264 implementation of the
Alpha architecture.

Selects instruction tuning for the second-
generation 21264 implementation of the
Alpha architecture.

(continued on next page)

Table 1-16 (Cont.) /OPTIMIZE Qualifier Options
Option Usage

ITANIUM2 Selects instruction tuning for the Intel
(I64 only) Itanium 2 processor.

For OpenVMS VAX systems the default, /OPTIMIZE, is equivalent to
/OPTIMIZE=(DISJOINT,INLINE).

For OpenVMS Alpha systems the default, /OPTIMIZE, is equivalent to
/OPTIMIZE=(INLINE=AUTOMATIC,LEVEL=4,UNROLL=0,TUNE=GENERIC).

Use /INOOPTIMIZE or /OPTIMIZE=LEVEL=0 for a debugging session to
ensure that the debugger has sufficient information to locate errors in the
source program.

In most cases, using /OPTIMIZE will make the program execute faster. As
a side effect of getting the fastest execution speeds, using /OPTIMIZE can
produce larger object modules and longer compile times than /NOOPTIMIZE.

Loop Unrolling

At optimization level 3 or above, HP C attempts to unroll certain loops to
minimize the number of branches and group more instructions together to
allow efficient overlapped instruction execution (instruction pipelining). The
best candidates for loop unrolling are innermost loops with limited control flow.

As more loops are unrolled, the average size of basic blocks increases. Loop
unrolling generates multiple loop code iterations in a manner that allows
efficient instruction pipelining.

The loop body is replicated a certain number of times, substituting index
expressions. An initialization loop may be created to align the first reference
with the main series of loops. A remainder loop may be created for leftover
work.

The number of times a loop is unrolled can be determined by the op-
timizer or the user can specify the limit for loop unrolling using the
/OPTIMIZE=UNROLL qualifier. Unless the user specifies a value, the
optimizer unrolls a loop 4 times for most loops or 2 times for certain loops
(large estimated code size or branches out the loop).

Developing HP C Programs 1-65

Software Pipelining

Software pipelining and additional software dependence analysis are enabled
by using /OPTIMIZE=LEVEL=5, which in certain cases improves run-time
performance.

Loop unrolling (enabled at /OPTIMIZE=LEVEL=3 or higher) is constrained in
that it cannot schedule across iterations of a loop. Because software pipelining
can schedule across loop iterations, it can perform more efficient scheduling
that eliminates instruction stalls within loops, by rearranging instructions
between different unrolled loop iterations to improve performance.

For example, if software dependence analysis of data flow reveals that certain
calculations can be done before or after that iteration of the unrolled loop,
software pipelining reschedules those instructions ahead of or behind that
loop iteration, at places where their execution can prevent instruction stalls or
otherwise improve performance.

Loops chosen for software pipelining:
¢ Are always innermost loops (those executed the most)
e Do not contain branches or procedure calls

By modifying the unrolled loop and inserting instructions as needed before
and/or after the unrolled loop, software pipelining generally improves run-
time performance, except for cases where the loops contain a large number of
instructions with many existing overlapped operations. In this case, software
pipelining may not have enough registers available to effectively improve
execution performance, and run-time performance using level 5 may not
improve as compared to using level 4.

To determine whether using level 5 benefits your particular program, time
program execution for the same program compiled at levels 4 and 5. For
programs that contain loops that exhaust available registers, longer execution
times may result with level 5.

In cases where performance does not improve, consider compiling using
/OPTIMIZE=(UNROLL=1, LEVEL=5) to possibly improve the effects of
software pipelining.

/PDSC_MASK=option

Forces the compiler to set the PDSC$V_EXCEPTION_MODE field of the
procedure descriptor for each function in the compilation unit to the specified
value, regardless of the setting of any other qualifiers.

1-66 Developing HP C Programs

Ordinarily the PDSC$V_EXCEPTION_MODE field gets set automatically by
the compiler, depending on the /IEEE_MODE qualifier setting. The /PDSC_
MASK qualifier overrides the /IEEE_MODE qualifier setting of this field.

Note

This qualifier is a low-level systems-programming feature that is
seldom necessary. Its usage can produce object modules that do not
conform to the VMS common language environment and, within C,
it can produce nonstandard and seemingly incorrect floating-point

behaviors at runtime.

As shown in Table 1-17, the qualifier option keywords are exactly the allowed
values defined in the OpenVMS Calling Standard for this field, stripped of the
PDSC$V_EXCEPTION_MODE prefix (for example, /PDSC_MASK=SIGNAL
sets the field to PDSC$V_EXCEPTION_MODE_SIGNAL).

Table 1-17 /PDSC_MASK Qualifier Options

Option Maps to

Meaning

SIGNAL PDSC$K_EXCEPTION _
MODE_SIGNAL

SIGNAL_ALL PDSC$K_EXCEPTION _
MODE_SIGNAL_ALL

SILENT PDSC$K_EXCEPTION_
MODE_SILENT

FULL_IEEE PDSC$K_EXCEPTION _
MODE_FULL_IEEE

CALLER PDSC$K_EXCEPTION_
MODE_CALLER

Raise exceptions for all except
underflow (which is flushed to 0).

Raise exceptions for all.

Raise no exceptions. Create only finite
values: no infinities, no denorms, no
NaNs.

Raise no exceptions except as
controlled by separate IEEE exception-
enabling bits. Create exceptional
values according to the IEEE standard.

Emulate the same mode as the caller.
This is useful primarily for writing
libraries that can be called from
languages other than C.

In the absence of the /PDSC_MASK qualifier, the compiler sets the PDSC$V_
EXCEPTION_MODE field automatically, depending on the /IEEE_MODE

qualifier setting:

e If/IEEE_MODE is specified with UNDERFLOW_TO_ZERO, DENORM _
RESULTS, or INEXACT, then /PDSC_MASK is set to FULL_IEEE.

Developing HP C Programs 1-67

e In all other cases, /PDSC_MASK is set to SILENT. This setting differs
from the calling-standard-specified default of SIGNAL used by FORTRAN,
and is largly responsible for the standard-conforming behavior of the math
library when called from C or C++ programs.

/[NOJPLUS_LIST_OPTIMIZE
Provides improved optimization and code generation across file boundaries that
would not be available if the files were compiled separately.

When you specify /PLUS_LIST_OPTIMIZE on the command line in conjunction
with a series of file specifications separated by plus signs, the compiler does
not concatenate each of the specified source files together; such concatenation
is generally not correct for C code because a C source file defines a scope.

Instead, each file is treated separately for purposes of parsing, except that the
compiler issues diagnostics about conflicting external declarations and function
definitions that occur in different files. For purposes of code generation, the
compiler treats the files as one application and can perform optimizations
across the source files.

The default is /NOPLUS_LIST_OPTIMIZE.

/INO]POINTER_SIZE=option
Controls whether or not pointer-size features are enabled and whether pointers
are 32-bits or 64 bits.

The default is /NOPOINTER_SIZE, which disables pointer-size features, such
as the ability to use #pragma pointer_size, and directs the compiler to assume
that all pointers are 32-bit pointers. This default represents no change over
previous versions of HP C.

Table 1-18 shows the /POINTER_SIZE qualifier options.

Table 1-18 /POINTER_SIZE Qualifier Options
Option Usage

{SHORT | 32} The compiler assumes 32-bit pointers.

{LONG[=ARGWhe compiler assumes 64-bit pointers. If the ARGV option to LONG or
64 is present, the main argument argv will be an array of long pointers
instead of an array of short pointers.

{64[=ARGV]} Same as LONG.

Specifying /POINTER_SIZE=32 enables pointer-size features and directs the
compiler to assume that all pointers are 32-bit pointers.

1-68 Developing HP C Programs

Specifying /POINTER_SIZE=64 enables pointer-size features and directs the
compiler to assume that all pointers are 64-bit pointers.

Specifying the /POINTER_SIZE qualifier enables the following pointer-size
features:

e Enables processing of #pragma pointer_size.
e Sets the initial default pointer size.

e Predefines the preprocessor macro __INITIAL_POINTER_SIZE to 32 or 64. If
/POINTER_SIZE is omitted from the command line, __INITIAL_POINTER_SIZE
is 0, which allows you to use #ifdef _ _INITIAL_POINTER_SIZE to test
whether or not the compiler supports 64-bit pointers.

e For /POINTER_SIZE=64, the HP C RTL name mapping table is changed
to select the 64-bit versions of malloc, calloc, and other RTL routines by
default.

For information about other compiler features that affect pointer size or warn
about potential pointer size conflicts, see the following:

e /CHECK=POINTER_SIZE

e #pragma pointer_size

e #pragma required_pointer_size

e _ _INITIAL_POINTER_SIZE predefined macro

The /POINTER_SIZE qualifier must be specified for any program that uses
64-bit pointers.

/PRECISION[=0ption]

Controls whether floating-point operations on float variables are performed
in single or double precision. Table 1-19 shows the /PRECISION qualifier
options.

Table 1-19 /PRECISION Qualifier Options

Option Usage
SINGLE Performs floating-point operations in single precision.
DOUBLE Performs floating-point operations in double precision.

Your code may execute faster if it contains float variables and is compiled with
/PRECISION=SINGLE. However, the results of your floating-point operations
will be less precise. See the HP C Language Reference Manual for more
information on floating-point variables.

Developing HP C Programs 1-69

The default is /PRECISION=DOUBLE for /STANDARD=VAXC and
/STANDARD=COMMON compiler modes.

The default is /PRECISION=SINGLE for /STANDARD=ANSI89 and
/STANDARD=RELAXED compiler modes.

/[NOJPREFIX_LIBRARY_ENTRIES[=(option[, ...])]

The HP C Run-Time Library (RTL) shareable image, DECC$SHR.EXE, resides
in SYS$LIBRARY with a DECC$ prefix for its entry points. The linker
searches IMAGELIB.OLB to locate the shareable image. Every external name
in IMAGELIB.OLB has a DECC$ prefix, and, therefore, has an OpenVMS
conformant name space (a requirement for inclusion in IMAGELIB).

The /INOJPREFIX_LIBRARY_ENTRIES qualifier lets you control the HP C
RTL name prefixing. Table 1-20 describes the /PREFIX LIBRARY_ENTRIES
qualifier options.

Table 1-20 /PREFIX_LIBRARY_ENTRIES Qualifier Options

Option Usage

EXCEPT = (name,...) The names specified are not prefixed.

ALL_ENTRIES All HP C RTL names, as well as C99 names not
supported by the underlying C RTL, are prefixed.

ANSI_C89_ENTRIES Only C Standard 89 (C89) library names are prefixed.

C99_ENTRIES Only C Standard 99 (C99) library names are prefixed.

These are a superset of the external names prefixed
under /PREFIX=ANSI_C89_ENTRIES and a subset
of those prefixed under /PREFIX=ALL_ENTRIES.

The compiler will prefix C99 entries based on their
inclusion in the standard, not on the availability

of their implementations in the run-time library.

So calling functions introduced in C99 that are not
yet implemented in the HP C RTL will produce
unresolved references to symbols prefixed by DECC$
when the program is linked. In addition, the compiler
will issue a CC-W-NOTINCRTL message when it
prefixes a name that is not in the current C RTL.

(continued on next page)

1-70 Developing HP C Programs

Table 1-20 (Cont.) /PREFIX_LIBRARY_ENTRIES Qualifier Options
Option Usage

RTL="name" Generates references to the C RTL indicated by the
name keyword. (The name keyword has a length
limit of 24 characters for OpenVMS VAX systems
and 1017 characters for OpenVMS Alpha systems.) If
no keyword is specified, then references to the HP C
RTL are generated by default. To use an alternate
RTL, see its documentation for the name to use.

If you want no names prefixed, specify /NOPREFIX LIBRARY_ENTRIES.
For /STANDARD=ANSIS9, the default is /PREFIX=ANSI_C89_ENTRIES.
For /STANDARD=C99, the default is /PREFIX=C99_ENTRIES.

For all other compiler modes, the default is /PREFIX=ALL.

/[NOJPREPROCESS_ONLY[=filename]

Gives the same functionality as the -E qualifier on UNIX C compilers. When
specified, it performs only the actions of the preprocessor phase and writes the
resulting processed text to a file. No semantic or syntax processing is done.
Furthermore, no object file or analysis file can be produced.

If you do not specify a file name for the preprocessor output, the name of the
output file defaults to the file name of the input file with a .I file type.

The default is/NOPREPROCESS_ONLY.

/[INOJPROTOTYPE[=(option][, . . .])]
Creates an output file containing function prototypes for all global functions
defined in the module being compiled.

Standard-style prototypes are created even for functions defined with
Kernighan and Ritchie style syntax.

This qualifier can be used to convert to Standard-sytle prototypes or just to
ensure that every function definition has a compatible explicit declaration,
thereby avoiding implicit declarations that can sometimes produce surprising
results.

Table 1-21 describes the /PROTOTYPE qualifier options.

Developing HP C Programs 1-71

Table 1-21 /PROTOTYPE Qualifier Options
Option Usage

[NOIIDENTIFIERS Indicates that identifier names are to be included in
the prototype declarations that appear in the output
file. The default is NOIDENTIFIERS.

[NO]JSTATIC_FUNCTIONS Indicates that prototypes for static function
definitions are to be included in the output file.
The default is NOSTATIC_FUNCTIONS.

FILE=filename Specifies the output file name. When not specified,
the output file name has the same defaults as the
listing file, except that the file extension is .CH
instead of .LIS.

The default is/ NOPROTOTYPES.

/PSECT_MODEL=[NOJMULTILANGUAGE
Controls whether the compiler allocates the size of overlaid psects to ensure
compatibility when the psect is shared by code created by other HP compilers.

The problem this switch solves can occur when a psect generated by a
FORTRAN COMMON block is overlaid with a psect consisting of a C struct.

Because FORTRAN COMMON blocks are not padded, if the C struct is padded,
the inconsistent psect sizes can cause linker error messages.

Compiling with /PSECT_MODEL=MULTILANGUAGE ensures that HP C uses
a consistent psect size allocation scheme. The corresponding FORTRAN switch
is /ALIGN=COMMON=[NO]MULTILANGUAGE.

The default is /PSECT=NOMULTILANGUAGE, which is the old default
behavior of the compiler, and is sufficient for most applications.

/REENTRANCY=option
Controls the type of reentrancy that reentrant HP C RTL routines will exhibit.
(See the decc$set_reentrancy RTL routine.)

This qualifier is for use only with a module containing the main routine.

The reentrancy level is set at runtime according to the /REENTRANCY
qualifier specified while compiling the module containing the main routine.

Table 1-22 describes the /REENTRANCY qualifier options.

1-72 Developing HP C Programs

Table 1-22 /REENTRANCY Qualifier Options
Option Usage

AST Uses the __TESTBITSSI built-in function to perform
simple locking around critical sections of RTL code,
and may additionally disable asynchronous system
traps (ASTs) in locked region of codes. This type of
locking should be used when AST code contains calls
to HP C RTL I/O routines.

MULTITHREAD Designed to be used in conjunction with the
DECthreads product. It performs DECthreads
locking and never disables ASTs.

NONE Gives optimal performance in the RTL, but does
absolutely no locking around critical sections of RTL
code. It should only be used in a single threaded
environment when there is no chance that the thread
of execution will be interrupted by an AST that would
call the HP C RTL.

TOLERANT Uses the __TESTBITSSI built-in function to perform
simple locking around critical sections of RTL code,
but ASTs are not disabled. This type of locking
should be used when ASTs are used and must be
delivered immediately.

The default is/ REENTRANCY=TOLERANT.

/REPOSITORY=option

Specifies a repository for the compiler to store shortened external name
information. When /NAMES=SHORTENED is specified, the compiler stores to
the repository any external names that were shortened. The demangler utility
can then be used to map the shortened names back to the names used in the
original C program.

By default, the qualifier is not active unless INAMES=SHORTENED has been
specified, in which case the default is /REPOSITORY=[.CXX_REPOSITORY].

The default name of the repository is the same as that used by the HP C++
compiler for decoding mangled names. This is intentional. A C++ mangled

name cannot match a shortened name, so a single repository can be used by
both the HP C and HP C++ compilers.

/ROUNDING_MODE=option
If /FLOAT=IEEE_MODE is specified, the /ROUNDING_MODE qualifier lets
you select one of the following IEEE rounding modes:

Developing HP C Programs 1-73

Option Usage

NEAREST Sets the normal rounding mode (unbiased round to nearest). This is
the default.
DYNAMIC Sets the rounding mode for IEEE floating-point instructions

dynamically, as determined from the contents of the floating-point
control register.

MINUS_ Rounds toward minus infinity.
INFINITY
CHOPPED Rounds toward 0.

If /FLOAT=G_FLOAT or /FLOAT=D_FLOAT is specified, then rounding
defaults to /ROUNDING_MODE=NEAREST, with no other choice of rounding
mode.

/[INOJSHARE_GLOBALS
Controls whether the compiler will treat declarations of objects with the
globaldef keyword as shared or not shared.

Also, in conjunction with the /EXTERN_MODEL qualifier, controls whether
the initial extern_model is shared or not shared (for those extern_models
where it is allowed). The initial extern_model of the compiler is a fictitious
pragma constructed from the settings of the /EXTERN_MODEL and /SHARE_
GLOBALS qualifiers.

The default value is /NOSHARE_GLOBALS. This default value is different
from VAX C, which treats external objects as shared by default. As a result,
you may experience the following impact:

e Linking old object files or object libraries with newly produced object files
might generate “conflicting attributes for psect” messages. As long as you
are not building shareable libraries, you can safely ignore these messages.

¢ Building shareable libraries will be easier.

e On OpenVMS VAX systems, when linking external symbols against
FORTRAN common blocks, you should specify /SHARE_GLOBALS to
suppress “conflicting attributes for psect” messages; although they can
otherwise be ignored. (VAX oniy)

ISHOWI[=(option][, ...])]

Sets or cancels listing options. You must use the /LIST qualifier with the
/SHOW qualifier to use any of the /SHOW options. Table 1-23 describes the
/SHOW qualifier options.

1-74 Developing HP C Programs

Table 1-23 /SHOW Qualifier Options

Option Usage
ALL Prints all listing information.
[NO]BRIEF Creates the same listing as the option SYMBOLS

[NO]ICROSS_REFERENCE

[NOIDICTIONARY

[NOJEXPANSION

[NOJHEADER

except that BRIEF eliminates from the list any
identifiers that are not referenced in the program,
and are not members of a structure or union that
is referenced in the program.

The NOBRIEF option is the default.

Specifies whether the compiler generates cross-
references. If you specify /SSHOW=CROSS_
REFERENCE, the compiler lists, for each variable
referenced in the procedure, the line numbers of
the lines on which the variable is referenced.

You may use /SHOW=CROSS_REFERENCE
with /SSHOW=SYMBOLS. Otherwise, specifying
/SHOW=CROSS_REFERENCE also gives

you /SHOW=BRIEF. To obtain any type of
listing, you must specify /LIST. Specifying
/SHOW=[NOJ]CROSS_REFERENCE is the same
as specifying /[INOJCROSS_REFERENCE.

The NOCROSS_REFERENCE option is the
default.

Places CDD/Repository definitions—included in
the program with the #pragma dictionary
preprocessor directive—into the listing file. These
data definitions are marked in the listing file with
an uppercase letter D in the listing margin.

The NODICTIONARY option is the default.

Places final macro expansions in the program
listing. However, expansion text for preprocessing
directives is not shown. When you specify

this option, the number printed in the margin
indicates the maximum depth of macro
substitutions that occur on each line.

The NOEXPANSION option is the default.

Produces the header lines at the top of each page
of a listing.

The HEADER option is the default.

(continued on next page)

Developing HP C Programs 1-75

Table 1-23 (Cont.) /SHOW Qualifier Options

Option

Usage

[NOJINCLUDE

[NOJINTERMEDIATE (VAX only)

[NOIMESSAGES

NONE

[NOISOURCE

[NOISTATISTICS

[NOISYMBOLS

1-76 Developing HP C Programs

Places the contents of #include files and modules
in the program listing.

The NOINCLUDE option is the default.

Places all intermediate and final macro
expansions in the program listing.

The NOINTERMEDIATE option is the default.
Lists all messages that are in effect at

compilation (based on the settings of /STANDARD,
/WARNINGS, and #pragma message).

The NOMESSAGE option is the default.

Creates an empty listing file with only the header.
If you specify this option on a CC command line
that contains /LIST and /MACHINE_CODE, the
compiler places machine code in the listing file.

Places the source program statements in the
program listing.

The SOURCE option is the default.

Places compiler performance statistics in the
program listing.

The NOSTATISTICS option is the default.

Places the symbol table of the compiled program
in the program listing. The symbol table includes
a list of all functions, the sizes and attributes of
all variables referenced in the program, and a
program section summary and function definition
map.

The NOSYMBOLS option is the default.

(continued on next page)

Table 1-23 (Cont.) /SHOW Qualifier Options
Option Usage

[NO]JTERMINAL (VAX only) Displays compiler messages to the terminal. Use
/SHOW=NOTERMINAL to suppress compiler
messages to the terminal or to a batch log file.

The TERMINAL option is the default.

[NOITRANSLATION (VAX only) Places into the listing file all UNIX system file
specifications that the compiler translates to
OpenVMS file specifications. See the HP C Run-
Time Library Reference Manual for OpenVMS
Systems for more information on file translation.

The NOTRANSLATION option is the default.

/[INOJSTANDARD[=(option[, . ..])]

Defines the compilation mode, directing the compiler to flag certain HP C-
specific constructs and HP C relaxations of conventional C language constructs
and rules. For example, the conversions from pointer to integer and back again
are subject to more stringent tests when you specify /STANDARD=ANSI&9.

Table 1-24 describes the /STANDARD qualifier options.

Table 1-24 /STANDARD Qualifier Options

Option Usage
ANSI89 Places the compiler in strict C Standard mode.
C99 Places the compiler in strict ISO/IEC C99 Standard

mode. Note that /STANDARD=C99 is not fully sup-
ported on VAX systems. Specifying /STANDARD=C99
on OpenVMS VAX systems produces a warning and
puts the compiler into /STANDARD=RELAXED mode.

LATEST Places the compiler in the latest ISO C standard
dialect. /STANDARD=LATEST is currently equivalent
to /SSTANDARD=C99, but is subject to change when
newer versions of the ISO C standard are released.

RELAXED Places the compiler in relaxed C Standard mode.

MS Interprets source programs according to certain
language rules followed by Microsoft’s Visual C++
compiler.

(continued on next page)

Developing HP C Programs 1-77

Table 1-24 (Cont.) /STANDARD Qualifier Options

Option Usage

ISOC94 Places the compiler in ISO C 94 mode, which
enables digraph processing and defines the macro
_ _STDC_VERSION_ _=199409L.
Digraphs are pairs of characters that translate into
a single character, much like trigraphs, except that
trigraphs get replaced inside string literals, but
digraphs do not. The digraphs are:
Digraph Character Represented
< [
>]
<% {
%> }
%: #
90:%: #i#
The ISOC94 option can be specified alone or in
combination with any other option except VAXC. If
specified alone, ISOC94 provides a default major mode
of RELAXED.

COMMON Places the compiler in common C mode. This
mode enforces K & R programming style; that is,
compatibility with older UNIX compilers such as pcc
and gcc.

VAXC Places the compiler in VAX C mode.

PORTABLE Places the compiler in RELAXED mode, and enables

1-78 Developing HP C Programs

the issuance of diagnostics that warn about any
nonportable usages encountered.

/STANDARD=PORTABLE is supported for VAX C
compatibility only. It is equivalent to the recommended
combination of qualifiers /STANDARD=
RELAXED/WARNINGS=ENABLE=PORTABLE.

(continued on next page)

Table 1-24 (Cont.) /STANDARD Qualifier Options

Option Usage

MIA Places the compiler in strict C Standard mode with
some behavior differences, as required by the MIA
standard:

e On OpenVMS VAX systems, G_floating becomes
the default floating-point format for double
variables. (VAX only)

On OpenVMS Alpha systems, G_floating is the
default in any case. (Alpha only)

e In structures, zero-length bit fields cause the next
bit field to start on an integer boundary, rather
than on a character boundary.

Compiling a program with /STANDARD=MIA sets the
_ _MIA predefined macro to 1.

The default is /INOSTANDARD, which is equivalent to /STANDARD=RELAXED.
If you specify /STANDARD, you must supply at least one option.

With one exception, the /STANDARD qualifier options are mutually
exclusive. Do not combine them. The exception is that you can specify
/STANDARD=ISOC94 with any other option except VAXC.

HP C modules compiled in different modes can be linked and executed together.

Also see the __HIDE_FORBIDDEN_NAMES predefined macro (Section 6.1.7).

/[NO]TIE

Enables the compiled code to be used in combination with translated images,
either because the code might call into a translated image or might be called
from a translated image. The default is /NOTIE.

/[NOJUNDEFINE=(identifier[, . ..])
See /[INO]DEFINE in this section.

/[INOJUNSIGNED_CHAR
By default, char is a signed character type. The /UNSIGNED_CHAR qualifier
lets you change this default to an unsigned character type, which causes all

plain char declarations to have the same representation and set of values as
unsigned char declarations. The default is /NOUNSIGNED_CHAR.

Developing HP C Programs 1-79

IVAXC (VAX only)
Invokes the VAX C compiler.

The CC command is used to invoke either the VAX C or HP C compiler. If your
system has a VAX C compiler installed on it, the HP C installation procedure
provides the option of specifying which compiler will be invoked by default
when just the CC command is used. To invoke the compiler that is not the
default, use the CC command with the appropriate qualifier: CC/DECC for the
HP C compiler, or CC/VAXC for the VAX C compiler.

If your system does not have a VAX C compiler installed on it, the CC
command will invoke the HP C compiler, and the /VAXC qualifier is not
supported.

/[NOJVERSION
Directs the compiler to print out the compiler version and platform. The
compiler version is the same as in the listing file.

This qualifier makes it easier for you to report what compiler you are using.

Note

To display the compiler version and platform when issuing the CC
command for a source file that does not exist, enter:

CC/DECC/VERSION NL:

/[INOJWARNINGSI[=(option[, . .. 1)]

Controls the issuance of compiler diagnostic messages or groups of messages.
It also allows for the severity of messages to be modified. The default qualifier,
/WARNINGS, enables all warning and informational messages for the compiler
mode you are using. The /INOWARNINGS qualifier suppresses the warning and
informational messages. Also see the #pragma message preprocessor directive.

Table 1-25 describes the /WARNING qualifier options.

For a description of what to specify for the message-list, see the #pragma
message preprocessor directive (Section 5.4.14).

1-80 Developing HP C Programs

Table 1-25 /WARNINGS Qualifier Options

Option

Usage

DISABLE=message-list

ENABLE=message-list
NOINFORMATIONALS
EMIT_ONCE=message-list

EMIT_ALWAYS=message-list

ERRORS=message-list

FATALS=message-list

INFORMATIONALS=message-
list

WARNINGS=message-list

Suppresses the issuance of the specified messages.

Only messages of severity Warning (W) or
Information (I) can be disabled. If the message
has severity of Error (E) or Fatal (F), it is issued
regardless of any attempt to disable it.

Enables issuance of the specified messages.
Suppresses informational messages.

Emits the specified messages only once per
compilation.

Certain messages are emitted only the first time the
compiler encounters the causal condition. When the
compiler encounters the same condition later in the
program, no message is emitted. Messages about
the use of language extensions are an example of
this kind of message. To emit one of these messages
every time the causal condition is encountered, use
the EMIT_ALWAYS option.

Errors and Fatals are always emitted. You cannot
set them to EMIT_ONCE.

Emits the specified messages at every occurrence of
the causal condition.

Sets the severity of the specified messages to Error.

Supplied Error messages and Fatal messages
cannot be made less severe. (Exception: A message
can be upgraded from Error to Fatal, then later
downgraded to Error again, but it can never be
downgraded from Error.)

Warnings and Informationals can be made any
severity.

Sets the severity of the specified messages to Fatal.

Sets the severity of the specified messages to
Informational. Note that Fatal and Error messages
cannot be made less severe.

Sets the severity of the specified messages to
Warning. Note that Fatal and Error messages
cannot be made less severe.

(continued on next page)

Developing HP C Programs 1-81

Table 1-25 (Cont.) /WARNINGS Qualifier Options

Option Usage

VERBOSE Displays the full message information for every
compiler message encountered. This information
includes the message description and user action,
as well as the identifier, severity, and message text.

When /WARNINGS=VERBOSE is used with
/LIST/SHOW=MESSAGES, a list of all messages in
effect at compilation are added to the listing file,
showing the full information for each message.

Notes

e [If a message is on both the enabled and disabled list, it is disabled.

e If a message is on both the EMIT_ONCE and the EMIT_ALWAYS
list, it is considered to be on the EMIT _ONCE list.

e [If a message is on more than one of the FATALS, ERRORS,
WARNINGS, or INFORMATIONALS lists, the message is given
the least severe level.

e The NOINFORMATIONALS option is not the negation of
INFORMATIONALS=msg-list. It is valid to specify:

/WARNINGS= (INFORMATIONALS=message_list, NOINFORMATIONALS)

This has the effect of making the messages on the message_
list informationals, and causing the compiler to suppress any
informational messages.

e One of the message groups described in the #pragma message
description in Section 5.4.14 is UNUSED, which enables messages
that report apparently unnecessary #include files and CDD
records.

However, unlike any other messages, these messages must be
enabled on the command line /WARNINGS=ENABLE=UNUSED)
to be effective. Any #pragma message directives within the source
have no effect on these messages; their state is determined only by
processing the command line.

The default is /WARNINGS=ENABLE=LEVELS.

1-82 Developing HP C Programs

1.3.5 Compiler Diagnostic Messages

If there are errors in your source file when you compile your program, the HP C
compiler signals these errors and displays diagnostic messages. Reference the
message, locate the error, and, if necessary, correct the error. See Appendix D
or the online help for a description of all compiler diagnostic messages.

You can control the issuance of specific compiler diagnostic messages or groups
of messages with the /[NOJWARNINGS command-line qualifier (Section 1.3.4)
and the #pragma message preprocessor directive (Section 5.4.14).

To display a particular compiler diagnostic message online, enter the following
command:

$ HELP CC/DECC MESSAGE mnemonic[Return] (VAX only)
$ HELP CC MESSAGE mnemonic(Retum] (Alpha, 164)

To display a list of all message mnemonics, enter the following command:

$ HELP CC/DECC MESSAGE(Rewm| (VAX only)
¢ HELP CC MESSAGE([Rewm| (Alpha, 164)

Diagnostic messages have the following format:

%CC-s-ident, message-text
Listing line number m
At line number nin name

%CC
The facility or program name of the HP C compiler. This portion indicates that
the message is being issued by HP C.

S
The severity of the error, represented in the following way:

F Fatal error. The compiler stops executing when a fatal error occurs and does not
produce an object module. You must correct the error before you can compile
the program.

E Error. The compiler continues, but does not produce an object module. You

must correct the error before you can successfully compile the program.

W Warning. The compiler produces an object module. It attempts to correct the
error in the statement, but you should verify that the compiler’s action is
acceptable. Otherwise, your program may produce unexpected results.

I Information. This message usually appears with other messages to inform you
of specific actions taken by the compiler. No action is necessary on your part.

Developing HP C Programs 1-83

ident
The message identification. This is a descriptive abbreviation (mnemonic) of
the message text.

message-text

The compiler’s message. In many cases, it consists of more than one line
of output. A message generally provides you with enough information to
determine the cause of the error so that you can correct it.

Listing line number m
The integer m, which gives you the line number in the listing file where the
error occurs. This information is given when you specify the /LIST qualifier.

At line number n in name

The integer n, which gives you the number of the line where the error occurs.
The number is relative to the beginning of the file or text library module
specified by name. You can use the #line directive to change both the line
number and name that appear in the message.

1.4 Linking an HP C Program

After you compile an HP C source program or module, use the DCL command
LINK to combine your object modules into one executable image, which can
then be executed by the OpenVMS system. A source program or module cannot
run on the OpenVMS system until it is linked.

When you execute the LINK command, the linker performs the following
functions:

¢ Resolves local and global symbolic references in the object code
e Assigns values to the global symbolic references

e Signals an error message for any unresolved symbolic reference
e Allocates virtual memory space for the executable image

When using the LINK command on development systems, use the /DEBUG
qualifier to link your program module. The /DEBUG qualifier appends to the
image all the symbol and line number information appended to the object
modules plus information on global symbols, and causes the image to run
under debugger control when it is executed.

1-84 Developing HP C Programs

The LINK command produces an executable image by default. However,

you can also use the LINK command to obtain shareable images and system
images. The /SHAREABLE qualifier directs the linker to produce a shareable
image; the /SYSTEM qualifier directs the linker to produce a system image.
See Section 1.4.2 for a complete description of these and other LINK command
qualifiers.

For a complete discussion of the OpenVMS Linker, see the HP OpenVMS
Linker Utility Manual.

1.4.1 The LINK Command
The LINK command has the following format:

LINK[/command-qualifier]... {file-spec{/file-qualifier...]},...

/command-qualifier...
Output file options.

file-spec
The input files to be linked.

[ffile-qualifier...
Input file options.

If you specify more than one input file, you must separate the input file
specifications with a plus sign (+) or a comma ().

By default, the linker creates an output file with the name of the first input
file specified and the file type EXE. If you link more than one file, you should
specify the file containing the main program first. Then, the name of your
output file will have the same name as your main program module.

The execution of a program will begin at the function whose identifier is main,
or, if there is no function with this identifier, at the first function seen by the
VMS linker.

Note

Unexpected results might occur if you don’t have a function called main.

The following command line links the object files MAINPROG.OBJ,
SUBPROG1.0BJ, and SUBPROG2.0BJ to produce one executable image
called MAINPROG.EXE:

Developing HP C Programs 1-85

$ LINK MAINPROG.OBJ, SUBPROG1.OBJ, SUBPROG2.0BJ

Note

Unlike VAX C, HP C does not require you to define any LNK$LIBRARY
logicals.

1.4.2 LINK Command Qualifiers

You can use the LINK command qualifiers to modify the linker’s output, as
well as to invoke the debugging and traceback facilities. Linker output consists
of an image file and an optional map file.

The following list summarizes some of the most commonly used LINK
command qualifiers. A brief description of each qualifier follows this list.
For a complete list of LINK qualifiers, see the HP OpenVMS Linker Utility

Manual.

Command Qualifiers Default

/BRIEF None.
/INO]JCROSS_REFERENCE /NOCROSS_REFERENCE
/INO]JDEBUG /NODEBUG
/INOJEXECUTABLE[=file-spec] /EXECUTABLE=name.EXE
/FULL None.

/INO]MAP /MAP (batch) /NOMAP (interactive)
/INO]JSHAREABLE[=file-spec] /NOSHAREABLE
/INOJTRACEBACK /TRACEBACK

/BRIEF

Produces a summary of the image’s characteristics and a list of contributing
modules. This qualifier is mutually exclusive with /FULL.

/[NO]JCROSS_REFERENCE
Produces cross-reference information for global symbols; /NOCROSS_
REFERENCE suppresses cross-reference information. The default is
/NOCROSS_REFERENCE.

/INO]DEBUG

Includes the OpenVMS Debugger in the executable image and generates a
symbol table; /NODEBUG causes the linker to prevent debugger control of the
program. The default is /NODEBUG.

1-86 Developing HP C Programs

/[NOJEXECUTABLE [=file-spec]
Produces an executable image. /NOEXECUTABLE suppresses production of an
image file. The default is /EXECUTABLE.

/FULL

Produces a summary of the image’s characteristics, a list of contributing
modules, listings of global symbols by name and by value, and a summary of
characteristics of image sections in the linked image. This qualifier is mutually
exclusive with /BRIEF.

/[[NO]JMAP
Generates a map file; /NOMAP suppresses the map. The default is /MAP in
batch mode and /NOMAP in interactive mode.

/[INOJSHAREABLE[=file-spec]
Creates a shareable image. INOSHAREABLE generates an executable image.
The default is /NOSHAREABLE.

/[INOJTRACEBACK

Generates symbolic traceback information when error messages are
produced; NOTRACEBACK suppresses traceback information. The default
is /TRACEBACK.

1.4.3 Linker Input Files

You can specify the object modules to be included in an executable image in
any of the following ways:
e Specify input file specifications for the object modules.
If no file type is specified, the linker searches for an object file with the file
type OBJ.
e Specify one or more object module library files.

You can specify either the name of an object module library with the
/LIBRARY qualifier or the names of the object modules contained in an
object module library with the /INCLUDE qualifier. Section 1.4.6 describes
the uses of object module libraries.

e Specify an options file.

An options file can contain additional file specifications for the LINK
command, as well as special linker options. You must use the /OPTIONS
qualifier to specify an options file. For more information on options files,
see the HP OpenVMS Linker Utility Manual.

Developing HP C Programs 1-87

Table 1-26 shows the default input file types for the linker.

Table 1-26 OpenVMS Linker Default File Types for Input Files

File Type File

OBJ Object module
OLB Library

OPT Options file

1.4.4 Linker Output Files

When you enter the LINK command interactively and do not specify any
qualifiers, the linker creates only an executable image file. By default, the
resulting image file has the same file name as that of the first object module
specified with a file type of EXE.

In a batch job, the linker creates both an executable image file and storage
map file by default. The default file type for map files is MAP.

To specify an alternative name for a map file or image file or to specify an
alternative output directory or device, you can include a file specification on
the /MAP or /EXECUTABLE qualifier. In the following example, the LINK
command creates the image file [PROJECT.EXE|UPDATE.EXE and the map
file [PROJECT.MAP]UPDATE.MAP:

$ LINK UPDATE/EXECUTABLE=[PROJECT.EXE]/MAP=[PROJECT.MAP]

1.4.5 Linking Against Object Module Libraries and Shareable Images

Linking against object modules (stored in object module libraries) or against
shareable images are ways of allowing your program to access data and
routines outside of your compilation units. You can either create the object
module libraries and the shareable images or use the ones provided by HP.

To access data in object modules and shareable images, you can use LINK
command qualifiers, OpenVMS logical names, and options files. For more
information about object module libraries, see the HP OpenVMS Linker Utility
Manual.

The HP C Run-Time Library (RTL) for OpenVMS systems also provides

two formats for you to choose from: shareable images or object module
libraries. Depending on which type of RTL you want to use and on which
type of functions you plan on calling from your programs, you need to supply
information to the linker that specifies which versions of the functions to
access.

1-88 Developing HP C Programs

When you use the HP C RTL and its corresponding header files, remember
that the HP C RTL ships with the OpenVMS operating system and the header
files ship with the HP C compiler. Since the releases of the compiler and of the
operating system are not synchronized, there may be compatibility issues that
you need to consider to use the RTL properly. See the HP C release notes (by
entering HELP CC/DECC RELEASE_NOTES on the DCL command line) for
information that may pertain to this issue.

For a description of the various ways to link with the HP C RTL, see the HP C
Run-Time Library Reference Manual for OpenVMS Systems.

1.4.6 Object Module Libraries

You can make program modules accessible to other users by storing them

in an object module library. To link modules contained in an object module
library, use the /INCLUDE qualifier and specify the modules you want to link.
The following example links the subprogram modules EGGPLANT, TOMATO,
BROCCOLI, and ONION with the main program module GARDEN:

$ LINK GARDEN, VEGGIES/INCLUDE=(EGGPLANT, TOMATO,BROCCOLI,ONION)

An object module library can also contain a symbol table with the names of
each global symbol in the library, and the name of the module in which they
are defined. You specify the name of the object module library containing
symbol definitions with the /[LIBRARY qualifier. When you use the /LIBRARY
qualifier during a linking operation, the linker searches the specified library
for all unresolved references found in the included modules during compilation.

The following example uses the library RACQUETS to resolve undefined
symbols in BADMINTON, TENNIS, and RACQUETBALL:

$ LINK BADMINTON, TENNIS, RACQUETBALL, RACQUETS/LIBRARY

You can define an object module library to be your default library by using
the DCL command DEFINE LNK$LIBRARY. The linker searches default user
libraries for unresolved references after it searches modules and libraries
specified in the LINK command. For more information about the DEFINE
command, see the HP OpenVMS DCL Dictionary.

For more information about object module libraries, see the HP OpenVMS
Linker Utility Manual.

Developing HP C Programs 1-89

1.4.7 Linker Error Messages

If the linker detects any errors while linking object modules, it displays
messages indicating the cause and severity of the error. If any error or fatal
error conditions occur (that is, errors with severities of E or F), the linker does
not produce an image file.

The messages produced by the linker are descriptive, and you do not usually
need additional information to determine the specific error. Some common
errors that occur during linking are as follows:

¢ An object module has compilation errors.

This occurs when you try to link a module that produced warning messages
during compilation. You can usually link compiled modules for which the
compiler generated messages, but verify that the modules will produce the
output you expect.

¢ The input file has a file type other than OBJ and no file type was specified
on the command line.

If you do not specify a file type, the linker searches for a file that has
a file type of OBJ by default. If the file is not an object file and you do
not identify it with the appropriate file type, the linker signals an error
message and does not produce an image file.

e You tried to link a nonexistent module.

The linker signals an error message if you misspell a module name on the
command line or if the compilation contains fatal diagnostics.

e A reference to a symbol name remains unresolved.

An error occurs when you omit required module or library names from
the command line and the linker cannot locate the definition for a
specified global symbol reference. Consider, for example, the following
LINK command for a main program module, OCEAN.OBJ, that calls the
subprogram modules REEF.OBJ, SHELLS.OBJ, and SEAWEED.OBJ:

$ LINK OCEAN, REEF, SHELLS

Because SEAWEED is not linked, the linker issues the following error
messages:

$LINK-W-NUDFSYMS, 1 undefined symbol

$LINK-I-UDFSYMS, SEAWEED

$LINK-W-USEUNDEF, module "OCEAN" references undefined symbol "SEAWEED"
$LINK-W-DIAGISUED, completed but with diagnostics

1-90 Developing HP C Programs

If an error occurs when you link modules, you can often correct it by reentering
the command and specifying the correct modules or libraries. If an error
indicates that a program module cannot be located, you may be linking the
program with the wrong RTL.

For a complete list of linker messages, see the OpenVMS System Messages and
Recovery Procedures Reference Manual.

1.5 Running an HP C Program

After you link your program, you can use the DCL command RUN to execute
it. The RUN command has the following format:

RUN [/[NOJDEBUG] file-spec [/[NOJDEBUG]

/INO]DEBUG

An optional qualifier. Specify the /DEBUG qualifier to invoke the debugger if
the image was not linked with it. You cannot use /DEBUG on images linked
with the /NOTRACEBACK qualifier. If the image was linked with the /DEBUG
qualifier and you do not want the debugger to prompt you, use the /NODEBUG
qualifier. The default action depends on whether the file was linked with the
/DEBUG qualifier.

file-spec
The file you want to run.

The execution of a program begins at the function whose identifier is main, or,
if there is no function with this identifier, at the first function seen by the VMS
linker.

Note

Unexpected results might occur if you don’t have a function called main.

The following example executes the image SAMPLE.EXE without invoking the
debugger:

$ RUN SAMPLE/NODEBUG
For more information on debugging programs, see Section C.1.

During execution, an image can generate a fatal error called an exception
condition. When an exception condition occurs, the system displays an error
message. Run-time errors can also be issued by the operating system or by
utilities.

Developing HP C Programs 1-91

When an error occurs during the execution of a program, the program
is terminated and the OpenVMS condition handler displays one or more
messages on the currently defined SYS$ERROR device.

A message is followed by a traceback. For each module in the image that has
traceback information, the condition handler lists the modules that were active
when the error occurred, which shows the sequence in which the modules were
called.

For example, if an integer divide-by-zero condition occurs, a run-time message
like the following appears:

$SYSTEM-F-INTDIV, arithmetic trap, integer divide by zero
at PC=00000FC3, PSL=03C00002

This message is followed by a traceback message similar to the following:

$TRACE-F-TRACEBACK, symbolic stack dump follows

module name routine name line rel PC abs PC
A c 8 00000007 00000FC3
B main 1408 000002F7 00000B17

The information in the traceback message follows:

module name
The name or names of an image module that was active when the error
occurred.

The first module name is that of the module in which the error occurred.
Each subsequent line gives the name of the caller of the module named on the
previous line. In this example, the modules are A and B; main called C.

routine name
The name of the function in the calling sequence.

line

The compiler-generated line number of the statement in the source program
where the error occurred, or at which the call or reference to the next procedure
was made. Line numbers in these messages match those in the listing file (not
the source file).

rel PC

The value of the PC (program counter). This value represents the location in
the program image at which the error occurred or at which a procedure was
called. The location is relative to the virtual memory address that the linker
assigned to the code program section of the module indicated by module name.

1-92 Developing HP C Programs

abs PC
The value of the PC in absolute terms; that is, the actual address in virtual
memory representing the location at which the error occurred.

Traceback information is available at runtime only for modules compiled and
linked with the traceback option in effect. The traceback option is in effect by
default for both the CC and LINK commands. You may use the CC command
qualifier /NODEBUG and the LINK command qualifier /NOTRACEBACK to
exclude traceback information. However, traceback information should be
excluded only from thoroughly debugged program modules.

1.6 Passing Arguments to the main Function

The main function in an HP C program can accept arguments from the
command line from which it was invoked. The syntax for a main function is:

int main(int arge, char *argV], char *envp[])

{...}

argc
The number of arguments in the command line that invoked the program.

argv
A pointer to an array of character strings that contain the arguments.

envp

The environment array. It contains process information such as the user
name and controlling terminal. It has no bearing on passing command-line
arguments. Its primary use in HP C programs is during exec and getenv
function calls. (For more information, see the HP C Run-Time Library
Reference Manual for OpenVMS Systems).

In the main function definition, the parameters are optional. However, you can
access only the parameters that you define. You can define the main function in
any of the following ways:

)
int argc)

int argc, char *argv([1)

int argc, char *argv[1, char *envp[1)

int main
int main
int main
int main

To pass arguments to the main function, you must install the program as a DCL
foreign command. When a program is installed and run as a foreign command,
the argec parameter is always greater than or equal to 1, and argv[0Olalways
contains the name of the image file.

Developing HP C Programs 1-93

The procedure for installing a foreign command involves using a DCL
assignment statement to assign the name of the image file to a symbol that
is later used to invoke the image. For example:

$ ECHO == "DSK:COMMARG.EXE" [Retum]

The symbol ECHO is installed as a foreign command that invokes the image
in COMMARG.EXE. The definition of ECHO must begin with a dollar sign ($)
and include a device name, as shown.

For more information about the procedure for installing a foreign command,
see the HP OpenVMS DCL Dictionary.

Example 1-1 shows a program called COMMARG.C, which displays the
command-line arguments that were used to invoke it.

Example 1-1 Echo Program Using Command-Line Arguments

/* This program echoes the command-line arguments. */

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
int 1;
/* argv[0] is program name */
printf ("program: %s\n",argv[0]);

for (1 = 1; 1 < argc; i++)
printf ("argument %d: %s\n", 1, argv([i]);
exit (EXIT_SUCCESS);
}

You can compile and link the program using the following DCL command lines:

$ CC COMMARG [Retum]
$ LINK COMMARG [Retum]

A sample output for Example 1-1 follows:

$ ECHO Long "Day’s" "Journey into Night" [Retum]
program: db7:[oneill.plays]commarg.exe;l
argument 1: long

argument 2: Day'’s

argument 3: Journey into Night

1-94 Developing HP C Programs

DCL converts most arguments on the command line to uppercase letters.

HP C internally parses and modifies the altered command line to make HP C
argument access compatible with C programs developed on other systems. All
alphabetic arguments in the command line are delimited by spaces or tabs.
Arguments with embedded spaces or tabs must be enclosed in quotation marks
(=). Uppercase characters in arguments are converted to lowercase, but
arguments within quotation marks are left unchanged.

1.7 64-bit Addressing Support

OpenVMS 64-bit virtual addressing support makes the 64-bit virtual address
space defined by the Alpha and Itanium architectures available to the
OpenVMS operating system and its users. It also allows per-process virtual
addressing for accessing dynamically mapped data beyond traditional 32-bit
limits.

The HP C compiler supports 64-bit pointers on all hardware platforms where
the OpenVMS operating system supports 64-bit pointers; that is, on the Alpha
and Itanium processors.

This support is provided through command-line qualifiers and pragma
preprocessor directives that control the size of the C pointer because:

e Typical C usage involves many objects accessed through pointers rather
than single monolithic arrays or structures.

e Huge declared objects would have an impact on object-module format and
the linker.

Note

Single objects larger than 2 gigabytes are not fully supported, even
with 64-bit virtual addressing in effect.

e Minimal source-code edits are required to exploit the 64-bit space where
needed. Because the pragmas affect a region of source code, it is not
necessary to modify every declaration.

No changes are required for existing 32-bit applications that do not need to
exploit 64-bit addressing.

Developing HP C Programs 1-95

1.7.1 Qualifiers and Pragmas
The following qualifiers, pragmas, and predefined macro control pointer size:
e /[INOJPOINTER_SIZE={LONG | SHORT | 64 |32}
e /[NOJCHECK=[NOJPOINTER_SIZE=(option,...)
e #pragma pointer_size
e #pragma required_pointer_size
e _ _INITIAL_POINTER_SIZE predefined macro

1.7.1.1 The /POINTER_SIZE Qualifier

The /POINTER_SIZE qualifier lets you specify a value of 64 or 32 (or LONG
or SHORT) as the default pointer size within the compilation unit. You can
compile one set of modules using 32-bit pointers and another set using 64-bit
pointers. Take care when these two separate groups of modules call each other.

The default is /INOPOINTER_SIZE, which:

e Disables pointer-size features, such as the ability to use #pragma
pointer_size

e Directs the compiler to assume that all pointers are 32-bit pointers.
This default represents no change over previous versions of HP C.

Specifying /POINTER_SIZE with a keyword value (32, 64, SHORT, or LONG)
has the following effects:

e Enables processing of #pragma pointer_size.
e Sets the initial default pointer size to 32 or 64, as specified.

e Predefines the preprocessor macro __INITIAL_POINTER_SIZE to 32 or
64, as specified. If /POINTER_SIZE is omitted from the command
line, _ _INITIAL_POINTER_SIZE is 0, which allows you to use #ifdef
_ _INITIAL_POINTER_SIZE to test whether or not the compiler supports
64-bit pointers.

e For /POINTER_SIZE=64, the HP C RTL name mapping table is changed
to select the 64-bit versions of malloc, calloc, and other RTL routines by
default.

Use of the /POINTER_SIZE qualifier also influences the processing of HP C
RTL header files:

¢ For those functions that have both 32-bit and 64-bit implementations,
specifying /POINTER_SIZE enables function prototypes to access both
functions, regardless of the actual value supplied to the qualifier. The

1-96 Developing HP C Programs

value specified to the qualifier determines the default implementation to
call during that compilation unit.

¢ Functions that require a second interface to be used with 64-bit pointers
reside in the same object libraries and shareable images as their 32-bit
counterparts. Because no new object libraries or shareable images are
introduced, using 64-bit pointers does not require changes to your link
command or link options files.

See the HP C Run-Time Library Reference Manual for OpenVMS Systems
for more information on the impact of 64-bit pointer support on HP C RTL
functions.

See Section 1.3.4 for more information about /POINTER_SIZE.

1.7.1.2 The __INITIAL_POINTER_SIZE Macro

The _ _INITIAL_POINTER_SIZE preprocessor macro is useful for header-file
authors to determine:

e If the compiler supports 64-bit pointers.
e If the application expects to use 64-bit pointers.

Header-file code can then be conditionalized using the following preprocessor

directives:
#if defined (_ _ INITIAL_POINTER_SIZE) /* Compiler supports 64-bit pointers */
#1f _ INITIAL POINTER_SIZE > 0 /* Application uses 64-bit pointers */

#if _ _ INITIAL_POINTER_SIZE == 32 /* Application uses some 64-bit pointers,
but default RTL routines are 32-bit.*/

#if _ _ INITIAL_POINTER_SIZE == 64 /* Application uses 64-bit pointers and
default RTL routines are 64-bit. */

1.7.1.3 The /CHECK=POINTER_SIZE Qualifier

Use the /CHECK=POINTER_SIZE qualifier to generate code that checks 64-bit
pointer values at runtime to make sure they can fit in a 32-bit pointer. If such
a value cannot be represented by a 32-bit pointer, the run-time code signals a
range error (SS$_RANGEERR).

Be aware that the compiler generates the same kinds of warning messages for
pointer-size mismatches whether or not this qualifier is specified. The run-time
checks can detect problems that cannot be detected at compile time, and can
help determine whether or not certain warnings are safe to suppress.

See Section 1.3.4 for more information about /CHECK=POINTER_SIZE,
including defaults and an example.

Developing HP C Programs 1-97

1.7.1.4 Pragmas
The #pragma pointer_size and #pragma required_pointer_size preprocessor
directives can be used to change the pointer size currently in effect within a
compilation unit. You can default pointers to 32-bits and then declare specific
pointers within the module as 64-bits. In this case, you also need to specifically
call the _malloc64 form of malloc to obtain memory from the 64-bit memory
area.

These pragmas have the following format:

#pragma pointer_size keyword

#pragma required_pointer_size keyword
The keyword is one of the following:

{short | 32} 32-bit pointer
{long | 64} 64-bit pointer
save Saves the current pointer size

restore Restores the current pointer size to its last saved state

The #pragma pointer_size and #pragma required_pointer_size directives
work essentially the same way, except that #pragma required_pointer_size
always takes effect regardless of command-line qualifiers, while #pragma
pointer_size is only in effect when the /POINTER_SIZE command-line
qualifier is used.

The #pragma pointer_size behavior allows a program to be built using 64-bit
features as purely as a 32-bit program, just by changing the command-line
qualifier.

The #pragma required_pointer_size is intended for use in header files where
interfaces to system data structures must use a specific pointer size regardless
of how the program is compiled.

See Sections 5.4.19 and 5.4.20 for more information on the pointer-size
pragmas.

1.7.2 Determining Pointer Size

The pointer-size qualifiers and pragmas affect only a limited number of
constructs in the C language itself. At places where the syntax creates a
pointer type, the pointer-size context determines the size of that type. Pointer-
size context is defined by the most recent pragma (or command-line qualifier)
affecting pointer size.

1-98 Developing HP C Programs

Here are examples of places in the syntax where a pointer type is created:
e The * in a declaration or cast:

int **p; // Declaration
ip = (int **)i; // Cast

e The outer (leftmost) brackets [] in a formal parameter imply a *:
void foo(int ia[10][20]) {}
// Means the following:
void foo(int (*ia)[20]) {}

e A function declarator as a formal parameter imply a *:

void foo (int func()):
// Means the following:

void foo (int (*) () func);

¢ Any formal parameter of array or function type implies a *, even when
bound in a typedef:

typedef int a_type[10];

void foo (a_type 1ia);

// Means the following:

void foo (int *ia);
Note that a typedef binds the meaning of pointer syntax while a macro does
not. Even though both constructs can contain a * used in a declaration, the

* in the macro definition is not affected by any pointer-size controls until the
point at which the macro is expanded. For example:

#pragma pointer_size 64

typedef int * j_ptr; // * is 64-bit

#define J_PTR int * // * 1s not analyzed

#pragma pointer_size 32

j_ptr j; // j is a 64-bit pointer.

J_PTR J; // J is a 32-bit pointer.

Developing HP C Programs 1-99

1.7.2.1 Special Cases
The following special cases are not affected by pointer-size context:

Formal parameters to main are always treated as if they were in a
#pragma pointer_size system default context, which is 32-bit pointers for
OpenVMS systems. However, using /POINTER_SIZE=LONG=ARGV will
allow argv to be a pointer to long pointers.

For example, regardless of the #pragma pointer_size 64 directive, argv[0]
is a 32-bit pointer:
#pragma pointer_size 64

main(int argc, char **argv)
{ ASSERT (sizeof (argv[0]) == 4); }

A string literal produces a 32-bit pointer when used as an rvalue:
#pragma pointer_size 64
ASSERT (sizeof ("x" + 0) == 4);

The & operator yields a 32-bit pointer unless it is applied to pointer
dereference, in which case it is the size of the dereferenced pointer type:

sizeof (&foo) == 32
sizeof (&s ->next) == sizeof (s)
An rvalue cast to a 32-bit pointer type does not modify the high-order 32

bits of a 64-bit operand. sizeof yields 4 bytes, but the high bits are not
lost unless a 4-byte assignment occurs:

#pragma pointer_size 64
typedef int * ip64;

#pragma pointer_size 32
typedef int * ip32;

ip6d a,b;
ip32 c¢;

(ip32)b; // No high-order bits are lost
(ip32)b; // High-order bits are lost

a
C

1-100 Developing HP C Programs

1.7.2.2 Mixing Pointer Sizes

An application can use both 32-bit and 64-bit addresses. The following
semantics apply when mixing pointers:

Assignments (including arguments) silently promote a 32-bit pointer rvalue
to 64 bits if other type rules are met. Promotion means sign extension.

A warning is issued for an assignment of a 64-bit rvalue to a 32-bit lvalue
(without an explicit cast).

For purposes of type compatibility, a different size pointer is a different
type (for example, when matching a prototype to a definition, or other
contexts involving redeclaration).

The debugger knows the difference between pointers of different sizes.

1.7.3 Header File Considerations

The following general header-file considerations should be kept in mind:

Header files usually define interfaces with types that must match the
layout used in library modules.

Header files often do not bind "top-level" pointer types. Consider, for
example:

fprintf (FILE *, const char *, ...);

A "FILE * fp;" in a declaration in a different area of source code might be a
different size.

All pointer parameters occupy 64 bits in the OpenVMS Alpha and 164
calling sequence, so a top-level mismatch of this kind is all right if the
called function does not lose the high bits internally.

Routines dealing with pointers to pointers)or data structures containing
pointers) cannot be enabled to work simply by passing them both 32-bit
and 64-bit pointers. You need to have separate 32-bit and 64-bit variants
of the routine.

The HP C RTL header files and the compiler cooperatively provide dual
implementations of functions that need to know the pointer size used by
the caller. They have different names. The compiler automatically calls the
appropriate name within the pointer-size context if the source code calls
the simple name. For example, a call to malloc becomes:

— _malloc64 if /POINTER_SIZE=64.
— malloc32 if /POINTER_SIZE=32.
— malloc if /POINTER_SIZE is omitted.

Developing HP C Programs 1-101

If /POINTER_SIZE is specified alone or with a value, _malloc64 or
_malloc32 can be called explicitly. If /POINTER_SIZE is not specified,
the program is compiled to be unaware of 64-bit pointers, and so the
declarations of these alternate variants are suppressed.

Be aware that pointer-size controls are not unique in the way they affect
header files; other features that affect data layout have similar impact. For
example, most header files should be compiled with 32-bit pointers regardless
of pointer-size context. Also, most system header files (on OpenVMS Alpha
and 164 systems) must be compiled with member_alignment regardless of user
pragmas or qualifiers.

To address this issue more generally, the pragma environment directive can be
used to save context and set header defaults at the beginning of each header
file, and then to restore context at the end. See Section 5.4.4 for a description
of pragma environment.

For header files that have not yet been upgraded to use #pragma environment,
the /POINTER_SIZE=64 qualifier can be difficult to use effectively. For such
header files that are not 64-bit aware, the compiler automatically applies user-
defined prologue and epilogue files before and after the text of the included
header file. See Section 1.7.4 for more information on prologue/epilogue files.

1.7.4 Prologue/Epilogue Files

HP C automatically processes user-supplied prologue and epilogue header files.
This feature is an aid to using header files that are not 64-bit aware within an
application that is built to exploit 64-bit addressing.

1.7.4.1 Rationale
HP C header files typically contain a section at the top that:

1. Saves the current state of the member_alignment, extern_model,
extern_prefix, and message pragmas.

2. Sets these pragmas to the default values for the system.

A section at the end of the header file then restores these pragmas to their
previously-saved state.

Mixed pointer sizes introduce another kind of state that typically needs to be
saved, set, and restored in header files that define fixed 32-bit interfaces to
libraries and data structures.

The #pragma environment preprocessor directive allows headers to control all
compiler states (message suppression, extern_model, member_alignment, and
pointer_size) with one directive.

1-102 Developing HP C Programs

However, for header files that have not yet been upgraded to use #pragma
environment, the /POINTER_SIZE=64 qualifier can be difficult to use
effectively. In this case, the automatic mechanism to include prologue/epilogue
files allows you to protect all of the header files within a single directory (or
modules within a single text library). You do this by copying two short files
into each directory or library that needs it, without having to edit each header
file or library module separately.

In time, you should modify header files to either exploit 64-bit addressing
(like the HP C RTL), or to protect themselves with #pragma environment.
Prologue/epilogue processing can ease this transition.

1.7.4.2 Using Prologue/Epilogue Files
Prologue/epilogue file are processed in the following way:

1.

When the compiler encounters an #include preprocessing directive, it
determines the location of the file or text library module to be included. It
then checks to see if one or both of the two following specially named files
or modules exist in the same location as the included file:

___ DECC_INCLUDE_PROLOGUE.H
__ __ DECC_INCLUDE_EPILOGUE.H

The location is the OpenVMS directory containing the included file or the
text library file containing the included module. (In the case of a text
library, the .h is stripped off.)

The directory is the result of using the $PARSE/$SEARCH system services
with concealed device name logicals translated. Therefore, if an included
file is found through a concealed device logical that hides a search list, the
check for prologue/epilogue files is still specific to the individual directories
making up the search list.

If the prologue and epilogue files do exist in the same location as the
included file, then the content of each is read into memory.

The text of the prologue file is processed just before the text of the file
specified by the #include.

The text of the epilogue file is processed just after the text of the file
specified by the #include.

Subsequent #includes that refer to files from the same location use the
saved text from any prologue/epilogue file found there.

Developing HP C Programs 1-103

The prologue/epilogue files are otherwise treated as if they had been included
explicitly: #line directives are generated for them if /PREPROCESS_ONLY
output is produced, and they appear as dependencies if /MMS_DEPENDENCY
output is produced.

To take advantage of prologue/epilogue processing for included header
files, you need to create two files, __DECC_INCLUDE_PROLOGUE.H and
_ _DECC_INCLUDE_EPILOGUE.H, in the same directory as the included file.

Suggested content for a prologue file is:

___ DECC_INCLUDE_PROLOGUE.H:

#ifdef _ _ PRAGMA_ENVIRONMENT
#pragma environment save
#pragma environment header_defaults

telse

ferror "_ _ DECC_INCLUDE_PROLOGUE.H: This compiler does not support
pragma environment"

fendif

Suggested content for an epilogue file is:

__ DECC_INCLUDE_EPILOGUE.H:
#ifdef _ _ PRAGMA_ENVIRONMENT

#pragma _ _ environment restore

telse

#error "_ _ DECC_INCLUDE_EPILOGUE.H: This compiler does not support
pragma environment"

tendif

1.7.5 Avoiding Problems
Consider the following suggestions to avoid problems related to pointer size:

e Write code to work with either 32-bit or 64-bit pointers by using only the
/POINTER_SIZE qualifier.

¢ Do bit manipulation on unsigned int and unsigned __int64, and carefully
cast pointers to and from them.

e Heed compile-time warnings, using casts only where you are sure that
pointers are not truncated.

e Enable the optional compile-time warning
(/WARN=ENABLE=MAYHIDELOSS).

e Do thorough testing when compiling with /CHECK=POINTER_SIZE.

1-104 Developing HP C Programs

1.7.6 Examples

The following examples illustrate the use and misuse of 64-bit pointers.

Developing HP C Programs 1-105

Example 1-2 Watch Out for Pointers to Pointers (**)

/* CC/NAME=AS_IS/POINTER_SIZE=64 */
#include <stdio.h>

#pragma pointer_size 64

char *C[2] = {"AB", "CD"}; /* sizeof(C) = 16
char **CPTRPTR = C;
char **CPTR;
#pragma pointer_size 32
char *c[2] = {"ab", "cd"}; /* sizeof(C) = 8
char **cptrptr = c;
char **cptr;
int main (void)
{
CPTR = cptr; /* No problem.
cptr = CPTR; /* %$CC-W-MAYLOSEDATA
CPTRPTR = cptrptr; /* %CC-W-PTRMISMATCH
cptrptr = CPTRPTR; /* MAYLOSEDATA & PTRMISMATCH
puts (cptrptr[0]); /* ab
puts (cptrptr([l]); /* cd
puts (CPTRPTR[O0]) ; /* Bad address passed.
puts (CPTRPTR[1]); /* Fetch off end of c.

Compiling Example 1-2 produces:

$ cc examplel/name=as_is/pointer_size
cptr = CPTR; /* %CC-W-MAYLOSEDATA

$CC-W-MAYLOSEDATA, In this statement, "CPTR" has a larger
data size than "short pointer to char". Assignment may
result in data loss.)

CPTRPTR = cptrptr; /* %CC-W-PTRMISMATCH
$CC-W-PTRMISMATCH, In this statement, the referenced type

of the pointer value "cptrptr" is "short pointer to char",
which is not compatible with "long pointer to char".

cptrptr = CPTRPTR; /* MAYLOSEDATA & PTRMISMATCH
%CC-W-MAYLOSEDATA, In this statement, "CPTRPTR" has a

larger data size than "short pointer to short pointer
to char". Assignment may result in data loss.)

1-106 Developing HP C Programs

*/

*/

*/
*/

*/
*/
*/
*/
*/
*/

*/

cptrptr = CPTRPTIR; /* MAYLOSEDATA & PTRMISMATCH */

%$CC-W-PTRMISMATCH, In this statement, the referenced type
of the pointer value "CPTRPTR" is "long pointer to char",
which is not compatible with "short pointer to char".

Example 1-3 Trivial 64-Bit Exploitation

#include <stdio.h>
#include <stdlib.h>

_ _int64 limit, count;
size_t bytes;

char *cp, *prevcp;

int main(int argc, char **argv)

{

sscanf (argv[1l], "%d", &bytes);
sscanf (argv([2], "%Ld", &limit);
printf("bytes %d, limit %Ld, tot %Ld\n",
bytes, limit, bytes * limit);
for (count=0; count < limit; count++) {
if (!(cp = malloc(bytes))) {
printf ("Max %Ld bytes.\n", bytes * (count + 1));
break;

} else if (!prevcp)
printf("First addr %Lx.\n", cp);
}
prevcp = cp;
printf("Last addr %Lx.\n", prevcp);
}

Compiling, linking, and running Example 1-3 produces:

$ cc example2
$ link example2

$ example2:==S$sysS$Slogin: [.john]example2 ! << set up a symbol
$ example2 65536 1234567890123456

bytes 65536, limit 1234567890123456, tot 7121664952292605952
First addr 610b0.

First addr 730b0.

First addr 850b0.

First addr 970b0.

First addr a90b0.

Developing HP C Programs 1-107

First addr f1c30b0.
First addr £1d50b0.
First addr f1e70b0.
First addr f£1£90b0.
First addr £20b0b0.
Max 225378304 bytes.
Last addr 0.

$

$ cc/pointer_size=64 example?2

$ link example2

$ example2 65536 1234567890123456

bytes 65536, limit 1234567890123456, tot
7121664952292605952

First addr 1c0010010.

Max 42532864 bytes.

Last addr 1c2d8e010.

Example 1-4 Preceding Example No Longer Trivial

#include <stdio.h>
#include <stdlib.h>
__int64 limit, count;
size_t bytes;

char *cp, *prevcp;

static void do_args(char **args)

{

sscanf (argv[1l], "%d", &bytes);

sscanf (argv([2], "%Ld", &limit);

printf("bytes %d, limit %Ld, tot %Ld\n",
bytes, limit, bytes * limit);

}

int main(int argc, char **argv)
{
do_args (argv) ;
for (count=0; count < limit; count++) {

if (!(cp = malloc(bytes))) {
printf("Max %Ld bytes.\n", bytes * (count + 1));
break;

} else if (!prevcp) {
printf ("First addr %Lx.\n", cp);
}
prevep = Cp;
printf("Last addr %Lx.\n", prevcp);

1-108 Developing HP C Programs

Compiling Example 1-4 produces:

$ cc/pointer_size=64 example3
do_args (argv) ;

$CC-W-PTRMISMATCH, In this statement, the referenced type

of the pointer value "argv" is "short pointer to char",
which is not compatible with "long pointer to char".

Developing HP C Programs 1-109

2

Using OpenVMS Record Management
Services

HP C for OpenVMS systems provides a set of run-time library functions and
macros to perform I/O. Some of these functions perform in the same manner as
I/0 functions found on C implementations running on UNIX systems. Other
HP C functions take full advantage of the functionality of the OpenVMS
file-handling system. You can also access the OpenVMS file-handling system
from your HP C program without using the HP C Run-Time Library (RTL)
functions. In any case, the system that ultimately accesses files on OpenVMS
systems is OpenVMS Record Management Services (RMS).

This chapter introduces you to the following RMS topics:

e RMS file organization (Section 2.1)

e Record access modes (Section 2.2)

e RMS record formats (Section 2.3)

e RMS functions (Section 2.4)

e Writing HP C programs using RMS (Section 2.5)

e RMS example program (Section 2.6)

The file-handling capabilities of HP C fall into two distinct categories:

e The HP C RTL functions which, with little or no modification, are portable
to other C implementations

e The RMS functions, which are not portable to other C implementations,
but do provide more methods of file organization and more record access
modes

Using OpenVMS Record Management Services 2-1

This chapter briefly reviews the basic concepts and facilities of RMS and
shows examples of their application in HP C programming. Because this is
an overview, the chapter does not explain all RMS concepts and features. For
language-independent information about RMS, see the following manuals in
the OpenVMS documentation set:

® Guide to OpenVMS File Applications

This guide contains a general description of the record management
services of the OpenVMS operating system, and the file creation and
run-time options available.

e OpenVMS Record Management Services Reference Manual

This manual describes the user interface to RMS. It includes introductory
information on RMS programming and detailed definitions of all RMS
control block structures and macro instructions.

2.1 RMS File Organization

RMS supports three types of file organization:

e Sequential

e Relative

e Indexed

The following sections describe these types of file organization.

The organization of a file determines how a file is stored on the media
and, consequently, the possible operations on records. You specify the file’s
organization when you create the file; it cannot be changed.

However, you can use the File Definition Language Editor (FDL) and the
CONVERT utility to define the characteristics of a new file, and then fill
the new file with the contents of the old file of a different format. For more
information, see the OpenVMS Utility Routines Manual.

2.1.1 Sequential File Organization

Sequential files have consecutive records. There are no empty records
separating records that contain data. This organization allows the following
operations on the file:

e Positioning the file at a particular record, generally by sequentially moving
from one record to the next.

Using OpenVMS Record Management Services

Direct access is also possible, either by key (relative record number) or
by the record file address (RFA). However, although allowed for any file
organization, access by RFA is limited to files on disk devices, and access
by key is limited to disk files that also have fixed-length records. These
access modes are unusual because most application programs do not keep
track of record positions in sequential files.

Reading data from any record.

Writing data by adding records at the end of the file.

Sequential organization is the only kind permitted for magnetic tape files and
other nondisk devices.

2.1.2 Relative File Organization

Relative files have records that occupy numbered, fixed-length cells. The
records themselves need not have the same length. Cells can be empty or can
contain records so the following operations are permitted:

Positioning the file at a particular record, usually by direct access.

In direct access, RMS uses the relative record number—the number of a
cell—as a key to locate the cell and its record; there is no need to reference
other cells. RMS can also access the records sequentially by ignoring empty
cells, or RMS can access the file directly with the record file address (RFA).
RMS returns the RFA in a parameter block whenever it writes a record,
and you can access and use the RFA to locate the appropriate record. You
can access any file organization with the RFA.

Reading a record from any cell.
Deleting a record from any cell.

Writing a record into any cell.

Relative file organization is possible only on disk devices.

2.1.3 Indexed File Organization

Indexed files have records that contain, in addition to data and carriage-control
information, one or more keys. Keys can be character strings, packed decimal
numbers, and 16-bit, 32-bit, or 64-bit signed or unsigned integers. Every record
has at least one key, the primary key, whose value in each record cannot be
changed. Optionally, each record can have one or more alternate keys, whose
key values can be changed.

Using OpenVMS Record Management Services 2-3

Unlike relative record numbers used in relative files, key values in indexed
files are not necessarily unique. When you create a file, you can specify that a
particular key have the same value in different records (these keys are called
duplicate keys). Keys are defined for the entire file in terms of their position
within a record and their length.

In addition to maintaining its records, RMS builds and maintains indexes for
each of the defined keys. As records are written to the file, their key values
are inserted in order of ascending value in the appropriate indexes. This
organization allows the following operations:

e Positioning the file at a particular record by direct access.

In direct access reads, you use either a primary or alternate key, plus a
specified key value, to locate the record. In direct access writes (given

a record that contains key values in the predefined positions), RMS
automatically adds the record to the file and adds the primary and
alternate key values to the appropriate indexes. You can also access
records sequentially, where the sequence is defined by the index for a
specified key. Finally, you can access records directly by RFA; RMS returns
the RFA in a parameter block whenever it writes a record, and you can
access and use the RFA to locate the appropriate record. You can access
any file organization with the RFA.

e Reading any record, including sequential reads controlled by a key’s index.
e Deleting any record.

e Updating an alternate key’s value, if the key’s definition permits its value
to change.

e Writing records selectively, based on the value of a key and, when allowed
in the key’s definition, based on duplicate values. If duplicate values are
permitted, you can write records containing key values that are present
in the key’s index. If duplicate values are not permitted, such write
operations are rejected.

Indexed organization is possible only on disk devices.

2.2 Record Access Modes

The record access modes are sequential, direct by key, and direct by record file
address. The direct access modes are possible only with files that reside on
disks.

2-4 Using OpenVMS Record Management Services

Unlike a file’s organization, the record access mode is not a permanent
attribute of the file. During the processing of a file, you can switch from one
access mode to any other permitted for that file organization. For example,
indexed files are often processed by locating a record directly by key, and
then using that key’s index to sequentially read all the indexed records in
ascending order of their key values; this method is sometimes called the
indexed-sequential access method (ISAM).

2.3 RMS Record Formats

Records in RMS files can have the following formats:

¢ Fixed-length format, where the length of every record is defined at the time
of the file’s creation. This format is permitted with any file organization.

e Variable-length format, where the maximum length of every record is
defined at the time of the file’s creation. This format is permitted with any
file organization.

e Variable-length format with a fixed-length control area (VFC), where every
record is prefixed by a fixed-length field. This format is permitted only
with sequential and relative files.

e Stream format, where records are delimited by special characters called
terminators. Terminators are part of the record they delimit. The three
types of stream formatting are as follows:

— Stream, where records can be delimited with a form feed, vertical tab,
new-line character, or carriage-return/new-line character.

— Stream_cr, where records are delimited with the carriage-return
character.

— Stream_If, where records are delimited with the line-feed character.
This format variation is the default format when you create files using
the Standard I/O functions.

2.4 RMS Functions

RMS provides a number of functions that create and manipulate files. These
functions use RMS data structures to define the characteristics of a file and its
records. The data structures are used as indirect arguments to the function
call.

The RMS data structures are grouped into four main categories, as follows:

e TFile Access Block (FAB)—Defines the file’s characteristics, such as file
organization and record format.

Using OpenVMS Record Management Services 2-5

e Record Access Block (RAB)—Defines the way in which records are
processed, such as the record access mode.

e Extended Attribute Block (XAB)—Various kinds of extended attribute
blocks contain additional file characteristics, such as the definition of keys
in an indexed file. Extended attribute blocks are optional.

e Name Block (NAM)—Defines all or part of a file specification to be used
when an incomplete file specification is given in an OPEN or CREATE
operation. Name blocks are optional.

RMS uses these data structures to perform file and record operations.
Table 2—1 lists some of the common functions.

Table 2-1 Common RMS Run-Time Processing Functions

Category Function Description
File sys$create Creates and opens a new file of any organization.
Processing
sys$open Opens an existing file and initiates file processing.
sys$close Terminates file processing and closes the file.
sys$erase Deletes a file.
Record sys$connect Associates a file access block with a record access
Processing block to establish a record access stream; a call to

this function is required before any other record-
processing function can be used.

sys$get Retrieves a record from a file.

sys$put Writes a new record to a file.

sys$update Rewrites an existing record to a file.

sys$delete Deletes a record from a file.

sys$rewind Positions the record pointer to the first record in the
file.

sys$disconnect Disconnects a record access stream.

All RMS functions are directly accessible from HP C programs. The syntax for
any RMS function has the following form:

int sys$name(struct rms_structure *pointer);

In this syntax, name is the name of the RMS function (such as OPEN or
CREATE); rms_structure is the name of the structure being used by the
function.

2-6 Using OpenVMS Record Management Services

The file-processing functions require a pointer to a file access block as an
argument; the record-processing functions require a pointer to a record access
block as an argument. Since sys$create is a file-processing function, its syntax
is as follows:

int sys$create(struct FAB *fab);

These syntax descriptions do not show all the options available when you
invoke an RMS function. For a complete description of the RMS calling
sequence, see the OpenVMS Record Management Services Reference Manual.

Finally, all the RMS functions return an integer status value. The format of
RMS status values follows the standard format described in Chapter 3. Since
RMS functions return a 32-bit integer, you do not need to declare the type of
an RMS function return before you use it.

2.5 Writing HP C Programs Using RMS

The HP C Run-Time Library (RTL) supplies a number of header files that
describe the RMS data structures and status codes. Table 2—2 describes these
header files.

Table 2-2 HP C RMS Header Files

Structure
Header File Tag(s) Description
<fab.h> FAB Defines the file access block structure.
<rab.h> RAB Defines the record access block structure.
<nam.h> NAM Defines the name block structure.
<xab.h> XAB Defines all the extended attribute block structures.
<rmsdef.h> - Defines the completion status codes that RMS returns
after every file- or record-processing operation.
<rms.h> all tags Includes all the previous header files.

Most HP C programmers include the <rms.h> header file, which includes all
the other header files.

These header files define all the data structures as structure tag names.
However, they perform no allocation or initialization of the structures; these
header files describe only a template for the structures. To use the structures,
you must create storage for them and initialize all the structure members as
required by RMS. Note that these include files are part of HP C for OpenVMS
systems. RMS is part of the OpenVMS environment and may contain other
included header files not described here.

Using OpenVMS Record Management Services 2-7

To assist in the initialization process, the HP C RTL provides initialized RMS
data structure variables. You can copy these variables to your uninitialized
structure definitions with a structure assignment. You can choose to take the
default values for each of the structure members, or you can tailor the contents
of the structures to fit your requirements. In either case, you must use the
structure types to allocate storage for the structure and to define the members
of the structure.

The initialized variables supply the RMS default values for each member in
the structure; they specify none of the optional parameters. To determine
what default values are supplied by the initialized variables, see the OpenVMS
Record Management Services Reference Manual.

Table 2—-3 lists the initialized RMS data structure variables and the structures
that they initialize.

Table 2-3 RMS Data Structures

Variable Structure Type Initialize Structure

cc$rms_fab struct FAB File access block

cc$rms_rab struct RAB Record access block

cc$rms _nam struct NAM Name block

cc$rms_xaball struct XABALL Allocation extended attribute block

cc$rms_xabdat struct XABDAT Date and time extended attribute block

cc$rms_xabfhe struct XABFHC File header characteristics extended
attribute block

cc$rms_xabkey struct XABKEY Indexed file key extended attribute block

cc$rms_xabpro struct XABPRO Protection extended attribute block

cc$rms_xabrdt struct XABRDT Revision date and time extended attribute
block

cc$rms_xabsum struct XABSUM Summary extended attribute block

cc$rms_xabtrm struct XABTRM Terminal extended attribute block

The declarations of these structures are contained in the appropriate header

file.

The names of the structure members conform to the following RMS naming

convention:

typ$s_fld

2-8 Using OpenVMS Record Management Services

The identifier ¢yp is the abbreviation for the structure, the letter s is the size
of the member (such as 1 for longword or b for byte), and the identifier fld

is the member name, such as sts for the completion status code. The dollar
sign ($) is a character used in OpenVMS system logical names. See the
OpenVMS Record Management Services Reference Manual for a description of
the members in each structure.

2.5.1 Initializing File Access Blocks

The file access block defines the attributes of the file. To initialize a file access
block, assign the values in the initialized data structure cc$rms_fab to the
address of the file access block defined in your program. Consider the following

example:

/* This example shows how to initialize a file access block. */
#include <rms.h> /* Declare all RMS data structs */
struct FAB fblock; /* Define a file access block */
main()

{ fblock = ccSrms_fab; /* Initialize the structure */

}

Any of these RMS structures may be dynamically allocated. For example,
another way to allocate a file access block is as follows:

/* This program shows how to dynamically allocate RMS structures. */

#include <rms.h> /* Declare all RMS data structs */
main()
{
/* Allocate dynamic storage */
struct FAB *fptr = malloc(sizeof (struct FAB));
fptr = ccSrms_fab; / Initialize the structure */

}

To change the default values supplied by a data structure variable, you must
reinitialize the members of the structure individually. You initialize a member
by giving the offset of the member and assigning a value to it. Consider the
following example:

fblock.fab$l_xab = &primary_key;

Using OpenVMS Record Management Services 2-9

This statement assigns the address of the extended attribute block named
primary_key to the fab$l_xab member of the file access block named fblock.

2.5.2 Initializing Record Access Blocks

The record access block specifies how records are processed. You initialize
a record access block the same way you initialize a file access block. For
example:

/* This example shows how to initialize a file access block. */

#include <rms.h>
struct FAB fblock;

struct RAB rblock; /* Define a record access block */
main()
{
fblock = ccSrms_fab; /* Initialize the structure */
rblock = cc$rms_rab;

/* Initialize the FAB member */
rblock.rab$l fab = &fblock;

}

2.5.3 Initializing Extended Attribute Blocks

There is only one extended attribute block structure (XAB), but there are
seven ways to initialize it. The extended attribute blocks define additional
file attributes that are not defined elsewhere. For example, the key extended
attribute block is used to define the keys of an indexed file.

All extended attribute blocks are chained off a file access block in the following
manner:

1. In afile access block, you initialize the fab$l_xab field with the address of
the first extended attribute block.

2. You designate the next extended attribute block in the chain in the xab$l_
nxt field of any subsequent extended attribute blocks. You chain each
subsequent extended attribute block in order by the key of reference (first
the primary key, then the first alternate key, then the second alternate key,
and so forth).

3. You initialize the xab$l nxt member of the last extended attribute block in
the chain with the value 0 (the default) to indicate the end of the chain.

2-10 Using OpenVMS Record Management Services

You go through the same steps to declare extended attribute blocks as you
would to declare the other RMS data structures:

1. Define the structures by including the appropriate header file.
2. Assign a specific data structure variable to the structure in your program.
3. Initialize the members of the structure with the desired values.

The following example declares two extended attribute block structures. They
are initialized as key extended attribute blocks with the cc$rms_xabkey data
structure variable. The xab$l_nxt member of the primary key is initialized
with the address of the alternate_key extended attribute block.

/* This example shows how to initialize the extended *
* attribute block. */

#include <rms.h>
struct XABKEY primary_key,alternate_key;

main()

{
primary_key
alternate_key
primary_key.xabsl_nxt

ccSrms_xabkey;
ccSrms_xabkey;
&alternate_key;

}
2.5.4 Initializing Name Blocks

The name block contains default file name values, such as the directory or
device specification, file name, or file type. If you do not specify one of the
parts of the file specification when you open the file, RMS uses the values in
the name block to complete the file specification and places the complete file
specification in an array.

You create and initialize name blocks in the same manner used to initialize the
other RMS data structures. Consider the following example:

/* This example shows how to initialize a name block. */
#include <rms.h>

struct NAM nam;
struct FAB fab;

main()

{
fab = cc$rms_fab;
nam = ccSrms_nam;

Using OpenVMS Record Management Services 2-11

/* Define an array for the *
* expanded file specification */
char expanded_name [NAMSC_MAXRSS];

/* Initialize the appropriate *
* members */
fab.fab$l nam
nam.nam$l_esa
nam.nam$b_ess

&nam;
&expanded_name;
sizeof expanded_name;

2.6 RMS Example Program

The example program in this section uses RMS functions to maintain a simple
employee file. The file is an indexed file with two keys: social security number
and last name. The fields in the record are character strings defined in a
structure with the tag record.

The records have the carriage-return attribute. Individual fields in each record
are padded with blanks for two reasons. First, because RMS requires that the
key fields be a fixed length and occur in a fixed position in each record, key
fields must be padded in some way. The example program pads short fields;
its use of the space character for padding is arbitrary. Second, the choice of
blank padding (as opposed to null padding) allows the file to be printed or
typed without conversion. Note that both the position and size of the key are
attributes of the file, not of each I/O that gets done.

The program does not perform range or bounds checking. Only the error
checking that shows the mapping of HP C to RMS is performed. Any other
errors are considered fatal.

The program is divided into the following sections:
e External data declarations and definitions

e Main program section

e Function to initialize the RMS data structures

e Internal functions to open the file, display HELP information, pad the
records, and process fatal errors

e Utility functions
- ADD
— DELETE

2-12 Using OpenVMS Record Management Services

— TYPE
— PRINT
— UPDATE

To run this program, perform the following steps:

1.

Create a source file. The name of the source file in this example is
RMSEXP.C. For more information about creating source files, see
Chapter 1.

Compile the source file with the following command:

$ CC RMSEXP [Rewm]

For more information about the compiling process, see Chapter 1.
Link the program with the following command:

$ LINK RMSEXP

For more information about the linking process, see Chapter 1.

Because the program expects command-line arguments, it must be defined
as a foreign command. You can do this with the following command line:

$ RMSEXP :== $device:[directory] RMSEXP|Retumn

The identifier device is the logical or physical name of the device containing
your directory; the identifier directory is the name of your directory. The
device name must be preceded by the dollar sign ($) to be recognized as a
foreign command by the DCL interpreter.

Run the program using the following foreign command:

S RMSEXP filename [Retum]

The complete listing of the sample program follows. The listing is broken into
sections and shown in Examples 2—1 through 2-9. Notes on each section are
keyed to the numbers in the listing.

Example 2-1 shows the external data declarations and definitions.

Using OpenVMS Record Management Services 2-13

Example 2-1 External Data Declarations and Definitions

/* This segment of RMSEXP.C contains external data *
* definitions. */

1 #include <rms.h>
#include <stdio.h>
#include <ssdef.h>
#include <string.h>
#include <stdlib.h>
#include <starlet.h>

2 #define DEFAULT_FILE_EXT ".dat"
#define RECORD_SIZE (sizeof record)
#define SIZE_SSN 15
#define SIZE_LNAME 25
#define SIZE_FNAME 25
#define SIZE_COMMENTS 15
#define KEY SIZE \

(SIZE_SSN > SIZE_LNAME ? SIZE SSN: SIZE_LNAME)

3 struct FAB fab;
struct RAB rab;
struct XABKEY primary_key,alternate_key;

4 struct
{
char ssn[SIZE_SSN], last_name[SIZE_LNAME];
char first_name[SIZE_FNAME],
comments [SIZE_COMMENTS] ;
} record;

5 char response[BUFSIZ],*filename;
6 1int rms_status;

void open_file(void);

void type_options(void);
void pad_record(void);

void error_exit (char *);
void add_employee(void);
void delete_employee(void);
void type_employees (void);
void print_employees (void) ;
void update_employee(void);
void initialize(char *);

Key to Example 2—1:

1 The <rms.h> header file defines the RMS data structures. The <stdio.h>
header file contains the Standard I/O definitions. The <ssdef.h> header
file contains the system services definitions.

2-14 Using OpenVMS Record Management Services

2 Preprocessor variables and macros are defined. A default file extension
.DAT is defined.

The sizes of the fields in the record are also defined. Some (such as the
social security number field) are given a constant length. Others (such as
the record size) are defined as macros; the size of the field is determined
with the sizeof operator. HP C evaluates constant expressions, such as
KEY_SIZE, at compile time. No special code is necessary to calculate this
value.

3 Static storage for the RMS data structures is declared. The file access
block, record access block, and extended attribute block types are defined
by the <rms.h> header file. One extended attribute block is defined for the
primary key and one is defined for the alternate key.

4 The records in the file are defined using a structure with four fields of
character arrays.

5 The BUFSIZ constant is used to define the size of the array that will be used
to buffer input from the terminal. The file-name variable is defined as a
pointer to char.

6 The variable rms_status is used to receive RMS return status information.
After each function call, RMS returns status information as an integer.
This return status is used to check for specific errors, end-of-file, or
successful program execution.

The main function, shown in Example 2-2, controls the general flow of the
program.

Using OpenVMS Record Management Services 2-15

Example 2-2 Main Program Section

/* This segment of RMSEXP.C contains the main function
* and controls the flow of the program. */

1 main(int argc, char **argv)

2 if (argec < 1 || arge > 2)
printf ("RMSEXP - incorrect number of arguments");
else

{

printf ("RMSEXP - Personnel Database \
Manipulation Example\n");

3 filename = (argc == 2 ? *++argv : "personnel.dat");
4 initialize(filename);
5 open_file();
for(;;)
{
6 printf ("\nEnter option (A,D,P,T,U) or \
? for help :");
gets(response) ;
if (feof(stdin))
break;
printf ("\n\n");
7 switch(response[0])
{
case 'a’: case 'A’: add_employee();
break;
case 'd’: case 'D’': delete_employee();
break;
case 'p’: case 'P’: print_employees();
break;
case 't’: case 'T': type_employees();
break;
case 'u’: case 'U’: update_employee();
break;
default: printf ("RMSEXP - \

Unknown Operation.\n");

case '?’': case '\0’:
type_options () ;

(continued on next page)

2-16 Using OpenVMS Record Management Services

Example 2-2 (Cont.) Main Program Section

rms_status = sys$close(&fab);

if (rms_status != RMSS$_NORMAL)
error_exit ("$CLOSE") ;

}

Key to Example 2-2:

1 The main function is entered with two parameters. The first is the number
of arguments used to call the program; the second is a pointer to the first
argument (file name).

2 This statement checks that you used the correct number of arguments
when invoking the program.

3 If a file name is included in the command line to execute the program, that
file name is used. If a file extension is not given, .DAT is the file extension.
If no file name is specified, then the file name is PERSONNEL.DAT.

4 The file access block, record access block, and extended attribute blocks are
initialized.
5 The file is opened using the RMS sys$open function.

6 The program displays a menu and checks for end-of-file (the character
Ctrl/Z).

7 A switch statement and a set of case statements control the function to be
called, which is determined by the response from the terminal.

8 The program ends when Ctrl/Z is entered in response to the menu. At that
time, the RMS sys$close function closes the employee file.

9 The rms_status variable is checked for a return status of RMS$_NORMAL.
If the file is not closed successfully, then the error-handling function
terminates the program.

Example 2-3 shows the function that initializes the RMS data structures.
See the RMS documentation for more information about the file access block,
record access block, and extended attribute block structure members.

Using OpenVMS Record Management Services 2-17

Example 2-3 Function Initializing RMS Data Structures

/* This segment of RMSEXP.C contains the function that
* initializes the RMS data structures. */

void initialize(char *fn)

{

1 fab = cc$Srms_fab; /* Initialize FAB */
fab.fabSb_bks = 4;
fab.fab$l dna DEFAULT_FILE_EXT;
fab.fabSb_dns sizeof DEFAULT FILE EXT -1;
fab.fabs$b_fac FABSM_DEL FABSM_GET ‘

FABSM_PUT FABSM_UPD;

fab.fab$l fna = fn;
fab.fabSb_fns = strlen(fn);

2 fab.fabSl_fop = FABSM_CIF;
fab.fabSw_mrs = RECORD_SIZE;
fab.fabSb_org = FABSC_IDX;

3 fab.fabSb_rat = FABSM_CR;
fab.fabsb _rfm = FABSC_FIX;
fab.fabSb_shr = FABSM_NIL;

fab.fab$l_xab &primary_key;

4 rab = ccSrms_rab; /* Initialize RAB */
rab.rab$l fab = &fab;
5 primary_key = ccSrms_xabkey; /* Initialize Primary

* Key XAB */
XABSC_STG;
0

’

primary_key.xabSb_dtp
primary_key.xabsb_flg
6 primary_key.xabSw_pos0 = (char *) &record.ssn -
(char *) &record;
primary_key.xabSb_ref = 0;
primary_key.xab$hb_siz0 = SIZE_SSN;
primary_key.xab$l_nxt &alternate_key;
primary_key.xab$1l_knm "Employee Social Security \
Number "

(continued on next page)

2-18 Using OpenVMS Record Management Services

Example 2-3 (Cont.) Function Initializing RMS Data Structures

}

alternate_key = ccSrms_xabkey; /* Initialize Alternate *
* Key XAB */
alternate_key.xab$b_dtp = XABSC_STG;
alternate_key.xab$b_flg = XAB$M DUP | XABSM_CHG;
alternate_key.xabSw_pos0 = (char *) &record.last_name -
(char *) &record;
alternate_key.xabSb_ref = 1;
alternate_key.xabSh_siz0 = SIZE_LNAME;
alternate_key.xab$l_knm = "Employee Last Name \

([
’

Key to Example 2-3:

1

The data structure variable cc$rms fab initializes the file access block
with default values. Some members have no default values; they must be
initialized. Such members include the file-name string address and size.
Other members can be initialized to override the default values.

This statement initializes the file-processing options member with the
create-if option. A file is created if one does not exist.

This statement initializes the record attributes member with the carriage-
return control attribute. Records are terminated with a carriage return/line
feed when they are printed on the printer or displayed at the terminal.

The data structure variable cc$rms_rab initializes the record access block
with the default values. In this case, the only member that must be
initialized is the rab$l_fab member, which associates a file access block
with a record access block.

The data structure variable cc$rms_xabkey initializes an extended
attribute block for one key of an indexed file.

The position of the key is specified by subtracting the offset of the member
from the base of the structure.

A separate extended attribute block is initialized for the alternate key.

This statement specifies that more than one alternate key can contain the
same value (XAB$M_DUP), and that the value of the alternate key can be
changed (XAB$M_CHG).

Using OpenVMS Record Management Services 2-19

Note

RMS constants shown here are in the form xxx$M_yyy (for example,
RAB$M_FIX) or xxx$C_yyy (for example, RAB$C_FIX). The OpenVMS
RMS documentation cites the constants in the form xxx$V_yyy (for
example, rab$v_fix), the difference being:

e The $M type constant signifies a bit mask, and should be OR’ed
to an existing value.

e The $V type constant represents the bit position of a constant,
and a shift operation is necessary for setting the appropriate
bit.

Using a $V type constant the same way as a $M type constant is a
common problem.

9 The key-name member is padded with blanks because it is a fixed-length,
32-character field.

Example 2—4 shows the internal functions for the program.

Example 2—4 Internal Functions

/* This segment of RMSEXP.C contains the functions that
* control the data manipulation of the program. */

void open_file(void)
{
1 rms_status = sysScreate(&fab);
if (rms_status !'= RMS$_NORMAL &&
rms_status != RMSS_CREATED)
error_exit ("$OPEN");

if (rms_status == RMSS$_CREATED)
printf (" [Created new data file.]\n");

2 rms_status = sysS$connect (&rab);
if (rms_status !'= RMSS$_NORMAL)
error_exit ("SCONNECT") ;

(continued on next page)

2-20 Using OpenVMS Record Management Services

Example 2-4 (Cont.) Internal Functions

3 void type_options(void)
{

printf ("Enter one of the following:\n\n");

printf (" Add an employee.\n");

printf ("D Delete an employee specified by SSN.\n");
printf("P Print employee(s) by ascending SSN on \

line printer.\n");

printf("T Type employee(s) by ascending last name \
on terminal.\n");
printf("U Update employee specified by SSN.\n\n");
printf("? Type this text.\n");
printf (""7Z Exit this program.\n\n");
}

4 void pad_record(void)
{

int i;

for(i = strlen(record.ssn); 1 < SIZE_SSN; 1i++)
record.ssn[i] = ' ';

for(i = strlen(record.last name); 1 < SIZE LNAME; 1++)
record.last_name[i] = ' ’;

for(i = strlen(record.first name); 1 < SIZE FNAME; 1++)
record.first_name[i] = ' ’;

for(i = strlen(record.comments);i < SIZE_COMMENTS; 1++)
record.comments([i] = ' ’;

}
/* This subroutine is the fatal error-handling routine. */

5 void error_exit(char *operation)

{
printf ("RMSEXP - file %s failed (%s)\n",
operation, filename);
exit (rms_status);

}

Key to Example 2—4:

1 The open_file function uses the RMS sys$create function to create the file,
giving the address of the file access block as an argument. The function
returns status information to the rms_status variable.

2 The RMS sys$connect function associates the record access block with the
file access block.

Using OpenVMS Record Management Services 2-21

3 The type_options function, called from the main function, prints help
information. Once the help information is displayed, control returns to the
main function, which processes the response that is typed at the terminal.

4 For each field in the record, the pad_record function fills the remaining
bytes in the field with blanks.

5 This function handles fatal errors. It prints the function that caused
the error, returns an OpenVMS error code (if appropriate), and exits the
program.

Example 2-5 shows the function that adds a record to the file. This function is
called when "a’ or A’ is entered in response to the menu.

2-22 Using OpenVMS Record Management Services

Example 2-5 Utility Function: Adding Records

/* This segment of RMSEXP.C contains the function that
* adds a record to the file. */

void add_employee(void)

{

do
{
printf (" (ADD) Enter Social Security Number:");
gets (response) ;
}
while(strlen(response) == 0);

strncpy (record.ssn, response, SIZE_SSN) ;

do

{
printf (" (ADD) Enter Last Name:");

gets (response) ;
}

while(strlen(response) == 0);

strncpy (record.last_name, response, SIZE_LNAME) ;

do
{
printf (" (ADD) Enter First Name:");
gets (response) ;
}
while(strlen(response) == 0);

strncpy (record. first_name, response, SIZE_FNAME) ;

do
{
printf (" (ADD) Enter Comments:");
gets (response) ;
}
while(strlen(response) == 0);

strncpy (record.comments, response, SIZE_COMMENTS) ;
pad_record() ;

rab.rab$b_rac
rab.rabsl_rbf
rab.rabSw_rsz

RABSC_KEY;
(char *) &record;
RECORD_SIZE;

(continued on next page)

Using OpenVMS Record Management Services 2-23

Example 2-5 (Cont.) Utility Function: Adding Records

4 rms_status = sysSput (&rab);

5 if (rms_status != RMSS_NORMAL && rms_status !=
RMSS DUP && rms_status != RMS$_OK_DUP)
error_exit ("$PUT");

else
if (rms_status == RMS$_NORMAL || rms_status ==
RMSS$S_OK_DUP)
printf (" [Record added successfully.]\n");
else

printf ("RMSEXP - Existing employee with same SSN, \
not added.\n");
}

Key to Example 2-5:

1 A series of do loops controls the input of information. For each field in the
record, a prompt is displayed. The response is buffered and the field is
copied to the structure.

2 When all fields have been entered, the pad_record function pads each field
with blanks.

3 Three members in the record access block are initialized before writing
the record. The record access member (rab$b_rac) is initialized for keyed
access. The record buffer and size members (rab$l_rbf and rab$w_rsz) are
initialized with the address and size of the record to be written.

4 The RMS sys$put function writes the record to the file.

5 The rms_status variable is checked. If the return status is normal, or
if the record has a duplicate key value and duplicates are allowed, the
function prints a message stating that the record was added to the file.

Any other return value is treated as a fatal error causing error_exit to be
called.

Example 2—6 shows the function that deletes records. This function is called
when 'd’ or 'D’ is entered in response to the menu.

2-24 Using OpenVMS Record Management Services

Example 2-6 Utility Function: Deleting Records

/* This segment of RMSEXP.C contains the function that *
* deletes a record from the file. */

void delete_employee(void)
{
int 1;
do
{
printf (" (DELETE) Enter Social Security Number ");
gets (response) ;
i = strlen(response);
}

while(i == 0);

while(i < SIZE_SSN)
response[i++] = ' /;

rab.rabSb_krf = 0;
rab.rabsl_kbf = response;
rab.rabSb_ksz = SIZE SSN;
rab.rabSb_rac = RABSC_KEY;
rms_status = sys$find(&rab);

if (rms_status !'= RMSS_NORMAL && rms_status != RMSS$_RNF)
error_exit ("$SFIND");
else
if (rms_status == RMSS_RNF)
printf ("RMSEXP - specified employee does not \
exist.\n");

else
{
rms_status = sys$delete(&rab);
if (rms_status != RMSS_NORMAL)
error_exit ("SDELETE") ;

}

Key to Example 2-6:

1 A do loop prompts you to type a social security number at the terminal and
places the response in the response buffer.

2 The social security number is padded with blanks.

3 Some members in the record access block must be initialized before the
program can locate the record. Here, the key of reference (0 specifies the
primary key), the location and size of the search string (this is the address
of the response buffer and its size), and the type of record access (in this
case, keyed access) are given.

Using OpenVMS Record Management Services 2-25

4 The RMS sys$find function locates the record specified by the social
security number entered from the terminal.

5 The program checks the rms_status variable for the values RMS$_
NORMAL and RMS$_RNF (record not found). A message is displayed if
the record cannot be found. Any other error is a fatal error.

6 The RMS sys$delete function deletes the record. The return status is
checked only for success.

Example 2-7 shows the function that displays the employee file at the
terminal. This function is called from the main function when 't or 'T is
entered in response to the menu.

Example 2-7 Utility Function: Typing the File

/* This segment of RMSEXP.C contains the function that
* displays a single record at the terminal. */

void type_employees (void)
{

1 int number_employees;
2 rab.rabSb _krf = 1;

3 rms_status = sysSrewind(&rab);
if (rms_status !'= RMSS_NORMAL)
error_exit ("SREWIND");

4 printf("\n\nEmployees (Sorted by Last Name)\n\n");

printf ("Last Name First Name SSN \
Comments\n") ;

printf("--------—- - e \
———————— \n\n") ;

5 rab.rab$b_rac
rab.rab$l_ubf
rab.rabSw_usz

RABSC_SEQ;
(char *) &record;
RECORD_SIZE;

6 for (number_employees = 0; ; number_employees++)
{
rms_status = sysSget (&rab);
if (rms_status != RMSS_NORMAL && rms_status !=
RMSS$_EOF)
error_exit ("SGET") ;
else
if (rms_status == RMSS$_EOF)
break;

(continued on next page)

2-26 Using OpenVMS Record Management Services

Example 2-7 (Cont.) Utility Function: Typing the File

7

}

printf("%.*s%.*s%.*s%.*s\n",
SIZE_LNAME, record.last_name,
SIZE_FNAME, record.first_name,
SIZE_SSN, record.ssn,
SIZE_COMMENTS, record.comments);
}

if (number_employees)
printf("\nTotal number of employees = %d.\n",
number_employees) ;
else
printf("[Data file is empty.]\n");

Key to Example 2-7:

1

A running total of the number of records in the file is kept in the
number_employees variable.

The key of reference is changed to the alternate key so that the employees
are displayed in alphabetical order by last name.

The file is positioned to the beginning of the first record according to the
new key of reference, and the return status of the sys$rewind function is
checked for success.

A heading is displayed.

Sequential record access is specified, and the location and size of the record
is given.

A for loop controls the following operations:
e Incrementing the number_employees counter

e Locating a record and placing it in the record structure, using the RMS
sys$get function

e Checking the return status of the RMS sys$get function
e Displaying the record at the terminal

This if statement checks for records in the file. The result is a display of
the number of records or a message indicating that the file is empty.

Using OpenVMS Record Management Services 2-27

Example 2-8 shows the function that prints the file on the printer. This
function is called by the main function when 'p’ or ‘P’ is entered in response
to the menu.

Example 2-8 Utility Function: Printing the File

/* This segment of RMSEXP.C contains the function that
* prints the file. */

void print_employees (void)
{
int number_employees;
FILE *fp;

1 fp = fopen("personnel.lis", "w", "rat=cr",
"rfm=var", "fop=spl");
if (fp == NULL)
{
perror ("RMSEXP - failed opening listing \
file");

exit (SSS_NORMAL) ;
}

2 rab.rabs$b krf = 0;

3 rms_status = sysSrewind(&rab);
if (rms_status !'= RMS$_NORMAL)
error_exit ("SREWIND") ;

4 fprintf (fp, "\n\nEmployees (Sorted by SSN)\n\n");

fprintf (fp, "Last Name First Name SSN \
Comments\n") ;

fprintf(fp, "---==---- oo e \
-------- \n\n") ;

5 rab.rab$b_rac
rab.rabsl_ubf
rab.rabSw_usz

RABSC_SEQ;
(char *) &record;
RECORD_SIZE;

6 for (number_employees = 0; ; number_employees++)
{

rms_status = sysSget (&rab);

if (rms_status != RMSS$_NORMAL &&
rms_status != RMSS_EOF)
error_exit ("$SGET");

else
1f (rms_status == RMSS$_EOF)

break;

(continued on next page)

2-28 Using OpenVMS Record Management Services

7

8

Example 2-8 (Cont.) Utility Function: Printing the File

fprintf (fp, "%.*s%.*s%.*s%.*s",
SIZE_LNAME, record.last_name,
SIZE_FNAME, record.first_name,
SIZE_SSN, record.ssn,
SIZE_COMMENTS, record.comments) ;
}
if (number_employees)
fprintf (fp, "Total number of employees = %d.\n",
number_employees) ;
else
fprintf (fp, "[Data file is empty.]\n");

fclose(fp);
printf("[Listing file\"personnel.lis\"spooled to \

SYSSPRINT.]\n");

}

Key to Example 2-8:

1

This function creates a sequential file with carriage-return carriage-control,
variable-length records. It spools the file to the printer when the file is
closed. The file is created using the standard I/O library function fopen,
which associates the file with the file pointer, fp.

The key of reference for the indexed file is the primary key.

The RMS sys$rewind function positions the file at the first record. The
return status is checked for success.

A heading is written to the sequential file using the standard I/O library
function fprintf.

The record access, user buffer address, and user buffer size members of the
record access block are initialized for keyed access to the record located in
the record structure.

A for loop controls the following operations:

e Initializing the running total and then incrementing the total at each
iteration of the loop

e Locating the records and placing them in the record structure with the
RMS sys$get function, one record at a time

e Checking the rms_status information for success and end-of-file

e Writing the record to the sequential file

Using OpenVMS Record Management Services 2-29

7 The number_employees counter is checked. If it is 0, a message is printed
indicating that the file is empty. If it is not 0, the total is printed at the
bottom of the listing.

8 The sequential file is closed. Since it has the spl record attribute, the file
is automatically spooled to the printer. The function displays a message at
the terminal stating that the file was successfully spooled.

Example 2-9 shows the function that updates the file. This function is called
by the main function when ‘u’ or U’ is entered in response to the menu.

Example 2-9 Utility Function: Updating the File

/* This segment of RMSEXP.C contains the function that
* updates the file. */

void update_employee (void)

{
int i;
1 do

{
printf (" (UPDATE) Enter Social Security Number\

||)'

gets (response) ;
i = strlen(response);

}

while(i == 0);

2 while(i < SIZE_SSN)
response[i++] = ' /;

rab.rab$l_ubf
rab.rabSw_usz

(char *) &record;
RECORD_SIZE;

3 rab.rabSb_krf = 0;
rab.rabsl_kbf = response;
rab.rabsSb_ksz = SIZE_SSN;
rab.rabSb_rac = RABSC _KEY;

4 rms_status = sysSget(&rab);

(continued on next page)

2-30 Using OpenVMS Record Management Services

Example 2-9 (Cont.) Utility Function: Updating the File
if (rms_status !'= RMSS_NORMAL && rms_status != RMSS_RNF)

error_exit ("$GET");
else

if (rms_status == RMSS_RNF)
printf ("RMSEXP - specified employee does not \
exist.\n");

else
{

printf ("Enter the new data or RETURN to leave \
data unmodified.\n\n");

printf("Last Name:");
gets (response) ;
if (strlen(response))
strncpy (record.last_name, response,
SIZE_LNAME) ;

printf ("First Name:");
gets (response) ;
if (strlen(response))
strncpy (record. first_name, response,
SIZE_FNAME) ;

printf ("Comments:");
gets (response) ;
if (strlen(response))
strncpy (record.comments, response,
SIZE_COMMENTS) ;

pad_record() ;

rms_status = sysSupdate (&rab);
if (rms_status !'= RMSS_NORMAL)
error_exit ("SUPDATE");

printf (" [Record has been successfully \

updated.]\n");

}

}

Key to Example 2-9:

1

A do loop prompts for the social security number and places the response

in the response buffer.

The response is padded with blanks so that it will correspond to the field

in the file.

Using OpenVMS Record Management Services 2-31

3 Some of the members in the record access block are initialized for the
operation. The primary key is specified as the key of reference, the location
and size of the key value are given, keyed access is specified, and the
location and size of the record are given.

4 The RMS sys$get function locates the record and places it in the record
structure. The function checks the rms_status value for RMS$_NORMAL
and RMS$_RNF (record not found). If the record is not found, a message
is displayed. If the record is found, the program prints instructions for
updating the record.

5 If you press the Return key, the record is placed in the record structure
unchanged. If you make a change to the record, the new information is
placed in the record structure.

6 The fields in the record are padded with blanks.

7 The RMS sys$update function rewrites the record. The program then
checks that the update operation was successful. Any error causes the
program to call the fatal error-handling routine.

2-32 Using OpenVMS Record Management Services

3

Using HP C in the Common Language

Environment

This chapter discusses the following topics:

OpenVMS calling standard conventions (Section 3.1)
Parameter-passing mechanisms (Section 3.2)

Interlanguage calling (Section 3.3)

Sharing global data (Section 3.4)

OpenVMS Run-Time Library (RTL) routines (Section 3.5)
OpenVMS system services routines (Section 3.6)

Calling routines (Section 3.7)

Variable-length argument lists in system services (Section 3.8)
Return status values (Section 3.9)

Examples of calling system routines (Section 3.10)

The HP C compiler is part of the OpenVMS common language environment.
This environment defines certain calling procedures and guidelines that allow
you to call routines written in different languages from HP C programs, to call
HP C functions from programs written in other languages, or to call prewritten
system routines from HP C programs. You can call any one of the following
routine types from HP C:

Routines written in other OpenVMS languages
OpenVMS RTL routines
OpenVMS system services

OpenVMS utility routines

Using HP C in the Common Language Environment 3-1

The terms routine, procedure, and function are used throughout this chapter.
A routine is a closed, ordered set of instructions that performs one or more
specific tasks. Every routine has an entry point (the routine name), and
optionally an argument list. Procedures and functions are specific types of
routines: a procedure is a routine that does not return a value; a function is a
routine that returns a value by assigning that value to the function’s identifier.

System routines are prewritten OpenVMS routines that perform common tasks,
such as finding the square root of a number or allocating virtual memory. You
can call any system routine from your program, provided that HP C supports
the data structures required to call the routine. The system routines used
most often are OpenVMS RTL routines and system services. System routines,
which are discussed later in this chapter, are documented in detail in the VMS
Run-Time Library Routines Volume and the HP OpenVMS System Services
Reference Manual.

3.1 Basic Calling Standard Conventions

The HP OpenVMS Calling Standard describes the concepts used by all
OpenVMS languages to invoke routines and pass data between them. It

also describes the differences between the VAX and Alpha parameter-passing
mechanisms. The OpenVMS calling standard specifies the following attributes:

e Register usage

e Stack usage

e TFunction return value
e Argument list

The following sections discuss these attributes in more detail for OpenVMS
VAX systems. For more detail on OpenVMS Alpha systems, see the HP
OpenVMS Calling Standard.

The calling standard also defines such attributes as the calling sequence,
the argument data types and descriptor formats, condition handling, and
stack unwinding. These attributes are discussed in detail in the OpenVMS
Programming Interfaces: Calling a System Routine.

3-2 Using HP C in the Common Language Environment

3.1.1 Register and Stack Usage

The calling standard defines several registers and their uses, as listed in
Table 3—1 for VAX systems and Table 3—-2 for Alpha systems.

Table 3-1 VAX Register Usage

Register Use

PC Program counter

SP Stack pointer

FP Current stack frame pointer

AP Argument pointer

R1 Environment value (when necessary)
RO, R1 Function return value registers

Table 3-2 Alpha Register Usage

Register Use

PC Program counter

SP Stack pointer

FP Frame pointer for current procedure
R25 Argument information register

R16 to R21, Argument list registers

F16 to F21

RO Function return value register

By definition, any called routine can use registers R2 through R11 for
computation, and the AP register as a temporary register.

In the calling standard, a stack is defined as a last-in/first-out (LIFO)
temporary storage area that the system allocates for every user process.
The system keeps information about each routine call in the current image
on the call stack. Then, each time you call a routine, the system creates a
structure on this call stack, known as the call frame. The call frame for each
active process contains the following data:

e A pointer to the call frame of the previous routine call. This pointer
corresponds to the frame pointer (FP).

¢ The argument pointer (AP) of the previous routine call.

Using HP C in the Common Language Environment 3-3

e The storage address of the point at which the routine was called; that is,
the address of the instruction following the call to the current routine. This
address is called the program counter (PC).

e The contents of other general registers. Based on a mask specified in
the control information, the system restores the saved contents of these
registers to the calling routine when control returns to it.

When a routine completes execution, the system uses the frame pointer in the
call frame of the current routine to locate the frame of the previous routine.
The system then removes the call frame of the current routine from the stack.

Figure 3-1 shows the call stack and several call frames for VAX processors.
Function A calls function B, which calls function C. When a function reaches a
return statement or when control reaches the end of the function, the system
uses the frame pointer in the call frame of the current function to locate the
frame of the previous function. It then removes the call frame of the current
function from the stack.

3-4 Using HP C in the Common Language Environment

Figure 3—1 The Call Stack

A 0 - Initial zero value (set by
hardware): set to non—
zero if routine either
has exception handler
or can generate a
predefined exception

31 0 5 AP — Copy of argument pointer
0 for function A
1 N Mask PSW FP — Pointer to A’s call frame
AP PC — Memory location in A at
which B was invoked
FP
PC R2 - Contents of A’s general
H registers R2 through R11
R2 °
R11
= . = C
R11

ZK-0090-GE

3.1.2 Return of the Function Value

A function is a routine that returns a single value to the calling routine. The
function value represents the value of the expression in the return statement.
According to the calling standard, a function value may be returned as either
an actual value or a condition value that indicates success or failure.

3.1.3 The Argument List

The HP OpenVMS Calling Standard also defines a data structure called the
argument list. You use an argument list to pass information to a routine and
receive results.

On OpenVMS Alpha systems, an argument list is formed using registers R16
to R21 or F16 to F21, and a collection of quadwords in memory (depending on
the number and type of the arguments).

Using HP C in the Common Language Environment 3-5

On OpenVMS VAX systems, an argument list is a collection of longwords
in memory that represents a routine parameter list and possibly includes a
function value. Figure 3—-2 shows the structure of a typical OpenVMS VAX
argument list.

Figure 3-2 Structure of an OpenVMS VAX Argument List

0 n
argi
arg2
argn
ZK-5503-GE

The first longword must be present; this longword stores the number of
arguments (the argument count: n) as an unsigned integer value in the low
byte of the longword with a maximum of 255 arguments. The remaining 24
bits of the first longword are reserved for use by HP and should be 0. The
longwords labeled argl through argn are the actual parameters, which can be
any of the following addresses or value:

¢ An uninterpreted 32-bit value that is passed by value
e An address that is passed by reference
e An address of a descriptor that is passed by descriptor

The argument list contains the parameters that are passed to the routine.
Depending on the passing mechanisms for these parameters, the forms of
the arguments contained in the argument list vary. For example, if you pass
three arguments, the first by value, the second by reference, and the third by
descriptor, the argument list would contain the value of the first argument,
the address of the second, and the address of the descriptor of the third.
Figure 3-3 shows this argument list.

3-6 Using HP C in the Common Language Environment

Figure 3-3 Example of an OpenVMS VAX Argument List

0 3

value of the first parameter

address of the second parameter

address of descriptor of the third parameter

ZK-5504-GE

For additional information on the OpenVMS calling standard, see the HP
OpenVMS Calling Standard.

3.2 Specifying Parameter-Passing Mechanisms

When you pass data between routines that are not written in the same
OpenVMS language, you have to specify how you want that data to be
represented and interpreted. You do this by specifying a parameter-passing
mechanism.

The calling standard defines three ways to pass data in an argument list.
When you code a reference to a non-HP C procedure, you must know how to
pass each argument and write the function reference accordingly.

The following list describes the three argument-passing mechanisms:

¢ By immediate value

When an argument is passed by immediate value, the actual value
of the argument is present in the argument list. This is the default
argument-passing mechanism for all function references written in HP C.

e By reference

When an argument is passed by reference, the address of the argument is
present in the argument list. Use the C ampersand operator (&) to pass
the address of an argument, or pass a pointer to the argument by value.

e By descriptor

When an argument is passed by descriptor, the address of a data structure
describing the argument is present in the argument list. From a HP C
program, you pass a descriptor first by creating a structure (struct) that
meets the descriptor requirements of the called procedure and then by

Using HP C in the Common Language Environment 3-7

passing the structure’s address with the ampersand operator or by passing
a pointer to that structure by value.

The following sections outline each of these parameter-passing mechanisms in
more detail.

3.2.1 Passing Arguments by Immediate Value

By default, all values or expressions in a HP C function’s argument list are
passed by immediate value (except for X_FLOATING on OpenVMS Alpha
systems, which is passed by reference). The expressions are evaluated and the
results placed directly in the argument list of the CALL machine instruction.

The following statement declares the entry point of the Set Event Flag
SYS$SETEF system service, which is used to set a specific event flag to 1:

/* Declare the function as a function returning type int. */

int SYSSSETEF();

The SYS$SETEF system service call requires one argument—the number of
the event flag to be set—to be passed by immediate value. HP C for OpenVMS
Systems converts linker-resolved variable names (such as the entry-point
names of system service calls) to uppercase. You do not have to declare

them in uppercase in your program (unless you compile your module with
/INAMES=AS_IS). However, linker-resolved variable names must be declared
and used with identical cases in each module. The documentation uses
uppercase as a convention for referring to system service calls to highlight
them in the text and examples.

HP C does not require you to declare a function or to specify the number or
types of the function’s arguments. However, if you call a function without
declaring it or without providing argument information in the declaration,
HP C does not check the types of the arguments in a call to that function. If
you declare a function prototype, the compiler does check the arguments in
a call to make sure that they have the same type. (See the HP C Language
Reference Manual for more information on function prototypes.)

Like all system services, SYS$SETEF returns an integer value (the return
status of the service) in register 0. Most system services return an integer
completion status; therefore, the system service does not always have to be
declared before it is used. The examples in this chapter declare system services
for completeness.

3-8 Using HP C in the Common Language Environment

In the HP OpenVMS System Services Reference Manual, you can find the
specification of each service’s arguments. SYS$SETEF, for example, takes one
argument, an event flag number. It returns one of four status values, which
are represented by the symbolic constants shown in Table 3-3.

Table 3-3 Status Values of SYS$SETEF

Returned Status Description

SS$_WASCLR Success Flag was previously clear
SS$_WASSET Success Flag was previously set
SS$_ILLEFC Failure Illegal event flag number
SS$_UNASEFC Failure Event flag not in associated cluster

The system services manual also defines event flags as integers in the range
0 to 127, grouped in clusters of 32. Clusters 0 and 1, comprising flags 0 to 31
and 32 to 63, respectively, are local clusters available to any process, with the
restriction that flags 24 to 31 are reserved for use by the OpenVMS system.
There are many ways of passing valid event flag numbers from your HP C
program to SYS$SETEF. One way is to use enum to define a subset of integers,
as follows:

enum cluster0 {completion, breakdown, beginning} event;

After the flag numbers are defined, call the SYS$SETEF service with the
following code:

int status;
event = completion;

status = SYSSSETEF (event) ; /* Set event flag. */

Figure 3—-4 shows an argument being passed by immediate value; in this case,
the event flag number passed to SYS$SETEF.

Using HP C in the Common Language Environment 3-9

Figure 3—-4 Passing Arguments by Immediate Value

{main() Argument pointer (AP) _/\

number of arguments: 1

} SYS$SETEF (4) ; first argument: 4

ZK-0092-GE

Since argument lists consist of longwords, the calling standard dictates that
immediate-value arguments be expressed in 32 bits. A single-precision,
floating-point (F_floating) value is only 32 bits long, but the compiler promotes
all arguments of type float to double (64 bits on a VAX processor) unless a
function prototype declaration is used for the called function. This double-
precision value is passed as two immediate values (two longwords).

Note

The passing of double-precision immediate values is a violation of
the calling standard for OpenVMS VAX systems, but is an allowed
exception for HP C.

On rare occasions, the float-to-double promotion requires some additional
programming. For instance, the function OTS$POWRJ, in the VAX Common
Run-Time Procedure Library, computes the value of a floating-point number
raised to the power of a signed longword (in C terms, a float to the power
of an int). This function (and others like it) is called implicitly by high-
level OpenVMS languages that have an exponentiation operator as part of
the language. It requires that both its arguments be passed as immediate
values, and it returns a single-precision (float) result. To pass a floating-point
base to the procedure, you must use some method to avoid promoting float
arguments. The recommended method is to declare the procedure using a
function prototype declaration, as shown in Example 3-1.

3-10 Using HP C in the Common Language Environment

Example 3—-1 Passing Floating-Point Arguments by Immediate Value

/* This program shows how to pass a floating-point value, *
* using prototypes to avoid promoting floating *
* arguments to arguments of type double. */

#include <stdio.h>

/* This declared function returns a value of type float. It
* should be called as follows: OTSSPOWRJ (base, power), *
* where base is of type float and power is of type int. */

float OTSSPOWRJ (float, int);

main(void)
{
/* To hold result of *
* OTSSPOWRJT */
float result;
int power; /* Power argument */
float base;
base = 3.145; /* Assign constant to base */
power = 2;
result = OTSSPOWRJ (base, power);
printf ("Result= %$f\n", result);
}
Note

To get the correct results on 164 systems, compile the preceding
example with /FLOAT=G_FLOAT.

The example does not show the methods for handling arithmetic errors that
result from the operation performed. For more information on error handling
in this context, and on the run-time library in general, see the VMS Run-Time
Library Routines Volume.

When you pass a parameter by value, you pass a copy of the parameter value
to the routine instead of passing its address. Because the actual value of the
parameter is passed, the routine does not have access to the storage location of
the parameter; therefore, any changes that you make to the parameter value
in the routine do not affect the value of that parameter in the calling routine.

Using HP C in the Common Language Environment 3-11

3.2.2 Passing Arguments by Reference

Some system services and run-time library procedures expect arguments
passed by reference. This means that the argument list contains the address
of the argument rather than its value. This mechanism is also used by default
by some programming languages, such as PL/I, and is available as an option in
others, such as Pascal.

In C, you can use the ampersand operator (&) to pass an argument by
reference; that is, the ampersand operator causes the argument’s address to be
passed. Note that an array name without brackets or a function name without
parentheses in an argument list always results in passing the address of the
array or function; the ampersand is unnecessary. You can also pass a pointer
by value, which is the same as passing the item it points to by reference.

In the special case of argument lists, HP C in VAX C mode allows the
ampersand operator to be used on constants as well. You should limit this
use of the ampersand solely to calls to OpenVMS system functions to ensure
portability of your HP C programs to other C compilers.

For example, the Read Event Flags (SYS$READEF) system service requires
that its first argument be passed by immediate value and its second argument
be passed by reference. SYS$READEF returns the status of all the event flags
in a particular cluster. (Event flags are numbered from 0 to 127 and arranged
in clusters of 32, such that flags 0 to 31 comprise cluster 0, flags 32 to 63,
cluster 1, and so forth.)

The first SYSSREADEF argument is any event flag number in the cluster of
interest. The second argument is the address of a longword that receives the
status of all 32 event flags in that cluster. In addition to the event-flag status
value, the system service returns one of the status values shown in Table 3—4
expressed as a global symbol.

Table 3—-4 Status Values of SYSSREADEF

Returned Status Description

SS$_WASCLR Success Specified event flag was clear
SS$_WASSET Success Specified event flag was set
SS$_ACCVIO Failure Could not write to status longword
SS$_ILLEFC Failure Event flag number was illegal

(continued on next page)

3-12 Using HP C in the Common Language Environment

Table 3—4 (Cont.) Status Values of SYSSREADEF

Returned Status Description

SS$_UNASEFC Failure Cluster of interest not accessible

Example 3-2 shows a call to the SYS$READEF system service from a HP C
program.

Example 3-2 Passing Arguments by Reference

/* This program shows how to call system service SYSSREADEF. */

#include <ssdef.h>
#include <stdio.h>

int SYSSREADEF () ;

main(void)
{

/* Longword that receives *

the status of the *
* event flag cluster. */
unsigned cluster_status;
int return_status; /* Status: SYSSREADEF. */
/* Argument values for *
* SYSSREADEF. */

enum cluster0

completion, breakdown, beginning

} event;
event = completion; /* Event flag in cluster 0. */
/* Obtain status of *
* cluster 0. Pass value *
* of event and address *
* of cluster_status. */

(continued on next page)

Using HP C in the Common Language Environment 3-13

Example 3-2 (Cont.) Passing Arguments by Reference

return_status = SYSSREADEF (event, &cluster_status);

/* Check for successful *

* call */

if (return_status != SSSWASCLR && return_status != SSSWASSSET)
{

/* Handle the error here. */
}
else
{

/* Check bits of interest in cluster_status here. */

3.2.3 Passing Arguments by Descriptor

A descriptor is a structure that describes the data type, size, and address

of a data structure. According to the HP OpenVMS Calling Standard, you
must pass a descriptor by placing its address in the argument list. To pass an
argument by descriptor from a HP C program, perform the following steps:

1. Write a structure declaration that models the required descriptor. This
involves including the <descrip.h> header file to define struct tags for all
the forms of descriptors.

2. Assign appropriate values to the structure members.

Use the structure name, with an ampersand operator (&) in the function
reference, to put the structure’s address in the argument list.

HP C never passes arguments by descriptor by default; you must take explicit
action to pass an argument by descriptor. Also, if you write structure or
union names in a function’s argument list without the ampersand operator,
the structure or union is passed by immediate value to the called function.
You pass arguments by descriptor only when the called function is written in
another language and explicitly requires this mechanism.

3-14 Using HP C in the Common Language Environment

Note

The passing of structures as immediate values can be a violation of
the OpenVMS calling standard if the entire structure is larger than
one longword of memory. This type of argument passing is an allowed
exception for HP C.

There are several classes of descriptor. Each class requires that certain bits
be set in the first longword of the descriptor. For more information about
the descriptors and their formats, see the OpenVMS Programming Interfaces:
Calling a System Routine. You can model descriptors in HP C as follows:

struct dsc$descriptor

{

unsigned short dsc$w_length; /* Length of data */
char dsc$b_dtype /* Data type code */
char dscS$b_class /* Descriptor class code */
char *dscSa_pointer /* Address of first byte */

}i

In this model, the variable dscSw_length is a 16-bit word containing the length
of the entire data; the unit (for example, bit or byte) in which the length is
measured depends on the descriptor class. The member dsc$b_dtype is a byte
containing a numeric code; the code denotes the data type of the data. The
class member dscS$b_class is another byte code giving the descriptor class.
Table 3-5 shows the valid class codes.

Table 3-5 Valid Class Codes

Class Code Symbolic Name Descriptor Class

1 DSC$K_CLASS_S Scalar, string

2 DSC$K_CLASS_D Dynamic string descriptor
3 — Reserved by HP

4 DSC$K_CLASS_A Array

5 DSC$K_CLASS_P Procedure

6 DSC$K_CLASS PI Procedure incarnation

7 DSC$K_CLASS_J Reserved by HP

8 DSK$K_CLASS_JI This is obsolete

(continued on next page)

Using HP C in the Common Language Environment 3-15

Table 3-5 (Cont.) Valid Class Codes

Class Code Symbolic Name Descriptor Class

9 DSC$K_CLASS_SD Decimal scalar string

10 DSC$K_CLASS_NCA Noncontiguous array

11 DSC$K_CLASS_VS Varying string

12 DSC$K_CLASS_VSA Varying string array

13 DSC$K_CLASS_UBS Unaligned bit string

14 DSC$K_CLASS_UBA Unaligned bit array

15 DSC$K_CLASS_SB String with bounds descriptor

16 DSC$K_CLASS_UBSB Unaligned bit string with bounds
descriptor

17-190 — Reserved by HP

191 DSC$K_CLASS_BFA Basic file array

192-255 — Reserved for customer applications

The atomic data types shown in Table 3-6 are supported by HP C; all others
are not directly supported by the language. See the OpenVMS Programming
Interfaces: Calling a System Routine manual for a complete list of atomic class

codes.

Table 3-6 Atomic Data Types

Class Code Symbolic Name Descriptor Class

2 DSC$K_DTYPE_BU Byte (unsigned)

3 DSC$K_DTYPE WU Word (unsigned)

4 DSC$K_DTYPE_LU Longword (unsigned)

6 DSC$K_DTYPE_B Byte integer (signed)

7 DSC$K_DTYPE_W Word integer (signed)

8 DSC$K_DTYPE_L Longword integer (signed)
10 DSC$K_DTYPE_F F_floating

11 DSC$K_DTYPE_D D_floating

14 DSC$K_DTYPE_T Character string

3-16 Using HP C in the Common Language Environment

(continued on next page)

Table 3-6 (Cont.) Atomic Data Types

Class Code Symbolic Name Descriptor Class
27 DSC$K_DTYPE_G G_floating

52 DSC$K_DTYPE_FS IEEE S_floating
53 DSC$K_DTYPE_FT IEEE T floating

The last member of the structure model, dsc$Sa_pointer, points to the first
byte of the data.

To pass an argument by descriptor, you define and assign values to the data
following normal C programming practices. You must define a dsc$descriptor
structure and assign the data’s address to the dsc$a_pointer member.

You must also assign appropriate values to the members dsc$w_length,
dscSb_dtype, and dscSb_class. For the specific requirements of each
descriptor class, see the OpenVMS Programming Interfaces: Calling a System
Routine manual.

For example, the Set Process Name (SYS$SETPRN) system service, which
enables a process to establish or change its process name, accepts a process
name as a fixed-length character string passed by descriptor. The character
string can have from 1 to 15 characters. The system service returns status
values that are represented by the symbolic constants shown in Table 3-7.

Table 3—-7 Status Values of SYS$SETPRN

Returned Status Description
SS$_NORMAL Success Normal completion
SS$_ACCVIO Failure Inaccessible descriptor
SS$_DUPLNAM Failure Duplicate process name
SS$_IVLOGNAM Failure Invalid length

Example 3—-3 shows a call to this system service from a HP C program.

Using HP C in the Common Language Environment 3-17

Example 3-3 Passing Arguments by Descriptor

/* This program shows a call to system service SYSSSETPRN. */

#include <ssdef.h>
#include <stdio.h>
/* Define structures for

* descriptors */

#include <descrip.h>

int SYSSSETPRN() ;

int main(void)

{

int ret; /* Define return status of *

* SYSSSETPRN */
/* Name the descriptor */

struct dscSdescriptor_s name_desc;

char *name = "NEWPROC"; /* Define new process name */

/* Length of name WITHOUT
* null terminator */
name_desc.dscSw_length = strlen(name);

/* Put address of

* ghortened string in

* descriptor */
name_desc.dsc$a_pointer = name;

/* String descriptor class */
name_desc.dsc$b_class = DSCSK _CLASS_S;

/* Data type: ASCII string */
name_desc.dscS$b_dtype = DSCSK_DTYPE_T;

ret = SYSSSETPRN(&name_desc) ;

if (ret != SS$_NORMAL) /* Test return status */
fprintf (stderr, "Failed to set process name\n"),
exit(ret);

}

In Example 3-3, the call to SYS$SETPRN must use the ampersand operator;
otherwise, name_desc, rather than its address, is passed.

3-18 Using HP C in the Common Language Environment

Although this example explicitly sets individual fields in its name_desc string
descriptor, in practice, the run-time initialization of compile-time constant
string descriptors is not performed in this manner. Instead, the fields of
compile-time constant descriptors are usually initialized with initialized
structures of storage class static.

For the purpose of string descriptor initialization, HP C provides a simple
preprocessor macro in the <descrip.h> header file. This macro is named
$DESCRIPTOR. It takes two arguments, which it uses in a standard HP C
structure declaration. The first argument is an identifier specifying the name
of the descriptor to be declared and initialized. The second argument is a
pointer to the data byte to be used as the value of the descriptor. Since a
character-string constant is interpreted as an initialized pointer to char, you
may specify the second argument as a simple string constant. You may use the
$DESCRIPTOR macro in any context where a declaration may be used. The
scope of the declared string descriptor identifier name is identical to the scope
of a simple struct definition as expanded by the macro.

Example 3-4 shows a variant of the program in Example 3-3. Here, the
$DESCRIPTOR macro is used to create a compile-time string descriptor and
to pass it to the SYS$SETPRN system service routine. In Example 3—4, the
program returns the status value returned by SYS$SETPRN to DCL for
interpretation.

Example 3—4 Passing Compile-Time String Descriptors

/* This program returns the status value returned by *
* SYSSSETPRN. */
#include <descrip.h> /* Define S$DESCRIPTOR macro. */

int SYSSSETPRN() ;

int main(void)
{
/* Initialize structure name_desc *
* as string descriptor. */
static $DESCRIPTOR (name_desc, "NEWPROC") ;

return SYSSSETPRN (&name_desc) ;
}

To test the results of the preceding example, do the following:

$ SHOW PROCESS | Note the process name.
$ RUN example ! Run the example.
$ SHOW PROCESS ! Note that the process name has changed.

Using HP C in the Common Language Environment 3-19

The $DESCRIPTOR macro is used in further examples in this chapter.

3.2.4 HP C Default Parameter-Passing Mechanisms

There are default parameter-passing mechanisms established for every data
type you can use with HP C. Table 3-8 lists the HP C data types you can use
with each parameter-passing mechanism. Asterisks appear next to the default
parameter-passing mechanism for that particular data type.

Table 3-8 Valid Parameter-Passing Mechanisms in HP C

Data Type By Reference By Descriptor By Value
Variables Yes Yes Yes*
Constants Yes (VAX C mode Yes Yes*
only)
Expressions No No Yes*
Array elements Yes Yes Yes*
Entire array Yes* Yes No
String constants Yes* Yes No
Str.uctures and Yes Yes Yes*
unions
Functions Yes* Yes No

You must use the appropriate parameter-passing mechanisms whenever you
call a routine written in some other OpenVMS language or some prewritten
system routine.

3.3 Interlanguage Calling

In HP C, you can call external routines written in other languages or HP C
routines from routines written in other languages as either functions or
subroutines. When you call an external routine as a function, a single value is
returned. When you call an external routine as a subroutine (a void function),
any values are returned in the argument list.

By default, HP C passes all arguments by immediate value with the exception
of arrays and functions; these are passed by reference. Table 3-9 lists the
default passing mechanisms for other OpenVMS languages.

3-20 Using HP C in the Common Language Environment

Table 3—-9 Default Passing Mechanisms

Numeric
Language Arrays Data Character Data
MACRO No default No default No default
Pascal Reference Reference Descriptor
BASIC Descriptor Reference Descriptor
COBOL N/A Reference Reference
FORTRAN Reference Reference Descriptor

The following sections describe the methods involved in using HP C with
routines written in other OpenVMS languages.

3.3.1 Calling HP FORTRAN

When calling HP FORTRAN from HP C or vice versa, note these
considerations. HP FORTRAN argument lists and argument descriptors

are usually allocated statically. When it is possible, and to optimize space and
time, the HP FORTRAN compiler pools the argument lists and initializes them
at compile time. Sometimes several calls may use the same argument list.

In HP C, you often use arguments as local variables, and modify them at will.
If a HP C routine that modifies an argument is called from a HP FORTRAN
routine, unintended and incorrect side effects may occur.

The following example shows a HP C routine that is invalid when called from
HP FORTRAN:

void f(int *x) /* x 1s a FORTRAN INTEGER passed by reference */
{

/* The next assignment is OK. It is permitted to modify what a
* FORTRAN argument list entry points to. */
x = 0; / ok */

/* The next assignment is invalid. It is not permitted to modify
* a FORTRAN argument list entry itself. */

X=X+ 1; /* Invalid */
}
Another problem is the semantic mismatch between strings in C and strings
in HP FORTRAN. Strings in C vary in length and end in a null character.
Strings in HP FORTRAN do not end in a null character and are padded with
spaces to some fixed length. In general, this mismatch means that strings
may not be passed between HP C and HP FORTRAN unless you do additional
work. You may make a HP FORTRAN routine add a null character to a

Using HP C in the Common Language Environment 3-21

CHARACTER string before calling a HP C function. You may also write code
that explicitly gets the length of a HP FORTRAN string from its descriptor
and carefully pads the string with spaces after modifying it. An example later
in this section shows a C function that carefully produces a proper string for
HP FORTRAN.

Example 3-5 shows a HP C function calling a HP FORTRAN subprogram
with a variety of data types. For most scalar types, HP FORTRAN expects
arguments to be passed by reference but character data is passed by
descriptor.

Example 3-5 HP C Function Calling a HP FORTRAN Subprogram

/*
* Beginning of HP C function:
*/

#include <stdio.h>
#include <descrip.h> /* Get layout of descriptors */

extern int fort(); /* Declare FORTRAN function */

main(void)
{
int 1 = 508
float £ = 6
double d =
struct {
short s;
float f;
} s = {-2, -3.14};
auto $DESCRIPTOR (stringl, "Hello, FORTRAN");
struct dsc$descriptor_s string?2;

49.0;
91.50;

/* "stringl" is a FORTRAN-style string declared and initialized using the
* $DESCRIPTOR macro. "string2" is also a FORTRAN-style string, but we are
* declaring and initializing it by hand. */
string2.dsc$b_dtype = DSCSK_DTYPE_T; /* Type is CHARACTER */
string2.dsc$b_class = DSCSK_CLASS_S; /* String descriptor */
string2.dscSw_length = 3; /* Three characters in string */
string2.dscSa_pointer = "bye"; /* Pointer to string value */

printf ("FORTRAN result is %d\n", fort(&i, &f, &d, &s, &stringl, &string2));
} /* End of HP C function */

(continued on next page)

3-22 Using HP C in the Common Language Environment

Example 3-5 (Cont.) HP C Function Calling a HP FORTRAN Subprogram

C

C Beginning of FORTRAN subprogram:

C

INTEGER FUNCTION FORT(I, F, D, S, STRING1l, STRING2)

INTEGER I

REAL F

DOUBLE PRECISION D

STRUCTURE /STRUCT/

INTEGER*2 SHORT

REAL FLOAT

END STRUCTURE

RECORD /STRUCT/ S

You can tell FORTRAN to use the length in the descriptor

as done here for STRING1, or you can tell FORTRAN to ignore the
descriptor and assume the string has a particular length as done
for STRING2. This choice is up to you.

CHARACTER* (*) STRING1

CHARACTER*3 STRING2

PPN K®!

WRITE(5, 10) I, F, D, S.SHORT, S.FLOAT, STRINGl, STRING2
10 FORMAT (1X, I3, F8.1, D10.2, I7, F10.3, 1X, A, 2X, A)
FORT = -15
RETURN
END
C End of FORTRAN subprogram

Example 3-5 produces the following output:

508 649.0 0.92D+02 -2 -3.140 Hello, FORTRAN bye
FORTRAN result is -15

Example 3-6 shows a HP FORTRAN subprogram calling a HP C function.
Since the HP C function is called from HP FORTRAN as a subroutine and not
as a function, the HP C function is declared to have a return value of void.

Example 3-6 HP FORTRAN Subprogram Calling a HP C Function

C
C Beginning of FORTRAN subprogram:
C

INTEGER I

REAL F(3)

CHARACTER*10 STRING

(continued on next page)

Using HP C in the Common Language Environment 3-23

Example 3-6 (Cont.) HP FORTRAN Subprogram Calling a HP C Function

Q0

CALL DECCSCRTL_INIT

I =-617

F(1) 3.1

F(2) 0.04

F(3) 0.0016
STRING = 'HELLO’

CALL CSUBR(I, F, STRING)
END
C End of FORTRAN subprogram
/*
* Beginning of HP C function:
*/
#include <stdio.h>
#include <descrip.h>

void csubr(int *1i,
float £[3],
struct dsc$descriptor_s *string)

int j;
printf("i = %d\n", *i);

for (j = 0;

/*
/*
/*
/*

Since this program does not have a C main program and you want
to use HP C RTL functions from the C subroutine, you must call
DECCSCRTL_INIT to initialize the run-time library.

Get layout of descriptors */

FORTRAN integer, by reference */
FORTRAN array, by reference */
FORTRAN character, by descriptor */

/* Since FORTRAN character data is not null-terminated, you must use
* a counted loop to print the string.

*/
printf(“string = \"");

for (j = 0; j < string->dscéw_length; ++j)

putchar (string->dscSa_pointer[j])
printf ("\"\n");

} /* End of HP C function */

I

Example 3—6 produces the following output:

3.100000
0.040000
0.001600
= "HELLO !

3-24 Using HP C in the Common Language Environment

Example 3-7 shows a C function that acts like a CHARACTER*(*) function in
HP FORTRAN.

Example 3-7 HP C Function Emulating a HP FORTRAN CHARACTER*(*) Function

C
C Beginning of FORTRAN program:
C
CHARACTER*9 STARS, C
C Call a C function to produce a string of three "*" left-justified
C in a nine-character field.
C = STARS(3)
WRITE(5, 10) C
10 FORMAT (1X, '"', A, '"")
END
C End of FORTRAN program
/"k
* Beginning of HP C function:
*/
#include <descrip.h> /* Get layout of descriptors */

/* Routine "stars" is equivalent to a FORTRAN function declared as
follows:

CHARACTER* (*) FUNCTION STARS (NUM)
INTEGER NUM

*

*

*

*

*

* Note that a FORTRAN CHARACTER function has an extra entry added to

* the argument list to represent the return value of the CHARACTER

* function. This entry, which appears first in the argument list,

* ig the address of a completely filled-in character descriptor. Since
* the C version of a FORTRAN character function explicitly uses this

* extra argument list entry, the C version of the function is void!

*
*
*
*
*

This example function returns a string that contains the specified
number of asterisks (or "stars").

/

void stars(struct dsc$descriptor_s *return_value, /* FORTRAN return value */
int *num_stars) /* Number of "stars" to create */

{

int i, limit;

(continued on next page)

Using HP C in the Common Language Environment 3-25

Example 3-7 (Cont.) HP C Function Emulating a HP FORTRAN CHARACTER*(*)
Function

/* A FORTRAN string is truncated if it is too large for the memory area
* allocated, and it is padded with spaces if it is too short. Set limit
* to the number of stars to put in the string given the size of the area
* used to store it. */
if (*num_stars < return_value->dscSw_length)
limit = *num_stars;
else
limit = return_value->dsc$w_length;
/* Create a string of stars of the specified length up to the limit of the
* string size. */
for (1 = 0; 1 < limit; ++1)
return_value->dsc$a_pointer[i] = '*';
/* Pad rest of string with spaces, if necessary. */
for (; 1 < return_value->dscS$w_length; ++1)
return_value->dscSa_pointer[i] = ' ’;
} /* End of HP C Function */

Example 3—7 produces the following output:

LI "

3.3.2 Calling VAX MACRO

You can call a VAX MACRO routine from HP C or vice versa. However, like
all interlanguage calls, it is necessary to make sure that the actual arguments
correspond to the expected formal parameter types. Also, it is necessary to
remember that C strings are null-terminated and to take special action in
either the MACRO routine or the C routine to allow for this.

Example 3-8 shows a MACRO routine that calls a C routine with three
arguments, passing one by value, one by reference, and one by descriptor. It is
followed by the source for the called C routine.

3-26 Using HP C in the Common Language Environment

Example 3-8 VAX MACRO Program Calling a HP C Function

.extrn dbroutine ; The C routine
; Local Data

.psect data rd, nowrt, noexe
ft$$t_part_num: .ascii /WidgitGadget/
fts$t_query_mode: .ascii /1I/
ftSs_query_mode = <. - ft$$t_query_mode>
fts$1l_protocol_buff: .blkl 1
ft$Skd_part_num_dsc:

.word 12

.word 0

.psect
.entry dbtest

P+

1

.address ft$St_part_num

ft_code rd,nowrt, exe

*m<r2,r3,rd,r5,r6,r7,r8>

; call C routine for data base lookup

mov1l #1,1r3
pushal ft$Skd_part_num_dsc ; Descriptor for part number
pushal ft$st_query_mode ; Mode to call
pushl #1 ; Status
calls #3, dbroutine ; Check the data base
99$:
ret
.end dbtest

(continued on next page)

Using HP C in the Common Language Environment 3-27

Example 3-8 (Cont.) VAX MACRO Program Calling a HP C Function

/*k
* Beginning of HP C code for dbroutine:
*/

#include <stdio.h>
#include <descrip.h>

#include <stdlib.h>
#include <string.h>

/* Structure pn_desc is the format of the descriptor
passed by the macro routine. */

extern struct
mydescript {
short pn_len;
short pn_zero;
char *pn_addr;

}i

int dbroutine (int status, /* Passed by value */
char *action, /* Passed by reference */
struct mydescript *name_dsc) /* Passed by descriptor */
{

char *part_name;

/* Allocate space to put the null-padded name string. */
part_name = malloc(name_dsc->pn_len + 1);
memcpy (part_name,name_dsc -> pn_addr ,name_dsc -> pn_len);

/* Remember that C array bounds start at 0 */

part_name[name_dsc -> pn_len] = '\0’;

printf (" Status is %d\n", status);

printf (" Length 1is %d\n",name_dsc -> pn_len);
printf (" Part_name is %s\n",part_name);

printf (" Request is %c\n",*action);

status = 1;

return(status) ;
} /* End of HP C code for dbroutine */

Example 3-8 produces the following output:

Status is 1

Length is 12

Part_name is WidgitGadget
Request is I

3-28 Using HP C in the Common Language Environment

Example 3-9 shows a HP C program that calls a VAX MACRO program.

Example 3-9 HP C Program Calling a VAX MACRO Program

/* Beginning of HP C function */

#include <stdio.h>
#include <descrip.h>

int zapit(int status, int *action, struct dsc$descriptor_s *descript);

main(void)

{
int status=255, argh = 99;
int *action = &argh;
SDESCRIPTOR (name_dsc, "SuperEconomySize") ;

printf (" Before calling ZAPIT: \n");

printf (" Status was %d \n",status);

printf (" Action contained %d and *action contained %d \n" ,action, *action);
printf (" And the thing described by the descriptor was %s\n",

name_dsc.dsc$a_pointer) ;

if (zapit(status,action,&name_dsc) && 1)

{
printf (" Ack, the world has been zapped! \n");
printf (" Status is %d \n",status);
printf (" Action contains %d and *action contains %d \n" ,action, *action);
printf (" And the address of the thing described by the descriptor is %d\n",
name_dsc.dscSa_pointer) ;
}

.psect ft_code rd, nowrt, exe

.entry zapit *m<r2,r3,rd,r5,r6,r7,r8>
i+
; Maliciously change parameters passed by the C routine.
; The first parameter is passed by value, the second by
; reference, and the third by descriptor.

’

(continued on next page)

Using HP C in the Common Language Environment 3-29

Example 3-9 (Cont.) HP C Program Calling a VAX MACRO Program

mov1l 4(ap), €@8(ap) ;Change the by-reference parameter
;to the first parameter’s value.
movl 12(ap), r2
mov1l #0,4(r2) ;Zap address of string in descriptor.
; Return -1 to signal successful destruction.
movl #-1,1r0
ret
end

Example 3-9 produces the following output:

Before calling ZAPIT:

Status was 255

Action contained 2146269556 and *action contained 99

And the thing described by the descriptor was SuperEconomySize
Ack, the world has been zapped!

Status is 255

Action contains 2146269556 and *action contains 255

And the address of the thing described by the descriptor is 0

3.3.3 Calling HP BASIC

Calling routines written in HP BASIC from HP C programs or vice versa is
straightforward. By default, HP BASIC passes arguments by reference, except
for arrays and strings, which are passed by descriptor. In some cases, these
defaults may be overridden by explicitly specifying the desired parameter-
passing mechanisms in the HP BASIC program. However, if an argument is a
constant or an expression, the actual argument passed refers to a local copy of
the specified argument’s value.

Strings in HP BASIC are not terminated by a null character, which is done
by HP C. As a result, passing strings between HP BASIC and HP C routines
requires you to do additional work. You may choose to add an explicit null
character to a HP BASIC string before passing it to a HP C routine, or you
may prefer to code the HP C routine to obtain the string’s length from its
descriptor.

Example 3-10 shows a HP C program that calls a HP BASIC function with a
variety of argument data types.

3-30 Using HP C in the Common Language Environment

Example 3-10 HP C Function Calling a HP BASIC Function

/*
* Beginning of HP C function:
*/

#include <stdio.h>

#include <descrip.h>

extern int basfunc ();
main(void)
{
int i = 508;
float f =649.0;
double d = 91.50;
struct
{
short S;
float f;
} s ={ -2, -3.14 };

SDESCRIPTOR (stringl, "A C string");

printf ("BASIC returned %d\n",
basfunc (&i, &f, &d, &s, &stringl, "bye"));
} /* End of HP C function */

! Beginning of the BASIC program

FUNCTION INTEGER basfunc (INTEGER i, REAL f, DOUBLE d, x s, &
STRING stringl, &
STRING string2 = 3 BY REF)

RECORD X
WORD S
REAL f

END RECORD x

’

PRINT
PRINT
PRINT
PRINT iis
PRINT ’'s::f =
PRINT 'stringl
PRINT ’'string?2

END FUNCTION -15

]

S h e
Inom nu

0
~ ~ Qi th -

I
i
.
I

1:s
::f

~ ~m wm

; stringl
; string?2

! End of the BASIC program

Using HP C in the Common Language Environment 3-31

Example 3—10 produces the following output:

508

649

91.5

1:s = -2

s::f = -3.14

stringl = A C string
string2 = bye

BASIC returned -15

Example 3—-11 shows a HP BASIC program that calls a HP C function.

0 Qi Hh -

Example 3-11 HP BASIC Program Calling a HP C Function

! Beginning of the BASIC program:
PROGRAM example

EXTERNAL STRING FUNCTION cfunc (INTEGER BY VALUE, &
INTEGER BY VALUE, &
STRING BY DESC)

s$ = cfunc (5, 3, "abcdefghi")
PRINT "substring is "; s$

END PROGRAM
! End of the BASIC program

/*

* Beginning of HP C function:
*/

#include <descrip.h>

int str$copy_dx();

/
This routine simulates a BASIC function whose return

value is a STRING. It returns the substring that is ‘length’
characters long, starting from the offset ‘offset’ (0-based)
in the input string described by the descriptor pointed to
by ‘in_str’.

R R T . o

(continued on next page)

3-32 Using HP C in the Common Language Environment

Example 3-11 (Cont.) HP BASIC Program Calling a HP C Function

void cfunc (struct dscS$descriptor_s *out_str,
int offset,
int length,
struct dscSdescriptor_s *in_str)

/* Declare a string descriptor for the substring. */
struct dscS$descriptor temp;

/* Check that the desired substring is wholly
within the input string. */
if (offset + length > in_str -> dscSw_length)
return;

/* Fill in the substring descriptor. */
temp.dscSw_length = length;

temp.dsc$a_pointer = in_str -> dscSa_pointer + offset;
temp.dscSb_dtype = DSCSK_DTYPE_T;

temp.dscSb_class = DSCSK_CLASS_S;

/* Copy the substring to the return string. */
str$copy_dx (out_str, & temp);
} /* End of HP C function */

Example 3-11 produces the following output:

substring is fgh

3.3.4 Calling HP Pascal

Like HP FORTRAN and HP BASIC, there are certain considerations that you
must take into account when calling HP Pascal from HP C and vice versa.
When calling HP Pascal from HP C, HP Pascal expects all parameters to be
passed by reference. In HP Pascal, there are two different types of semantics:
value and variable. The value semantics in HP Pascal are different from
passing by value in HP C. Because they are different, you must specify the
address of the C parameter.

HP Pascal also expects all strings to be passed by descriptor. If you use the
CLASS_S descriptor, the string is passed by using HP Pascal semantics. If the
content of the string is changed, it is not reflected back to the caller.

Example 3—-12 is an example of how to call a HP Pascal routine from HP C.

Using HP C in the Common Language Environment 3-33

Example 3-12 HP C Function Calling a HP Pascal Routine

/*
* Beginning of HP C function:
*/

#include <descrip.h>

/* This program demonstrates how to call a Pascal routine
from a C function. */

/* A Pascal routine called by a C function. */
extern void Pascal_Routine ();

main()

{
struct dscSdescriptor_s to_Pascal_by_desc;
char *Message = "The_Max Num";
int to_Pascal_by_value = 100,
to_Pascal_by ref = 50;

/* Construct the descriptor. */
to_Pascal_by_desc.dsc$a_pointer = Message;
to_Pascal_by_desc.dscSw_length = strlen (Message);
to_Pascal_by_desc.dsc$b_class = DSCSK_CLASS_S;
to_Pascal_by_desc.dscSh_dtype = DSCSK_DTYPE_T;

/* Pascal expects a calling routine to pass parameters by reference. */
Pascal_Routine(&to_Pascal_by value, &to_Pascal_by ref, &to_Pascal_by_desc);

printf ("\nWhen returned from Pascal:\nto_Pascal_by value is still \
$d\nBut to_Pascal_by_ref is %d\nand Message is still %s\n",
to_Pascal_by value, to_Pascal_by_ref,
to_Pascal_by_desc.dscSa_pointer);
} /* End of HP C function */
{
Beginning of Pascal routine

}
MODULE C_PASCAL (OUTPUT) ;

(continued on next page)

3-34 Using HP C in the Common Language Environment

Example 3-12 (Cont.) HP C Function Calling a HP Pascal Routine

{ This Pascal routine calls the Pascal MAX function
to determine the maximum value between
"from_c_by value' and ‘from_c_by ref', and then
assigns the result back to ’'from_c_by_ref'.
It also tries to demonstrate the results of passing
a by-descriptor mechanism.
It is called from a C main function.
}
[GLOBAL]PROCEDURE Pascal_Routine
(from_c_by value :INTEGER;
VAR from_c_by_ref :INTEGER;
from_c_by_desc :[CLASS_S] PACKED ARRAY [11..ul:INTEGER] OF CHAR
)

VAR

today_is : PACKED ARRAY [1..11] OF CHAR;
BEGIN
{ Display the contents of formal parameters. }
WRITELN;
WRITELN (’Parameters passed from C function: ’);
WRITELN (’'from_c_by value: ', from_c_by value:4);
WRITELN (’from_c_by ref: ', from_c_by ref:4);
WRITELN (’'from_c_by desc: ', from_c_by desc);

{ Assign the maximum value into ’from_c_by ref' }
from_c_by ref := MAX (from_c_by value, from_c_by_ref);

{ Change the content of ’from_Pascal_by_value' --
to show that the value did not get
reflected back to the caller.
}

from_c_by_value := 20;

(continued on next page)

Using HP C in the Common Language Environment 3-35

Example 3-12 (Cont.) HP C Function Calling a HP Pascal Routine

END;
END.
{

{ Put the results of DATE into ’from_c_by desc"
to show that the CLASS_S is only valid with
comformant strings passed by value.

DATE (today_is);
from_c_by desc := today_is;
WRITELN (l***********************!);

WRITELN (’'from_c_by desc is changed to today’’s date: "',

from _c_by_desc, '"’);

WRITELN ('BUT, this will not reflect back to the caller.’);

End of Pascal routine

}

Example 3-12 produces the following output:

from_c_by value: 100
from _c_by_ref: 50

from_c_by_desc: The_Max_Num
*khkkkkkrkkhkkrkkhkkrkkkkxk

from_c_by _desc is changed to today’'s date "26-MAY-1992"
BUT, this will not reflect back to the caller.

When returned from Pascal:
to_Pascal_by_value is still 100
to_Pascal_by_ref is 100

and Message is still The_Max_Num

There are also some considerations when calling HP C from HP Pascal. For
example, you can use mechanism specifiers such as %IMMED, %REF, and
%STDESCR in HP Pascal. When you use the %IMMED mechanism specifier,
the compiler passes a copy of a value rather than an address. When you

use the %REF mechanism specifier, the address of the actual parameter is
passed to the called routine, which is then allowed to change the value of the
corresponding actual parameter. When you use the %STDESCR mechanism
specifier, the compiler generates a fixed-length descriptor of a character-string
variable and passes its address to the called routine. For more information on
these mechanism specifiers and others, see the HP Pascal documentation.

Another consideration is that HP Pascal does not null-pad strings. Therefore,
you must add a null character to make the string a C string. Also, when
passing a string from HP Pascal to HP C, you can declare a structure
declaration in HP C that corresponds to the HP Pascal VARYING TYPE
declaration.

3-36 Using HP C in the Common Language Environment

Example 3—13 shows an example of how to call HP C from HP Pascal.

Example 3—-13 HP Pascal Program Calling a HP C Function
{

Beginning of Pascal function:

}
PROGRAM PASCAL_C (OUTPUT);

CONST

STRING_LENGTH = 80;
TYPE

STRING = VARYING [STRING_LENGTH] OF CHAR;
VAR

by_value : INTEGER;
by_ref : STRING;
by_desc: PACKED ARRAY [1..10] OF CHAR;

[EXTERNAL]
PROCEDURE DECCSCRTL_INIT; EXTERN;
[EXTERNAL]
PROCEDURE c_function
(%immed by_value : INTEGER;
$ref by_ref : STRING ;
$stdescr by_desc: PACKED ARRAY [11..ul:INTEGER] OF CHAR
); EXTERN;
BEGIN

{ Establish the appropriate HP C RTL environment for
calling the HP C RTL from Pascal.

}
DECC$CRTL_INIT;

by_value := 1;

{ NOTE
Pascal does not null pad a string.
Therefore, the LENGTH built-in function counts
the null pad character while the HP C library function strlen
does not include the terminating null character.

}

by _ref := '"TO_C_BY _REF’(0)'"’;
by_desc := 'TERM’' (0)"’;

(continued on next page)

Using HP C in the Common Language Environment 3-37

Example 3-13 (Cont.) HP Pascal Program Calling a HP C Function

{ Ccall a C function by passing parameters
using foreign semantics.

}

c_function (by_value, by_ref, by desc);

WRITELN;
WRITELN;
WRITELN (l*************************/);
WRITELN ('After calling C_FUNCTION: ');
WRITELN;

WRITELN ('by_value is still ’,by_value:3);
WRITELN ('however, by_ref contains ’,by_ref,

" (aka Your Terminal Type)');
WRITELN (’and, by_desc still contains ’,by_desc);

END.
{

End of Pascal program

}
/
Beginning of HP C function:

A C function called from the Pascal routine.
The parameters are passed to a C function
by value, by reference, and by descriptor,
respectively.

/

#include <descrip.h>

/* A Pascal style of VARYING data type. */
struct Pascal_VARYING
{

R I N

unsigned short length;
char string[80];
}i

/* This C function calls the HP C RTL function getenv() and puts
* your terminal type in ’from_Pascal_by_ref'.
* Tt is called from a Pascal program.
*/
void c_function (unsigned char from_Pascal_by_value,
struct Pascal VARYING *from_Pascal_by_ref,
struct dsc$descriptor_s *from_Pascal_by_desc

)

char *term;

(continued on next page)

3-38 Using HP C in the Common Language Environment

Example 3-13 (Cont.) HP Pascal Program Calling a HP C Function

/* Display the contents of formal parameters. */
printf ("\nParameters passed from Pascal:\n");
printf ("from_Pascal_by value: %$d\nfrom_Pascal_by_ref: %s\n\
from_Pascal_by_desc: %$s\n", from_ Pascal_by_value,
from_Pascal_by_ref -> string,
from_Pascal_by_desc -> dsc$a_pointer);

if ((term = getenv(from_Pascal_by_desc -> dscSa_pointer)) != 0)
{
/* Fill 'from_Pascal_by ref' with new value. */
strcpy (from_Pascal_by_ref -> string, term);
from_Pascal_by_ref -> length = strlen (term);

/* Change the contents of ’'from_Pascal_by_value' --
* to demonstrate that the value did not get
* reflected back to the calling routine.

from_Pascal_by_value = from_Pascal_by_desc -> dsc$w_length
+ from_Pascal_by_ref -> length;

}

else
printf ("\ngetenv\ (\"TERM\"\) is undefined.");

} /* End of HP C function */

Example 3-13 produces the following output:

Parameters passed from Pascal:
from_Pascal_by_value: 1
from_Pascal_by ref: TO_C_BY_ REF
from_Pascal_by_desc: TERM

kkkkkkhkkkkhkhhhkrdhhkdhhxdk

After calling C_FUNCTION:

by_value is still 1
however, by_ref contains vt200-80 (aka Your Terminal Type)
and, by_desc still contains TERM

3.4 Sharing Global Data

The following sections describe the methods involved in sharing HP C program
sections with data declared in other OpenVMS languages.

Using HP C in the Common Language Environment 3-39

3.4.1 Sharing Program Sections with FORTRAN Common Blocks

In a FORTRAN program, separately compiled procedures can share data in
declared common blocks, which specify the names of one or more variables to
be placed in them. Each named common block represents a separate program
section. Each procedure that declares the common block with the same name
can access the same variable.

Example 3-14 shows a HP C extern variable that corresponds to a FORTRAN
common block with the same name.

Example 3-14 Sharing Data with a FORTRAN Program in Named Program
Sections

C FORTRAN program PRSTRING.FOR contains the following lines of code:

SUBROUTINE PRSTRING
CHARACTER*20 STRING
COMMON /XYZ/ STRING

TYPE 20, STRING
20 FORMAT (' ',A20)

RETURN

END

C End of FORTRAN program

/* HP C program STRING.C contains the following lines of *
* code: */
main(void)

{
#pragma extern_model common_block // Alpha only. On VAX systems, use
// #pragma extern_model common_block shr
extern char xyz[20];

strncpy (xyz, "This is a string ", sizeof xyz);
prstring();
}

In Example 3-14, the HP C extern variable xyz corresponds to the FORTRAN
common block named XYZ. The FORTRAN procedure displays the data in

the block. When sharing program sections, both programs should declare
corresponding variables to be of the same type.

3-40 Using HP C in the Common Language Environment

Note the #pragma extern_model common_block preprocessor directive. This
directive sets the model for external variables to the common_block model,
which is the one used by VAX C. The default external model for HP C is the
relaxed_refdef model. For more information on the #pragma extern model
common_block preprocessor directive, see Section 5.4.5.

To share data in more than one variable in a program section with a FORTRAN
program, the HP C variables must be declared within a structure, as shown in
Example 3-15.

Example 3-15 Sharing Data with a FORTRAN Program in a HP C Structure

C FORTRAN program FNUM.FOR contains the following lines of code:

SUBROUTINE FNUM
INTEGER*4 INUM, JNUM, KNUM
COMMON /NUMBERS/ INUM, JNUM, KNUM

TYPE 10, (INUM,JNUM,KNUM)
10 FORMAT (31I8)

RETURN
END

C End of FORTRAN program

/* HP C program NUMBERS.C contains the following lines of *

* code: */
struct xs
{
int first;
int second;
int third;

b
#pragma extern_model common_block

main()

{

extern struct xs numbers;

numbers.first = 1;
numbers.second = 2;
numbers.third = 3;
fnum() ;

}

In Example 3-15, the int variables declared in the HP C structure numbers
correspond to the FORTRAN INTEGER*4 variables in the COMMON of the
same name.

Using HP C in the Common Language Environment 3-41

Also, note the #pragma extern_model common_block preprocessor directive.
This directive sets the model for external variables to the common_block model,
which is the one used by VAX C. The default external model for HP C is the
relaxed_refdef model. For more information on the #pragma extern model
common_block preprocessor directive, see Section 5.4.5.

3.4.2 Sharing Program Sections with PL/I Externals

A HP PL/I variable with the EXTERNAL attribute corresponds to a FORTRAN
common block and to a HP C extern variable in the common_block external
model. Example 3-16 and Example 3-17 show how a program section is
shared between HP C and HP PL/I.

A PL/1 EXTERNAL CHARACTER attribute corresponds to a HP C extern
char variable, but PL/I character strings are not necessarily null-terminated.
In Example 3-16, HP C and HP PL/I use the same variable to manipulate the
character string that resides in a program section named XYZ.

Example 3-16 Sharing Data with a PL/l Program in Named Program Sections

/* PL/I program PRSTRING.PLI contains the following lines of code: */
PRSTRING: PROCEDURE;
DECLARE XYZ EXTERNAL CHARACTER(20);

PUT SKIP LIST(XYZ);
RETURN;

END PRSTRING;
/* End of PL/I program */

/* HP C program STRING.C contains the following lines of *
* code: */
main(void)

{

extern char xyz[20];

strncpy (xyz, "This 1s a string ", sizeof xyz);
prstring();
}

The PL/T procedure PRSTRING writes out the contents of the external variable
XYZ.

3-42 Using HP C in the Common Language Environment

PL/T also has a structure type similar (in its internal representation) to the
struct keyword in HP C. Moreover, HP PL/I can output aggregates, such as
structures and arrays, in fairly simple stream-output statements; consider
Example 3-17.

Example 3-17 Sharing Data with a PL/I Program in a HP C Structure

/* PL/I program FNUM.PLI contains the following lines of code: */

FNUM: PROCEDURE;
/* EXTERNAL STRUCTURE CONTAINING THREE INTEGERS */
DECLARE 1 NUMBERS EXTERNAL,
2 FIRST FIXED(31)
2 SECOND FIXED(31),
2 THIRD FIXED(31);

PUT SKIP LIST(’Contents of structure:’, NUMBERS);
RETURN;
END FNUM;

/* End of PL/I program */

/* HP C program NUMBERS.C contains the following lines of *
* code: */

struct xs
{
int first;
int second;
int third;
}i
main()

{

extern struct xs numbers;

numbers.first = 1;
numbers.second = 2;
numbers.third = 3;
fnum() ;

}
The PL/I procedure FNUM writes out the complete contents of the external

structure NUMBERS; the structure members are written out in the order of
their storage in memory, which is the same as for a HP C structure.

Using HP C in the Common Language Environment 3-43

3.4.3 Sharing Program Sections with MACRO Programs

In a MACRO program, the .PSECT directive sets up a separate program
section that can store data or MACRO instructions. The attributes in the
.PSECT directive describe the contents of the program section.

Example 3—18 shows how to set up a psect in a MACRO program that allows
data to be shared with a HP C program.

Example 3-18 Sharing Data with a MACRO Program in a HP C Structure

; MACRO source file SET VALUE.MAR contains the following lines of code:

.entry set_value, "M<>

movl #1,first

movl #2, second
movl #3,third

ret

.psect example pic,usr,ovr,rel,gbl,noshr, -
noexe, rd,wrt,novec, long

first: .blkl
second: .blkl
third: .blkl

.end

; End of MACRO source file

/* HP C program NUMBERS.C contains the following lines of *
* code: */

#pragma extern_model common_block

struct xs
{
int first;
int second;
int third;
} example;
main()
{
set_value();
printf ("example.first = %d\n", example.first);

printf("example.second = %d\n", example.second);
printf ("example.third = %d\n", example.third);

3-44 Using HP C in the Common Language Environment

The MACRO program initializes the locations first, second, and third in the
psect named example and passes these values to the HP C program. The
locations are referenced in the HP C program as members of the external
structure named example.

Also, note the #pragma extern_model common_block preprocessor directive.
This directive sets the model for external variables to the common_block model,
which is the one used by VAX C. The default external model for HP C is the
relaxed_refdef model. For more information on the #pragma extern_model
common_block preprocessor directive, see Section 5.4.5.

3.5 OpenVMS Run-Time Library Routines

The OpenVMS Run-Time Library (RTL) is a library of prewritten, commonly
used routines that perform a wide variety of functions. These routines are
grouped according to the types of tasks they perform, and each group has a
prefix that identifies those routines as members of a particular OpenVMS RTL
facility. Table 3-10 lists all the language-independent, run-time library facility
prefixes and the types of tasks each facility performs.

Table 3—-10 OpenVMS Run-Time Library Facilities
Facility Prefix Types of Tasks Performed

LIB$ Library routines that obtain records from devices, manipulate
strings, convert data types for I/O, allocate resources, obtain system
information, signal exceptions, establish condition handlers, enable
detection of hardware exceptions, and process cross-reference data.

MTHS$ Mathematics routines that perform arithmetic, algebraic, and
trigonometric calculations.

OTS$ General-purpose routines that perform tasks such as data-type
conversions as part of a compiler’s generated code.

SMG$ Screen management routines that are used in designing, composing,
and keeping track of complex images on a video screen.

STR$ String manipulation routines that perform such tasks as searching
for substrings, concatenating strings, and prefixing and appending
strings.

The OpenVMS run-time library routines are documented in detail in the
following operating system documentation:

e OpenVMS RTL Library (LIB$) Manual
e OpenVMS VAX RTL Mathematics (MTH$) Manual
e HP Portable Mathematics Library

Using HP C in the Common Language Environment 3-45

® OpenVMS RTL General Purpose (OTS$) Manual
e OpenVMS RTL Screen Management (SMG$) Manual
e OpenVMS RTL String Manipulation (STR$) Manual

3.6 OpenVMS System Services Routines

System services are prewritten system routines that perform a variety of
tasks, such as controlling processes, communicating among processes, and
coordinating I/O.

Unlike the OpenVMS Run-Time Library (RTL) routines, which are divided into
groups by facility, all system services share the same facility prefix (SYS$).
However, these services are logically divided into groups that perform similar
tasks. Table 3—11 describes these groups.

Table 3-11 OpenVMS System Services

Group Types of Tasks Performed

AST Allows processes to control the handling of asynchronous
system traps (ASTs).

Change mode Changes the access mode of particular routines.

Condition handling Designates condition handlers for special purposes.

Event flag Clears, sets, reads, and waits for event flags, and associates
with event flag clusters.

Information Returns information about the system, queues, jobs, processes,
locks, and devices.

Input/Output Performs I/O directly without going through RMS.

Lock management Enables processes to coordinate access to shareable system
resources.

Logical names Provides methods of accessing and maintaining pairs of
character-string logical names and equivalence names.

Memory manage- Increases or decreases available virtual memory, controls

ment paging and swapping, and creates and accesses shareable files
of code or data.

Process control Creates, deletes, and controls execution of processes.

Security Enhances the security of OpenVMS systems.

Time and Timing Schedules events and obtains and formats binary time values.

System services are documented in detail in the HP OpenVMS System Services
Reference Manual.

3-46 Using HP C in the Common Language Environment

The routines that provide a programming interface to various OpenVMS
utilities are described in the OpenVMS Utility Routines Manual.

3.7 Calling Routines

The basic steps for calling routines are the same whether you are calling a
routine written in HP C, a routine written in some other OpenVMS language,
a system service, or an OpenVMS Run-Time Library (RTL) routine. The
following sections outline the procedures for calling non-HP C routines.

3.7.1 Determining the Type of Call

Before calling an external routine, you must first determine whether the call
should be a procedure call or a function call. Call a routine as a procedure if it
does not return a value. Call a routine as a function if it returns any type of
value.

3.7.2 Declaring an External Routine and Its Arguments

To call an external routine or system routine, you need to declare it as
an external function and to declare the names, data types, and passing
mechanisms of its arguments. Arguments can be either required or optional.

Include the following information in a routine declaration:
¢ The name of the external routine

e The data types of all the routine parameters (optional)
e The data type of the return value if it is a function

¢ The void keyword if it is a procedure

The following example shows how to declare an external routine and its
arguments:

char func_name (int x, char y);

Header files are available to declare commonly used external routines. Using
them will save you a lot of work. See Sections 1.3.1.1 and 1.3.1.2 in this
manual for information on listing and including header files.

Using HP C in the Common Language Environment 3-47

3.7.3 Calling the External Routine

After declaring an external routine, you can invoke it. To invoke a function,
you must specify the name of the routine being invoked and all arguments
required for that routine. Make sure the data types for the actual arguments
you are passing coincide with those of the parameters you declared earlier, and
with those declared in the routine. The following example shows how to invoke
the function declared in Section 3.7.2:

ret_status = func_name(l,’a’);

3.7.4 System Routine Arguments

All system routine arguments are described in terms of the following
information:

e OpenVMS usage

e Data type

e Type of access allowed
e Passing mechanism

OpenVMS usages are data structures that are layered on the standard
OpenVMS data types. For example, the OpenVMS usage mask_longword
signifies an unsigned longword integer that is used as a bit mask, and the
OpenVMS usage floating_point represents any OpenVMS floating-point data
type. Table 3-12 lists all the OpenVMS usages and the HP C types you need
to implement them.

Table 3-12 HP C Implementation

OpenVMS Data Type HP C Declaration
access_bit_names user-defined!
access_mode unsigned char
address int *pointer?*

IThe declaration of a user-defined data structure depends on how the data will be used. Such
data structures can be declared in a variety of ways, each of which is more suitable to specific
applications.

2The term pointer refers to several declarations involving pointers. Pointers are declared with
special syntax and are associated with the data type of the object being pointed to. This object is
often user-defined.

4The data type specified can be changed to any valid HP C data type.

(continued on next page)

3-48 Using HP C in the Common Language Environment

Table 3-12 (Cont.) HP C Implementation

OpenVMS Data Type

HP C Declaration

address_range
arg_list
ast_procedure
boolean
byte_signed
byte_unsigned
channel
char_string
complex_number
cond_value
context
date_time
device_name

ef cluster_name
ef number
exit_handler_block
fab

file_protection
floating_point
function_code
identifier
io_status_block

item_list_2

int *array [2] 23
user-defined!

pointer to a function?
unsigned long int
char

unsigned char
unsigned short int
char array[n]®?
user-defined!
unsigned long int
unsigned long int
user-defined!
char array[n]®®
char array[n]®5
unsigned long int
user-defined!

#include fab from text library
struct FAB

unsigned short int, or user-defined?
float or double

unsigned long int or user-defined’
int *pointer®*

user-defined!

user-defined*

IThe declaration of a user-defined data structure depends on how the data will be used. Such
data structures can be declared in a variety of ways, each of which is more suitable to specific

applications.

2The term pointer refers to several declarations involving pointers. Pointers are declared with
special syntax and are associated with the data type of the object being pointed to. This object is

often user-defined.

3The term array denotes the syntax of a HP C array declaration.

4The data type specified can be changed to any valid HP C data type.

5The size of the array must be substituted for n.

(continued on next page)

Using HP C in the Common Language Environment 3-49

Table 3-12 (Cont.) HP C Implementation

OpenVMS Data Type

HP C Declaration

item_list_3
item_list_pair
item_quota_list
lock_id
lock_status_block
lock_value_block
logical_name
longword_signed
longword_unsigned
mask_byte
mask_longword
mask_quadword
mask _word
null_arg
octaword_signed
octaword_unsigned
page_protection
procedure
process_id
process_name
quadword_signed
quadword_unsigned
rights_holder
rights_id

user-defined!
user-defined!
user-defined!
unsigned long int
user-defined!
user-defined!
char array[n]®®
long int

unsigned long int
unsigned char
unsigned long int
user-defined!
unsigned short int
unsigned long int
user-defined!
user-defined!
unsigned long int
pointer to function?
unsigned long int
char array[n]®*
user-defined!
user-defined’

user-defined?

unsigned long int

IThe declaration of a user-defined data structure depends on how the data will be used. Such
data structures can be declared in a variety of ways, each of which is more suitable to specific

applications.

2The term pointer refers to several declarations involving pointers. Pointers are declared with
special syntax and are associated with the data type of the object being pointed to. This object is
often user-defined.

3The term array denotes the syntax of a HP C array declaration.

5The size of the array must be substituted for n.

(continued on next page)

3-50 Using HP C in the Common Language Environment

Table 3-12 (Cont.) HP C Implementation

OpenVMS Data Type HP C Declaration
rab #include rab

struct RAB
section_id user-defined!
section_name char array[n]®®
system_access_id user-defined!
time_name char array[n]®?
uic unsigned long int
user_arg user-defined!
varying_arg user-defined’
vector_byte_signed char array[n]®?
vector_byte_unsigned unsigned char array[n]®?®
vector_longword_signed long int array[n]®®
vector_longword_unsigned unsigned long int array[n]??
vector_quadword_signed user-defined!
vector_quadword_unsigned user-defined!
vector_word_signed short int array[n]®®
vector_word_unsigned unsigned short int array[n]®?®
word_signed short int
word_unsigned unsigned short int

IThe declaration of a user-defined data structure depends on how the data will be used. Such
data structures can be declared in a variety of ways, each of which is more suitable to specific
applications.

3The term array denotes the syntax of a HP C array declaration.

5The size of the array must be substituted for n.

If a system routine argument is optional, it will be indicated in the format
section of the routine description in one of two ways, as follows:

e [,optional-argument]
e [optional-argument]

If the comma appears outside the brackets, you must pass a 0 by value to
indicate the place of the omitted argument. If the comma appears inside the
brackets, you can omit the argument if it is the last argument in the list.

Using HP C in the Common Language Environment 3-51

For more information, see the OpenVMS Programming Interfaces: Calling a
System Routine manual. This manual describes the OpenVMS programming
interface and defines the standard conventions to call an OpenVMS system
routine from a user procedure. The Alpha and VAX data type implementations
for various high-level languages are also presented.

3.7.5 Symbol Definitions

Many system routines depend on values that are defined in separate symbol
definition files. OpenVMS RTL routines require you to include symbol
definitions when you are calling a Screen Management facility routine or

a routine that is a jacket to a system service. A jacket routine provides an
interface to the corresponding system service. For example, the routine
LIB$SYS_ASCTIM is a jacket routine for the $ASCTIM system service.

If you are calling a system service, you must include the <ssdef.h> header file
to check the status. Many system services require other symbol definitions as
well. To determine whether you need to include other symbol definitions for
the system service you want to use, see the documentation for that particular
system service. If the documentation states that values are defined in a macro,
you must include those symbol definitions in your program.

For example, the description for the flags parameter in the SYS$MGBLSC
(Map Global Section) system service states that “Symbolic names for the
flag bits are defined by the $SECDEF macro.” Therefore, when you call
SYS$MGBLSC you must include the definitions provided in the $SECDEF
macro by including the <secdef.h> header file.

In HP C, a header file is included as follows:
#include <ssdef.h>

To obtain a list of all HP C header files, see Section 1.3.1.2.
3.7.6 Condition Values

Many system routines return a condition value that indicates success or
failure; this value can be either returned or signaled. If a condition value is
returned, then you must check the returned value to determine whether the
call to the system routine was successful. Otherwise, the condition value is
signaled to your program instead of being written to a storage location.

Condition values indicating success appear first in the list of condition values
for a particular routine, and success codes have odd values. A success code
that is common to many system routines is the condition value SS$_NORMAL,
which indicates that the routine completed normally and successfully. If the
condition value is returned, then you can test for SS$_ NORMAL as follows:

3-52 Using HP C in the Common Language Environment

if (ret_status != SS$_NORMAL)
LIBSSTOP () ;

Because all success codes have odd values, you can check a return status for
any success code. For example, you can cause execution to continue only if a
success code is returned by including the following statements in your program:

if ((ret_status & 1) != 0)
LIBSSTOP (ret_status);

In general, you can check a return status for a particular success or failure
code or you can test the condition value returned against all success codes or
all failure codes.

3.7.7 Checking System Service Return Values

It is customary in OpenVMS programming to compare the return status of a
system service with a global symbol, not with the literal value associated with
a particular return status. Consequently, a high-level language program should
define the possible return status values for a service as symbolic constants. In
HP C, you can do this by including the <ssdef.h> header file; Example 3-19
shows how this is done.

Using HP C in the Common Language Environment 3-53

Example 3-19 Checking System Service Return Values

/* This program shows how to compare the status of a system *
* gervice with a global symbol. */

#include <stdlib.h>

/* Define system service *
* status values */
#include <ssdef.h>
#include <stdio.h>

/* Declaration of the *
* service (not required) */
int SYSSSETEF();

int main(void)

{
/* To hold the status of *

* SYSSSETEF */
int efstatus;
/* Argument values for *
* SYSSSETEF */
enum cluster(
{
completion, breakdown, beginning
} event;
event = completion;

/* Set the event flag */
efstatus = SYSSSETEF (event) ;

/* Test the return status */
if (efstatus == SS$_WASSET)
fprintf (stderr,"Flag was already set\n");
else
if (efstatus == SS$_WASCLR)
fprintf (stderr, "Flag was previously clear\n");
else
fprintf (stderr,
"Could not set completion event flag.\n \
Possible programming error.\n");

exit (efstatus);

}

The system service return status values (SS$_WASSET and SS$_WASCLR) in
Example 3-19 are defined by the <ssdef.h> header file.

3-54 Using HP C in the Common Language Environment

Error handling in Example 3—-19 is typical of programs running on OpenVMS
systems. Using the following statements, the example program attempts to
provide a program-specific error message and then passes the offending error
status to the caller:

else
fprintf (stderr,
"Could not set completion event flag.\n \
Possible programming error.\n");

exit (efstatus);

If you execute the program with DCL, it interprets any status value the
program returns. DCL prints a standard error message on the terminal
to provide you with more information about the failure. For example, if
the program encounters the SS$_ILLEFC return status, DCL displays the
following messages:

Could not set completion event flag.
Possible programming error.
%$SYSTEM-F-ILLEFC, illegal event flag cluster.

3.8 Variable-Length Argument Lists in System Services

Most system services and other external procedures require a specific number
of arguments, but some accept a variable number of optional arguments.
Because HP C function declarations do not show the number of parameters
expected by external functions unless a function prototype is used, the way you
call an external function from a HP C program depends on the semantics of the
called function. You must supply the number of arguments that the external
function expects. The rules are as follows:

e When optional arguments occur between required arguments, they cannot
be omitted. If omitting such an argument is necessary—for example, to
select a default action—the argument must be written as a zero.

e When optional arguments occur at the end of an argument list, the format
of the function reference depends on the action of the called function as
follows:

— If the called function checks the number of arguments passed, you can
omit optional trailing arguments from the function reference. System
services generally do not check the length of the argument list.

— If the called function does not check the number of arguments passed,
all arguments must be present in the function reference.

Using HP C in the Common Language Environment 3-55

For example, the function STR$CONCAT, in the Common Run-Time Library,
concatenates from 2 to 254 strings into a single string. It has the following call
format:

ret = STRECONCAT(dst, srct, src2], src3, . . . src254));

For more information about the STR$CONCAT function, see the VMS
Run-Time Library Routines Volume.

The identifier dst is the destination for the concatenated string, and srci,
src2, ... src2564 are the source strings. All arguments are passed by descriptor.
All but the first two source strings are optional. The function checks to see how
many arguments are present in the call; if fewer than three (the destination
and two sources) are present, the function returns an error status value.
Example 3—20 shows a call to the STR$CONCAT function from HP C.

Example 3-20 Using Variable-Length Argument Lists

/* This example shows a call to STRSCONCAT. */
#include <stdlib.h>

#include <stdio.h>
#include <descrip.h>
#include <ssdef.h>

int STRSCONCAT();

int main(void)

{

int ret; /* Return status of *
* STRSCONCAT */
/* Destination array of *

* concatenated strings */
char dest([21];

/* Create compile-time *
* descriptors: */
SDESCRIPTOR (dst, dest);
static SDESCRIPTOR(srcl, "abcdefghij");
static $DESCRIPTOR(src2, "klmnopgrst");

/* Concatenate strings */
ret = STRSCONCAT (&dst, &srcl, &src2);

/* Test return status value */
if (ret != SS$S_NORMAL)
fprintf (stderr, "Failed to concatenate strings.\n"),
exit (ret);

(continued on next page)

3-56 Using HP C in the Common Language Environment

Example 3-20 (Cont.) Using Variable-Length Argument Lists

/* Process string */
else
dest[20] = "\0’,
printf("Resultant string: %s\n",dest);

3.9 Return Status Values

The status values from OpenVMS system service procedures are returned in
general register R0O. This return status value indicates the success or failure
of the operation performed by the called procedure. In HP C, passing a return
status value in RO is equivalent to a function returning int.

To obtain a return status value from any system procedure, declare the
procedure as a function, as shown in the following example:

int SYSSSETEF();

After declaring a procedure in this way, you can invoke the procedure as a
function and obtain a return status value. In HP C, such a declaration is
needed only as program documentation; SYS$SETEF can be called without
explicit declaration and will be interpreted by default as a function returning
int.

This section describes the following topics:

e The format of a return status value, that is, the meaning of particular bits
within the value

e The way to manipulate return status values

¢ The recommended techniques for testing a return status value for success
or failure or for a specific condition

3.9.1 Format of Return Status Values

All OpenVMS system procedures and programs use a longword value to
communicate return status information. When a HP C main function executing
under the control of the DCL interpreter executes a return statement to return
control to the command level, the command interpreter uses the return status
value to conditionally display a message on the current output device.

Using HP C in the Common Language Environment 3-57

To provide a unique means of identifying every return condition in the system,
bit fields within the value are defined as shown in Figure 3-5.

Figure 3-5 Bit Fields Within a Return Status Value

control bits severity

(
31 28 27 32 O

condition identification

N /
Y
27 16 15 3
facility message
number number
ZK-0283-GE

The following list describes the division of this bit field:

control bits (31-28)
Define special action(s) to be taken. At present, only bit 28 is used. When set,
it inhibits the printing of the message associated with the return status value

at image exit. Bits 29 through 31 are reserved for future use by HP and must
be 0.

facility number (27-16)

A unique value assigned to the system component, or facility, that is returning
the status value. Within this field, bit 27 has a special significance. If bit 27 is
clear, the facility is a HP facility: the remaining value in the facility number
field is a number assigned by the operating system. If bit 27 is set, the number
indicates a customer-defined facility.

message humber (15-3)

An identification number that specifically describes the return status or
condition. Within this field, bit 15 has a special significance. If bit 15 is set,
the message number is unique to the facility issuing the message. If bit 15 is
clear, the message is issued by more than one system facility.

severity (2-0)

A numeric value indicating the severity of the return status. Table 3-13 shows
the possible values in these three bits, and their meanings.

3-58 Using HP C in the Common Language Environment

Table 3—-13 Possible Severity Values

Value Meaning

0 Warning

1 Success

2 Error

3 Informational

4 Severe error, FATAL
5-7 Reserved

Odd values indicate success (an informational condition is considered a
successful status) and even values indicate failures (a warning is considered an
unsuccessful status).

The following names are associated with these fields:

control bits CONTROLINHIB_MSG
bit 28 (inhibit message)

facility number FAC_NOCUST_DEF
bit 27 (customer facility)

message number MSG_NOFAC_SP

bit 15 (facility specific)

severity SEVERITYSUCCESS

bit 0 (success)

When testing return values in a HP C program, either you can test only for
successful completion of a procedure or you can test for specific return status
values.

3.9.2 Manipulating Return Status Values

You can construct a structure or union that describes a return status value,
but this method of manipulating return status values is not recommended. A
status value is usually constructed or checked using bitwise operators. HP C
provides the <stsdef.h> header file, which contains preprocessor definitions to
make this job easier. All the preprocessor symbols are named according to the
following OpenVMS naming convention:

STSS$type_name

Using HP C in the Common Language Environment 3-59

STS
Identifies standard return status values.

type

Oyrrl)e of the following characters denoting the type of the constant:
K Represents a constant value

M Represents a bit mask

S Represents the bit size of a field

\Y Defines the bit offset to the field

name

An abbreviation for the field name.

For example, the following constants are defined in <stsdef.h> for the facility
number field, FAC_NO, which spans bits 16 through 27:

/* Size of field in bits */
#define STSSS_FAC_NO 12

/* Bit offset to the *
* beginning of the field */
#define STSSV_FAC_NO 16

/* Bit mask of the field */
#define STSSM_FAC_NO 0xFFF0000

Figure 3-6 shows how the status value is represented internally.

Figure 3-6 Internal Representation of a Status Value

STS$S_FAC_NO STS$V_FAC_NO
31 27¢———P{g¢+———»(

00001111 | 11111111 | 00000000 | 00000000
N)
Y
STS$M_FAC_NO

ZK-0528-GE

Use the following expression to extract the facility number from a particular
status value contained in the variable named status:

(status & STSSM_FAC_NO) >> STSSV_FAC_NO

3-60 Using HP C in the Common Language Environment

In the previous example, the parentheses are required for the expression to be
evaluated properly; the relative precedence of the bitwise AND operator (&) is
lower than the precedence of the binary shift operator (>>).

3.9.3 Testing for Success or Failure

To test a return status value for success or failure, you need only test the
success bit. A value of true in this bit indicates that the return value is a
successful value.

Example 3—21 shows a program that checks the success bit.

Example 3-21 Testing for Success

/* This program shows how to test the success bit. */

#include <stdio.h>
#include <descrip.h>
#include <stsdef.h>
#include <starlet.h>
#include <stdlib.h>

int main(void)
{

int status;
$DESCRIPTOR (name, "student");

status = sysS$setprn(&name) ;

if (status & STSSM_SUCCESS)
/* Success code */
fprintf (stderr, "Successful completion");

else
/* Failure code */

fprintf (stderr, "Failed to set process name.\n");
exit (status);

}

The failure code in Example 3-21 causes the printing of a program-specific
message indicating the condition that caused the program to terminate. The
error status is passed to the DCL by the exit function, which then interprets
the status value.

Using HP C in the Common Language Environment 3-61

3.9.4 Testing for Specific Return Status Values

Each numeric return status value defined by the system has a symbolic name
associated with it. The names of these values are defined as system global
symbols, and you can access their values by referring to their symbolic names.

The global symbol names for OpenVMS return status values have the following
format:

facility$_code
facility

An abbreviation or acronym for the system facility that defined the global
symbol.

code
A mnemonic for the specific status value.

Table 3—14 shows some examples of facility codes used in global symbol names.

Table 3-14 Facility Codes

Facility Description

SS System services; these status codes are listed in the HP OpenVMS
System Services Reference Manual.

RMS File system procedures; these status codes are listed in the OpenVMS
Record Management Services Reference Manual.

SOR SORT procedures; these status codes are listed in the VMS

Sort/ Merge Utility Manual.

The definitions of the global symbol names for the facilities listed are located
in the default HP C object module libraries, so they are automatically located
when you link a HP C program that references them.

When you write a HP C program that calls system procedures and you want
to test for specific return status values using the symbol names, you must
perform the following tasks:

1. Determine, from the documentation of the procedure, the status values
that can be returned, and choose the values for which you want to provide
specific tests.

3-62 Using HP C in the Common Language Environment

2. Declare the symbolic name for each value of interest. The <ssdef.h> and
<rmsdef.h> header files define the system service and RMS return status
values, respectively. If you are checking return status values from other
facilities, such as the SORT utility, you must explicitly declare the return
values as globalvalue int. Consider the following example:

globalvalue int SORS_OPENIN;
3. Reference the symbols in your program.

Example 3-22 shows a program that checks for specific return status values
defined in the <ssdef.h> header file.

Example 3-22 Testing for Specific Return Status Values

/* This program checks for specific return status values. */

#include <stdlib.h>

#include <ssdef.h>
#include <stdio.h>
#include <descrip.h>

SDESCRIPTOR (message, "\07**Lunch_time**\07");

int main(void)

{
int status = SYSSBRDCST (&message,0);

if (status != SS$_NORMAL)
{
if (status == SS$_NOPRIV)
fprintf (stderr, "Can’t broadcast; requires OPER \
privilege.");

else
fprintf(stderr, "Can’t broadcast; some fatal \
error.");

exit(status);

}

3.10 Examples of Calling System Routines

This section provides complete examples of calling system routines from HP C.
Example 3-23 shows the three mechanisms for passing arguments to system
services and also shows how to test for status return codes. Example 3—24
shows various ways of testing for successful $QIO completion. Example 3-25
shows how to use time conversion and set timer routines.

Using HP C in the Common Language Environment 3-63

In addition to the examples provided here, the VMS Run-Time Library
Routines Volume and the HP OpenVMS System Services Reference Manual also
provide examples for selected routines. See these manuals for help on using a
specific system routine.

Example 3-23 Passing Arguments to System Services

/* GETMSG.C
This program is an example showing the three mechanisms
for passing arguments to system services. It also
shows how to test for specific status return
codes from a system service call. */

#include <stdio.h>
#include <descrip.h>
#include <ssdef.h>
#include <libSroutines.h>

int main(void)

{

int message_id;

short message_len;

char text([133];

SDESCRIPTOR (message_text, text);
register status;

while (printf("\nEnter a message number <Ctrl/Z to quit>: "),
scanf ("%d", &message_id) != EOF)
{
/* Retrieve message associated with the number. */
status = SYSSGETMSG (message_id, &message_len,
&message_text, 15, 0);

/* Check for status conditions. */
if (status == SS$_NORMAL)
printf("\n%.*s\n", message_len, text);
else if (status == SS$_BUFFEROVF)
printf ("\nBUFFER OVERFLOW -- Text is: %.*s\n",
message_len, text);
else if (status == SS$_MSGNOTFND)
printf ("\nMESSAGE NOT FOUND.\n");
else
{
printf ("\nUnexpected error in S$GETMSG call.\n");
LIBSSTOP (status) ;
}

3-64 Using HP C in the Common Language Environment

Example 3-24 Determining $QIO Completion

/* ASYNCH.C
This program shows various ways to determine
$QI0 completion. It also shows the use of an
I0SB to obtain information about the I/0 operation. */

#include <iodef.h>
#include <ssdef.h>
#include <descrip.h>
#include <libSroutines.h>
#include <stdio.h>
#include <starlet.h>
#include <string.h>

typedef struct
{
short cond_value;
short count;
int info;
} 1o_statblk;

main(void)

{

char text_string[] = "This was written by the $QIO0.";
register status;

short chan;

io_statblk status_block;

int AST PROC();

SDESCRIPTOR (terminal, "SYSSCOMMAND");

/* Assign I/O channel. */
if (((status = SYSSASSIGN (&terminal, &chan,0,0)) & 1) !'= 1)
LIBSSTOP (status);

/* Queue the I/0. */
if (((status = SYS$QIO (1, chan, IOS$S_WRITEVBLK, &status_block,
AST_PROC, &status_block, text_string,
strlen(text_string),0,32,0,0)) & 1) !'=1)
LIBSSTOP (status);

/* Wait for the I/0 operation to complete. */

if (((status = SYSSSYNCH (1, &status_block)) & 1) != 1)
LIBSSTOP (status);
if ((status_block.cond _value &1) !'= 1)

LIBSSTOP (status_block.cond_value) ;

printf ("\nThe I/0 operation and AST procedure are done.");

}

AST PROC (*write_status)
io_statblk *write_status;

(continued on next page)

Using HP C in the Common Language Environment 3-65

Example 3-24 (Cont.) Determining $QIO Completion

/* This function is called as an AST procedure. It uses
the AST parameter passed to it by $QIO to determine
how many characters were written to the terminal. */

{
printf ("\nNumber of characters output is $%d", write_status->count);
printf ("\nI/O completion status is %d", write_status->cond_value);

}

Example 3-25 Using Time Routines

/* ALARM.C
This program shows the use of time conversion
and set timer routines. */

#include <stdio.h>
#include <descrip.h>
#include <ssdef.h>

#include <libS$routines.h>
#include <starlet.h>

main(void)

{

#define event_flag 2
#define timer_id 3

typedef int quadword([2];

quadword delay_int;

$DESCRIPTOR (offset, "0 ::15.00");
char cur_time[24];

SDESCRIPTOR (cur_time_desc, cur_time);
int 1;

unsigned state;

register status;

/* Convert offset from ASCII to binary format. */
if (((status=SYSSBINTIM(&offset, delay_int)) &1) != 1)
LIBSSTOP (status);

/* Output current time. */

if (((status=LIBSDATE_TIME (&cur_time_desc)) &1) !'= 1)
LIBSSTOP (status);
cur_time[23] = "\0’;

printf ("The current time is : %s\n", cur_time);

(continued on next page)

3-66 Using HP C in the Common Language Environment

Example 3-25 (Cont.) Using Time Routines

/* Set the timer to expire in 15 seconds. */
if (((status=SYSSSETIMR (event_flag, &delay_int,

0, timer_id)) &l1) !'= 1)

LIBSSTOP (status) ;

/* Count to 1000000. */
printf ("beginning count\n");
for (1=0; 1<=1000000; i++)

’

/* Check if the timer expired. */
switch (status =

{

case SSS_WASCLR :

case SSS_WASSET :

default

}
}

SYSSREADEF (event_flag, &state))

/* Cancel timer */

1f (((status=SYSSCANTIM(timer_id, 0)) &1) != 1)
LIBSSTOP (status) ;

printf ("Count completed before timer expired.\n");

printf("Timer canceled.\n");

break;

printf("Timer expired before count completed.\n");

break;

: LIBSSTOP(status);

break;

Using HP C in the Common Language Environment 3-67

4

Data Storage and Representation

This chapter presents the following topics concerning HP C data storage and
representation on OpenVMS systems:

e Storage allocation (Section 4.1)

e Standard-conforming method of controlling external objects (Section 4.2)
e Global storage classes (Section 4.3)

e Storage-class modifiers (Section 4.4)

¢ Floating-point numbers (Section 4.5)

e Pointer conversions (Section 4.6)

e Structure alignment (Section 4.7)

e Program sections (Section 4.8)

4.1 Storage Allocation

When you define a HP C variable, the storage class determines not only its
scope but also its location and lifetime. The lifetime of a variable is the length
of time for which storage is allocated. For OpenVMS systems, storage for a
HP C variable can be allocated in the following locations:

¢ On the run-time stack
e In a machine register
e In a program section (psect)

Variables that are placed on the stack or in a register are temporary. For
example, variables of the auto and register storage classes are temporary.
Their lifetimes are limited to the execution of a single block or function. All
declarations of the internal storage classes (auto and register) are also
definitions; the compiler generates code to establish storage at this point in the
program.

Data Storage and Representation 4-1

Program sections, or psects, are used for permanent variables; the lifetime

of identifiers extends through the course of the entire program. A psect
represents an area of virtual memory that has a name, a size, and a series

of attributes that describe the intended or permitted usage of that portion of
memory. For example, the compiler places variables of the static, external,
and global storage classes in psects; you have some control as to which psects
contain which identifiers. All declarations of the static storage class are also
definitions; the compiler creates the psect at that point in the program. In
HP C, the first declaration of the external storage class is also a definition; the

linker initializes the psect at that point in the program.

The compiler does not necessarily allocate distinct variables to
memory locations according to the order of appearance in the source
code. Furthermore, the order of allocation can change as a result

of seemingly unrelated changes to the source code, command-line
options, or from one version of the compiler to the next; it is essentially
unpredictable. The only way to control the placement of variables
relative to each other is to make them members of the same struct
type or, on OpenVMS Alpha and 164 systems, by using the noreorder
attribute on a named #pragma extern_model strict_refdef.

Table 4—-1 shows the location and lifetime of a variable when you use each of

the storage-class keywords.

Table 4-1 Location, Lifetime, and the Storage-Class Keywords

Storage Class Location Lifetime

(Internal null) Stack or register Temporary
[auto] Stack or register Temporary
register Stack or register Temporary
static Psect Permanent
extern Psect Permanent
globaldef! Psect Permanent

IThe globaldef, globalref, and globalvalue storage-class specifiers are available only

when compiling in VAX C compatibility mode.

4-2 Data Storage and Representation

(continued on next page)

Table 4-1 (Cont.) Location, Lifetime, and the Storage-Class Keywords

Storage Class Location Lifetime
globalref! Psect Permanent
globalvalue! No storage allocated Permanent

IThe globaldef, globalref, and globalvalue storage-class specifiers are available only
when compiling in VAX C compatibility mode.

For a comparison between the global and external storage classes, see
Section 4.3.2.

For more information about psects, see Section 4.8.

4.2 Standard-Conforming Method of Controlling External
Objects

Sections 4.3 and 4.4 describe the following external linkage storage-class
specifiers and modifiers that are specific to HP C for OpenVMS Systems:

globaldef
globalref
globalvalue
noshare
readonly
_align

These keywords are supported by the HP C compiler for compatibility
purposes, and are available only in VAX C mode (/STANDARD=VAXC) and
relaxed mode (/STANDARD=RELAXED).

However, the HP C compiler also provides an alternative, standard-conforming
method of controlling objects that have external linkage. To take advantage
of this method, use the #pragma extern_model preprocessor directive and the
/EXTERN_MODEL and /[NOJSHARE_GLOBALS command-line qualifiers.

The pragma and command-line qualifiers replace the VAX C mode storage-class
specifiers (globaldef, globalref, globalvalue) and storage-class modifiers
(noshare and readonly). They allow you to select the implementation model
of external data and control the psect usage of your programs. The _align
storage-class modifier is still used to ensure object alignment.

Data Storage and Representation 4-3

The pragma and command-line qualifier approach also has these advantages:

¢ Since the VAX C mode keywords do not follow standard C spelling rules,
they cannot be provided in strict ANSI C mode. The pragma and qualifiers,
however, can be used in any mode of the HP C compiler.

¢ The pragma and qualifiers allow extern on OpenVMS systems to function
in a manner more similar to other systems.

e The pragma and qualifiers make it easier for you to write OpenVMS
shareable images with HP C. Previously, that task required you to add an
additional keyword to every declaration of external data.

For a description of the #pragma extern_model preprocessor directive and its
relationship to the external storage classes it replaces, see Section 5.4.5.

For a description of the _align storage-class modifier, see Section 4.4.3.

For a description of the /EXTERN_MODEL and /[NOJ[SHARE_GLOBALS
command-line qualifiers, see Section 1.3.4.

4.3 Global Storage Classes

In addition to the storage-class specifiers described in the HP C Language
Reference Manual, the VAX C compatibility mode of HP C provides the
globaldef, globalref, and globalvalue storage-class specifiers. These
specifiers allow you to assign the global storage classes to identifiers. The
global storage classes are specific to HP C for OpenVMS Systems and are not
portable.

4.3.1 The globaldef and globalref Specifiers

Use the globaldef specifier to define a global variable. Use the globalref
specifier to refer to a global variable defined elsewhere in the program.

When you use the globaldef specifier to define a global symbol, the symbol is
placed in one of three program sections: the $DATA (VAX oniy) or $DATAS$ (Alpha,
164) psect using globaldef alone, the $CODE (vAX only) or SREADONLY$ (Aipha,
164) psect using globaldef with readonly or const, or a user-named psect.
You can create a user-named psect by specifying the psect name as a string
constant in braces immediately following the globaldef keyword, as shown in
the following definition:

globaldef{"psect_name"} int x = 2;

4-4 Data Storage and Representation

1

This definition creates a program section called psect_name and allocates the
variable x in that psect. You can add any number of global variables to this
psect by specifying the same psect name in other globaldef declarations. In
addition, you can specify the noshare modifier to create the psect with the
NOSHR attribute. Similarly, you can specify the readonly or const modifier
to create the psect with the NOWRT attribute. For more information about
the possible combinations of specifiers and modifiers, and the effects of the
storage-class modifiers on program section attributes, see Section 4.8.

Variables declared with globaldef can be initialized; variables declared with
globalref cannot, because these declarations refer to variables defined, and
possibly initialized, elsewhere in the program. Initialization is possible only
when storage is allocated for an object. This distinction is especially important
when the readonly or const modifier is used; unless the global variable is
initialized when the variable is defined, its permanent value is 0.

Note

In the VAX MACRO programming language, it is possible to give a
global variable more than one name. However, in HP C, only one global
name can be used for a particular variable. HP C assumes that distinct
global variable names denote distinct objects; the storage associated
with different names must not overlap.

Example 4—1 shows the use of global variables.

Example 4-1 Using Global Variables

/* This example shows how global variables are used *
* in HP C programs. */

#include <stdlib.h>

#include <stdio.h>
extern void fn();

int ex_counter = 0;

2 globaldef double velocity = 3.0el0;
3 globaldef {"distance"} long miles = 100;

(continued on next page)

Data Storage and Representation 4-5

Example 4-1 (Cont.) Using Global Variables

int main()

{
printf (" *** FIRST COMP UNIT ***\n");
printf ("counter:\t%d\n", ex_counter);
printf("velocity:\t%g\n", velocity);
printf("miles:\t\t%d\n\n", miles);
fn();
printf (" **x FIRST COMP UNIT ***\n");

printf ("counter:\t%d\n", ex_counter);

4 printf ("velocity:\t%g\n", velocity);
printf('"miles:\t\t%d\n\n", miles);
exit (EXIT_SUCCESS);

}

/* __ *
* The following code is contained in a separate
* compilation unit. *
K e e e */

#include <stdio.h>

static ex_counter;

5 globalref double velocity;
globalref long miles;

fn(void)

{
++ex_counter;
printf (" *** SECOND COMP UNIT ***\n");
if (miles > 50)

velocity = miles * 3.1 / 200 ;

printf("counter:\t%d\n", ex_counter);
printf ("velocity:\t%g\n", velocity);
printf("miles:\t\t%d\n", miles);

Key to Example 4-1:

1 In the first compilation unit, the ex_counter integer variable has a
storage class of extern. In the second compilation unit, a variable named
ex_counter is of storage class static. Even though they have the same
identifier, the two ex_counter variables are different variables represented
by two separate memory locations. The link-time scope of the second
ex_counter is the module created from the second compilation unit. When
control returns to the main function, the ex_counter external variable
retains its original value.

4-6 Data Storage and Representation

2 The variable velocity has storage class globaldef and is stored in the
$DATA psect (VAX only) or $DATAS$ psect Alpha, 164).

3 The miles variable also has storage class globaldef but is stored in the
user-specified psect "distance".

4 When the velocity variable prints after the function fn executes, the
value will have changed. Global variables have only one storage location.

5 When you reference global variables in another module, you must declare
those variables in that module. In the second module, the global variables
are declared with the globalref keyword.

Sample output from Example 4-1 is as follows:

$ RUN EXAMPLE.EXE Retum]
*%% FIRST COMP UNIT ***

counter: 0
velocity: 3.000000e+10
miles: 100

*%% SECOND COMP UNIT ***
counter: 1
velocity: 1.55
miles: 100

***x FIRST COMP UNIT ***
counter: 0
velocity: 1.55
miles: 100

4.3.2 Comparing the Global and the External Storage Classes

The global storage-class specifiers define and declare objects that differ from
external variables both in their storage allocation and in their correspondence
to elements of other languages. Global variables provide a convenient and
efficient way for a HP C function to communicate with assembly language
programs, with OpenVMS system services and data structures, and with other
high-level languages that support global symbol definition, such as HP PL/I.
For more information about multilanguage programming, see Chapter 3.

HP C imposes no limit on the number of external variables in a single program.

There are other functional differences between the external and global
variables. For example:

e If you have a limited amount of storage available, you may use the
globalvalue specifier (see Section 4.3.3) since an object defined as a
globalvalue does not occupy storage in your program; the external
variables create program sections.

Data Storage and Representation 4-7

¢ You can declare a global variable, using globaldef, inside a function or
block, and by using a globalref specifier, access the identifier from another
compilation unit. With external variables, you must define the variable
outside all functions and blocks, and then access that variable in other
compilation units by using extern declarations.

¢ The global variables correspond to global symbols declared in assembly
language programs, but external variables (extern) correspond with
FORTRAN common blocks.

e A globalref declaration causes the linker to load the module containing
the corresponding globaldef into the image (unless the globalref is not
referenced, in which case HP C optimizes it away). An extern declaration
does not cause the linker to do so. An extern declaration causes an
overlaying of a psect (see Section 4.8 for details about psects).

In programming environments other than the OpenVMS environment,

C programmers may be accustomed to extern declarations causing the
loading of a module into the program’s executable image. If transportability
is an issue, you can define the following symbols—at the compilation-unit
level, outside of all functions—to allocate storage differently depending on
the system you are using:

#ifdef __ DECC

#define EXPORT globaldef
#define IMPORT globalref
#else

#define EXPORT

#define IMPORT extern
#endif

IMPORT int foo;
EXPORT int foo = 53;

One similarity between the external and global storage classes is in the

way the compiler recognizes these variables internally. External and global
identifiers are not case-sensitive. No matter how the external and global
identifiers appear in the source code, the compiler converts them to uppercase
letters. For ease in debugging programs, express all global and external
variable identifiers in uppercase letters.

Another similarity between the external and global storage classes is that
you can place the external variables and the global variables (optionally) in
psects with a user-defined name and, to some degree, user-defined attributes.
The compiler places external variables in psects of the same name as the
variable identifier, viewed by the linker in uppercase letters. The compiler

4-8 Data Storage and Representation

places globaldef{“name”} variables in psects with names specified in quotation
marks, delimited by braces, and located directly after the globaldef specifier
in a declaration. Again, the linker considers the psect name to be in uppercase
letters.

The compiler places a variable declared using only the globaldef specifier and
a data-type keyword into the $DATA (vAX only) or $DATAS$ Aipha, 164) psect. For
more information about the possible combinations of specifiers and modifiers,
and the effects of the storage-class modifiers on program section attributes, see
Section 4.8.

4.3.3 The globalvalue Specifier

A global value is an integral value whose identifier is a global symbol.

Global values are useful because they allow many programmers in the same
environment to refer to values by identifier, without regard to the actual value
associated with the identifier. The actual values can change, as dictated by
general system requirements, without requiring changes in all the programs
that refer to them. If you make changes to the global value, you only have

to recompile the defining compilation unit (unless it is defined in an object
library), not all of the compilation units in the program that refer to those
definitions.

Note

You can use the globalvalue specifier only with identifiers of type
enum, int, or with pointer variables.

An identifier declared with globalvalue does not require storage. Instead,
the linker resolves all references to the value. If an initializer appears with
globalvalue, the name defines a global symbol for the given initial value. If
no initializer appears, the globalvalue construct is considered a reference to
some previously defined global value.

Predefined global values serve many purposes in OpenVMS system
programming, such as defining status values. It is customary in OpenVMS
system programming to avoid explicit references to such values as those
returned by system services, and to use instead the global names for those
values.

Data Storage and Representation 4-9

4.4 Storage-Class Modifiers

HP C for OpenVMS Systems provides support for the storage-class modifiers
noshare, readonly, and _align as VAX C keywords. The recognition of
these three storage-class modifiers as keywords (along with the other VAX C
specific keywords) is controlled by a combination of the compiler mode and
the /ACCEPT command-line qualifier. The default behavior on OpenVMS
systems is for the compiler to recognize these storage-class modifiers as
keywords in the VAX C compatibility mode and relaxed mode (assuming
that /ACCEPT=NOVAXC_KEYWORDS is not also specified.) Conversely,
they are not recognized by default in all other modes unless overridden by
/ACCEPT=VAXC_KEYWORDS.

HP C also provides the __inline, __forceinline and __align storage-class
modifiers. These are recognized as valid keywords in all compiler modes on
all platforms. They are in the namespace reserved to the C implementation,
so it is not necessary to allow them to be treated as user-declared identifiers.
They have the same effects on all platforms, except that on VAX systems, the
__forceinline modifier does not cause any more inlining than the __inline
modifier does.

HP C also provides the inline storage-class modifier. This modifier is
supported in relaxed mode (/STANDARD=RELAXED) or if the /ACCEPT=C99_
KEYWORDS or /ACCEPT=GCCINLINE qualifier is specified.

For additional information about the __inline, __forceinline, __align, and
inline storage-class modifiers, see the HP C Language Reference Manual.

You can use a storage-class specifier and a storage-class modifier in any order;
usually, the modifier is placed after the specifier in the source code. For
example:

extern noshare int x;
/* Or, equivalently . . . */
int noshare extern x;

The following sections describe each of the HP C storage-class modifiers.

4.4.1 The noshare Modifier

The noshare storage-class modifier assigns the attribute NOSHR to the
program section of the variable. Use this modifier to allow other programs,
used as shareable images, to have a copy of the variable’s psect without the
shareable images changing the variable’s value in the original psect.

4-10 Data Storage and Representation

When a variable is declared with the noshare modifier and a shared image

that has been linked to your program refers to that variable, a copy is made
of the variable’s original psect to a new psect in the other image. The other
program may alter the value of that variable within the local psect without

changing the value still stored in the psect of the original program.

For example, if you need to establish a set of data that will be used by several
programs to initialize local data sets, then declare the external variables using
the noshare specifier in a HP C program. Each program receives a copy of the
original data set to manipulate, but the original data set remains for the next
program to use. If you define the data as extern without the noshare modifier,
a copy of the psect of that variable is not made; each program would be allowed
access to the original data set, and the initial values would be lost as each
program stores the values for the data in the psect. If the data is declared as
const or readonly, each program is able to access the original data set, but
none of the programs can then change the values.

You can use the noshare modifier with the static, extern, globaldef, and
globaldef{“name”} storage-class specifiers. For more information about
the possible combinations of specifiers and modifiers, and the effects of the
storage-class modifiers on program-section attributes, see Section 4.8.

You can use noshare alone, which implies an external definition of storage
class extern. Also, when declaring variables using the extern and
globaldef{“name”} storage-class specifiers, you can use noshare, const,

and readonly, together, in the declaration. If you declare variables using the
static or the globaldef specifiers, and you use both of the modifiers in the
declaration, the compiler ignores noshare and accepts const or readonly.

4.4.2 The readonly Modifier

The readonly storage-class modifier, like the const data-type qualifier, assigns
the NOWRT attribute to the variable’s program section; if used with the static
or globaldef specifier, the variable is stored in the $CODE psect, which has
the NOWRT attribute by default.

You can use both the readonly and const modifiers with the static, extern,
globaldef, and globaldef {“psect”} storage-class specifiers.

In addition, both the readonly modifier and the const modifier can be used
alone. When you specify these modifiers alone, an external definition of storage
class extern is implied.

The const modifier restricts access to data in the same manner as the
readonly modifier. However, in the declaration of a pointer, the readonly
modifier cannot appear between the asterisk and the pointer variable to which
it applies.

Data Storage and Representation 4-11

The following example shows the similarity between the const and readonly
modifiers. In both instances, the point variable represents a constant pointer
to a nonconstant integer.

readonly int * point;

int * const point;

Note

For new program development, HP recommends that you use the const
modifier, because const is standard-conforming and readonly is not.

4.4.3 The _align Modifier

The _align and __align storage-class modifiers have the same semantic
meaning. The difference is that __align is a keyword in all compiler modes
while _align is a keyword only in modes that recognize VAX C keywords. For
new programs, using __align is recommended.

The _align and __align storage-class modifiers align objects of any of the
HP C data types on a specified storage boundary. Use these modifiers in a data
declaration or definition.

See the HP C Language Reference Manual for a detailed description of __align
and _align.

4.5 Floating-Point Numbers (float, double, long double)

When declaring floating-point variables, you determine the amount of
precision needed for the stored object. In HP C, you can have single-precision,
double-precision, and extended double-precision variables.

The float keyword declares a single-precision, floating-point variable. A float
variable is represented internally in the VAX compatible, F_floating-point
binary format.

For double-precision variables, you can choose D_floating or G_floating. On
Alpha and 164 systems, you can also choose single- and double-precision IEEE
formats (S_floating and T_floating, respectively), and extended double-precision
format (X_floating).

The double keyword declares a double-precision, floating-point variable.
HP C provides two VAX C compatible formats for specifying double variables:
D_floating or G_floating.

4-12 Data Storage and Representation

The G_floating precision of approximately 15 digits is less than that of
variables represented in D_floating format. Although there are more bits
allocated to the exponent in G_floating precision, fewer bits are allocated to the
mantissa, which determines precision (see Table 4-2).

Note

When the compiler is run with the /STANDARD=VAXC qualifier, the
use of the long float keyword, which is interchangeable with the
double keyword, is allowed but elicits a warning that this is obsolete

usage. The long float keyword is not allowed when the compiler is
run with the /STANDARD=ANSI89 qualifier.

In VAX C, the default representation of double variables is D_floating. To
select the G_floating representation, compile with the /G_FLOAT qualifier.

In HP C, the /FLOAT qualifier replaces the /G_FLOAT qualifier, but /G_FLOAT
is retained for compatibility.

When compiling with HP C on OpenVMS VAX systems, if you omit both
/G_FLOAT and /FLOAT, the default representation of double variables is
D_floating (unless /MIA is specified, in which case the default is G_floating).

When compiling with HP C on OpenVMS Alpha systems, if you omit both
/G_FLOAT and /FLOAT, the default representation of double variables is
G_floating.

When compiling with HP C on OpenVMS 164 systems, the default
representation of single and double variables is IEEE_floating. See the
/FLOAT qualifier for more information on floating-point representation on 164
systems.

For OpenVMS Alpha and 164 systems, the /FLOAT qualifier accepts the
additional option IEEE_FLOAT. If you specify /FLOAT=IEEE_FLOAT, single
and double variables are represented in IEEE_floating format (S_floating for
single float, and T_floating for double float).

You cannot specify both the /FLOAT and /G_FLOAT qualifiers on the command
line.

Note

The VAX D_floating double-precision floating-point type is minimally
supported on OpenVMS Alpha and 164 systems. When compiling

Data Storage and Representation 4-13

with this type, all data transfer is done with the data in D_floating
format, but for each arithmetic operation the data is converted first
to G_floating and then back to D_floating format when the operation
is complete. Therefore, it is possible to lose three binary digits of
precision in arithmetic operations. This floating-point type is provided
for compatibility with VAX systems.

Modules compiled with the D_floating representation should not be linked
with modules compiled with the G_floating representation. Since there are

no functions in the HP C Run-Time Library (RTL) that perform floating-point
format conversions on files, use the OpenVMS RTL functions MTH$CVT_D_G,
MTHCVT_G_D, MTHCVT_DA_GA, and MTH$CVT_GA_DA if you do

not wish to recompile the program. For more information about using the
OpenVMS RTL, see the VMS Run-Time Library Routines Volume.

On VAX systems, HP C maps the standard C defined 1ong double type to the
G_floating or D_floating format.

On OpenVMS Alpha and 164 systems, long double variables are represented
by default in the software-emulated X_floating format. If you specify /L_
DOUBLE_SIZE=64, long double variables are represented as G_floating,
D_floating, or T_floating, depending on the value of the /FLOAT or /G_FLOAT
qualifier.

Note

Modules must be linked to the appropriate run-time library. For more
information about linking against the HP C RTL shareable image and
object libraries, see the HP C Run-Time Library Reference Manual for
OpenVMS Systems.

Table 4—2 shows the supported floating-point formats, and their approximate
sizes and range of values.

4-14 Data Storage and Representation

Table 4-2 Floating-Point Formats

Precision
Floating-Point Length of (decimal

Data type Format Variable Range of Values digits)
float F_floating 32-bit 2.9%107% 0 1.7 10% 6
double D_floating 64-bit 2.9%107% t0 1.7 x 1038 16
double G_floating 64-bit 5.6 % 107%% £0 9.0 x 10307 15

float S_floating (Alpha, I62) 32-bit 1.2 %1078 ¢0 3.4 10%8 6
double T_floating (Alpha, I64) 64-bit 2.2 % 10739 ¢0 1.8 x 10%8 15

long double X_floating (Alpha, I64) 128-bit 3.4 % 107492 10 1.2 4 101932 33

4.6 Pointer Conversions

When running the compiler in VAX C mode, relaxed pointer and pointer/integer
compatibility is allowed. That is, all pointer and integer types are compatible,
and pointer types are compatible with each other regardless of the type of

the object they point to. Therefore, in VAX C mode, a pointer to float is

compatible with a pointer to int. This is not true in ANSI C mode.

Although pointer conversions do not involve a representation change when
compiling in VAX C mode, because of alignment restrictions on some machines,
access through an unaligned pointer can result in much slower access time, a
machine exception, or unpredictable results.

4.7 Structure Alignment

The alignment and size of a structure is affected by the alignment

requirements and sizes of the structure components for each HP C platform.
A structure can begin on any byte boundary and occupy any integral number
of bytes. However, individual architectures or operating systems can specify
particular alignment and padding requirements.

HP C on VAX processors does not require that structures or structure members
be aligned on any particular boundaries.

The components of a structure are laid out in memory in the order they are
declared. The first component has the same address as the entire structure.
On VAX processors, each additional component follows its predecessor in the

immediately following byte.

Data Storage and Representation 4-15

For example, the following type is aligned as shown in Figure 4-1:

struct {char cl;
short sl;
float f;
char c2;

}

Figure 4-1 VAX Structure Alignment

31 24 23 87 0

float f short s1 char c1

char c2 float f

ZK-5432A-GE

The alignment of the entire structure can occur on any byte boundary, and
no padding is introduced. The float variable f may span longwords, and the
short variable s1 may span words.

The following pragma can be used to force specific alignments:
#pragma member_alignment

Structure alignment for HP C for OpenVMS Systems on VAX processors is
achieved by the default, #pragma nomember_alignment, which causes data
structure members to be byte-aligned (with the exception of bit-field members).

Structure alignment for HP C for OpenVMS Systems on Alpha and Itanium
processors is achieved by the default, #pragma member_alignment, which
causes data structure members to be naturally aligned. This means that data
structure members are aligned on the next boundary appropriate to the type of
the member, rather than on the next byte.

For more information on the #pragma member_alignment preprocessor directive,
see Section 5.4.13.

4-16 Data Storage and Representation

4.7.1 Bit-Field Alignment

Bit fields can have any integral type. However, the compiler issues a warning
if SSTANDARD=ANSIS9 is specified, and the type is something other than int,
unsigned int, or signed int. Bit fields are allocated within the unit from low
order to high order. If a bit field immediately follows another bit field, the
bits are packed into adjacent space, even if this overflows into another byte.
However, if an unnamed bit field is specified to have length 0, filler is added so
the bit field immediately following starts on the next byte boundary.

For example, the following type is aligned as shown in Figure 4-2:
struct {int 1:2;
int 11:2;
unsigned int ui: 30;

}

Figure 4-2 OpenVMS Bit-Field Alignment

31 43 21 0

ZK-5431A-GE

Bit field ii is positioned immediately following bit field i. Because there are
only 28 bit positions remaining and ui requires 30 bits, the first 28 bits of ui
are put into the first longword, and the remaining two bits overflow into the
next longword.

4.7.2 Bit-Field Initialization

The HP C compiler initializes bit fields in structs differently than VAX C does.
The following program compiles without error using both compilers but the
results are different. HP C skips over unnamed bits but VAX C does not.

#include <stdio.h>

Data Storage and Representation 4-17

int t()
{
static struct bar {unsigned :1;

unsigned one : 1;
unsigned two : 1;
bi

struct bar foo = {1,0};

printf("%d %d\n", foo.one, foo.two);

return 1;

}

When compiled with HP C, this example produces the following output:
10

When compiled with VAX C, this example produces the following output:
00

4.7.3 Variant Structures and Unions

Variant structures and unions are HP C extensions available in VAX C
compatibility mode only, and they are not portable.

Variant structure and union declarations allow you to refer to members of
nested aggregates without having to refer to intermediate structure or union
identifiers. When a variant structure or union declaration is nested within
another structure or union declaration, the enclosed variant aggregate ceases
to exist as a separate aggregate, and HP C propagates its members to the
enclosing aggregate.

Variant structures and unions are declared using the variant_struct and
variant_union keywords. The format of these declarations is the same as that
for regular structures or unions, with the following exceptions:

e Variant aggregates must be nested within other valid structure or union
declarations.

e A tag cannot be used in a variant aggregate declaration.

e At least one declarator must be declared in the variant aggregate
declaration, and it must not be declared as a pointer or an array.

Initialization of a variant structure or union is the same as that for a normal
structure or union.

As with regular structures and unions, in VAX C compatibility mode, variant
structures and unions in an assignment operation need only have the same
size in bits, rather than requiring the same members and member types.

4-18 Data Storage and Representation

To show the use of variant aggregates, consider the following code example
that does not use variant aggregates:

/* The numbers to the right of the code represent the byte offset

* from the enclosing structure or union declaration. */
struct TAG_1

{

int a; /* 0-byte enclosing struct offset */
char *b; /* 4-byte enclosing struct offset */
union TAG_2 /* 8-byte enclosing struct offset */
{

int c¢; /* 0-byte nested_union offset */

struct TAG 3 /* 0-byte nested_union offset */
{
int d; /* 0-byte nested_struct offset */
int e; /* 4-byte nested_struct offset */
} nested_struct;
} nested_union;
} enclosing struct;

If you want to access nested member d, then you need to specify all the
intermediate aggregate identifiers:

enclosing_struct.nested_union.nested_struct.d

If you try to access member d without specifying the intermediate identifiers,
then you would access the incorrect offset from the incorrect structure.
Consider the following example:

enclosing_struct.d

The compiler uses the address of the original structure (enclosing_struct),
and adds to it the assigned offset value for member d (0 bytes), even though
the offset value for d was calculated according to the nested structure
(nested_struct). Consequently, the compiler accesses member a (0-byte
offset from enclosing struct) instead of member d.

The following code example shows the same code using variant aggregates:

Data Storage and Representation 4-19

/* The numbers to the right of the code present the byte offset
* from enclosing_struct. x/
struct TAG_1
{
int a; /* 0-byte enclosing_struct offset */
char *Db; /* 4-byte enclosing_struct offset */
variant_union

{
int c¢; /* 8-byte enclosing_struct offset */
variant_struct
{
int d; /* 8-byte enclosing_struct offset */
int e; /* 12-byte enclosing_struct offset */
} nested_struct;
} nested_union;
} enclosing_struct;

The members of the nested_union and nested_struct variant aggregates are
propagated to the immediately enclosing aggregate (enclosing_struct). The
variant aggregates cease to exist as individual aggregates.

Since the nested_union and nested_struct variant aggregates do not exist
as individual aggregates, you cannot use tags in their declarations, and you
cannot use their identifiers (nested_union, nested_struct) in any reference
to their members. However, you are free to use the identifiers in other
declarations and definitions within your program.

To access member d, use the following notation:
enclosing_struct.d

Using the following notation causes unpredictable results:
enclosing_struct.nested_union.nested_struct.d

If you use normal structure or union declarations within a variant aggregate
declaration, the compiler propagates the structure or union to the enclosing
aggregate, but the members remain a part of the nested aggregate. For
example, if the nested structure in the last example was of type struct, the
following offsets would be in effect:

4-20 Data Storage and Representation

struct TAG_1
{

int a; /*
char *b; /*
variant_union
{
int c¢; /*
struct TAG_2 /*
{
int d; /*
int e; /*

} nested_struct;
} nested_union;
} enclosing struct;

0-byte
4-byte

8-byte
8-byte

0-byte
4-byte

enclosing_struct offset */
enclosing_struct offset */

enclosing_struct offset */
enclosing-struct offset */

nested_struct offset */
nested_struct offset */

In this case, to access member d, use the following notation:

enclosing_struct.nested_union.nested_struct.d

4.8 Program Sections

The following sections describe program-section attributes and program
sections created by HP C for OpenVMS Systems.

4.8.1 Attributes of Program Sections

As the HP C compiler creates an object module, it groups data into contiguous
program sections, or psects. The grouping depends on the attributes of the data
and on whether the psects contain executable code or read/write variables.

The compiler also writes into each object module information about the
program sections contained in it. The linker uses this information when it
binds object modules into an executable image. As the linker allocates virtual
memory for the image, it groups together program sections that have similar

attributes.

Table 4-3 lists the attributes that can be applied to program sections.

Data Storage and Representation 4-21

Table 4-3 Program-Section Attributes

Attribute

Meaning

PIC or NOPIC

CON or OVR

REL or ABS

GBL or LCL

EXE or NOEXE

WRT or NOWRT

RD or NORD
SHR or NOSHR

USR or LIB
VEC or NOVEC

COM or NOCOM

The program section or the data these attributes refers to
does not depend on any specific virtual memory location (PIC),
or else the program section depends on one or more virtual
memory locations (NOPIC).!

The program section is concatenated with other program
sections with the same name (CON) or overlaid on the same
memory locations (OVR).

The data in the program section can be relocated within virtual
memory (REL) or is not considered in the allocation of virtual
memory (ABS).

The program section is part of one cluster, is referenced by the
same program section name in different clusters (GBL), or is
local to each cluster in which its name appears (LCL).

The program section contains executable code (EXE) or does
not contain executable code (NOEXE).

The program section contains data that can be modified (WRT)
or data that cannot be modified (NOWRT).

These attributes are reserved for future use.

The program section can be shared in memory (SHR) or cannot
be shared in memory (NOSHR).

These attributes are reserved for future use.

The program section contains privileged change mode vectors
(VEC) or does not contain those vectors (NOVEC).

The program section is a conditionally defined psect associated
with a conditionally defined symbol. This is the type of psect
created when you declare an uninitialized definition with
extern_model relaxed_refdef.

ITHP C programs can be bound into PIC or NOPIC shareable images. NOPIC occurs if declarations
such as the following are used: char *x = &y;. This statement relies on the address of variable y to
determine the value of the pointer x.

4.8.2 Program Sections Created by HP C

If necessary, HP C creates the following program sections:

4-22

e $CODE (vax only—Contains all executable code and constant data (including
variables defined with the readonly modifier or const type qualifier).

e $CODES$ pha, 169—Contains all executable code.

Data Storage and Representation

e $READONLY$ ipha, 169—Contains all constant data defined with the
readonly modifier or const type qualifier.

o $DATA vAX onty) or $DATAS$ Aipha, 169—Contains all static variables, as
well as global variables defined without the readonly modifier or const
type qualifier. $DATA also contains character-string constants when
/ASSUME=WRITABLE_STRING_LITERALS is specified.

e $LITERALS$ (aipha, I69—Contains character-string constants when
/ASSUME=NOWRITABLE_STRING_LITERALS is specified.

e HP C also creates additional program sections for variables declared with
the globaldef keyword if the optional psect name in braces is specified,
or for variables declared with the extern storage class, depending on the
external model.

All program sections created by HP C have the PIC, REL, RD, USR, and
NOVEC attributes. On VAX systems, the $CODE psect is aligned on a

byte boundary; all other psects generated by HP C are aligned on longword
boundaries. On OpenVMS Alpha and 164 systems, all psects generated by

HP C are aligned on octaword boundaries. Note that use of the _align storage-
class modifier can cause a psect to be aligned on greater than a longword
boundary on OpenVMS VAX systems. The $CHAR_STRING_CONSTANTS
psect has the same attributes as the $DATA vAx only) and $DATAS$ @ipha, 169
psects.

Tables 44, 4-5, 4-6, and 4-7 summarize the differences in psects created by
different declarations:

e Table 4-4, Table 4-5 ipha, 164, and Table 4—6 (vAX only) show different cases
of variable definitions and assign to them a storage-class code number:

— Table 4—4 shows the effect of each #pragma extern_model preprocessor
directive on the storage-class code number for external variable
definitions that have an extern storage class.

— Table 4-5 shows the storage-class code number for variable definitions
that do not have the extern storage class on OpenVMS Alpha and 164
systems.

— Table 4-6 shows the storage-class code number for variable definitions
that do not have the extern storage class on VAX systems.

e Table 4-7 shows the psect name and attributes associated with each
storage-class code number from Tables 4-4, 4-5, and 4-6.

Data Storage and Representation 4-23

Table 4-4 External Models and Definitions

Storage-
Class
Code External Object Definition

Interpretation

External Model: #pragma extern_model common_block noshr

1 int name;
1 int name = 1;
1 extern int name;

const int name;
const int name = 1;
extern const int name;

/* uninitialized definition */
/* initialized definition */

/* treated as an uninitialized
definition */

/* uninitialized definition */
/* initialized definition */

/* treated as an uninitialized
definition */

External Model: #pragma extern_model common_block shr

3 int name;

3 int name = 1;

3 extern int name;

4 const int name;

4 const int name = 1;

4 extern const int name;

/* uninitialized definition */
/* initialized definition */

/* treated as an uninitialized
definition */

/* uninitialized definition */
/* initialized definition */

/* treated as an uninitialized
definition */

External Model: #pragma extern_model relaxed_refdef noshr

5 int name;

1 int name = 1;

6 const int name;

2 const int name = 1;

4-24 Data Storage and Representation

/* uninitialized definition */
/* initialized definition */
/* uninitialized definition */

/* initialized definition */

(continued on next page)

Table 4-4 (Cont.) External Models and Definitions

Storage-
Class
Code

External Object Definition

Interpretation

External Model: #pragma extern_model relaxed_refdef shr

s 00 W

int name;

int name = 1;
const int name;
const int name = 1;

/* uninitialized definition */
/* initialized definition */
/* uninitialized definition */

/* initialized definition */

External Model: #pragma extern_model strict_refdef

9 (Alpha, 164)
10 (VAX only)
10
11
11

int symbol;

int symbol;

int symbol = 1;
const int symbol;
const int symbol =1;

/* uninitialized definition */
/* uninitialized definition */
/* initialized definition */

/* uninitialized definition */

/* initialized definition */

External Model: #pragma extern_model strict_refdef "name" noshr

12
12
13
13

int symbol;

int symbol = 1;
const int symbol;
const int symbol = 1;

/* uninitialized definition */
/* initialized definition */
/* uninitialized definition */

/* initialized definition */

External Model: #pragma extern_model strict_refdef "name" shr

14
14
15
15

int symbol;

int symbol =1;
const int symbol;
const int symbol =1;

/* uninitialized definition */
/* initialized definition */
/* uninitialized definition */

/* initialized definition */

Data Storage and Representation 4-25

Table 4-5 Combinations of Storage-Class Specifiers and Modifiers &ipna, 164

Storage-

Class Storage-Class Keyword ISHARE or Initialized or
Code Combination INOSHARE Not

9 static Either No

10 static Either Yes

11 static const! Either Either
9 globaldef Either No

10 globaldef Either Yes

11 globaldef const! Either Either
14 globaldef{"name"} /SHARE Either
12 globaldef{"name"} /NOSHARE Either
15 globaldef{"name"} const’ /SHARE Either
13 globaldef{"name"} const’ = /NOSHARE Either

1Using readonly in place of const produces the same results.

Table 4-6 Combinations of Storage-Class Specifiers and Modifiers vax oniy)

Storage-

Class Storage-Class Keyword

Code Combination ISHARE or /INOSHARE
10 static Either

11 static const! Either

10 globaldef Either

11 globaldef const! Either

14 globaldef{"name"} /SHARE

12 globaldef{"name"} /NOSHARE
15 globaldef{"name"} const! /SHARE

13 globaldef{"name"} const! /NOSHARE

1Using readonly in place of const produces the same results.

Table 4—7 shows the psect name and psect attributes for the storage-class code
numbers from Table 44, Table 4-5, and Table 4-6. Where name is used for
the psect name in Table 4-7, the name of the psect is the same as name in the

4-26 Data Storage and Representation

declarations or pragmas in Table 4-4, or the quoted brace-enclosed names in
Tables 4-5 and 4-6.

Table 4-7 Combination Attributes

Storage- Program
Class Section
Code Name Program Attributes

name OVR, GBL, NOSHR, NOEXE, WRT, NOCOM
2 name OVR, GBL, NOSHR, NOEXE, NOWRT, NOCOM
3 name OVR, GBL, SHR, NOEXE, WRT, NOCOM
4 name OVR, GBL, SHR, NOEXE, NOWRT, NOCOM
5 name OVR, GBL, NOSHR, NOEXE, WRT, COM
6 name OVR, GBL, NOSHR, NOEXE, NOWRT, COM
7 name OVR, GBL, SHR, NOEXE, WRT, COM
8 name OVR, GBL, SHR, NOEXE, NOWRT, COM
9 BSS CON, LCL, NOSHR, NOEXE, WRT, NOCOM
10 $DATA (VAX only) CON, LCL, NOSHR, NOEXE, WRT, NOCOM
10 $DATAS$ (Alpha, 164) CON, LCL, NOSHR, NOEXE, WRT, NOCOM
11 $CODE (VAX only) CON, LCL, SHR, EXE, NOWRT, NOCOM
11 $READONLY$ @pha, CON, LCL, SHR, NOEXE, NOWRT, NOCOM

164)
12 "name" CON, GBL, NOSHR, NOEXE, WRT, NOCOM
13 "name" CON, GBL, NOSHR, NOEXE, NOWRT, NOCOM
14 "name" CON, GBL, SHR, NOEXE, WRT, NOCOM
15 "name" CON, GBL, SHR, NOEXE, NOWRT, NOCOM

The combined use of the readonly and noshare modifiers is ignored by the
compiler in the following declarations:

readonly noshare static int x;
readonly noshare globaldef int x;

When it encounters a situation as shown in the previous example, the compiler
ignores the noshare modifier and accepts readonly. The order of the storage-
class specifier, the storage-class modifier, and the data-type keyword within a
declaration is not significant.

Data Storage and Representation 4-27

The HP C compiler does static (global) initialization of pointers by using
the .ADDRESS directive. By using this mechanism, the compiler efficiently
generates position-independent code. The linker makes image sections that
contain such initialization nonshareable.

4-28 Data Storage and Representation

O

Preprocessor Directives

The HP C preprocessor provides the ability to perform macro substitution,
conditional compilation, and inclusion of named files. Preprocessor directives,
lines beginning with # and possibly preceded by white space, are used to
communicate with the preprocessor. The HP C Language Reference Manual
describes the standard-conforming preprocessor directives available with

the HP C compiler. This chapter describes the preprocessor directives that
are either specific to HP C on OpenVMS systems, or that are used in an
implementation-specific way:

e The #dictionary directive, used for CDD/Repository extraction
(Section 5.4.3, Section 5.1)

¢ The #include directive, used for file inclusion (Section 5.2)

e The #module directive, for specifying an alternative name and identification
for the object module (Section 5.3, Section 5.4.15)

e The #pragma directive and pragmas specific to OpenVMS systems
(Section 5.4)

If you plan to port programs to and from other C implementations, take
care in choosing which preprocessor directives to use within your programs.
See the HP C Language Reference Manual for more information about using
preprocessor directives for conditional compilation. For a complete discussion
of portability concerns, see the HP C Run-Time Library Reference Manual for
OpenVMS Systems.

Preprocessor directives are independent of the usual scope rules; they remain
in effect from their occurrence until the end of the compilation unit. For more
information about the compilation unit, see Chapter 1.

Preprocessor Directives 5-1

5.1 CDD/Repository Extraction (#dictionary)

The #dictionary directive is retained for compatibility with VAX C, and is
supported only when running HP C in VAX C mode (/STANDARD=VAXC).
See Section 5.4.3 for information on using the standard C equivalent #pragma
dictionary directive.

5.2 File Inclusion (#include)

The #include directive inserts external text into the source stream delivered
to the compiler. This directive is often used to include global definitions for use
with HP C functions and macros in the program text.

The #include directive is supported on all HP C implementations, but the
syntax and semantics vary. For example, the directory search algorithm

for locating included files on OpenVMS systems differs from that on Tru64
UNIX systems, primarily because of differences in the native file systems
and conventions on the two platforms. Nevertheless, by choosing the lowest
common denominator of plain text files in directories to contain header files,
you can define command-line options for both platforms to cause searching to
be done in the same way. HP C for OpenVMS Systems also provides a form of
the #include directive specifically for including text modules from OpenVMS
text library files. The following sections describe the #include directive as
implemented on OpenVMS systems.

The #include directives may be nested to a depth determined by the FILLM
process quota and by virtual memory restrictions. The HP C compiler imposes
no inherent limitation on the nesting level of inclusion.

OpenVMS and most UNIX style file specifications can be included in HP C
source programs.

The following sections describe the different forms of the #include directive.

5.2.1 Inclusion Using Angle Brackets

The first form of the #include preprocessor directive uses angle brackets (<>)
to delimit the file specification:

#include <file-spec>

The file-spec is a valid file specification or a logical name. A file specification
may be up to 255 characters long.

5-2 Preprocessor Directives

II'II

If the file-spec contains "/" or "!" characters, it is assumed to be a UNIX style
name, and the compiler attempts to combine it with other UNIX style names
from the /INCLUDE_DIRECTORY command-line qualifier and translate the
result to an OpenVMS file specification using RTL functions. Otherwise, the
file-spec is treated as an OpenVMS file specification with defaults supplied

from command-line qualifiers and logical names in a prescribed search order.

When specifying the names of files to be included in your source program,
avoid directory specifications of the following form:

DBAQ:[.dir-name . . .]

Depending on device logical names is not good practice. Instead, try to use
only simple file names complete with the .h file type, and use the /INCLUDE_
DIRECTORY qualifier to specify the directories to search.

For the angle-bracket form of inclusion, the compiler searches directories in
the following order for the file to be included:

1. Any directories specified with the /INCLUDE_DIRECTORY qualifier.

2. The directory or search list of directories specified in the logical name
DECC$SYSTEM_INCLUDE, if DECC$SYSTEM_INCLUDE is defined.

3. If DECC$SYSTEM_INCLUDE is not defined, then the directory or search
list of directories specified by DECC$LIBRARY_INCLUDE.

4. If neither DECC$SYSTEM_INCLUDE nor DECC$LIBRARY_INCLUDE
are defined as logical names, the compiler searches the following directories
for plain text-file copies of compiler header files:

SYS$COMMON:[DECC$LIB.INCLUDE.DECC$RTLDEF]
SYS$COMMON:[DECC$LIB.INCLUDE.SYS$STARLET C]

Normally, the compiler installation does not put any files in these
directories, but the compiler will search them if they exist.

5. If the file is still not found, all directories and the file extension are

stripped off and the steps for including a module from a text library are
followed.

6. If the file is still not found, SYS$LIBRARY is searched.

You can define DECC$SYSTEM_INCLUDE to be a valid directory specification
or a search list of valid directory specifications. Before each compilation of
your program, you can redefine DECC$SYSTEM_INCLUDE to be any valid
directory or list of directories you choose.

Preprocessor Directives 5-3

Avoid defining DECC$SYSTEM_INCLUDE to be a rooted directory or
subdirectory of the following form:

DBAQ:[dir-name.]

When defining DECC$SYSTEM_INCLUDE, use complete directory
specifications.

If DECC$SYSTEM_INCLUDE translates to a directory or a search list of
directories, and if the compiler cannot locate the specified file, the compiler
generates an error message. If DECC$SYSTEM_INCLUDE is undefined,

the compiler then searches the DECC$LIBRARY_INCLUDE or SYS$LIBRARY
directory for the specified file; if the file cannot be found, the compiler generates
an error message. For more information about search lists, see the DCL
command DEFINE in the HP OpenVMS DCL Dictionary.

Note

The purpose of DECC$LIBRARY_INCLUDE is to identify an
alternative location for all header files normally provided by the
compiler installation. Therefore, if this logical is defined, the compiler
does not search the SYS$COMMON directories, the SYS$LIBRARY
text libraries, or header files it would normally search.

The purpose of DECC$SYSTEM_INCLUDE is to define the order for
searching directories of plain-text files for the angle-bracketed form
of #include. Defining this logical does not suppress the search of the
SYS$LIBRARY text libraries where the compiler-supplied header files
normally reside.

When porting programs to the OpenVMS environment, your programs may
contain #include directives of the following form:

#include <sysffile.h>

The HP C compiler translates this line, common in programs that run on UNIX
systems, to the following UNIX style file specification:

Isysffile.h

The compiler then translates the UNIX style file specification to the OpenVMS
file specification as follows:

SYS:FILE.H

5-4 Preprocessor Directives

If you port programs containing such directives, define the SYS logical to be
the proper name of the OpenVMS directory containing the files to be included.

Another way to use UNIX style directories is to specify them on the
/INCLUDE_DIRECTORY command-line qualifier. They must contain a "/"
character and must, therefore, be in quotation marks.

5.2.2 Inclusion Using Quotation Marks

The second form of the #include preprocessor directive uses quotation marks
to delimit the file specification:

#include "file-spec"
The file-spec is a valid OpenVMS or UNIX style file specification.

For this form of file inclusion, the compiler searches directories in the following
order for the file to be included:

1. One of the following directories:

e If/NESTED_INCLUDE_DIRECTORY=INCLUDE_FILE (the default) is
specified, the directory where the immediately containing include file is
located (that is, the directory containing the file in which the #include
directive occurred).

e If/NESTED_INCLUDE_DIRECTORY=PRIMARY_FILE is specified,
the directory containing the top-level source file (that is, the directory
containing the .C file being compiled, which is not necessarily the

current default directory). This is most similar to the behavior of the
VAX C compiler.

e If/NESTED_INCLUDE_DIRECTORY=NONE is specified, then skip
this step and begin at step 2.

2. Any directories specified with the /INCLUDE_DIRECTORY qualifier.

3. The directory or search list of directories specified in the logical name
DECC$USER_INCLUDE, if DECC$USER_INCLUDE is defined.

4. If the file is still not found, the steps for angle-bracketed files are followed.

Note that when /NESTED_INCLUDE_DIRECTORY=PRIMARY_FILE is
specified, the directory containing the top-level source file is not necessarily the
current RMS default device and directory.

For example, given the current directory, DBAO:[CURRENT], and the following
CC command line, the compiler searches DBAO:[OTHERDIR] for any included
files delimited by quotation marks, even though the current RMS default is the
directory, DBAO:[CURRENT]:

Preprocessor Directives 5-5

$ CC DBAO: [OTHERDIR]EXAMPLE. C[Retun]

If the compiler cannot locate the specified file, it searches any directories
specified by the /INCLUDE_DIRECTORY qualifier.

If the compiler still cannot locate the specified file, it translates the logical
name DECC$USER _INCLUDE. If DECC$USER _INCLUDE translates to a
valid directory specification or a search list of directories, the compiler searches
that directory or directories for the specified file. Before each compilation

of your program, you can redefine DECC$USER_INCLUDE to be any valid
directory or list of directories you choose.

As with DECC$SYSTEM_INCLUDE, do not define DECC$USER_INCLUDE
to be a rooted directory or subdirectory. Use complete directory specifications
when defining DECC$USER_INCLUDE.

If you defined DECC$USER_INCLUDE, and the compiler cannot locate the
specified file in that directory or search list of directories, the file-spec is treated
as if it were enclosed in angle brackets instead of quotation marks.

5.2.3 Inclusion of Text Modules

The third form of the #include preprocessor directive is used for including
module names:

#include module-name
The module-name is the name of a module in a text library.

This method of inclusion is not portable unless module-name is a macro that
expands to either the angle-bracket or quoted form. This module-name syntax
is provided for compatibility with VAX C and other OpenVMS compilers only,
and should generally be avoided.

HP C text libraries on OpenVMS systems are specified and searched in the
following manner:

1. A text library can be created with the LIBRARY command and specified
with the /[LIBRARY qualifier on the CC command line.

2. If you compile more than one compilation unit using a single CC command,
you must specify the library within each of the compilation units, if needed.
For example:

$ CC sourcea+mylib/LIBRARY, sourceb+mylib/LIBRARY

5-6 Preprocessor Directives

3. If you specify more than one library to the HP C compiler, and if the
#include directives are not nested (see the note in Section 5.2.2), then
the libraries are searched in the specified order each time an #include
directive is encountered. Consider the following example:

$ CC sourcea+mylib/LIBRARY+yourlib/LIBRARY

In this example, the compiler searches for modules referenced in #include
directives first in MYLIB.TLB and then in YOURLIB.TLB.

4. If no library is specified on the CC command line, or if the specified module
cannot be found in any of the specified libraries, the following actions are
taken:

— If you defined an equivalence name for DECC$TEXT_LIBRARY that
names a text library, that library is searched.

— The compiler searches for any remaining unresolved module names in
the following location, which contains the HP C RTL header files:

SYSSLIBRARY:DECC$RTLDEF.TLB

For OpenVMS Version 7.1 and higher, the compiler then searches the
following location, which contains the STARLET header files:

SYSSLIBRARY:SYS$STARLET_C.TLB

5.2.4 Macro Substitution in #include Directives

HP C allows macro substitution within the #include preprocessor directive.

For example, if you want to include a file name, you can use the following two
directives:

#define macrol "file.ext"
#include macrol

If you use defined macros in #include directives, the macros must evaluate
to one of the three following acceptable #include file specifications or the use
generates an error message:

<file-spec>
"file-spec’
module-name

Preprocessor Directives 5-7

5.3 Changing the Default Object Module Name and
Identification (#module)

The #module directive is retained for compatibility with VAX C and is
supported only when running HP C in VAX C mode (/STANDARD=VAXC). See
Section 5.4.15 for information on using the standard C equivalent #pragma
module directive.

5.4 Implementation-Specific Preprocessor Directive
(#pragma)

The #pragma directive is a standard method for implementing features that
vary from one compiler to the next. This section describes the implementation-
specific pragmas that are available on the HP C compiler for OpenVMS
systems. Pragmas supported by all implementations of HP C are described in
the HP C Language Reference Manual.

Some #pragma directives are subject to macro expansion in the preprocessor
before being translated. A macro reference can occur anywhere after the
keyword pragma. The following example demonstrates this feature using the
#pragma inline directive:

#define opt inline
#define f func
#pragma opt(f)

The #pragma directive becomes #pragma inline (func) after both macros are
expanded.

The following pragmas are subject to macro expansion:

builtins inline linkage standard
dictionary noinline module nostandard
extern_model member_alignment message use_linkage
extern_prefix nomember_alignment

Note

An _nm suffix can be appended to any of the above-listed macros to
prevent macro expansion. For example, to prevent macro expansion on
#pragma inline, specify it as #pragma inline_nm.

Also, to provide macro-expansion support to those pragmas not listed
above, all pragmas (including those that are already specified as
undergoing macro expansion) have an alternative pragma-name_n
version, which makes the pragma subject to macro expansion. For

5-8 Preprocessor Directives

example, #pragma assert is not subject to macro expansion, but
#pragma assert_mis. Another example: #pragma module and #pragma
module_m are equivalent and both subject to macro expansion.

The following sections describe the #pragma directives.

5.4.1 #pragma assert Directive

The #pragma assert directive lets you specify assertions that the compiler can
make about a program to generate more efficient code. The pragma can also
be used to verify that certain compile-time conditions are met; this is useful in
detecting conditions that could cause run-time faults.

The #pragma assert directive is never needed to make a program execute
correctly, however if a #pragma assert is specified, the assertions must be valid
or the program might behave incorrectly.

The #pragma assert directive has the following formats:

#pragma assert func_attrs(identifier-list)function-assertions
#pragma assert global_status_variable(variable-list)
#pragma assert non_zero(constant-expression) string-literal

5.4.1.1 #pragma assert func_attrs
Use this form of the pragma to make assertions about a function’s attributes.

The identifier-list is a list of function identifiers about which the compiler can
make assumptions. If more than one identifier is specified, separate them by
commas.

The function-assertions specify the assertions to the compiler about the
functions. Specify one or more of the following, separating multiple assertions
with white space:

noreturn

nocalls_back

nostate

noeffects

file_scope_vars (option)

format (style, format-index, first-to-check-index)

noreturn asserts to the compiler that any call to the routine will never return.

nocalls_back asserts to the compiler that no routine in the source module will
be called before control is returned from this function.

Preprocessor Directives 5-9

nostate asserts to the compiler that the value returned by the function and
any side-effects the function might have are determined only by the function’s
arguments. If a function is marked as having both noeffects and nostate, the
compiler can eliminate redundant calls to the function.

noeffects asserts to the compiler that any call to this function will have no
effect except to set the return value of the function. If the compiler determines
that the return value from a function call is never used, it can remove the call.

file_scope_vars(option) asserts to the compiler how a function will access
variables declared at file scope (with either internal or external linkage).

The option is one of the following:

none - The function will not read nor write to any file-scope variables
except those whose type is volatile or those listed in a #pragma assert
global_status_variable.

noreads - The function will not read any file-scope variables except
those whose type is volatile or those listed in a #pragma assert
global_status_variable.

nowrites - The function will not write to any file-scope variables except
those whose type is volatile or those listed in a #pragma assert
global_status_variable.

format (style, format-index, first-to-check-index) asserts to the compiler
that this function takes printf- or scanf-style arguments to be type-checked
against a format string. Specify the parameters as follows:

style - printf or scanf.

This determines how the format string is interpreted.

format-index - {12 3] ...}

This specifies which argument is the format-string argument (starting from
1.

first-to-check-index - {0 | 1| 2| ...}

This is the number of the first argument to check against the format string.
For functions where the arguments are not available to be checked (such as
vprintf), specify the third parameter as 0. In this case, the compiler only
checks the format string for consistency.

5-10 Preprocessor Directives

The following declaration causes the compiler to check the arguments in calls
to your_printf for consistency with the printf-style format-string argument
your_format:

extern int
your_printf (void *your_object, const char *your_format, ...);
#pragma assert func_attrs(your_printf) format (printf, 2, 3)

The format string (your_format) is the second argument of the function
your_printf, and the arguments to check start with the third argument,

so the correct parameter values for format-index and first-to-check-index are 2
and 3, respectively.

The format attribute of #pragma assert func_attrs allows you to identify your
own functions that take format strings as arguments, so that the compiler
can check the calls to these functions for errors. The compiler checks formats
for the library functions printf, fprintf, sprintf, snprintf, scanf, fscanf,
and sscanf whenever these functions are enabled as intrinsics (the default).
You can use the format attribute to assert that the compiler should check the
formats of these functions when they are not enabled as intrinsics.

5.4.1.2 #pragma assert global_status_variable

Use this form of the pragma to specify variables that are to be considered
global status variables, which are exempt from any assertions given to
functions by #pragma assert func_attrs file_scope_vars directives.

The variable-list is a list of variables.

5.4.1.3 Usage Notes

The following notes apply to the #pragma assert func_attrs and #pragma
assert global_status_variable forms of the #pragma assert directive:

e The #pragma assert directive is not subject to macro replacement.

e The variables in the variable-list and the identifiers in the identifier-list
must have declarations that are visible at the point of the #pragma assert
directive.

e The #pragma assert directive must appear at file scope.

e A function can appear on more than one #pragma assert func_attrs
directive as long as each directive specifies a different assertion about the
function. For example, the following is valid:

#pragma assert func_attrs(a) nocalls_back
#pragma assert func_attrs(a) file_scope_vars (noreads)

Preprocessor Directives 5-11

But the following is not valid:

#pragma assert func_attrs(a) file_scope_vars (noreads)
#pragma assert func_attrs(a) file_scope_vars (nowrites)

5.4.1.4 #pragma assert non_zero

This form of the #pragma assert directive is supported on both VAX and Alpha
platforms.

When the compiler encounters this directive, it evaluates the constant-
expression. If the expression is zero, the compiler generates a message that
contains both the specified string-literal and the compile-time constant-
expression. For example:

#pragma assert non_zero(sizeof(a) == 12) "a is the wrong size"

In this example, if the compiler determines that sizeof a is not 12, the
following diagnostic message is output:

CC-W-ASSERTFAIL, The assertion "(sizeof(a) == 12)" was not true.
a is the wrong size.

Unlike the #pragma assert options func_attrs and global_status_variable,
#pragma assert non_zero can appear either inside or outside a function
body. When used inside a function body, the pragma can appear wherever

a statement can appear, but the pragma is not treated as a statement. When
used outside a function body, the pragma can appear anywhere a declaration
can appear, but the pragma is not treated as a declaration.

Because macro replacement is not performed on #pragma assert, you might
need to use the #pragma assert_m directive to obtain the results you want.
Consider the following program that verifies both the size of a struct and the
offset of one of its elements:

#include <stddef.h>
typedef struct {

int a;
int b;
}os;
#pragma assert non_zero(sizeof(s) == 8) "sizeof assert failed"
#pragma assert_m non_zero(offsetof(s,b) == 4) "offsetof assert failed"

Because offsetof is a macro, the second pragma must be #pragma assert_m so
that offsetof will expand correctly.

5-12 Preprocessor Directives

5.4.2 #pragma builtins Directive

The #pragma builtins directive enables the HP C built-in functions that
directly access processor instructions. This directive is provided for VAX C
compatibility.

The #pragma builtins directive has the following format:
#pragma builtins

HP C implements #pragma builtins by including the <builtins.h> header
file, and is equivalent to #include <builtins.h> on OpenVMS systems.

This header file contains prototype declarations for the built-in functions
that allow them to be used properly. By contrast, VAX C implemented this
pragma with special-case code within the compiler, which also supported a
#pragma nobuiltins preprocessor directive to turn off the special processing.
Because declarations cannot be "undeclared", HP C does not support #pragma
nobuiltins.

Furthermore, the names of all the built-in functions use a naming convention
defined by the C standard to be in a namespace reserved to the C language
implementation. (For more details, see the following Note.)

Note

VAX C implemented both #pragma builtins and #pragma nobuiltins.
Under #pragma builtins, the names of the built-in functions were
given special treatment. Under #pragma nobuiltins, the names of
the built-in functions were given no special treatment; as such, a user
program was free to declare its own functions or variables with the
same names as the builtins and have them behave as if they had
ordinary names.

The HP C implementation relies on the standard C reserved
namespace, which states that any name matching the pattern described
above is reserved for the exclusive use of the C implementation (that is,
the compiler and RTL), and if a user program tries to declare or define
such a name for its own purposes, the behavior is undefined.

So in HP C, the #pragma builtins directive includes a set of
declarations that makes the built-in functions operate as documented.
But in the absence of the #pragma builtins directive, you cannot
declare your own functions with these names. Code that tries to do
anything with these names other than use them as documented, and
in the presence of #pragma builtins, will likely encounter unexpected
problems.

Preprocessor Directives 5-13

5.4.3 #pragma dictionary Directive
The #pragma dictionary directive allows you to extract CDD/Repository data
definitions and include these definitions in your program.

The standard-conforming #pragma dictionary directive is equivalent to the
VAX C compatible #dictionary directive (Section 5.1), but is supported in all
compiler modes. (The #dictionary directive is retained for compatibility and
is supported only when compiling with the /STANDARD=VAXC qualifier.)

The #pragma dictionary directive has the following format:
#pragma dictionary CDD_path [null_terminate] [name (structure_name)] [text1_to_array | text1_to_char]

The CDD_path is a character string that gives the path name of a
CDD/Repository record, or a macro that expands to the path name of the
record.

The optional null_terminate keyword can be used to specify that all string
data types should be null-terminated.

The optional name() can be used to supply an alternate tag name or
declarator(struct_name) for the outer level of a CDD/Repository structure.

The optional textl_to_char keyword forces the CDD/Repository type "text" to
be translated to char, rather than "array of char" if the size is 1. This is the
default when null_terminate is not specified.

The optional textl_to_array keyword forces the CDD/Repository type "text"
to be translated to type "array of char" even when the size is 1. This is the
default when null_terminate is specified.

Here’s a sample #pragma dictionary directive:
#pragma dictionary "CDDSTOP.personnel.service.salary record"

This path name describes all subdirectories, beginning with the root directory
(CDD$TOP), that lead to the salary_record data definition.

You can use the logical name CDD$DEFAULT to define a default path name
for a dictionary directory. This logical name can specify part of the path name
for the dictionary object. For example, you can define CDD$DEFAULT as
follows:

$ DEFINE CDD$DEFAULT CDD$TOP.PERSONNEL

5-14 Preprocessor Directives

When this definition is in effect, the #pragma dictionary directive can contain
the following:

#pragma dictionary "service.salary_record"

Descriptions of data definitions are entered into the dictionary in a special-
purpose language called CDO (Common Dictionary Operator), which replaces
the older interface called CDDL (Common Data Dictionary Language).

CDD definitions written in CDDL are included in a dictionary with the CDDL
command. For example, you can write the following definition for a structure
containing someone’s first and last name:

define record cdd$top.doc.cname_record.
cname structure.
first datatype is text
size is 20 characters.
last datatype is text
size is 20 characters.
end cname structure.
end cname_record record.

If a source file named CNAME.DDL needs to use this definition, you can
include the definition in the CDD subdirectory named doc by entering the
following command:

$ CDDL cname

After executing this command, a HP C program can reference this definition
with the #pragma dictionary directive. If the #pragma dictionary directive
is not embedded in a HP C structure declaration, then the resulting structure
is declared with a tag name corresponding to the name of the CDD/Repository
record. Consider the following example:

#pragma dictionary "cddStop.doc.cname_record"
This HP C preprocessor statement results in the following declarations:

struct cname
{
char first [20];
char last [20];
}i

You can also embed the #pragma dictionary directive in another HP C
structure declaration as follows:

Preprocessor Directives 5-15

struct

{

int id;
#pragma dictionary "cname_record"
} customer;

These lines of code result in the following declaration, which uses cname as an
identifier for the embedded structure:

struct

{
int 1id;
struct
{
char first [20];
char last [20];
} cname;
} customer;

If you specify /LIST and either /SHOW=DICTIONARY or /SHOW=ALL in the

compilation command line, then the translation of the CDD/Repository record

description into HP C is included in the listing file and marked with the letter
D in the margin.

For information on HP C support for CDD/Repository data types. see
Section C.4.3.

5.4.4 #pragma environment Directive

The #pragma environment directive offers a global way to set, save, or restore
the states of context pragmas. This directive protects include files from
contexts set by encompassing programs, and protects encompassing programs
from contexts that could be set in header files that they include.

The #pragma environment directive affects the following context pragmas:

#pragma extern_model

#pragma extern_prefix

#pragma member_alignment
#pragma message

#pragma names

#pragma pointer_size

#pragma required_pointer_size

5-16 Preprocessor Directives

This pragma has the following syntax:

#pragma environment command_line
#pragma environment header_defaults
#pragma environment restore
#pragma environment save

The command_line keyword sets the states of all the context pragmas

as specified on the command line (by default or by explicit use of the
/INOIMEMBER_ALIGNMENT, /[NOJWARNINGS, /EXTERN_MODEL, and
/POINTER_SIZE qualifiers). You can use #pragma environment command_line
within header files to protect them from any context pragmas that take effect
before the header file is included.

The header_defaults keyword sets the states of all the context pragmas to
their default values. This is almost equivalent to the situation in which a
program with no command-line options and no pragmas is compiled, except
that this pragma sets the pragma message state to #pragma nostandard, as is
appropriate for header files.

The save keyword saves the current state of every pragma that has an
associated context.

The restore keyword restores the current state of every pragma that has an
associated context.

Without requiring further changes to the source code, you can use #pragma
environment to protect header files from things like language extensions and
enhancements that might introduce additional contexts.

A header file can selectively inherit the state of a pragma from the including
file and then use additional pragmas as needed to set the compilation to non-
default states. For example:

#ifdef _ _pragma_environment

#pragma _ _ environment save 1

#pragma _ _ environment header_defaults 2
#pragma member_alignment restore 3
#pragma member_alignment save 4

#endif
/* contents of header file */
#ifdef _ _pragma_environment

#pragma _ _ environment restore
#endif

Preprocessor Directives 5-17

In this example:

1
2

3

Saves the state of all context pragmas
Sets the default compilation environment

Pops the member alignment context from the #pragma member_alignment
stack that was pushed by #pragma __environment save [restoring the
member alignment context to its pre-existing state]

Pushes the member alignment context back onto the stack so that the
#pragma __environment restore can pop the entry off.

Thus, the header file is protected from all pragmas, except for the member
alignment context that the header file was meant to inherit.

5.4.5 #pragma extern_model Directive

The #pragma extern_model directive controls how the compiler interprets
objects that have external linkage. With this pragma, you can choose one of
the following global symbol models to be used for external objects:

Common block model

All declarations are definitions, and the linker combines all definitions with
the same name into one definition. This is the model traditionally used for
extern data by VAX C on OpenVMS VAX systems.

Relaxed ref/def model

Some declarations are references and some are definitions. Multiple
uninitialized definitions for the same object are allowed and resolved into
one by the linker. However, a reference requires that at least one definition
exists. This model is used by C compilers on UNIX systems.

Strict ref/def model

Some declarations are references and some are definitions. There must
be exactly one definition in the program for any symbol referenced. This
model is the only one guaranteed to be acceptable to all standard C
implementations. It is also the one used by VAX C for globaldef and
globalref data. The relaxed ref/def model is the default model on HP C.

Globalvalue model

This is like the strict ref/def model, except that these global objects have no
storage; they are, instead, link-time constant values. This model is used by
VAX C globalvalue symbols.

5-18 Preprocessor Directives

After a global symbol model is selected with the extern_model pragma, all
subsequent declarations of objects having external storage class are treated
according to the specified model until another extern_model pragma is
specified.

For example, consider the following pragma:
#pragma extern_model strict_refdef

After this pragma is specified, the following file-level declarations are treated
as declaring global symbols according to the strict ref/def model:

int x = 0;
extern int y;

Regardless of the external model, the compiler uses standard C rules to
determine if a declaration is a definition or a reference, although that
distinction is not used in the common block model. An external definition

is a file-level declaration that has no storage-class keyword, or that contains
the extern storage-class keyword, and is also initialized. A reference is a
declaration that uses the extern storage-class keyword and is not initialized.
In the previous example, the declaration of x is a global definition and the
declaration of v is a global reference.

The extern_model pragma does not affect the processing of declarations that
contain the VAX C keywords globaldef, globalref, or globalvalue.

HP C also supports the command-line qualifiers /EXTERN_MODEL and
/SHARE_GLOBALS to set the external model when the program starts to
compile. Pragmas in the program being compiled supersede the command-line
qualifier.

A stack of the compiler’s external model state is kept so that #pragma
extern_model can be used transparently in header files and in small regions of
program text. See Sections 5.4.5.6 and 5.4.5.7 for more information.

The compiler issues an error message if the same object has two different
external models specified in the same compilation unit, as in the following
example:

#pragma extern_model common_block

int 1 = 0;

#pragma extern_model strict_refdef

extern int 1i;

Preprocessor Directives 5-19

Notes

e The global symbols and psect names generated under the control
of this pragma obey the case-folding rules of the /NAME qualifier.
This behavior is consistent with VAX C.

e While #pragma extern_model can be used to allocate several
variables in the same psect, the placement of variables relative
to each other within that psect cannot be controlled: the compiler
does not necessarily allocate distinct variables to memory locations
according to the order of appearance in the source code.

Furthermore, the order of allocation can change as a result of
seemingly unrelated changes to the source code, command-line
options, or from one version of the compiler to the next; it is
essentially unpredictable. The only way to control the placement
of variables relative to each other is to make them members

of the same struct type or, on OpenVMS Alpha systems, by
using the noreorder attribute on a named #pragma extern_model
strict_refdef.

See Section 5.4.5.8 to determine what combinations of external models are
compatible for successfully compiling and linking your programs.

The following sections describe the various forms of the #pragma extern_model
directive.

5.4.5.1 Syntax
The #pragma extern_model directive has the following syntax:
#pragma extern_model model_spec [att],attr]...]
model_spec is one of the following:

common_block

relaxed_refdef

strict_refdef "name"

strict_refdef (No attr specifications allowed)
globalvalue (No attr specifications allowed)

lattrl,attr]...] are optional psect attribute specifications chosen from the
following (at most one from each line):

gbl 1cl (Not allowed with relaxed_refdef)
shr noshr

5-20 Preprocessor Directives

wrt nowrt

pic nopic (Not meaningful for Alpha)

ovr con

rel abs

exe noexe

vec novec

For OpenVMS Alpha systems: 0 byte 1 word 2 long 3 quad 4 octa 567 8 9
1011 12 13 14 15 16 page

For OpenVMS VAX systems: 2 long 3 quad 4 octa 9 page

The last line of attributes are numeric alignment values. When a numeric
alignment value is specified on a section, the section is given an alignment of
two raised to that power.

On OpenVMS Alpha and 164 systems, the strict_refdef "name" extern_model
can also take the following psect attribute specifications:

noreorder — causes variables in the section to be allocated in the order
they are defined.

natalgn — has no effect on OpenVMS systems.

It does, however, change the behavior on Tru64 UNIX systems: when
specified, natalgn causes the global variables defined within the section

to be allocated on their natural boundary. Currently, all global variables
on Tru64 UNIX systems are allocated on a quadword boundary. When the
natalgn attribute is specified, the compiler instead allocates the variable
on an alignment that is natural for its type (chars on byte boundaries, ints
on longword boundaries, and so on).

Specifying the natalgn attribute also enables the noreorder attribute.

Note

Use of the natalgn attribute can cause a program to violate the
Tru64 UNIX Calling Standard. The calling standard states that all
global variables must be aligned on a quadword boundary. Therefore,
variables declared in a natalgn section should only be referenced in the
module that defines them.

See Table 4-3 for a description of the other attributes. See the OpenVMS
Linker Utility Manual for more complete information on each.

The default attributes are: noshr, rel, noexe, novec, nopic.

For strict_refdef, the default is con. For common_block and relaxed_refdef,
the default is ovr.

Preprocessor Directives 5-21

The default for wrt/nowrt is determined by the first variable placed in the
psect. If the variable has the const type qualifier (or the readonly modifier),
the psect is set to nowrt. Otherwise, it is set to wrt.

Restrictions on Setting Psect Attributes

Be aware of the following restriction on setting psect attributes.

The #pragma extern_model directive does not set psect attributes for variables
declared as tentative definitions in the relaxed_refdef model. A tentative

definition is one that does not contain an initializer. For example, consider the
following code:

#pragma extern_model relaxed_refdef long

int a;

int b = 6;

#pragma extern_model common_block long
int c;

Psect A is given octaword alignment (the default) because a is a tentative
definition. Psect B is correctly given longword alignment because it is
initialized and is, therefore, not a tentative definition. Psect C is also given
longword alignment because it is declared in an extern_model other than
relaxed_refdef.

Note

The psect attributes are normally used by system programmers who
need to perform declarations normally done in macro. Most of these
attributes are not needed in normal C programs. Also, notice that the
setting of attributes is supported only through the #pragma mechanism,
and not through the /EXTERN_MODEL command-line qualifier.

5.4.5.2 #pragma extern_model common_block

This pragma sets the compiler’s model of external data to the common block
model, which is the one used by VAX C.

The #pragma extern_model common_block directive has the following format:
#pragma extern_model common_block [attd,attr]...]

In this model, every declaration of an object with the extern storage class
causes a global overlaid psect to be created. Both standard C definition
declarations and reference declarations create the same object file records.

The psect has the same name as the object itself. There is no global symbol in
addition to the psect name.

5-22 Preprocessor Directives

The object file records generated are the same as those generated by VAX C for
extern objects.

See Section 4.8 for a description of how definitions using each external model
are interpreted, what psect they would reside in, and what psect attributes are
assigned. Also note the effect of the const type specifier for these definitions.

Note

The C language permits objects declared with the const type qualifier
to be allocated in read-only memory, and when the C compiler allocates
a psect for a const object, it marks that section as read-only.

This is not compatible with the C++ conventions because the C++
language permits objects with static storage duration to be initialized
with values computed at run-time (before the main function gains
control). When the C++ compiler allocates a psect for such a
declaration, it marks the psect writable. Normally, only one compilation
(the one responsible for initialization) will allocate a psect for a const
object, and there is no problem.

But under the common_block extern model, the compilers will always
allocate a psect for such a declaration, leading to a "conflicting
attributes" warning from the linker if the same const-qualified
declaration is processed by both C and C++. It is best to avoid use
of the common_block extern model when const objects with external
linkage are shared between C and Keep>(C++). If the common_block
model must be used, then the const type qualifier should be removed
(for example, by preprocessor conditionals) from the declaration
processed by the C compiler.

5.4.5.3 #pragma extern_model relaxed_refdef

This pragma sets the compiler’s model of external data to the relaxed ref/def
model, which is the one used by pcc on UNIX systems.

The #pragma extern_model relaxed_refdef directive has the following format:
#pragma extern_model relaxed_refdef [attd,aftr]...]

Be aware that an attr keyword of gbl or 1cl is not allowed on the
relaxed_refdef model.

Preprocessor Directives 5-23

With this model, three different types of object-file records can be produced,
depending on the declaration of the object:

e If the declaration is a standard C reference, the same type of object records
are produced as VAX C would produce for a globalref; that is, a global
symbol reference subrecord.

e If the declaration is a standard C definition that is initialized, a psect
definition and global symbol definition subrecord are produced. The name
of the psect and symbol is the same as the name of the data object. This is
equivalent to what VAX C would produce for the declaration. For example:

globaldef "FOO" int FOO = 1;

e If the declaration is a standard C definition that is not initialized, then
a conditional global symbol definition subrecord and conditional psect
definition subrecord are produced. Except for the conditional aspect and
the omission of an initializer, these object records resemble those produced
with the #pragma extern_model common_block directive.

See Section 4.8 for a description of how definitions using each external model
are interpreted, what psect they would reside in, and what psect attributes are
assigned. Also note the effect of the const type specifier for these definitions.

5.4.5.4 #pragma extern_model strict_refdef

This pragma is the preferred alternative to the nonstandard storage-class
keywords globaldef and globalref.

This pragma sets the compiler’s model of external data to the strict ref/def
model. Use this model for a program that is to be a standard C strictly-
conforming program.

The #pragma extern_model strict_refdef directive has the following formats:

#pragma extern_model strict_refdef
#pragma extern_model strict_refdef "name" [aftd,attr]...]

The name in quotes, if specified, is the name of the psect for any definitions.

Note that attr keywords cannot be specified for the strict_refdef model
unless a name is given for the psect.

This model provides two different cases:

e Ifthe declaration is a standard C reference, the same type of object records
are produced as VAX C would produce for a globalref; that is, a global
symbol reference subrecord.

5-24 Preprocessor Directives

e Ifthe declaration is a standard C definition, the same type of object records
are produced as VAX C would produce for a globaldef; that is, a global
symbol definition subrecord.

See Section 4.8 for a description of how definitions using each external model
are interpreted, what psect they would reside in, and what psect attributes are
assigned. Also note the effect of the const type specifier for these definitions.

Note

In VAX C, the globaldef and globalref keywords interact with enum
definitions in the following way:

e If an enum variable is declared with the globaldef keyword, the
enum literals of the type of the variable automatically become
globalvalue constant definitions.

e If an enum variable is declared with the globalref keyword, the
enum literals of the type of the variable automatically become
globalvalue constant references.

This behavior, does not occur with #pragma extern_model strict_refdef.

5.4.5.5 #pragma extern_model globalvalue

This pragma sets the compiler’s external model to the globalvalue model,
and is the preferred alternative to the nonstandard storage-class keyword
globalvalue.

This pragma has the following format:

#pragma extern_model globalvalue

Notice that this model does not accept at¢tr keywords.
This model provides two different cases:

e Ifthe declaration is a standard C reference, the same object file records are
produced as VAX C would produce for an uninitialized globalvalue.

e If the declaration is a standard C definition, the same object records are
produced as VAX C would produce for an initialized globalvalue.

Note

Only objects with a type of integer, enum, or pointer can have this
external model. If this external model is used and the compiler

Preprocessor Directives 5-25

encounters a declaration of an external object whose type is not one
these, an error message is issued.

5.4.5.6 #pragma extern_model save

This pragma pushes the current external model of the compiler onto a stack.
The stack records all information associated with the external model, including
the shr/noshr state and any quoted psect name.

This pragma has the following format:
#pragma extern_model save

The number of entries allowed in the #pragma extern_model stack is limited
only by the amount of memory available to the compiler.

5.4.5.7 #pragma extern_model restore

This pragma pops the external model stack of the compiler. The external
model is set to the state popped off the stack. The stack records all information
associated with the external model, including the shr/noshr state and any
quoted psect name. This pragma has the following format:

#pragma extern_model restore

On an attempt to pop an empty stack, a warning message is issued and the
compiler’s external model is not changed.

5.4.5.8 Effects on the HP C Run-Time Library and User Programs

Using different HP C external models can introduce mutually incompatible
object files. An object file compiled with one extern model may not link against
an object file compiled with a different model.

Table 5-1 compares what happens when a reference or definition in an
object file compiled with one external model is linked against a reference

or definition in an object file compiled with a different external model. Note
that the table is symmetric about the diagonal. For example, to look up what
happens when you mix a relaxed_refdef reference with a strict_refdef
definition, you can locate either the relaxed_refdef reference row and the
strict_refdef definition column or the relaxed_refdef reference column and
the strict_refdef definition row.

Table 5-1 contains no entries for mixing globalvalue symbols with other
external models because globalvalue symbols are used only in special cases;
they are not used as a general-purpose external model. For the other external
models, there is a row and column for every different case. The common_block
model only has one case because all symbols are definitions in that model;

5-26 Preprocessor Directives

the relaxed_refdef model has three cases because it distinguishes between
references, uninitialized definitions, and initialized definitions.

Table 5-1 Comparison of Mixing Different extern_models

relaxed_
refdef
common_ relaxed_ relaxed_ initialized strict_ strict_
block def refdef ref refdef def def refdef ref refdef def
common_block Works Fails Works Works Fails Fails
def
relaxed_refdef Fails Works Works Works Works Works
ref
relaxed_refdef Works Works Works Works Works Works
uninitialized def
relaxed_refdef Works Works Works Multi Works Multi
initialized def
strict_refdef ref Fails Works Works Works Works Works
strict_refdef def Fails Works Works Multi Works Multi
Notes

ref means reference; def means definition.

In the common_block model, all external symbols are considered to be defs.
A ref works with a ref if they both refer to the same thing.

A def works with a ref if the def fulfills the ref.

A def works with a def if they are combined into one by the linker.

Multi means that the linker issues a multiply defined symbol error. This indicates a user error, not a
mismatch between external models.

As Table 5-1 shows, the common_block model mixes poorly with the
strict_refdef model, but the relaxed_refdef model works well with the
common_block model and the strict_refdef model. The relaxed_refdef
model fails only when a relaxed_refdef reference is linked against a
common_block definition.

The fact that the external models are not all compatible with each other
can be an issue for providers of general-purpose object libraries. One
goal for such a library should be to work when linked with client code
compiled with any of the external models. Otherwise, the provider of the
object library might be forced to provide one copy of the library compiled
with /EXTERN_MODEL=COMMON_BLOCK, another compiled with

Preprocessor Directives 5-27

/EXTERN_MODEL=STRICT_REFDEF, and another compiled with /EXTERN_
MODEL=RELAXED_REFDEF to let anyone link with the library.

The best way to accomplish the goal of allowing an object library to be linked
with any code regardless of the external model used, is to provide header files
that describe the interface to the object library. The header files can declare the
global variables used by the object library after using #pragma extern_model to
set the external model to the one used by the library. Programmers who want
to use the library could then include these header files to get the required
declarations. In order to avoid altering the external model used by the
including program, header files should start with a #pragma extern_model
save directive and end with a #pragma extern_model restore directive. The
HP C RTL uses this approach.

If header files are not provided, an object library should use the re-
laxed_refdef external model since it will link successfully with either
common_block compiled code or strict_refdef compiled code. The only
restriction is that the library must not reference an external symbol that is
not defined in the library but is defined only in the user program. This avoids
the common_block case that fails. Note that the relaxed_refdef model allows
both the library and the user code to contain definitions for any symbol, as long
as both do not attempt to initialize the symbol.

5.4.5.9 Example

Example 5-1 shows the use of #pragma extern_model in a sample module.
Assume that the module is compiled with the /EXTERN_MODEL=COMMON
and /SHARE_GLOBALS qualifiers.

5-28 Preprocessor Directives

Example 5-1 #pragma extern_model Example

#pragma extern_model save

globaldef {"BAR1"} int FOOI1; /* strict_refdef shr def */
extern int coml; /* common_block shr def */
int com2; /* common_block shr def */
#pragma extern_model common_block noshr

globaldef {"BAR2"} int FO002; /* strict_refdef shr def */
extern int com3 = 23; /* common_block noshr def */
#pragma extern_model globalvalue

int gvl; /* globalvalue def */
extern int gv2; /* globalvalue ref */
int gv3 = 5; /* globalvalue def */
extern int gvd = 42; /* globalvalue def */
#pragma extern_model strict_refdef {"BAR1"} shr

int FOO1A; /* strict_refdef shr def */
extern int FOO1B; /* strict_refdef ref */
globaldef {"BAR3"} noshare int foo3;

#pragma extern_model relaxed_refdef

int rrdl; /* relaxed_refdef noshr def */
extern rrd2; /* relaxed_refdef ref */
#pragma extern_model restore

int comé; /* common_block shr def */

Key to Example 5-1:

1 FOO1 has the strict_refdef model with the share attribute (because of
/SHARE). It resides in psect BARI.

2 coml has the common_block model with the share attribute. Like all
common_block globals, coml is a definition.

3 com2 has the common_block model with the share attribute. Like all
common_block globals, com?2 is a definition.

4 FOO02 has the strict_refdef model with the share attribute. The
/SHARE qualifier overrides the noshr keyword on the preceding
#pragma extern_model. FOO2 resides in psect BAR2.

5 com3 has the common_block model with the noshare attribute.

6 gvl has the globalvalue model. It is a definition. Since it lacks an explicit
initializer, gv1 is implicitly initialized to 0. Therefore, it is a globalvalue
with a link-time value of 0.

7 gv2 has the globalvalue model. It is a reference.

8 gv3 has the globalvalue model. It is a definition with a link-time value
of 5.

Preprocessor Directives 5-29

9 gv4 has the globalvalue model. It is a definition with a link-time value
of 42.

10 FOO1A has the strict_refdef model with the noshare attribute. It is a
definition and resides in the psect BARI.

11 FOO1B has the strict_refdef model and is a reference. Since it is a
reference, it will reside in whatever psect is specified by the definition.

12 foo3 has the strict_refdef model with the noshare attribute. It is a
definition and resides in the psect BAR3.

13 rrdl has the relaxed_refdef model with the noshare attribute. It is a
definition.

14 rrd2 has the relaxed_refdef model and is a reference.
15 comé has the common_block model with the share attribute, because the
preceding line popped the external model back to its command-line state.
5.4.6 #pragma extern_prefix Directive

The #pragma extern_prefix directive controls the compiler’s synthesis of
external names, which the linker uses to resolve external name requests.

When you specify #pragma extern_prefix with a string argument, the compiler
attaches the string to the beginning of all external names produced by the
declarations that follow the pragma specification.

This pragma is useful for creating libraries where the facility code can be
attached to the external names in the library.

The #pragma extern_prefix directive has the following format:

#pragma extern_prefix "string" [(id[,id]...)]

#pragma extern_prefix {(NOCRTL IRESTORE_CRTL} (id[,id]...)
#pragma extern_prefix save

#pragma extern_prefix restore

The quoted "string" is attached to external names in the declarations that
follow the pragma specification.

You can also specify an extern prefix for specific identifiers using the optional
list [(id[,id]...)].

The NOCRTL and RESTORE_CRTL keywords control whether or not the compiler
applies its default RTL prefixing to the names specified in the id-list, which
is required for this form of the pragma. The effect of NOCRTL is like that

5-30 Preprocessor Directives

of the EXCEPT=keyword of the /PREFIX_LIBRARY_ENTRIES command-
line qualifier. The effect of RESTORE_CRTL is to undo the effect of a #pragma
extern_prefix NOCRTL or a /PREFIX=EXCEPT= on the command line.

The save and restore keywords can be used to save the current pragma prefix
string and to restore the previously saved pragma prefix string, respectively.

The default external prefix, when none has been specified by a pragma, is the
null string.

The recommended use is as follows:

#pragma extern_prefix save

#pragma extern_prefix "prefix-to-prepend-to-external-names"
. .. some declarations and definitions . . .

#pragma extern_prefix restore

When an extern_prefix is in effect and you are using #include to include
header files, but do not want the extern_prefix to apply to extern declara-
tions in the header files, use the following code sequence:

#pragma extern_prefix save
#pragma extern_prefix ""
#include ...

#pragma extern_prefix restore

Otherwise, external prefix is attached to the beginning of external identifiers
for definitions in the included files.

All external names prefixed with a nonnull string using #pragma extern_prefix
are converted to uppercase letters, regardless of the setting of the /NAMES
qualifier.

Notes

The following notes apply when specifying optional identifiers on
#pragma extern_prefix:

e When an id-list follows a quoted "string", then for each id there
must not be a declaration of that id visible at the point of the
pragma, otherwise a warning is issued, and there is no affect on
that id.

e Each id affected by a pragma with a non-empty prefix is expected
to be subsequently declared with external linkage in the same
compilation unit. The compiler issues a default informational if
there is no such declaration made by the end of the compilation.

Preprocessor Directives 5-31

e It is perfectly acceptable for the id-list form of the pragma or
declarations of the id’s listed, to occur within a region of source
code controlled by the other form of the pragma. The two forms do
not interact; the form with an id list always supersedes the other
form.

e There is no interaction between the save/restore stack and the id
lists.

e If the same id appears in more than one pragma, then a default
informational message is issued, unless the prefix on the second
pragma is either empty ("") or matches the prefix from the previous
pragma. In any case, the behavior is that the last-encountered
prefix supersedes all others.

5.4.7 #pragma function Directive
Specifies that calls to the specified functions are not intrinsic but are, in fact,
function calls. This pragma has the opposite effect of #pragma intrinsic.

The #pragma function directive has the following format:

#pragma function (functioni, function2, ...])

5.4.8 #pragma [nolinclude_directory Directive

The effect of each #pragma include_directory is as if its string argument
(including the quotes) were appended to the list of places to search that is
given its initial value by the /INCLUDE_DIRECTORY qualifier, except that an
empty string is not permitted in the pragma form.

The #pragma include_directory directive has the following format:
#pragma include_directory <string-literat>

This pragma is intended to ease DCL command-line length limitations when
porting applications from POSIX-like environments built with makefiles
containing long lists of -I options specifying directories to search for headers.
Just as long lists of macro definitions specified by the /DEFINE qualifier can
be converted to #define directives in a source file, long lists of places to search
specified by the INCLUDE_DIRECTORY qualifier can be converted to #pragma
include_directory directives in a source file.

5-32 Preprocessor Directives

Note that the places to search, as described in the help text for the /INCLUDE_
DIRECTORY qualifier, include the use of POSIX-style pathnames, for example
"/usr/base". This form can be very useful when compiling code that contains
POSIX-style relative pathnames in #include directives. For example, #include
<subdir/foo.h> can be combined with a place to search such as "/usr/base"
to form " /usr/base/subdir/foo.h", which will be translated to the filespec
"USR:[BASE.SUBDIR|FOO.H"

This pragma can appear only in the main source file or in the first file specified
on the /FIRST_INCLUDE qualifier. Also, it must appear before any #include
directives.

5.4.9 #pragma [no]inline Directive

Function inlining is the inline expansion of function calls; it replaces the
function call with the function code itself. Inline expansion of functions
reduces execution time by eliminating function-call overhead and allowing
the compiler’s general optimization methods to apply across the expanded
code. Compared with the use of function-like macros, function inlining has the
following advantages:

e Arguments are evaluated only once.

e The overuse of parentheses is not necessary to avoid problems with
precedence.

¢ The actual expansion can be controlled from the command line.

Also, the semantics are exactly the same as if inline expansion had not
occurred. You cannot get this behavior using macros.

Use the following preprocessor directives to control function inlining:
#pragma inline (id, . ..)

#pragma noinline (id, . . .)

The id is a function identifier.

If a function is named in an inline directive, calls to that function will be
expanded as inline code, if possible.

If a function is named in a noinline directive, calls to that function will not be
expanded as inline code.

If a function is named in both an inline and a noinline directive, an error
message is issued.

Preprocessor Directives 5-33

For calls to functions named in neither an inline nor a noinline directive,
HP C expands the function as inline code whenever appropriate as determined
by a platform-specific algorithm.

Use of the #pragma inline directive causes inline expansion, regardless of the
size or number of times the specified functions are called.

In the following example of function inlining, the functions push and pop are
expanded inline throughout the module in which the #pragma inline appears:

void push(int);
int pop(void);

#pragma inline(push, pop)

int stack[100];
int *stackp = &stack;

void push(int x)
{
if (stackp == &stack)
*stackp = x;
else
*stackp++ = x;

}

int pop()
{

}

main()

{

push(1);
printf("The top of stack is now %d \n",pop());
}

By default, HP C for OpenVMS Systems attempts to provide inline expansion
for all functions, and uses the following function characteristics to determine if
it can provide inline expansion:

return *stackp--;

e Size
e Number of times the function is called
e Conformance to the following restrictions:
— The function does not take the address of a parameter.

— The function does not use an index expression that is not a compile-
time constant in an array that is a field of a struct argument. An
argument that is a pointer to a struct is not restricted.

5-34 Preprocessor Directives

5.4.10

— The function does not use the varargs or stdarg package to access the
function’s arguments because they require arguments to be in adjacent
memory locations, and inline expansion may violate that requirement.

— The function does not declare an exception handler.

If a function is to be expanded inline, you must place the function definition in
the same module as the function call. The definition can appear either before
or after the function call.

#pragma intrinsic Directive

The #pragma intrinsic preprocessor directive specifies that calls to the
specified functions are intrinsic. An intrinsic function is an apparent function
call that could be handled as an actual call to the specified function, or could be
handled by the compiler in a different manner. By treating the function as an
intrinsic, the compiler can often generate faster code. (Contrast with a built-in
function, which is an apparent function call that is never handled as an actual
function call. There is never a function with the specified name.)

This pragma has the opposite effect of #pragma function.
The #pragma intrinsic directive has the following format:
#pragma intrinsic (functioni[,function2, . ..])

Functions that can be handled as intrinsics are:

Main Group - Standard C:

abs atan2 ceilf cosl floorl memset sinl
atan atan2f ceill fabs labs sin strecpy
atanf atan2l cos floor memcpy sinf strlen
atanl ceil cosf floorf memmove

Main Group - Nonstandard:

alloca atand atand2 bcopy bzero cosd sind
Printf functions:

fprintf printf sprintf
Printf Nonstandard:
snprintf

Standard math functions that set errno,

thereby requiring /ASSUME=NOMATH_ERRNO:

Preprocessor Directives 5-35

acos asinl expf logl0 powl sqgrtf tanh
acost cosh expl logl0f sinh sgrtl tanhf

acosl coshf log logl01l sinhf tan tanhl
asin coshl logf pow sinhl tanf
asinf exp logl powf sgrt tanl

Nonstandard math functions that set errno,
thereby requiring /ASSUME=NOMATH_ERRNO:

log?2
tand

Also see Section 1.3.4 for a description of the [NOJINTRINSICS option of the
/OPTIMIZE qualifier, which controls whether or not certain functions are
handled as intrinsic functions without explicitly enabling each of them as an
intrinsic through the #pragma intrinsic directive.

Also, the asm, fasm, and dasm functions are intrinsics and require use of
#pragma intrinsic. See Section 6.2.1.2 for a description of these functions.

5.4.11 #pragma linkage Directive uiha oniy)

This section describes the behavior of the #pragma linkage directive on
OpenVMS Alpha systems.

The #pragma linkage preprocessor directive allows you to specify special
linkage types for function calls. This pragma is used with the #pragma
use_linkage directive, described in Section 5.4.23, to associate a previously
defined special linkage with a function.

For OpenVMS Alpha systems, the #pragma 1linkage directive has the following
formats:

#pragma linkage linkage-name = (characteristics)
#pragma linkage_alpha linkage-name = (characteristics)

Both formats behave identically on OpenVMS Alpha systems. On 164 systems,
however, register mapping occurs for the pragma linkage format, as described
in Section 5.4.12.

The linkage-name is the name to be given to the linkage type being defined.
It has the form of a C identifier. Linkage types have their own name space,
so their names will not conflict with other identifiers or keywords in the
compilation unit.

The characteristics specify information about where parameters will be passed,
where the results of the function are to be received, and what registers are
modified by the function call. Specify these characteristics as a parenthesized
list of comma-separated items of the following forms:

5-36 Preprocessor Directives

parameters (register-list)

result (simple-register-list)
preserved (simple-register-list)
nopreserve (simple-register-list)
notused (simple-register-list)
notneeded (ai, Ip)
standard_linkage

If the standard_linkage keyword is specified, it must be the only option in the
parenthesized list following the linkage name. For example:

#pragma linkage speciall = (standard_linkage)

The standard_linkage keyword tells the compiler to use the standard linkage
appropriate to the target platform. This can be useful to confine conditional
compilation to the pragmas that define linkages, without requiring the
corresponding #pragma use_linkage directives to be conditionally compiled
as well.

Code written to use linkage pragmas as intended, treating them as target-
specific without implicit mapping, might have a form like this:

#if defined(__alpha)

#pragma linkage_alpha speciall = (__preserved(_ rl,_ r2))
#elif defined(__ia64)

#pragma linkage_ia64 speciall = (__preserved(_ r9,_ r28))
telse

#pragma message ("unknown target, assuming standard linkage")
#pragma linkage speciall = (standard_linkage)

fendif

If the standard_linkage keyword is not specified, you can supply the
parameters, result, preserved, nopreserve, notused, and notneeded
keywords in any order.

A simple-register-list is a comma-separated list of register names, either Rn or
Fn, where n is a valid register number. A register-list is similar to a simple-
register-list except that it can contain parenthesized sublists.

For OpenVMS Alpha systems, valid registers for the preserved, nopreserve,
and notused options are:

e General-purpose registers RO through R30
¢ Floating-point registers FO through F30
Valid registers for the result and parameters options are:

e General-purpose registers RO through R25

Preprocessor Directives 5-37

¢ Floating-point registers FO through F30

For example, the following characteristics specify a simple-register-list
containing two elements, registers F3 and F4; and a register-list containing
two elements, the register R5 and a sublist containing the registers F5 and F6:

nopreserve (£3, f4)
parameters (r5, (f5, £6))

The following example shows a linkage using such characteristics:
#pragma linkage my_link=(nopreserve(£f3,f4), parameters(r5, (£f5,£6)), notneeded (ai))

The parenthesized notation in a register-list is used to describe arguments and
function return values of type struct, where each member of the struct is
passed in a single register. In the following example, sample_linkage specifies
two parameters: the first is passed in registers R5, R6, and R7; the second is
passed in F6:

struct sample_struct_t {

int A, B;

short C;

} sample_struct;
#pragma linkage sample_linkage = (parameters ((r5, r6, r7), f6))
void sub (struct sample_struct_t pl, double p2) { }

main()

double d;

sub (sample_struct, d);

}

You can pass arguments to the parameters of a routine in specific registers.
To specify this information, use the following form, where each item in the
register-list describes one parameter that is passed to the routine:

parameters (register-list)

You can pass structure arguments by value, with the restriction that each
member of the structure is passed in a separate parameter location. Doing
so, however, may produce code that is slower because of the large number of
registers used. The compiler does not diagnose this condition.

HP C does not support unions as parameters or function return types for a
function with a special linkage.

5-38 Preprocessor Directives

When a function associated with a linkage type is declared or defined, the
compiler checks that the size of any declared parameters is compatible with the
number of registers specified for the corresponding parameter in the linkage
definition.

The compiler needs to know the registers that will be used to return the value
for the function. To specify this information use the following form, where the
register-list must contain only a single register, or a parenthesized group of
registers if the routine returns a struct:

result (register-list)

If a function does not return a value (that is, the function has a return type of
void), then do not specify result as part of the linkage.

The compiler needs to know which registers are used by the function and
which are not, and of those used, whether or not they are preserved across the
function call. To specify this information, use the following forms:

preserved (register-list)
nopreserve (register-list)
notused (register-list)

A preserved register contains the same value after a call to the function as it
did before the call.

A nopreserve register does not necessarily contain the same value after a call
to the function as it did before the call.

A notused register is not used in any way by the called function.

The notneeded characteristic indicates that certain items are not needed by
the routines using this linkage. You can specify one or both of the following
keywords:

e ai—Specifies that the Argument Information register (R25) does not need
to be set up when calling the specified functions.

e 1p—Specifies that the Linkage Pointer register (R27 for Alpha systems)
does not need to be set up when calling the specified functions. The linkage
pointer is required when the called function accesses global or static data.
For 164 systems, there is no linkage pointer, so this setting is accepted but
does not change the behavior of the pragma.

You must determine whether or not it is valid to specify that the ai or 1p
registers are not needed.

Preprocessor Directives 5-39

5.4.12

5.4.12.1

The #pragma linkage directive has the restriction that structures containing
nested substructures are not supported as parameters or function return types
with special linkages. Also, functions that use the __ RETURN_ADDRESS
built-in function or va_count C RTL function cannot be called with a special
linkage.

#pragma linkage Directive «s: oniy)

The #pragma linkage directive behaves much the same on 164 systems as it
does on OpenVMS Alpha systems, with some important differences.

On 164 systems, the #pragma linkage directive has the following formats:

#pragma linkage linkage-name = (characteristics)
#pragma linkage_ia64 linkage-name = (characteristics)

#pragma linkage Format

On 164 systems, the #pragma linkage format of this directive accepts Alpha
register names and conventions and automatically maps them, where possible,
to specific 164 registers. So whenever HP C for 164 encounters a #pragma
linkage directive, it attempts to map the Alpha registers specified in the
linkage to corresponding 164 registers, and emits a SHOWMAPLINKAGE
informational message showing the 164 specific form of the directive, #pragma
linkage_ia64, with the 164 register names that replaced the Alpha register
names. The SHOWMAPLINKAGE message is suppressed under the #pragma
nostandard directive, normally used within system header files.

Code compiled on 164 systems that deliberately relies on the register mapping
performed by #pragma linkage should either ignore the SHOWMAPLINKAGE
informational, or disable it.

5.4.12.1.1 Register Mapping Table 5-2 shows the mapping that HP C
applies to the Alpha integer register names used in #pragma linkage directives
when they are encountered on an 164 system. Note that the six standard
parameter registers on Alpha (R16-R21) are mapped to the first six (of eight)
standard parameter registers on 164 systems, which happen to be stacked
registers (see Section 5.4.12.2).

5-40 Preprocessor Directives

Table 5-2 Integer Register Mapping

Alpha — 164 Alpha — 164

RO R8 R16 R32!

R1 R9 R17 R33!

R2 R28 R18 R34!

R3 R3 R19 R35!

R4 R4 R20 R36!

R5 R5 R21 R37!

R6 R6 R22 R22

R7 R7 R23 R23

RS R26 R24 R24

R9 R27 R25 R25

R10 R10 R26 no mapping
R11 R11 R27 no mapping
R12 R30 R28 no mapping
R13 R31 R29 R29

R14 R20 R30 R12

R15 R21 R31 RO

IIn parameters or result; else ignored

Table 5—-3 shows the mapping that HP C applies to the Alpha floating-point
register names used in #pragma linkage directives when they are encountered

on an 164 system:

Preprocessor Directives 5-41

Table 5-3 Floating-Point Register Mapping

Alpha — 164 Alpha — 164
FO F8 F16 F8
F1 F9 F17 F9
F2 F2 F18 F10
F3 F3 F19 F11
F4 F4 F20 F12
F5 F5 F21 F13
Fe6 F16 F22 F22
F7 F17 F23 F23
F8 F18 F24 F24
F9 F19 F25 F25
F10 Fe6 F26 26
F11 F7 F27 27
F12 F20 F28 28
F13 F21 F29 F29
F14 F14 F30 F30
F15 F15

5.4.12.1.2 Mapping Diagnostics In some cases, the HP C compiler on Alpha
systems silently ignores linkage registers if, for example, a standard parameter
register like R16 is specified in a preserved option. When you compile on

an 164 system, this situation emits an MAPREGIGNORED informational
message, and the SHOWMAPLINKAGE output might not be correct. If there
is no valid mapping to 164 registers, the NOMAPPOSSIBLE error message

is output. There are two special situations that can arise when floating-point
registers are specified in a linkage:

Only IEEE-format values are passed in floating-point registers under

the OpenVMS Calling Standard for 164: VAX format values are passed

in integer registers. Therefore, a compilation that specifies /FLOAT=D_
FLOAT or /FLOAT=G_FLOAT produces an error for any linkage that
specifies floating-point registers. Note that this includes use in options that
do not involve passing values, such as the preserved and notused options.

The mapping of floating-point registers is many-to-one in two cases:

— Alpha registers FO and F16 both map to 164 register F8

5-42 Preprocessor Directives

— Alpha F1 and F17 both map to 164 register F9.

A valid Alpha linkage may well specify uses for both FO and F16, and/or
both F1 and F17. Such a linkage cannot be mapped on an 164 system.
But because of the way this situation is detected, the MULTILINKREG
warning message that is produced can only identify the second occurrence
of an Alpha register that got mapped to the same 164 register as some
previous Alpha register. The actual pair of Alpha registers in the source
is not identified, and so the message can be confusing. For example, an
option like preserved (F1,F17) gets a MULTILINKREG diagnostic saying
that F17 was specified more than once.

5.4.12.2 #pragma linkage_ia64 Format
The #pragma linkage_ia64 format requires register names to be specified in
terms of an 164 system. The register names will never be mapped to a different
architecture. This form of the pragma always produces an error if encountered
on a different architecture.

For this format of the pragma, valid registers for the preserved, nopreserve,
notused, parameters, and result options are:

e Integer registers R3 through R12 and R19 through R31
e Floating-point registers F2 through F31

Valid registers for the parameters and result are:

e Integer registers R3 through R12, and R19 through R31

¢ Integer registers R32 through R39 (according to the convention described
below)

¢ Floating-point registers F2 through F31

The parameters and result options permit integer registers R32 through
R39 to be specified according to the following convention: On IA64, the first
eight integer input/output slots are allocated to stacked registers, and thus the
calling routine refers to them using different names than the called routine.
The convention for naming these registers in either the parameters or result
option of a #pragma linkage_ia64 directive is always to use the hardware
names as they would be used within the called routine: R32 through R39. The
compiler automatically compensates for the fact that within the calling routine
these same registers are designated using different hardware names.

Preprocessor Directives 5-43

5.4.13 #pragma [nolmember_alignment Directive

By default, HP C for OpenVMS VAX systems does not align structure members
on natural boundaries; they are stored on byte boundaries (with the exception
of bit-field members).

By default, HP C for OpenVMS Alpha systems does align structure members
on natural boundaries.

The #pragma member_alignment preprocessor directive can be used to
force natural-boundary alignment of structure members. The #pragma
nomember_alignment preprocessor directive restores byte-alignment of
structure members.

This pragma has the following formats:

#pragma member_alignment

#pragma member_alignment save

#pragma member_alignment restore

#pragma nomember_alignment [base_alignment]

When #pragma member_alignment is used, the compiler aligns structure
members on the next boundary appropriate to the type of the member, rather
than on the next byte. For example, a long variable is aligned on the next
longword boundary; a short variable is aligned on the next word boundary.

Consider the following example:

#pragma nomember_alignment

struct x {
char c;
int b;
}i

#pragma member_alignment

struct y {
char c; /*3 bytes of filler follow c */
int b;
}i

main ()
printf("The sizeof y is: %d\n", sizeof (struct y))

printf("The sizeof x is: %d\n", sizeof (struct x));

}

When this example is executed, it shows the difference between #pragma
member_alignment and #pragma nomember_alignment.

5-44 Preprocessor Directives

Once used, the member_alignment pragma remains in effect until the
nomember_alignment pragma is encountered; the reverse is also true.

The optional base_alignment parameter can be used to specify the base-
alignment of the structure. Use one of the following keywords for the base_
alignment:

e byte (1 byte)

e yword (2 bytes)

e longword (4 bytes)
e quadword (8 bytes)
e octaword (16 bytes)

The #pragma member_alignment save and #pragma member_alignment restore
directives can be used to save the current state of the member_alignment and
to restore the previous state, respectively. This feature is necessary for writing
header files that require member_alignment or nomember_alignment, or that
require inclusion in a member_alignment that is already set.

5.4.14 #pragma message Directive

The #pragma message directive controls the issuance of individual diagnostic
messages or groups of messages. Use of this pragma overrides any command-
line options that may affect the issuance of messages.

The #pragma message directive has the following formats:

#pragma message option1 (message-list)
#pragma message option2
#pragma message (quoted-string)

5.4.14.1 #pragma message optioni
The parameter optionl must be one of the following keywords:

e cnable—Enables issuance of the messages specified in the message-list
e disable—Disables issuance of the messages specified in the message-list

e emit_once—Emits the specified messages only once per compilation.

Certain messages are emitted only the first time the compiler encounters
the causal condition. When the compiler encounters the same condition
later in the program, no message is emitted. Messages about the use of
language extensions are an example of this kind of message. To emit one
of these messages every time the causal condition is encountered, use the
EMIT_ALWAYS option.

Preprocessor Directives 5-45

Errors and Fatals are always emitted. You cannot set them to emit_once.

e emit_always—Emits the specified messages at every occurrence of the
condition.

e error—Sets the severity of the specified messages to Error.

Supplied Error messages and Fatal messages cannot be made less severe.
(Exception: A message can be upgraded from Error to Fatal, then later
downgraded to Error again, but it can never be downgraded from Error.)

Warnings and Informationals can be made any severity.)
e fatal—Sets the severity of the specified messages to Fatal.

e informational—Sets the severity of the specified messages to Informational.
Note that Fatal and Error messages cannot be made less severe.

e warning—Sets the severity of each message in the message-list to Warning.
Note that Fatal and Error messages cannot be made less severe.

The message-list can be any one of the following:

e A single message identifier (within parentheses, or not). The message
identifier is the name following the severity at the start of a line when a
message is issued. For example, in the following message, the message
identifier is GLOBALEXT:

%$CC-W-GLOBALEXT, a storage class of globaldef, globalref, or globalvalue
is a language extension.

e The name of a single message group (within parentheses, or not). Message-
group names are:

— ALL—AII the messages in the compiler
— ALIGNMENT—Messages about unusual or inefficient data alignment.

— C_TO_CXX—Messages reporting the use of C features that would be
invalid or have a different meaning if compiled by a C++ compiler.

— CDD—Messages about CDD (Common Data Dictionary) support.

— CHECK—Messages reporting code or practices that, although correct
and perhaps portable, are sometimes considered ill-advised because
they can be confusing or fragile to maintain. For example, assignment
as the test expression in an "if" statement.

The check group gets defined by enabling LEVEL5 messages.

— DEFUNCT—Messages reporting the use of obsolete features: ones that
were commonly accepted by early C compilers but were subsequently
removed from the language.

5-46 Preprocessor Directives

NEWC99—Messages reporting the use of the new C99 Standard
features.

NOANSI—This is a deprecated message group. It is an obsolete
synonym for NOC89. Also see message groups NEWC99, NOC89,
NOC99.

NOC89—Messages reporting the use of non-C89 Standard features.
NOC99—Messages reporting the use of non-C99 Standard features.

OBSOLESCENT—Messages reporting the use of features that are valid
in Standard C, but which were identified in the standard as being
obsolescent and likely to be removed from the language in a future
version of the standard.

OVERFLOW—Messages that report assignments and/or casts that can
cause overflow or other loss of data significance.

PERFORMANCE—Messages reporting code that might result in poor
run-time performance.

PORTABLE—Messages reporting the use of language extensions or
other constructs that might not be portable to other compilers or
platforms.

PREPROCESSOR—Messages reporting questionable or non-portable
use of preprocessing constructs.

QUESTCODE—Messages reporting questionable coding practices.
Similar to the CHECK group, but messages in this group are more
likely to indicate a programming error rather than just a non-robust
style.

Note

Enabling the QUESTCODE group provides lint-like checking.

RETURNCHECKS—Messages related to function return values.
UNINIT—Messages related to using uninitialized variables.

UNUSED—Messages reporting expressions, declarations, header files,
CDD records, static functions, and code paths that are not used.

Note, however, that unlike any other messages, these messages must
be enabled on the command line (WARNINGS=ENABLE=UNUSED) to
be effective.

Preprocessor Directives 5-47

¢ A single message-level name (within parentheses, or not).

Message-level names are:

— LEVEL1—Important messages. These are less important than the
level 0 core messages, because messages in this group are not displayed
if #pragma nostandard is active.

— LEVEL2—Moderately important messages.

— LEVEL3—Less important messages.
LEVELS3 is the default message level for HP C for OpenVMS systems.

— LEVEL4—Useful check/portable messages.
— LEVEL5—Not so useful check/portable messages.
— LEVEL6—Additional "noisy" messages.

Be aware that there is a core of very important compiler messages that
are enabled by default, regardless of what you specify with /WARNINGS or
#pragma message. Referred to as message level 0, it includes all messages
issued in header files, and comprises what is known as the nostandard
group. All other message levels add additional messages to this core of
enabled messages.

You cannot modify level 0 (You cannot disable it, enable it, change its
severity, or change its EMIT_ONCE characteristic). However, you can
modify individual messages in level 0, provided such modification is allowed
by the action. For example, you can disable a Warning or Informational in
level 0, or you can change an error in level 0 to a Fatal, and so on. (See
restrictions on modifying individual messages.)

Enabling a level also enables all the messages in the levels lower than
it. So enabling LEVEL3 messages also enables messages in LEVEL2 and
LEVELI1.

Disabling a level also disables all the messages in the levels higher than
it. So disabling LEVEL4 messages also disables messages in LEVEL5 and
LEVELSG.

e A comma-separated list of message identifiers, group names, and messages
levels, freely mixed, enclosed in parentheses.

5-48 Preprocessor Directives

5.4.14.2

5.4.14.3

5.4.15

#pragma message option2
The parameter option2 must be one of the following keywords:

e save—Saves the current state of which messages are enabled and disabled.

e restore—Restores the previous state of which messages are enabled and
disabled.

The save and restore options are useful primarily within header files.

#pragma message (quoted-string)

This form of #pragma message is provided for compatibility with Microsoft’s
#pragma message directive.

The #pragma message (quoted-string) form of this directive emits the specified
string as a compiler message. For example, when the compiler encounters the
following line in the source file:

#pragma message ("hello")
It emits:

#pragma message ("hello")

A

%CC-I-SIMPLEMESSAGE, hello
at line number 1 in file DISK1$:[SMITH]TEST.C;1

This form of the pragma is subject to macro replacement. For example, the
following is allowed:

#pragma message ("Compiling file " _ FILE_)

#pragma module Directive

When you compile source files to create an object file, the compiler assigns
the first of the file names specified in the compilation unit to the name of
the object file. The compiler adds the .OBJ file extension to the object file.
Internally, the OpenVMS system (the debugger and the librarian) recognizes
the object module by the file name; the compiler also gives the module a
version number of 1. For example, given the object file EXAMPLE.OBJ, the
debugger recognizes the EXAMPLE object module.

To change the system-recognized module name and version number, use the
#pragma module directive. The #pragma module directive is specific to HP C for
OpenVMS systems and is not portable.

You can find the module name and the module version number listed in the
compiler listing file and the linker load map.

Preprocessor Directives 5-49

The #pragma module directive is equivalent to the VAX C compatible #module
directive. The #pragma module directive may be used when compiling in
any mode. Use #module only when compiling with the /STANDARD=VAXC
qualifier.

The #pragma module directive has the following formats:

#pragma module identifier identifier
#pragma module identifier string

The first parameter must be a valid HP C identifier. It specifies the module
name to be used by the linker. The second parameter specifies the optional
identification that appears on listings and in the object file. It must be either a
valid HP C identifier of 31 characters or less, or a character-string constant of
31 characters or less.

Only one #pragma module directive can be processed per compilation unit, and
that directive must appear before any C language text. The #pragma module
directive can follow other directives, such as #define, but it must precede any
function definitions or external data definitions.

The parameters in a #pragma module directive are subject to text replacement
and can, therefore, contain references to identifiers defined in previous #define
directives. The replacement occurs before the parameters are processed.

5.4.16 #pragma names Directive

The #pragma names preprocessor directive provides the same kinds of control
over the mapping of external identifiers’ object-module symbols as does the
/NAMES command-line qualifier, and it uses the same keywords. But as a
pragma, the controls can be applied selectively to regions of declarations.

This pragma should only be used in header files and is intended for use by
developers who supply libraries and/or header files to their customers.

The pragma has a save/restore stack that is also managed by #pragma
environment, and so it is well-suited for use in header files. The
effect of #pragma environment header_defaults is to set NAMES to
uppercase, truncated, which is the compiler default.

The #pragma names directive has the following format:

#pragma names stack-option
#pragma names case-option|, length-option]
#pragma names length-option|, case-option]

Where stack-option is one of the following keywords:

e save - save the current names state

5-50 Preprocessor Directives

e restore - restore a saved names state
case-option is one of the following keywords:
e uppercase - uppercase external names

e as_is - do not change case
length-optionis one of the following keywords:
e truncated - truncate at 31 characters

e shortened - shorten to 31 using CRC

An important use for this feature is to make it easier to use the command-line
option /NAMES=AS_IS. Both the C99 standard and the C++ standard require
that external names be treated as case-sensitive, and 3rd party libraries and
Java native methods are starting to rely on case-sensitivity (C99 requires

a minimum of 31 characters significant, while C++ requires all characters
significant). Therefore, the use of /INAMES=AS_IS is expected to become more
widespread.

The HP C run-time library is implemented with all symbols duplicated, spelled
both in uppercase and lowercase, to allow C programs compiled with any of
the /INAMES= settings to work. But traditional practice on OpenVMS systems,
combined with compiler defaults of /NAMES=UPPER, has resulted in nearly
all existing object libraries and shared images to contain all uppercase names
(both in references and in definitions), even though C source code using these
libraries typically declares the names in lowercase or mixed case. Usually,
the header files to access these libraries contain macro definitions to replace
lowercase names by uppercase names to allow client programs to be compiled
/NAMES=AS_IS. But macro definitions are problematic because every external
name has to have a macro.

The new pragma allows header files to specify just once that the external
names they declare are to be uppercased in the object module, regardless

of the NAMES setting used in the rest of the compilation. The NAMES
setting in effect at the first declaration of an external name is the one that
takes effect; therefore, the setting specified in a header file is not overridden
by a subsequent redeclaration in the user’s program (which might specify a
different NAMES setting). Note that the automatic Prologue/Epilogue header-
file inclusion feature described in Section 1.7.4 (in connection with pointer_size
pragmas) can also be used to specify the NAMES setting for all headers in a
given directory or text library, without having to edit each header directly.

Preprocessor Directives 5-51

5.4.17 #pragma optimize Directive

The #pragma optimize preprocessor directive sets the optimization
characteristics of function definitions that follow the directive. It allows
optimization-control options that are normally set on the command line for the
entire compilation to be specified in the source file for individual functions.

The #pragma optimize directive has the following format:

#pragma optimize settings
#pragma optimize save

#pragma optimize restore
#pragma optimize command_line

Where settings is any combination of the following:

e Jevel settings

These set the optimization level. Specify the level as follows:
level=n
Where n is an integer from 0 to 5.

e unroll settings

These control loop unrolling. Specify as follows:
unroll=n
Where n is a nonnegative integer.

e ansi-alias settings

These control ansi-alias assumptions. Specify one of the following:

ansi_alias=on
ansi_alias=0off

® intrinsic settings
These control recognition of intrinsics: Specify one of the following:

intrinsics=on
intrinsics=off

White space is optional between the setting clauses and before and after the
"="in each clause. The pragma is not subject to macro replacement.

For more information on the optimization settings, see Table 1-16 in the
description of the /OPTIMIZE qualifier in Section 1.3.4.

5-52 Preprocessor Directives

Example:

#pragma optimize level=5 unroll=6

Usage Notes

e Ifthe level=0 clause is present, it must be the only clause present.

e The #pragma optimize directive must appear at file scope, outside
any function body.

e If #pragma optimize does not specify a setting for one of the
optimization states, that state remains unchanged.

e When a function definition is encountered, it is compiled using the
optimization settings that are current at that point in the source.

e When a function is compiled under level=0, the compiler will not
inline that function. In general, when functions are inlined, the
inlined code is optimized using the optimization controls in effect at
the call site instead of using the optimization controls specified for
the function being inlined.

e When the OpenVMS command line specifies /NOOPT (or /OPTIMIZE=

LEVEL=0), the #pragma optimize directive has no effect (except
that its arguments are still validated).

e The #pragma optimize directive controls most, but not all,
optimizations performed by the compiler. Therefore, there can be
some differences between setting the optimization using the pragma
compared with using the /OPTIMIZE command-line qualifier.

The save and restore options save and restore the current optimization state
(level, unroll count, ansi-alias setting, and intrinsic setting).

The command_line option sets the optimization settings to what was specified
on the command line.

Preprocessor Directives 5-53

5.4.18 #pragma pack Directive

The #pragma pack preprocessor directive specifies the byte boundary for
packing members of C structures.

The #pragma pack directive has the following format:

#pragma pack n

#pragma pack ()

The n specifies the new alignment restriction in bytes:
1 align to byte

2 align to word

4 align to longword

8 align to quadword

16 align to octaword

A structure member is aligned to either the alignment specified by #pragma
pack or the alignment determined by the size of the structure member,
whichever is smaller. For example, a short variable in a structure gets byte-
aligned if #pragma pack 1 is specified, but word-aligned if #pragma pack 2, 4, or
8 is specified.

When #pragma pack is specified without a value or with a value of 0, packing
reverts to the /[INOIMEMBER_ALIGNMENT qualifier setting (either explicitly
specified or by default) on the command line. Note that when specifying
#pragma pack without a value, you must use parentheses: #pragma pack ().

HP C also supports the Microsoft Visual C++ enhanced syntax of this pragma:
#pragma pack ({ [{pushlpop} [,identifier][,n111[n]})

With this enhanced syntax, you can save and restore packing alignment values
across program components. This allows you to combine components into a
single translation unit even if they specify different packing alignments:

e Every occurrence of pragma pack with a push argument stores the current
packing alignment value on an internal compiler stack. If you provide a
value for n, that value becomes the new packing value. If you specify an
identifier, a name of your choosing, it is associated with the new packing
value.

e Every occurrence of a pragma pack with a pop argument retrieves the
value at the top of the stack and makes that value the new packing
alignment. If an empty stack is popped, the alignment value defaults to
the /INOIMEMBER_ALIGNMENT command-line setting, and a warning

5-54 Preprocessor Directives

is issued. If you specify a value for n, that value becomes the new packing
value.

If you specify an identifier, all values stored on the stack are removed from
the stack until a matching identifier is found. The packing value associated
with the identifier is also removed from the stack, and the packing value
that was in effect just before the identifier was pushed becomes the new
packing value. If no matching identifier is found, the packing value reverts
to the command-line setting, and a warning is issued.

The enhanced syntax of pragma pack lets you write header files that ensure
that packing values are the same before and after the header file is encoun-
tered. Consider the following example:

// File name: myinclude.h

//

#pragma pack(push, enter_myinclude)
// Your include-file code ...

#pragma pack(pop, enter_myinclude)
// End of myinclude.h

In this example, the current packing value is associated with the identifier
enter_myinclude and pushed on entry to the header file. Your include code

is processed. The #pragma pack at the end of the header file then removes all
intervening packing values that might have occurred in the header file, as well
as the packing value associated with enter_myinclude, thereby preserving the
same packing value after the header file as before it.

The enhanced pragma pack syntax also lets you include header files that might
set packing alignments different from the ones set in your code. Consider the
following example:

#pragma pack(push, before_myinclude)
#include <myinclude.h>
#pragma pack(pop, before_myinclude)

In this example, your code is protected from any changes to the packing value
that might occur in <myinclude.h> by saving the current packing alignment
value, processing the include file (which may leave the packing alignment with
an unknown setting), and restoring the original packing value.

Preprocessor Directives 5-55

5.4.19 #pragma pointer_size Directive
The #pragma pointer_size preprocessor directive can be used throughout a
program to control whether pointers are 32-bit pointers or 64-bit pointers.

This directive has the same effect as the #pragma required_pointer_size
directive, except that #pragma pointer_size is enabled only when the
/POINTER_SIZE command-line qualifier is specified. If /POINTER_SIZE

is omitted from the command line, #pragma pointer_size is ignored. (The
#pragma required_pointer_size directive always takes effect, whether or not
/POINTER_SIZE is specified.)

The #pragma pointer_size directive has the following format:
#pragma pointer_size keyword

The keyword is one of the following:

{short | 32} 32-bit pointer
{long | 64} 64-bit pointer
system_default 32-bit pointers on OpenVMS systems; 64-bit pointers on
Tru64 UNIX systems
save Saves the current pointer size
restore Restores the current pointer size to its last saved state
Notes

e The #pragma pointer_size and #pragma required_pointer_size
directives only affect the meaning of the pointer-declarator (*) in
declarations, casts, and the sizeof operator.

e The size of a pointer is the property of the type, and so it is bound
in a typedef declaration, but not in a preprocessor macro definition.

e The size of a pointer produced by the & operator, or by an array
name or function name in a context where it is converted to an
explicit pointer, is 32 bits unless the & operator is applied to an
object designated by a dereference of a pointer having a 64-bit
pointer type.

5-56 Preprocessor Directives

5.4.20 #pragma required_pointer_size Directive

The #pragma required_pointer_size preprocessor directive is intended for use
by developers of header files to control the size of pointers within a header file

in those cases where the pointers are architecturally required to be a particular
size, and must not be altered by the user’s use of pointer-size controls.

This directive has the same effect as the #pragma pointer_size directive,
except that a #pragma required_pointer_size always takes effect, even
if /POINTER_SIZE is omitted from the command line. (The #pragma
pointer_size directive is ignored if /POINTER_SIZE is omitted.)

The #pragma required_pointer_size directive has the following format:
#pragma required_pointer_size keyword

The keyword is one of the following:

{short | 32} 32-bit pointer
{long | 64} 64-bit pointer
system_default 32-bit pointers on OpenVMS systems; 64-bit pointers on
Tru64 UNIX systems
save Saves the current pointer size
restore Restores the current pointer size to its last saved state
Notes

e The #pragma pointer_size and #pragma required_pointer_size
directives only affect the meaning of the pointer-declarator (*) in
declarations, casts, and the sizeof operator.

e The size of a pointer is the property of the type, and so it is bound
in a typedef declaration, but not in a preprocessor macro definition.

e The size of a pointer produced by the & operator, or by an array
name or function name in a context where it is converted to an
explicit pointer, is 32 bits unless the & operator is applied to an
object designated by a dereference of a pointer having a 64-bit
pointer type.

Preprocessor Directives 5-57

5.4.21 #pragma [no]standard Directive
Use the nostandard and standard pragmas together to define regions of source
code where portability diagnostics are not to be issued.
This pragma has the following format:
#pragma [no]standard

Use #pragma nostandard to suppress diagnostics about nonstandard
extensions, regardless of the /STANDARD qualifier specified.

Use #pragma standard to direct the compiler to reinstate the setting of the
/STANDARD qualifier that was in effect before the last #pragma nostandard
was encountered. Every #pragma standard directive must be preceded by a
corresponding #pragma nostandard directive.

The following example demonstrates the use of these pragmas:

#include <stdio.h>

#pragma nostandard

extern noshare FILE *stdin, *stdout, *stderr;
#pragma standard

In this example, nostandard prevents the NOSHAREEXT diagnostic from
being issued against the noshare storage-class modifier, which is specific to
HP C for OpenVMS systems.

Note

This pragma does not change the current mode of the compiler or
enable any extensions not already supported in that mode.

5.4.22 #pragma unroll Directive

Use the #pragma unroll preprocessor directive to unroll the for loop that
follows it by the number of times specified in unroll_factor. The #pragma
unroll directive must be followed by a for statement.

This pragma has the following format:
#pragma unroll (unroll_factor)

The unroll_factor is an integer constant in the range of 0 to 255. If a value of
0 is specified, the compiler ignores the directive and determines the number of
times to unroll the loop in its normal way. A value of 1 prevents the loop from
being unrolled. The directive applies only to the for loop that follows it, not to
any subsequent for loops.

5-58 Preprocessor Directives

5.4.23 #pragma use_linkage Directive

After defining a special linkage using the #pragma linkage directive, described
in Section 5.4.11, use the #pragma use_linkage directive to associate the
linkage with a function.

This pragma has the following format:
#pragma use_linkage linkage-name (id1, id2, ...)

The linkage-name is the name of a linkage previously defined by the #pragma
linkage directive.

id1,id2, ... are the names of functions, or typedef names of function type, that
you want associated with the specified linkage.

If you specify a typedef name of function type, then functions or pointers to
functions declared using that type will have the specified linkage.

The #pragma use_linkage directive must appear in the source file before
any use or definition of the specified routines. Otherwise, the results are
unpredictable.

Examples

L #pragma linkage example_linkage = (parameters(rl6, rl7, rl9), result(rlé6))

#pragma use_linkage example_linkage (sub)
int sub (int pl, int p2, short p3);

main()

{
int result;

result = sub (1, 2, 3);
}

This example defines a special linkage and associates it with a routine that
takes three integer parameters and returns a single integer result in the
same location where the first parameter was passed.

The result (rl6) option indicates that the function result will be returned
in R16 rather than the usual location (R0). The parameters option
indicates that the three parameters passed to sub should be passed in
R16, R17, and R19.

Preprocessor Directives 5-59

#pragma linkage foo = (parameters(rl), result(r4d))
#pragma use_linkage foo(fl,t)

int fl(int a);
typedef int t(int a);

t *f2;
#include <stdio.h>
main() {

f2 = f1;

b = (*£2) (1);

In this example, both the function f1 and the function type t are given the
linkage foo. The invocation through the function pointer £2 will correctly
invoke the function f1 using the special linkage.

5-60 Preprocessor Directives

6

Predefined Macros and Built-ln Functions

This chapter describes the following topics:

¢ Predefined macros (Section 6.1)

e Built-in functions (Section 6.2)
— For OpenVMS Alpha systems ipha only) (Section 6.2.1)
— For OpenVMS 164 Systems (164 oniy) (Section 6.2.2)
— For OpenVMS VAX systems (vax oniy) (Section 6.2.3)

Predefined macros and built-in functions are extensions to the C Standard and
are specific to HP C for OpenVMS Systems. The macros assist in transporting
code and performing simple tasks that are common to many programs. The
built-in functions allow you to efficiently access processor instructions.

6.1 Predefined Macros

In addition to the standard-conforming, implementation-independent macros
described in the HP C Language Reference Manual, HP C for OpenVMS
Systems provides the predefined macros described in the following sections.

6.1.1 CC$dfloat (G_Floating Identification Macro)
This macro is provided for compatibility with VAX C. The _ _G_FLOAT
predefined macro should be used instead. See Section 6.1.4.

6.1.2 System Identification Macros

Each implementation of the HP C compiler automatically defines macros that
can be used to identify the system on which the program is running. These
macros can assist in writing code that executes conditionally, depending on the
architecture or operating system on which the program is running.

Predefined Macros and Built-In Functions 6-1

Table 6-1 lists the traditional (nonstandard) and new (standard) spellings of
these predefined macro names for HP C for OpenVMS Systems. Both spellings
are defined for each macro unless strict ANSI C mode (/STANDARD=ANSI89)
is in effect, in which case only the new spellings are defined.

Table 6-1 Predefined System Identification Macros

Traditional
Spelling New Spelling
Operating system name: Vs __vms
VMS __VMS
vms_version __vms_version
VMS_VERSION _ _VMS_VERSION
_ _VMS_VER
_ _DECC_VER
Architecture name: vax (VAX only) __Vax (VAX only)
VAX (VAX only) _ _VAX (VAX only)
_ _alpha Alpha only)
_ _ALPHA (Alpha only)
_ _Alpha_AXP (Alpha only)
__32BITS
__1a64 164 only)
__labd__ @64 only
Product name: vaxc __vaxc
VAXC __VAXC
vaxllc __vaxllc
VAX11C __VAX11c
__DECC
Standard C version of the __gsmpc_ !

compiler:

1__STDC__ is defined to 1 for /SSTANDARD keywords ANSI89, C99, LATEST and MIA. It is
defined to 2 for /STANDARD=RELAXED and to 0 for /STANDARD=MS. It is not defined for
/STANDARD keywords VAXC and COMMON.

(continued on next page)

6—2 Predefined Macros and Built-In Functions

Table 6-1 (Cont.) Predefined System Identification Macros

Traditional
Spelling New Spelling

Compiler is a hosted implemen- _ _STDC_HOSTED_ _=1

tation for /STANDARD=c99 and
/STANDARD=LATEST.
__STDC_HOSTED_ _ not
defined for all other
/STANDARD keywords.

C99 or ISOC94 version of the _ _STDC_VERSION_ _=199901L
compiler for /STANDARD key-
words C99, LATEST,
RELAXED, MS, PORTABLE.
_ _STDC_VERSION_ _=199409L
when the ISOC94 keyword
is specified alone or with the
ANSI89, MIA, RELAXED, MS,
PORTABLE, or COMMON

modes.?
ISO/IEC 10646 __STDC_ISO_10646__=yyyymmL?
MIA version of the compiler: __MIAt

2Because C99 is a superset of Amendment 1 to the C89 standard, and the default mode of
RELAXED is a superset of C99, __STDC_VERSION_ _ is defined with the C99-specified value

of 199901L. Only when the ISOC94 keyword is added to the strict ANSI89, MIA, RELAXED, MS,
COMMON, or PORTABLE modes does the macro take on the Amendment 1 value of 199409L. In
the ﬁbsence of the ISOC94 keyword, ANSI89, MIA, and COMMON modes do not define the macro
at all.

3 STDC_ISO 10646__ evaluates to an integer constant of the form yyyymmlL (for example,
199712L), intended to indicate that values of type wchar_t are the coded representations of the
characters defined by ISO/IEC 10646, along with all amendments and technical corrigenda as of
the specified year and month.

4__MIA is defined only in MIA mode.

Most of these macros are defined as 1 or 0, as appropriate to the processor and
compilation qualifiers. Refer to the end of the compiler’s source listing to see
the names and values of all the macros that are defined prior to processing
the first line of source code. The listing shows all macros predefined by the
compiler, as well as those defined on the command line by the /DEFINE
qualifier, but omits any that were undefined by the /UNDEFINE qualifier.

Note

Some users have tried defining the macro __ALPHA explicity with
a /DEFINE qualifier or in a header file as a quick hack to deal with
source-code conditionals that were written to assume that if __ ALPHA

Predefined Macros and Built-In Functions 6-3

is not defined, then the target must be a VAX. Doing this causes the
CRTL headers and other OpenVMS headers to take the wrong path
for 164 systems. Never define any of the Alpha architecture predefined
macros when using the compiler on 164 systems.

You can use these system identification macros to separate portable and
nonportable code in any of your HP C programs or to conditionally compile
HP C programs used on more than one operating system to take advantage of
system-specific features. For example:

#ifdef VMS
#include rms /* Include RMS definitions. */
#endif

See the HP C Language Reference Manual for more information about using
the preprocessor conditional-compilation directives.

6.1.2.1 The __DECC_VER Macro

The __DECC_VER macro provides an integer encoding of the compiler version-
identifier string that is suitable for use in a preprocessor #if expression, such
that a larger number corresponds to a more recent version.

The format of the compiler version-identifier string is:
TMM. mm-eee

Where:

e T s the version type (letter).

e MM is the major version number.

e mm is the update (minor version number).

® cee is the edit suffix number.

The format of the integer encoding for __DECC_VER is:
vvuuteeee

Where:

e pv is the major version number.

e yu is the update (minor version number).

e tis the numerical encoding of the alphabetic version type from the version-
identifier string.

6-4 Predefined Macros and Built-In Functions

Table 6-2 lists the possible version types and their encodings:

Table 62 __DECC_VER Version-Type Encodings

Numerical
Type Encoding Description
T 6 Field-test version
S 8 Customer special
\'% 9 Officially supported version

e ¢eee is the edit suffix number.

The following describes how the __DECC_VER integer value is calculated from
the compiler version-identifier string:

1. The major version is multiplied by 10000000.

K

2. The minor version (the digits between the ’.’ and any edit suffix) is
multiplied by 100000 and added to the suffix value (The suffix value
has a range of 0-999).

3. If the character immediately preceding the first digit of the major version
number is one of the ones listed in Table 6-2, its numerical encoding is
multiplied by 10000.

4. The preceding values are added together.

The following examples show how different compiler version-identifier strings
map to __DECC_VER encodings:

ident ___ DECC_VER
string vvuuteeee
75.2-003 --> 50260003

V6.0-001 --> 60090001

6.1.2.2 The __VMS_VER Macro

The __VMS_VER macro provides an integer encoding of the OpenVMS version-
identifier string that is suitable for use in a preprocessor #if expression, such
that a larger number corresponds to a more recent version.

The format of the OpenVMS version-identifier string is:
TMM. mm- epp

Where:

e T is the version type (letter).

Predefined Macros and Built-In Functions 6-5

MM is the major version number.
mm is the update (minor version number).
ee is the edit number.

pp is the patch letter.

The format of the integer encoding for __VMS_VER is:

vvuuepptt
Where:

vv is the major version.

uu is the update (minor version)

e is the edit number.

pp is the patch letter (A =01, ..., Z = 26)

tt is the alphabetic ordinal of the version type from the version-identifier
string (E = 05, ..., V = 22)

Note that there are no version-type letters A - D and W - Z.

The following describes how the __VMS_VER integer value is calculated from the
OpenVMS version-identifier string:

1.
2.

The major version is multiplied by 10000000.

The minor version (the digits between the °.’ and any edit/patch suffix) is
multiplied by 100000 and added to the suffix value.

The suffix value is the optional edit number multiplied by 10000, added to
the optional patch letter’s alphabetic ordinal multiplied by 100.

The preceding values are added together, along with the alphabetic ordinal
of the version type.

The following examples show how different OpenVMS version-identifier strings
map to __VMS_VER encodings:

ident ____VMS_VER
string vvuuepptt

6-6 Predefined Macros and Built-In Functions

V6.1 --> 60100022
V6.1-1H --> 60110822
E6.2 --> 60200005 ("IFT")
F6.2 -=> 60200006 ("FT1")
G6.2 --> 60200007 ("FT2")
V6.2 -=> 60200022
T6.2-1H --> 60210820

V6.2-11 --> 60210922
V5.5-1H1 --> 50510822 (extra trailing digit ignored)

6.1.3 Standards Conformance Macros

The HP C RTL contains functions whose support and syntax conform to
various industry standards or levels of product or operating system support.

Table 6-3 lists macros that you can explicitly define (using the /DEFINE
qualifier or the #define preprocessor directive) to control which HP C RTL
functions are declared in header files and to obtain standards conformance
checking.

Table 6-3 Standards Macros—All platforms

Macro Standard
_XOPEN_SOURCE_EXTENDED XPG4-UNIX

_XOPEN_SOURCE XPG4

_POSIX_C_SOURCE POSIX

_ANSI_C_SOURCE Standard C

_VMS_V6_SOURCE OpenVMS Version 6 compatibility
_DECC_V4_SOURCE DEC C Version 4.0 compatibility
_BSD44_CURSES 4.4BSD Curses

_VMS_CURSES VAX C Curses

_SOCKADDR_LEN 4.4BSD sockets

These macros, with the exception of _POSIX_C_SOURCE, can be defined to 0 or 1.
The _POSIX_C_SOURCE macro can be defined to one of the following values:

0
1
2
199506

See the HP C Run-Time Library Reference Manual for OpenVMS Systems for
more information about these feature-test macros.

Predefined Macros and Built-In Functions 6-7

6.1.4 Floating-Point Macros

HP C for OpenVMS Systems automatically defines the following macros that
pertain to the format of floating-point variables. They can be used to identify
the format with which you are compiling your program.

e D FLOAT

e __G_FLOAT
e _ TEEE_FLOAT
e TEEE_FP

e X FLOAT

One of the first three macros listed is defined to have a value of 1 when the
corresponding option of the /FLOAT qualifier is specified, or the appropriate
/INO]JG_FLOAT qualifier is used. (The /G_FLOAT qualifier is kept only for
compatibility with VAX C.) If the corresponding option was not specified, the
associated macro is defined to have a value of 0.

The _IEEE_FP macro is defined in any IEEE floating-point mode except FAST.

On OpenVMS Alpha and 164 systems, the __X_FLOAT macro is defined to have
a value of 1 when /LL_DOUBLE_SIZE=128 (the default), and a value of 0 when
/L_DOUBLE_SIZE=64.

These macros can assist in writing code that executes conditionally, depending
on whether the program is running using D_floating, G_floating, or IEEE_
floating precision.

For example, if you compiled using G_floating format, then __D_FLOAT and
__IEEE_FLOAT are predefined to be 0, and __G_FLOAT is predefined as if the
following were included before every compilation unit:

#define _G_FLOAT 1

You can conditionally assign values to variables of type double without causing
an error and without being certain of how much storage was allocated for the
variable. For example, you may assign values to external variables as follows:

#ifdef _ _G_FLOAT

double x = 0.12e308; /* Range to 10 to the 308th power */
#else
double x = 0.12e38; /* Range to 10 to the 38th power */
tendif

All predefined macro names, such as __G_FLOAT, are reserved by HP.

6-8 Predefined Macros and Built-In Functions

You can remove the effect of predefined macro definitions by explicitly
undefining the conflicting name. For more information about undefining
macros, see the #undefine directive in the HP C Language Reference Manual.
For more information about the G_floating representation of the double data
type, see Chapter 4.

6.1.5 Compiler-Mode Macros

The following predefined macros are defined if the corresponding compiler
mode is selected:

e _ _DECC_MODE_STRICT
e _ _DECC_MODE_RELAXED
e _ _DECC_MODE_VAXC

e _ DECC_MODE_COMMON
e _ _DECC_MODE_MS

o _MS

6.1.6 Pointer-Size Macro

The following predefined macro is defined if the /POINTER_SIZE command-line
qualifier is specified:

_ _INITIAL_POINTER_SIZE

Specifying /POINTER_SIZE, /POINTER_SIZE=32, or /POINTER_
SIZE=SHORT defines __INITIAL_POINTER_SIZE to 32.

Specifying /POINTER_SIZE=64, or /POINTER_SIZE=LONG defines
_ _INITIAL_POINTER_SIZE to 64.

If /POINTER_SIZE is not specified, _ _INITIAL_POINTER_SIZE is defined to
0. This lets you use #ifdef __INITIAL_POINTER_SIZE to test whether or not
the compiler supports 64-bit pointers, because compilers lacking pointer-size
controls will not define this macro at all.

6.1.7 The __HIDE_FORBIDDEN_NAMES Macro

The C standard specifies exactly what identifiers in the normal name space
are declared by the standard header files. A compiler is not free to declare
additional identifiers in a header file unless the identifiers follow defined rules
(the identifier must begin with an underscore followed by an uppercase letter
or another underscore).

Predefined Macros and Built-In Functions 6-9

When you compile with HP C using any values of /STANDARD that set strict
C standard conformance (ANSI89, MIA, C99, and LATEST), versions of the
standard header files are included that hide many identifiers that do not
follow the rules. The header file <stdio.h>, for example, hides the definition
of the macro TRUE. The compiler accomplishes this by predefining the macro
_ _HIDE_FORBIDDEN_NAMES for the above-mentioned /STANDARD values.

You can use the /UNDEFINE="__HIDE FORBIDDEN NAMES" command-line
qualifier to prevent the compiler from predefining this macro and, thereby,
including macro definitions of the forbidden names.

The header files are modified to only define additional VAX C names if
_ _HIDE_FORBIDDEN_NAMES is undefined. For example, <stdio.h> might contain
the following:

#ifndef _ _HIDE FORBIDDEN_NAMES
#define TRUE 1
#endif

6.2 Built-In Functions

Sections 6.2.1, Section 6.2.2, and 6.2.3 describe the HP C built-in functions
available in all compiler modes on OpenVMS Alpha, 164, and VAX systems.

These functions allow you to directly access hardware and machine instructions
to perform operations that are cumbersome, slow, or impossible in other C
compilers.

These functions are very efficient because they are built into the HP C
compiler. This means that a call to one of these functions does not result in a
reference to a function in the HP C Run-Time Library (RTL) or to a function
in your program. Instead, the compiler generates the machine instructions
necessary to carry out the function directly at the call site. Because most of
these built-in functions closely correspond to single VAX or Alpha machine
instructions, the result is small, fast code.

Some of these built-in functions (such as those that operate on strings or bits)
are of general interest. Others (such as the functions dealing with process
context) are of interest if you are writing device drivers or other privileged
software. Some of the functions discussed in the following sections are
privileged and unavailable to user mode programs.

Be sure to include the <builtins.h> header file in your source program to
access these built-in functions. VAX C required you to place the #pragma
builtins preprocessor directive, rather than #include <builtins.h>, in your
source file before using one or more built-in functions. HP C supports #pragma

6-10 Predefined Macros and Built-In Functions

builtins for compatibility with VAX C, but using #include <builtins.h> is
recommended.

Note

HP C implements #pragma builtins as if it were #include
<builtins.h>; if you get an error from #pragma builtins, it is
the same kind of error you would get if you specified #include
<builtins.h>.

Also see Section 5.4.2.

Some of the built-in functions have optional arguments or allow a particular
argument to have one of many different types. To describe all valid
combinations of arguments, the following built-in function descriptions

list several different prototypes for the function. As long as a call to a built-in
function matches one of the prototypes listed, the call is valid. Furthermore,
any valid call to a built-in function behaves as if the corresponding prototype
were in scope of the call. The compiler, therefore, performs the argument
checking and conversions specified by that prototype.

The majority of the built-in functions are named after the processor instruction
that they generate. The built-in functions provide direct and unencumbered
access to those VAX instructions. Any inherent limitations to those instructions
are limitations to the built-in functions as well. For instance, the MOVC3
instruction and the _MOVCS3 built-in function can move at most 65,535
characters.

For more information on these built-in functions, see the corresponding
machine instruction in the VAX MACRO and Instruction Set Reference Manual,
Alpha Architecture Handbook, or Alpha Architecture Reference Manual. In
particular, refer to the structure of queue entries manipulated by the built-in
queue functions.

6.2.1 Built-In Functions for OpenVMS Alpha Systems uipha onty

The following sections describe the HP C built-in functions available on
OpenVMS Alpha systems.

Predefined Macros and Built-In Functions 6-11

6.2.1.1 Translation Macros for VAX C Built-in Functions
On HP C for OpenVMS Alpha Systems, the <builtins.h> header file
contains macro definitions that translate some VAX C built-in functions to
the equivalent HP C for OpenVMS Alpha built-in functions. Consequently, the
following VAX C built-in functions are effectively supported:

_BBCCI
_BBSSI
_INSQHI
_INSQTI
_INSQUE
_REMQHI
_REMQTI
_REMQUE
_PROBER
_PROBEW

For more detail on any of these functions, see <builtins.h> or the description
of the corresponding native Alpha function in this chapter. For example, for a
description of _INSQHI, see __PAL_INSQHIL.

6.2.1.2 In-line Assembly Code—ASMs

HP C supports in-line assembly code, commonly referred to as ASMs on UNIX
platforms.

Like built-in functions, ASMs are implemented with a function-call syntax.
But unlike built-in functions, to use ASMs you must include the <c_asm.h>
header file containing prototypes for the three types of ASMs, and the #pragma
intrinsic preprocessor directive.

These functions have the following format:

__inté4 asm (const char*,...); /*for integer operations, like MULQ */
float fasm (const char *, ...); [* for single precision float instructions, like MULS */
double dasm (const char *, ...); [* for double precision float instructions, like MULT */

#pragma intrinsic (asm, fasm, dasm)

const char *

The first argument to the asm, fasm, or dasm function contains the instruction(s)
to be generated inline and the metalanguage that describes the interpretation
of the arguments.

The source and destination arguments (if any) for the instruction being
generated, and any other values used in the generated instructions.

6-12 Predefined Macros and Built-In Functions

These values are made available to the instructions through the normal

argument passing conventions of the calling standard (the first integer

argument is available in register R16).

The #pragma intrinsic directive in the <c_asm.h> header file is required when

using ASMs. It notifies the compiler that:

e These functions are not user-defined functions.

e The special ASM processing should be applied to analyze at compile time
the first argument and generate machine-code instructions as specified by
the contents of the string.

The metalanguage for the argument references has the following form:

<metalanguage_sequence> :

<register_number>

<register_macro>

<register_alias>
<register_number>
<register_macro>

"$" number

"$" <macro_sequence>

<macro_sequence> : number
<register_name>
"f" number "F" number
"r" number "R" number

<register_name> :

/* argument registers: R16-R21 */
POE | gl | g | g3 | nadn | PLE

/* return value: RO or F0, depending on type */

n VO n

/* scratch registers: R1, R22-R24, R28 */

utou | utlu | ut2u | ut3u | ut4u

/* save registers: R2-R15 */

“SO" "Sl" "SZ" "SB" |IS4|I IIS5II
1|S81| ||S7|| |IS8|I |IS9|I "SlO" "Sll"
/* stack pointer: R30 */

" Sp“ | ngp" | " sspu | " sSPu

"RA" "ra" /* return addr:
"py" "pv" /* procedure value:
"AT" "ai" /* arg info:

"Fp" "fp" /* frame pointer:
"RZ" | "rz" | "zero" /* sink/source: R31 ==

"86 "
"512" ‘
R26 */
R27 */
R25 */
R29 */
zero */

g
"513 "

Predefined Macros and Built-In Functions 6-13

Syntactically, the metalanguage can appear anywhere within an instruction
sequence.

The literal string that contains instructions, operands, and metalanguage must
follow the general form:

<string_contents> : <instruction_seg>
<string_contents> ";" <instruction_seqg>
error
<string_contents> error

<instruction_seqg> : instruction_operand
| directive

An instruction_operand is generally recognized as an assembly language
instruction separated by white space from a sequence of comma-separated
operands.

You can code multiple instruction sequences into one literal string, separating
them by semicolons.

Since the C language concatentates adjacent string literals into a single string,
successive instructions can be written as separate strings, one per line (as is
normally done in assembly language) as long as each instruction is terminated
by a semicolon (as shown in the examples).

There are semantic and syntax rules associated with ASMs:

¢ The first argument to an ASM call is interpreted as the instructions to
be assembled in the metalanguage, and must be fully understood by the
compiler at compile time. Therefore, it must be a literal string (or a macro
expanding to a literal string) and must not be a run-time value containing a
string. Therefore, the following are not allowed: indirections, table lookups,
structure dereferences, and so on.

¢ The remaining arguments are loaded into the argument registers like
normal function arguments, except that the second argument to the ASM
call is treated as the first argument for purposes of the calling standard.
For example, in the following test, the six arguments are loaded into arg
registers a0 through a5, and the result of each subexpression is stored in
the value return register v0. Since v0 is the calling standard’s return value
register (RO for an integer function), the result of the final MULQ is the
value returned by the "call":

6-14 Predefined Macros and Built-In Functions

if (asm("mulg %a0, %al, %v0;"
"mulg %a2, %v0, %v0;"
"mulg %a3, %v0, %v0;"
"mulg %ad4, %v0, %v0;"
"mulg %a5, %v0, %vO0;", 1, 2, 3, 4, 5, 6) !=720){
error_cnt++;
printf ("Test failed\n");
}

The following example does not work. There is no value loaded into the
floating-point return register. Furthermore, it results in a compile-time
warning stating that r2 is used before it is set, because the arguments are
loaded into the arg registers and not into r2:

z = fasm("mulqg %r2, %al, %r5", x=10, y=5);

The correct way of doing this is to specify an argument register number in
place of r2. A correct version of the above would be:

z = fasm("'mulg %a0, %al, %al;"

"stq %al, 0(%a2);"

"1dt %$£0, 0(%a2);"

"evtgf %f0, %f0;", x=10, y=5, &temp);
Note that the memory location used for the transfer from integer to
floating-point register is made available to the asm code by passing as
an argument the address of a variable allocated in the C code for that
purpose.

e A return register must be specified in the metalanguage for the result to
appear in the expected place.

e For instructions that do not take any argument and do not have a return
type, leave out the arguments. For example:

asm("MB") ;

6.2.1.3 Absolute Value (__ABS)

The __ABS built-in is functionally equivalent to its counterpart, abs, in the
standard header file <stdlib.h>.

Its format is also the same:

#include <stdlib.h>
int __ABS (int x);

This built-in does, however, offer performance improvements because there is
less call overhead associated with its use.

If you include <stdlib.h>, the built-in is automatically used for all occurrences
of abs. To disable the built-in, use #undef abs.

Predefined Macros and Built-In Functions 6-15

6.2.1.4 Acquire and Release Longword Semaphore (__ACQUIRE_SEM_LONG,
__RELEASE_SEM_LONG)

The __ACQUIRE_SEM_LONG and __RELEASE_SEM_LONG functions
provide a counted semaphore capability where the positive value of a longword
is interpreted as the number of resources available.

The __ACQUIRE_SEM_LONG function loops until the longword has a positive
value and then decrements it within a load-locked/store-conditional sequence;
it then issues a memory barrier. This function returns 1 if the resource count
was successfully decremented within the specified number of retries, and 0
otherwise. With no explicit retry count, the function does not return until it
succeeds.

The __RELEASE_SEM_LONG function issues a memory barrier and then does
an __ATOMIC_INCREMENT_LONG on the longword.

The __ACQUIRE_SEM_LONG function has the following formats:

int __ACQUIRE_SEM_LONG (volatile void *address);
int __ACQUIRE_SEM_LONG_RETRY (volatile void *address, int retry);

The __RELEASE_SEM_LONG function has the following format:
int __RELEASE_SEM_LONG (volatile void *address);

address
The longword-aligned address of the resource count.

retry

A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the longword.

6.2.1.5 Add Aligned Word Interlocked (__ADAWI)

The __ADAWTI function adds its source operand to the destination. This
function is interlocked against similar operations by other processors or devices
in the system.

This function has the following format:

int __ADAWI (short src, volatile short *dest);

6-16 Predefined Macros and Built-In Functions

src
The value to be added to the destination.

dest

A pointer to the destination. The destination must be aligned on a word
boundary. (You can achieve alignment using the _align or __align storage-
class modifier.)

The __ADAWI function returns a simulated VAX processor status longword
(PSL), the lower 4 bits of which are significant. These 4 bits are the condition
codes and are defined as follows:

e Bit 3 is the negative condition code (N bit).

In general, it is set by negative result instructions. The bit is cleared by
positive result or zero instructions. For those instructions that affect the
bit according to a stored result, the N bit reflects the actual result even if
the sign of the result is algebraically incorrect as a result of overflow.

e Bit 2 is the zero condition code (Z bit).

Typically it is set by instructions that store an exactly zero result and
cleared if the result is not zero. Again, this reflects the actual result even
if overflow occurs.

e Bit 1 is the overflow condition code (V bit).

In general, it is set after arithmetic operations in which the magnitude

of the algebraically correct result is too large to be represented in the
available space, and cleared after operations whose result fits. Instructions
in which overflow is impossible or meaningless either clear the bit or leave
it unaffected. Note that all overflow conditions that set the V bit can also
cause traps if the appropriate trap enable bits are set.

e Bit 0 is the carry condition code (C bit).

Usually it is set after arithmetic operations in which a carry out of, or
borrow into, the most significant bit occurred. The bit is cleared after
arithmetic operations that had no carry or borrow, and is either cleared or
unaffected by other instructions.

6.2.1.6 Add Atomic Longword (__ADD_ATOMIC_LONG)

The __ADD_ATOMIC_LONG function adds the specified expression
to the aligned longword pointed to by the address parameter within a
load-locked/store-conditional code sequence.

This function has the following format:

int __ADD_ATOMIC_LONG (void *address, int expression, ...);

Predefined Macros and Built-In Functions 6-17

address
The address of the aligned longword.

expression
An integer expression.

An optional retry count of type int. If specified, the retry count indicates the
number of times the operation is attempted (which will be at least once, even
if the count argument is 0). If the operation cannot be performed successfully
in the specified number of retries, a value of 0 is returned. If the operation is
successful, a value of 1 is returned.

Note

If the optional retry count is omitted, this function loops back for a
retry unconditionally on failure. In this case, the function can never
return a failure value. It either returns a value of 1 upon successful
completion, or hangs in an endless failure loop.

6.2.1.7 Add Atomic Quadword (__ADD_ATOMIC_QUAD)

The __ADD_ATOMIC_QUAD function adds the specified expression to
the aligned quadword pointed to by the address parameter within a
load-locked/store-conditional code sequence.

This function has the following format:
int __ADD_ATOMIC_QUAD (void *address, int expression, ...);

address
The address of the aligned quadword.

expression
An integer expression.

An optional retry count of type int. If specified, the retry count indicates the
number of times the operation is attempted (which will be at least once, even
if the count argument is 0). If the operation cannot be performed successfully
in the specified number of retries, a value of 0 is returned. If the operation is
successful, a value of 1 is returned.

6-18 Predefined Macros and Built-In Functions

Note

If the optional retry count is omitted, this function loops back for a
retry unconditionally on failure. In this case, the function can never
return a failure value. It either returns a value of 1 upon successful
completion, or hangs in an endless failure loop.

6.2.1.8 Allocate Bytes from Stack (__ALLOCA)
The __ALLOCA function allocates n bytes from the stack.

This function has the following format:

void *__ALLOCA (unsigned int n);

n

The number of bytes to be allocated.

A pointer to the allocated memory is returned.

6.2.1.9 AND Atomic Longword (__AND_ATOMIC_LONG)

The __AND_ATOMIC_LONG function performs a bit-wise or arithmetic AND
of the specified expression with the aligned longword pointed to by the address
parameter within a load-locked/store-conditional code sequence.

This function has the following format:
int __AND_ATOMIC_LONG (void *address, int expression, ...);

address
The longword-aligned address of the data segment.

expression
An integer expression.

An optional retry count of type int. If specified, the retry count indicates the
number of times the operation is attempted (which will be at least once, even
if the count argument is 0). If the operation cannot be performed successfully
in the specified number of retries, a value of 0 is returned. If the operation is
successful, a value of 1 is returned.

Note

If the optional retry count is omitted, this function loops back for a
retry unconditionally on failure. In this case, the function can never

Predefined Macros and Built-In Functions 6-19

return a failure value. It either returns a value of 1 upon successful
completion, or hangs in an endless failure loop.

6.2.1.10 AND Atomic Quadword (__AND_ATOMIC_QUAD)

The __AND_ATOMIC_QUAD function performs a bit-wise or arithmetic AND
of the specified expression with the aligned quadword pointed to by the address
parameter within a load-locked/store-conditional code sequence.

This function has the following format:
int __AND_ATOMIC_QUAD (void *address, int expression, ...);

address
The address of the aligned quadword.

expression
An integer expression.

An optional retry count of type int. If specified, the retry count indicates the
number of times the operation is attempted (which will be at least once, even
if the count argument is 0). If the operation cannot be performed successfully
in the specified number of retries, a value of 0 is returned. If the operation is
successful, a value of 1 is returned.

Note

If the optional retry count is omitted, this function loops back for a
retry unconditionally on failure. In this case, the function can never
return a failure value. It either returns a value of 1 upon successful
completion, or hangs in an endless failure loop.

6.2.1.11 Atomic Add Longword (__ATOMIC_ADD_LONG)

The __ATOMIC_ADD_LONG function adds the specified expression to

the aligned longword pointed to by the address parameter within a load-
locked/store-conditional code sequence and returns the value of the longword
before the addition was performed.

This function has the following formats:

int __ATOMIC_ADD_LONG (volatile void *address, int expression);

int __ATOMIC_ADD_LONG_RETRY (volatile void *address, int expression, int retry, int *status);

6—20 Predefined Macros and Built-In Functions

6.2.1.12

address
The longword-aligned address of the data segment.

expression
An integer expression.

retry

A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the longword.

status
A pointer to an integer that is set to O if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

Note

The non-RETRY form of this function loops back for a retry uncondi-
tionally on failure. This means this function can hang in an endless
failure loop.

Atomic Add Quadword (__ATOMIC_ADD_QUAD)

The __ATOMIC_ADD_QUAD function adds the specified expression to

the aligned quadword pointed to by the address parameter within a load-
locked/store-conditional code sequence and returns the value of the quadword
before the addition was performed.

This function has the following formats:

__inté4 __ATOMIC_ADD_QUAD (volatile void *address, _ _int64 expression);

__inté4 __ATOMIC_ADD_QUAD_RETRY (volatile void *address
*status);

int64 expression, int retry, int

address
The quadword-aligned address of the data segment.

expression
An integer expression.

Predefined Macros and Built-In Functions 6-21

6.2.1.13

retry

A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

Note

The non-RETRY form of this function loops back for a retry uncondi-
tionally on failure. This means this function can hang in an endless
failure loop.

Atomic AND Longword (__ATOMIC_AND_LONG)

The __ATOMIC_AND_LONG function performs a bit-wise or arithmetic AND
of the specified expression with the aligned longword pointed to by the address
parameter within a load-locked/store-conditional code sequence and returns the
value of the longword before the operation was performed.

This function has the following formats:

int __ATOMIC_AND_LONG (volatile void *address, int expression);

int __ATOMIC_AND_LONG_RETRY (volatile void *address, int expression, int retry, int *status);

address
The longword-aligned address of the data segment.

expression
An integer expression.

retry

A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the longword.

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

6—22 Predefined Macros and Built-In Functions

Note

The non-RETRY form of this function loops back for a retry uncondi-
tionally on failure. This means this function can hang in an endless
failure loop.

6.2.1.14 Atomic AND Quadword (__ATOMIC_AND_QUAD)

The __ATOMIC_AND_QUAD function performs a bit-wise or arithmetic AND
of the specified expression with the aligned quadword pointed to by the address
parameter within a load-locked/store-conditional code sequence and returns the
value of the quadword before the operation was performed.

This function has the following formats:

__int64 __ATOMIC_AND_QUAD (volatile void *address, _ _int64 expression);

__inté4 __ATOMIC_AND_QUAD_RETRY (volatile void *address
*status);

int64 expression, int retry, int

R

address
The quadword-aligned address of the data segment.

expression
An integer expression.

retry

A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

Note

The non-RETRY form of this function loops back for a retry uncondi-
tionally on failure. This means this function can hang in an endless
failure loop.

Predefined Macros and Built-In Functions 6-23

6.2.1.15

6.2.1.16

Atomic OR Longword (__ATOMIC_OR_LONG)

The __ATOMIC_OR_LONG function performs a bit-wise or arithmetic OR of
the specified expression with the aligned longword pointed to by the address
parameter within a load-locked/store-conditional code sequence and returns the
value of the longword before the operation was performed.

This function has the following formats:

int __ATOMIC_OR_LONG (volatile void *address, int expression);

int __ATOMIC_OR_LONG_RETRY (volatile void *address, int expression, int retry, int *status);

address
The longword-aligned address of the data segment.

expression
An integer expression.

retry

A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the longword.

status
A pointer to an integer that is set to O if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

Note

The non-RETRY form of this function loops back for a retry uncondi-
tionally on failure. This means this function can hang in an endless
failure loop.

Atomic OR Quadword (__ATOMIC_OR_QUAD)

The __ATOMIC_OR_QUAD function performs a bit-wise or arithmetic OR of
the specified expression with the aligned quadword pointed to by the address
parameter within a load-locked/store-conditional code sequence and returns the
value of the quadword before the operation was performed.

6—24 Predefined Macros and Built-In Functions

This function has the following formats:

__int64 __ATOMIC_OR_QUAD (volatile void *address, _ _int64 expression);

__inté4 __ATOMIC_OR_QUAD_RETRY (volatile void *address
*status);

int64 expression, int retry, int

address
The quadword-aligned address of the data segment.

expression
An integer expression.

retry

A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

status
A pointer to an integer that is set to O if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

Note

The non-RETRY form of this function loops back for a retry uncondi-
tionally on failure. This means this function can hang in an endless
failure loop.

6.2.1.17 Atomic Increment Longword (__ATOMIC_INCREMENT_LONG)

The __ATOMIC_INCREMENT_LONG function increments by 1 the aligned
longword pointed to by the address parameter within a load-locked/store-
conditional code sequence and returns the value of the longword before the
operation was performed.

This function has the following formats:

int __ATOMIC_INCREMENT_LONG (volatile void *address);

int __ATOMIC_INCREMENT_LONG_RETRY (volatile void *address, int retry, int *status);

Predefined Macros and Built-In Functions 6-25

6.2.1.18

address
The longword-aligned address of the data segment.

retry

A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

Atomic Increment Quadword (__ATOMIC_INCREMENT_QUAD)

The __ATOMIC_INCREMENT_QUAD function increments by 1 the aligned
quadword pointed to by the address parameter within a load-locked/store-
conditional code sequence and returns the value of the quadword before the
operation was performed.

This function has the following formats:

__int64 __ATOMIC_INCREMENT_QUAD (volatile void *address);

__int64 __ATOMIC_INCREMENT_QUAD (volatile void *address, int retry, int *status);

address
The quadword-aligned address of the data segment.

retry

A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

status
A pointer to an integer that is set to O if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

6—26 Predefined Macros and Built-In Functions

6.2.1.19

6.2.1.20

Atomic Decrement Longword (__ATOMIC_DECREMENT_LONG)

The __ATOMIC_DECREMENT_LONG function decrements by 1 the aligned
longword pointed to by the address parameter within a load-locked/store-
conditional code sequence and returns the value of the longword before the
operation was performed.

This function has the following formats:

int __ATOMIC_DECREMENT_LONG (volatile void *address);

int __ATOMIC_DECREMENT_LONG (volatile void *address, int retry, int *status);

address
The longword-aligned address of the data segment.

retry

A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

status
A pointer to an integer that is set to O if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

Atomic Decrement Quadword (__ATOMIC_DECREMENT_QUAD)

The __ATOMIC_DECREMENT_QUAD function decrements by 1 the aligned
quadword pointed to by the address parameter within a load-locked/store-
conditional code sequence and returns the value of the quadword before the
operation was performed.

This function has the following formats:

__inté4 __ATOMIC_DECREMENT_QUAD (volatile void *address);

__inté4 __ATOMIC_DECREMENT_QUAD (volatile void *address, int retry, int *status);

address
The quadword-aligned address of the data segment.

retry

A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

Predefined Macros and Built-In Functions 6-27

6.2.1.21

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

Atomic Exchange Longword (__ATOMIC_EXCH_LONG)

The __ATOMIC_EXCH_LONG function stores the value of the specified
expression into the aligned longword pointed to by the address parameter
within a load-locked/store-conditional code sequence and returns the value of
the longword before the operation was performed.

This function has the following formats:

int __ATOMIC_EXCH_LONG (volatile void *address, int expression);

int __ATOMIC_EXCH_LONG_RETRY (volatile void *address, int expression, int retry, int *status);

address
The longword-aligned address of the data segment.

expression
An integer expression.

retry

A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the longword.

status
A pointer to an integer that is set to O if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

Note

The non-RETRY form of this function loops back for a retry uncondi-
tionally on failure. This means this function can hang in an endless
failure loop.

6—28 Predefined Macros and Built-In Functions

6.2.1.22

6.2.1.23

Atomic Exchange Quadword (__ATOMIC_EXCH_QUAD)

The __ATOMIC_EXCH_QUAD function stores the value of the specified
expression into the aligned quadword pointed to by the address parameter
within a load-locked/store-conditional code sequence and returns the value of
the quadword before the operation was performed.

This function has the following formats:

__inté4 __ATOMIC_EXCH_QUAD (volatile void *address, _ _int64 expression);

__int64 __ATOMIC_EXCH_QUAD_RETRY (volatile void *address
*status);

int64 expression, int retry, int

address
The quadword-aligned address of the data segment.

expression
An integer expression.

retry

A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

status
A pointer to an integer that is set to O if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

Note

The non-RETRY form of this function loops back for a retry uncondi-
tionally on failure. This means this function can hang in an endless
failure loop.

Compare Store Longword (__CMP_STORE_LONG)
The __CMP_STORE_LONG function has the following format:

int __CMP_STORE_LONG (volatile void *source, int old_value, int new_value, volatile void *des);

This function performs a conditional atomic compare and update operation
involving one or two longwords in the same lock region. The value pointed
to by source is compared with the longword old_value. If they are equal, the
longword new_value is conditionally stored into the value pointed to by dest.

Predefined Macros and Built-In Functions 6-29

6.2.1.24

6.2.1.25

6.2.1.26

The store will not complete if the compare yields unequal values or if there is
an intervening store to the lock region involved. To be in the same lock region,
source and dest must point to aligned longwords in the same naturally aligned
16-byte region.

The function returns 0 if the store does not complete, and returns 1 if the store
does complete.

Compare Store Quadword (__CMP_STORE_QUAD)
The __CMP_STORE_QUAD function has the following format:

int __CMP_STORE_QUAD (volatile void *source, int64 old_value, int64 new_value,
volatile void *dest);

This function performs a conditional atomic compare and update operation
involving one or two quadwords in the same lock region. The value pointed
to by source is compared with the quadword old_value. If they are equal, the
quadword new_value is conditionally stored into the value pointed to by dest.

The store will not complete if the compare yields unequal values or if there is
an intervening store to the lock region involved. To be in the same lock region,
source and dest must point to aligned quadwords in the same naturally aligned
16-byte region.

The function returns 0 if the store does not complete, and returns 1 if the store
does complete.

Convert G_Floating to F_Floating Chopped (__CVTGF_C)

The __CVTGF_C function converts a double-precision, VAX G_floating-point
number to a single-precision, VAX F_floating-point number. This conversion
chops to single-precision; then the 8-bit exponent range is checked for overflow
or underflow.

This function has the following format:
float __CVTGF_C (double operand);

operand
A double-precision, VAX floating-point number.

Convert G_Floating to Quadword (__CVTGQ)

The __CVTGQ function rounds a double-precision, VAX floating-point number
to a 64-bit integer value and returns the result.

This function has the following format:

inté4 __CVTGQ (double operand);

6-30 Predefined Macros and Built-In Functions

6.2.1.27

6.2.1.28

6.2.1.29

6.2.1.30

operand
A double-precision, VAX floating-point number.

Convert IEEE T_Floating to IEEE S_Floating Chopped (__CVTTS_C)

The __CVTTS_C function converts a double-precision, IEEE T_floating-point
number to a single-precision, IEEE S_floating-point number. This conversion
chops to single-precision; then the 8-bit exponent range is checked for overflow
or underflow.

This function has the following format:

float __CVTTS_C (double operand);

operand
A double-precision, IEEE floating-point number.

Convert IEEE T_Floating to Quadword (__CVTTQ)

The __CVTTQ function rounds a double-precision, IEEE T _floating-point
number to a 64-bit integer value and returns the result.

This function has the following format:
int64 __CVTTQ (double operand);

operand
A double-precision, IEEE T_floating-point number.

Convert X_Floating to Quadword (__CVTXQ)

The __CVTXQ function converts an X_floating-point number to a 64-bit integer
value and returns the result.

This function has the following format:

inté4 __CVTXQ (long double operand);

operand
An X floating-point number.

Convert X_Floating to IEEE T_Floating Chopped (__CVTXT_C)

The __CVTXT_C function converts an X_floating-point number to an IEEE
T_floating-point number and returns the result.

This function has the following format:

double __CVTXT_C (long double operand);

Predefined Macros and Built-In Functions 6-31

6.2.1.31

6.2.1.32

operand
An X_floating-point number.

Copy Sign Built-in Functions

Built-in functions are provided to copy selected portions of single- and double-
precision, floating-point numbers.

These built-in functions have the following format:

float __CPYSF (float operand1, float operand?);
double __CPYS (double operand1, double operand?);

float __CPYSNF (float operand1, float operand2);
double __CPYSN (double operand1, double operand?);

float __CPYSEF (float operand1, float operand2);
double __CPYSE (double operand?, double operand?);

The copy sign built-ins (__CPYSF and __CPYS) fetch the sign bit in operand1,
concatenate it with the exponent and fraction bits from operand2, and return
the result.

The copy sign negate built-ins (__CPYSNF and __CPYSN) fetch the sign bit
in operandl, complement it, concatenate it with the exponent and fraction bits
from operand?2, and return the result.

The copy sign exponent built-ins (__CPYSEF and __CPYSE) fetch the sign
and exponent bits from operandl, concatenate them with the fraction bits from
operand?2, and return the result.

Cosine (__COS)

The __COS built-in function is functionally equivalent to its counterpart, cos,
in the standard header file <math.h>.

Its format is also the same:

#include <math.h>
double __COS (double x);

X
A radian value.

This built-in offers performance improvements because there is less call
overhead associated with its use.

If you include <math.h>, the built-in is automatically used for all occurrences of
cos. To disable the built-in, use #undef cos.

6-32 Predefined Macros and Built-In Functions

6.2.1.33

6.2.1.34

6.2.1.35

Double-Precision, Floating-Point Arithmetic Built-in Functions

The following built-in functions provide double-precision, floating-point chopped
arithmetic:

__ADDG_C __ADDT C __SUBG_C __SUBT_C
__MULG_C __MULT_C __DIVG_C __DIVT_C
They have the following format:

double op{G,T}_C (double operand1, double operand?);

Where op is one of ADD, SUB, MUL, DIV, and {G,T} represents VAX or IEEE
floating-point arithmetic, respectively.

The result of the arithmetic operation is returned.

Floating-Point Absolute Value (__FABS)

The __FABS built-in function is functionally equivalent to its counterpart,
fabs, in the standard header file <math.h>.

Its format is also the same:

#include <math.h>
double __FABS (double x);
X

A floating-point number.

This built-in offers performance improvements because there is no call
overhead associated with its use.

If you include <math.h>, the built-in is automatically used for all occurrences of
fab. To disable the built-in, use #undef fab.

_leadz

The _leadz built-in function returns the number of leading zeroes (starting
at the most significant bit position) in its argument. For example, _leadz(1)
returns 63, and _leadz(0) returns 64.

This function has the following format:

int64 _leadz (unsigned int64);

Predefined Macros and Built-In Functions 6-33

6.2.1.36 Long Double-Precision, Floating-Point Arithmetic Built-in Functions
The following built-in functions provide long double-precision, floating-point
chopped arithmetic:
__ADDX C __SUBX C
__MULX _C __DIVX_C

They have the following format:

long double opX_C (long double operand1, long double operand?);

Where op is one of ADD, SUB, MUL, DIV.

The result of the arithmetic operation is returned.

6.2.1.37 Longword Absolute Value (__LABS)
The __LABS built-in is functionally equivalent to its counterpart, labs, in the
standard header file <stdlib.h>.
Its format is also the same:

#include <stdlib.h>
longint __LABS (long int x);

X
An integer.

This built-in offers performance improvements because there is less call
overhead associated with its use.

If you include <stdlib.h>, the built-in is automatically used for all occurrences
of labs. To disable the built-in, use #undef labs.

6.2.1.38 Lock and Unlock Longword (__LOCK_LONG, __UNLOCK_LONG)

The __LOCK_LONG and __UNLOCK_LONG functions provide a binary
spinlock capability based on the low-order bit of a longword.

The __LOCK_LONG function executes in a loop waiting for the bit to be
cleared and then sets it within a load-locked/store-conditional sequence; it then
issues a memory barrier. The __UNLOCK_LONG function issues a memory
barrier and then zeroes the longword.

The __LOCK_LONG_RETRY function returns 1 if the lock was acquired in the
specified number of retries and 0 if the lock was not acquired.

6-34 Predefined Macros and Built-In Functions

6.2.1.39

6.2.1.40

The __LOCK_LONG function has the following formats:
int __LOCK_LONG (volatile void *address);

int __LOCK_LONG_RETRY (volatile void *address, int retry);
The __UNLOCK_LONG function has the following format:
int __UNLOCK_LONG (volatile void *address);

address
The quadword-aligned address of the longword used for the lock.

retry

A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the longword.

Memory Barrier (__MB)

The __MB function directs the compiler to generate a memory barrier
instruction.

This function has the following format:

void __MB (void);

Memory Copy and Set Functions (__MEMCPY, __MEMMOVE MEMSET)
The __MEMCPY, __MEMMOVE, and __MEMSET built-ins are functionally
equivalent to their run-time routine counterparts in the standard header file

<string.h>.

Their format is also the same:

#include <string.h>

void *__MEMCPY (void *s1, const void *s2, size_t size);
void *__MEMMOVE (void *s7, const void *s2, size_t size);
void *__MEMSET (void *s, int value, size_t size);

These built-ins offer performance improvements because there is less call
overhead associated with their use.

If you include <string.h>, the built-ins are automatically used for all
occurrences of memcpy, memmove, and memset. To disable the built-ins, use
#undef memcpy, #undef memmove, and #undef memset.

Predefined Macros and Built-In Functions 6-35

6.2.1.41 OR Atomic Longword (__OR_ATOMIC_LONG)

The __OR_ATOMIC_LONG function performs a bit-wise or arithmetic OR of
the specified expression with the aligned longword pointed to by the address
parameter within a load-locked/store-conditional code sequence.

This function has the following format:
int __OR_ATOMIC_LONG (void *address, int expression, ...);

address
The address of the aligned longword.

expression
An integer expression.

An optional retry count of type int. If specified, the retry count indicates the
number of times the operation is attempted (which will be at least once, even
if the count argument is 0). If the operation cannot be performed successfully
in the specified number of retries, a value of 0 is returned. If the operation is
successful, a value of 1 is returned.

Note

If the optional retry count is omitted, this function loops back for a
retry unconditionally on failure. In this case, the function can never
return a failure value. It can either return a value of 1 upon successful
completion, or it can hang in an endless failure loop.

6.2.1.42 OR Atomic Quadword (__OR_ATOMIC_QUAD)

The __OR_ATOMIC_QUAD function performs a bit-wise or arithmetic OR of
the specified expression with the aligned quadword pointed to by the address
parameter within a load-locked/store-conditional code sequence.

This function has the following format:

int __OR_ATOMIC_QUAD (void *address, int expression, ...);

address
The address of the aligned quadword.

expression
An integer expression.

6-36 Predefined Macros and Built-In Functions

6.2.1.43

6.2.1.44

6.2.1.45

An optional retry count of type int. If specified, the retry count indicates the
number of times the operation is attempted (which will be at least once, even
if the count argument is 0). If the operation cannot be performed successfully
in the specified number of retries, a value of 0 is returned. If the operation is
successful, a value of 1 is returned.

Note

If the optional retry count is omitted, this function loops back for a
retry unconditionally on failure. In this case, the function can never
return a failure value. It can either return a value of 1 upon successful
completion, or it can hang in an endless failure loop.

Privileged Architecture Library Code Instructions

The following sections describe the Privileged Architecture Library Code
(PALcode) instructions that are available as built-in functions.
__PAL_BPT

This function is provided for program debugging. It switches the processor to
kernel mode and pushes registers R2 through R7, the updated PC, and PS onto
the kernel stack. It then dispatches to the address in the breakpoint vector,
which is stored in a control block.

This function has the following format:
void __PAL_BPT (void);

__PAL_BUGCHK

This function is provided for error reporting. It switches the processor to kernel
mode and pushes registers R2 through R7, the updated PC, and PS onto the
kernel stack. It then dispatches to the address in the bugcheck vector, which is
stored in a control block.

This function has the following format:

void __PAL BUGCHK (unsigned __int64 code);

Predefined Macros and Built-In Functions 6-37

6.2.1.46

6.2.1.47

6.2.1.48

6.2.1.49

__PAL_CFLUSH

This function flushes at least the entire physical page specified by the page
frame number value from any data caches associated with the current
processor. After a CFLUSH is done, the first subsequent load on the same
processor to an arbitrary address in the target page is fetched from physical
memory.

This function has the following format:

void __PAL_CFLUSH (int value);

value
A page frame number.

__PAL_CHME

This function allows a process to change its mode to Executive in a controlled
manner. The change in mode also results in a change of stack pointers: the
old pointer is saved and the new pointer is loaded. Registers R2 through R7,
PS, and PC are pushed onto the selected stack. The saved PC addresses the
instruction following the CHME instruction.

This function has the following format:
void __PAL_CHME (void);

__PAL_CHMK

This function allows a process to change its mode to kernel in a controlled
manner. The change in mode also results in a change of stack pointers: the
old pointer is saved and the new pointer is loaded. Registers R2 through R7,
PS, and PC are pushed onto the kernel stack. The saved PC addresses the
instruction following the CHMK instruction.

This function has the following format:
void __PAL_CHMK (void);

__PAL_CHMS

This function allows a process to change its mode to Supervisor in a controlled
manner. The change in mode also results in a change of stack pointers: the
old pointer is saved and the new pointer is loaded. Registers R2 through R7,
PS, and PC are pushed onto the selected stack. The saved PC addresses the
instruction following the CHMS instruction.

This function has the following format:
void __PAL_CHMS (void);

6-38 Predefined Macros and Built-In Functions

6.2.1.50

6.2.1.51

6.2.1.52

6.2.1.53

6.2.1.54

__PAL_CHMU

This function allows a process to call a routine using the change mode
mechanism. Registers R2 through R7, PS, and PC are pushed onto the
current stack. The saved PC addresses the instruction following the CHMU
instruction.

This function has the following format:
void __PAL_CHMU (void);

__PAL_DRAINA

This function stalls instruction issuing until all prior instructions are
guaranteed to complete without incurring aborts.

This function has the following format:

void __PAL_DRAINA (void);

__PAL_GENTRAP

This function is used for reporting run-time software conditions.
This function has the following format:

void __PAL_GENTRAP (uint64 encoded_software_trap);

encoded_software_trap
The particular software condition that has occurred.

__PAL_HALT

This function halts the processor when executed by a process running in kernel
mode. This is a privileged function.

This function has the following format:
void __PAL_HALT (void);

__PAL_INSQHIL

This function inserts an entry at the front of a longword queue in an indivisible
manner. This operation is interlocked against similar operations by other
processors or devices in the system. This function must have write access to
header and queue entries. The pointers to head and new_entry must not be
equal.

This function has the following format:

int _ _PAL_INSQHIL (void *head, void *new_entry); ~ /* At head, interlocked */

Predefined Macros and Built-In Functions 6-39

head

A pointer to the queue header. The header must be aligned on a quadword
boundary.

new_entry
A pointer to the new entry to be inserted. The entry must be aligned on a
longword boundary.

There are three possible return values:

e 1 if the entry was not inserted because the secondary interlock failed
e 0 if the entry was inserted but it was not the only entry in the list

e 1 if the entry was inserted and it was the only entry in the list

6.2.1.55 __PAL_INSQHILR

This function inserts an entry into the front of a longword queue in an
indivisible manner. This operation is interlocked against similar operations
by other processors or devices in the system. This function must have write
access to the header and queue entries. The pointers to head and new_entry
must not be equal. All parts of the queue must be memory resident.

This function has the following format:

int __PAL_INSQHILR (void *head, void *new_entry); /* At head, interlocked resident */

head

A pointer to the queue header. The header must be aligned on a quadword
boundary.

new_entry

A pointer to the new entry to be inserted. The entry must be aligned on a
quadword boundary.

There are three possible return values:
e 1 if the entry was not inserted because the secondary interlock failed
e 0 if the entry was inserted but it was not the only entry in the list

e 1 if the entry was inserted and it was the only entry in the list

6-40 Predefined Macros and Built-In Functions

6.2.1.56

6.2.1.57

__PAL_INSQHIQ

This function inserts an entry at the front of a quadword queue in an
indivisible manner. This operation is interlocked against similar operations
by other processors or devices in the system. This function must have write
access to header and queue entries. The pointers to head and new_entry must
not be equal.

This function has the following format:
int __PAL_INSQHIQ (void *head, void *new_entry); ~ /* At head, interlocked */
head

A pointer to the queue header. The header must be aligned on an octaword
boundary.

new_entry
A pointer to the new entry to be inserted. The entry must be aligned on an
octaword boundary.

There are three possible return values:
e -1 if the entry was not inserted because the secondary interlock failed
e 0 if the entry was inserted but it was not the only entry in the list

e 1 if the entry was inserted and it was the only entry in the list

__PAL_INSQHIQR

This function inserts an entry into the front of a quadword queue in an
indivisible manner. This operation is interlocked against similar operations
by other processors or devices in the system. This function must have write
access to the header and queue entries. The pointers to head and new_entry
must not be equal. All parts of the queue must be memory resident.

This function has the following format:

int __PAL_INSQHIQR (void *head, void *new_entry); /* At head, interlocked resident */

head
A pointer to the queue header. The header must be aligned on an octaword
boundary.

new_entry
A pointer to the new entry to be inserted. The entry must be aligned on an
octaword boundary.

There are three possible return values:

e 1 if the entry was not inserted because the secondary interlock failed

Predefined Macros and Built-In Functions 6—41

6.2.1.58

6.2.1.59

e 0 if the entry was inserted but it was not the only entry in the list

e 1 if the entry was inserted and it was the only entry in the list

__PAL_INSQTIL

This function inserts an entry at the end of a longword queue in an indivisible
manner. This operation is interlocked against similar operations by other
processors or devices in the system. This function must have write access to
header and queue entries. The pointers to head and new_entry must not be
equal.

This function has the following format:
int __PAL_INSQTIL (void *head, void *new_entry); ~ /* At tail, interlocked */
head

A pointer to the queue header. The header must be aligned on a quadword
boundary.

new_entry
A pointer to the new entry to be inserted. The entry must be aligned on a
quadword boundary.

There are three possible return values:
e 1 if the entry was not inserted because the secondary interlock failed
e 0 if the entry was inserted but it was not the only entry in the list

e 1 if the entry was inserted and it was the only entry in the list

__PAL_INSQTILR

This function inserts an entry at the end of a longword queue in an indivisible
manner. This operation is interlocked against similar operations by other
processors or devices in the system. This function must have write access to
the header and queue entries. The pointers to head and new_entry must not be
equal. All parts of the queue must be memory resident.

This function has the following format:

int __PAL_INSQTILR (void *head, void *new_entry); ~ /* At tail, interlocked resident */

head
A pointer to the queue header. The header must be aligned on a quadword
boundary.

6-42 Predefined Macros and Built-In Functions

6.2.1.60

6.2.1.61

new_entry
A pointer to the new entry to be inserted. The entry must be aligned on a
quadword boundary.

There are three possible return values:
e 1 if the entry was not inserted because the secondary interlock failed
e 0 if the entry was inserted but it was not the only entry in the list

e 1 if the entry was inserted and it was the only entry in the list

__PAL_INSQTIQ

This function inserts an entry at the end of a quadword queue in an indivisible
manner. This operation is interlocked against similar operations by other
processors or devices in the system. This function must have write access to
header and queue entries. The pointers to head and new_entry must not be
equal.

This function has the following format:
int __PAL_INSQTIQ (void *head, void *new_entry); ~ /* At tail, interlocked */
head

A pointer to the queue header. The header must be aligned on an octaword
boundary.

new_entry
A pointer to the new entry to be inserted. The entry must be aligned on an
octaword boundary.

There are three possible return values:
e -1 if the entry was not inserted because the secondary interlock failed
e 0 if the entry was inserted but it was not the only entry in the list

e 1 if the entry was inserted and it was the only entry in the list

__PAL_INSQTIQR

This function inserts an entry at the end of a quadword queue in an indivisible
manner. This operation is interlocked against similar operations by other
processors or devices in the system. This function must have write access to
the header and queue entries. The pointers to head and new_entry must not be
equal. All parts of the queue must be memory resident.

This function has the following format:

int __PAL_INSQTIQR (void *head, void *new_entry); /* At tail, interlocked resident */

Predefined Macros and Built-In Functions 6-43

head
A pointer to the queue header. The header must be aligned on an octaword
boundary.

new_entry
A pointer to the new entry to be inserted. The entry must be aligned on an
octaword boundary.

There are three possible return values:
e 1 if the entry was not inserted because the secondary interlock failed
e 0 if the entry was inserted but it was not the only entry in the list

e 1 if the entry was inserted and it was the only entry in the list

6.2.1.62 _ _PAL_INSQUEL

This function inserts a new entry after an existing entry into a longword
queue. This function must have write access to header and queue entries.

This function has the following format:

int __PAL_INSQUEL (void *predecessor, void *new_entry);

predecessor
A pointer to an existing entry in the queue.

new_entry
A pointer to the new entry to be inserted.

There are two possible return values:
e 0 if the entry was not the only entry in the queue

e 1 if the entry was the only entry in the queue

6.2.1.63 PAL_INSQUEL_D

This function inserts a new entry after an existing entry into a longword queue
deferred. This function must have write access to header and queue entries.

This function has the following format:

int __PAL_INSQUEL_D (void **predecessor, void *new_entry); /* Deferred */

6-44 Predefined Macros and Built-In Functions

6.2.1.64

6.2.1.65

predecessor
A pointer to a pointer to the predecessor entry.

new_entry
A pointer to the new entry to be inserted.

There are two possible return values:
e 0 if the entry was not the only entry in the queue

e 1 if the entry was the only entry in the queue

__PAL_INSQUEQ

This function inserts a new entry after an existing entry into a quadword
queue. The entries must be octaword-aligned. This function must have write
access to header and queue entries.

This function has the following format:

int __PAL_INSQUEQ (void *predecessor, void *new_entry);

predecessor
A pointer to an existing entry in the queue.

new_entry
A pointer to the new entry to be inserted.

There are two possible return values:
e 0 if the entry was not the only entry in the queue

e 1 if the entry was the only entry in the queue

__PAL_INSQUEQ_D

This function inserts a new entry after an existing entry into a quadword
queue deferred. The entries must be octaword-aligned. This function must
have write access to header and queue entries.

This function has the following format:

int __PAL_INSQUEQ_D (void **predecessor, void *new_entry); /* Deferred */

predecessor
A pointer to a pointer to the predecessor entry.

new_entry
A pointer to the new entry to be inserted.

Predefined Macros and Built-In Functions 6-45

There are two possible return values:
e 0 if the entry was not the only entry in the queue

e 1 if the entry was the only entry in the queue

6.2.1.66 __PAL_LDQP

This function returns the quadword-aligned memory object specified by
address.

This function has the following format:

uinté4 __PAL_LDQP (void *address);

address

A pointer to the quadword-aligned memory object to be returned.

If the object pointed to by address is not quadword-aligned, the result is
unpredictable.

6.2.1.67 __PAL_STQP

This function writes the quadword value to the memory location pointed to by
address.

This function has the following format:

void __PAL_STQP (void *address, uint64 value);

address
Memory location to be written to.

value
Quadword value to be stored.

If the location pointed to by address is not quadword-aligned, the result is
unpredictable.

6.2.1.68 __PAL_MFPR_XXXX

These privileged functions return the contents of a particular processor
register. The XXXX indicates the processor register to be read.

These functions have the following format:

unsigned int __PAL_MFPR_ASTEN (void); ~ /* AST Enable */
unsigned int __PAL_MFPR_ASTSR (void); /* AST Summary Register */

void *__PAL_MFPR_ESP (void); [* Executive Stack Pointer */

int __PAL_MFPR_FEN (void); /* Floating-Point Enable */

int __PAL_MFPR_IPL (void); /* Interrupt Priority Level */

int __PAL_MFPR_MCES (void); [* Machine Check Error Summary */

6-46 Predefined Macros and Built-In Functions

6.2.1.69

6.2.1.70

void *__PAL_MFPR_PCBB (void); /* Privileged Context Block Base */

inté4 __PAL_MFPR_PRBR (void); [* Processor Base Register */

int __PAL_MFPR_PTBR (void); [* Page Table Base Register */

void *__PAL_MFPR_SCBB (void); [* System Control Block Base */

unsigned int __PAL_MFPR_SISR (void); [* Software Interrupt Summary Register */
void *__PAL_MFPR_SSP (void); I* Supervisor Stack Pointer */

inté4 __PAL_MFPR_TBCHK (void *address); /* Translation Buffer Check */

void *__PAL_MFPR_USP (void); I* User Stack Pointer */

void *__PAL_MFPR_VPTB (void); /* Virtual Page Table */

inté4 __PAL_MFPR_WHAMI (void); * Who Am | */

__PAL_MTPR_XXXX

These privileged functions load a value into one of the special processor
registers. The XXXX indicates the processor register to be loaded.

These functions have the following format:

void __PAL_MTPR_ASTEN (unsigned int mask); /* AST Enable */
void __PAL_MTPR_ASTSR (unsigned int mask); /* AST Summary Register */

void __PAL_MTPR_DATFX (int value); /* Data Alignment Trap Fixup */

void __PAL_MTPR_ESP (void *address); [* Executive Stack Pointer */

void __PAL_MTPR_FEN (int value); /* Floating-Point Enable */

void __PAL_MTPR_IPIR (int64 number); I* Interprocessor Interrupt Request */

int __PAL_MTPR_IPL (int value); I* Interrupt Priority Level */

void __PAL_MTPR_MCES (int value); [* Machine Check Error Summary */

void __PAL_MTPR_PRBR (int64 value); I* Processor Base Register */

void __PAL_MTPR_SCBB (void *address); /* System Control Block Base */

void __PAL_MTPR_SIRR (int level); [* Software Interrupt Request Register */

void __PAL_MTPR_SSP (int *address); /* Supervisor Stack Pointer */

void __PAL_MTPR_TBIA (void); [* User Stack Pointer */

void __PAL_MTPR_TBIAP (void); [* Translation Buffer Invalidate All Process */
void __PAL_MTPR_TBIS (void *address); [* Translation Buffer Invalidate Single */

void __PAL_MTPR_TBISD (void *address); [* Translation Buffer Invalidate Single Data */
void __PAL_MTPR_TBISI (void *address); [* Translation Buffer Invalidate Single Instruction */
void __PAL_MTPR_USP (void *address); [* User Stack Pointer */

void __PAL_MTPR_VPTB (void *address); [* Virtual Page Table */
__PAL_PROBER

This function checks the read accessibility of the first and last byte of the given
address and offset pair.

This function has the following format:

int __PAL_PROBER (const void *base_address, int offset, char mode);

Predefined Macros and Built-In Functions 6-47

base_address
The pointer to the memory segment to be tested for read access.

offset
The signed offset to the last byte in the memory segment.

mode
The processor mode used for checking access.

There are two possible return values:
e 0 if one or both bytes are not accessible

e 1 if both bytes are accessible

6.2.1.71 __PAL_PROBEW

This function checks the write accessibility of the first and last byte of the
given address and offset pair.

This function has the following format:

int __PAL_PROBEW (const void *base_address, int offset, char mode);

base_address
The pointer to the memory segment to be tested for write access.

offset
The signed offset to the last byte in the memory segment.

mode
The processor mode used for checking access.

There are two possible return values:
e 0 if one or both bytes are not accessible

e 1 if both bytes are accessible

6.2.1.72 _ PAL_RD PS
This function returns the Processor Status (PS).

This function has the following format:

uinté4 __PAL_RD_PS (void);

6-48 Predefined Macros and Built-In Functions

6.2.1.73

6.2.1.74

__PAL_REMQHIL

This function removes the first entry from a longword queue in an indivisible
manner. This operation is interlocked against similar operations by other
processors or devices in the system. This function must have write access to
the header and queue entries.

This function has the following format:

int __PAL_REMQHIL (void *head, void **removed_entry); ~ /* At head, interlocked */

head
A pointer to the queue header. The header must be aligned on a quadword
boundary.

removed_entry
A pointer to the address of the entry removed from the queue.

There are four possible return values:

e 1 if the entry cannot be removed because the secondary interlock failed
e 0 if the queue was empty

e 1 if the entry was removed and the queue has remaining entries

e 2 if the entry was removed and the queue is now empty

__PAL_REMQHILR

This function removes the first entry from a longword queue in an indivisible
manner. This operation is interlocked against similar operations by other
processors or devices in the system. This function must have write access to
the header and queue entries. All parts of the queue must be memory resident.

This function has the following format:

int __PAL_REMQHILR (void *head, void **removed_entry); ~ /* At head, interlocked resident */

head
A pointer to the queue header. The header must be aligned on a quadword
boundary.

removed_entry
A pointer to the address of the entry removed from the queue.

There are four possible return values:
e 1 if the entry cannot be removed because the secondary interlock failed

e 0 if the queue was empty

Predefined Macros and Built-In Functions 6-49

6.2.1.75

6.2.1.76

e 1 if the entry was removed and the queue has remaining entries

e 2 if the entry was removed and the queue is now empty

__PAL_REMQHIQ

This function removes the first entry from a quadword queue in an indivisible
manner. This operation is interlocked against similar operations by other
processors or devices in the system. This function must have write access to
the header and queue entries.

This function has the following format:
int __PAL_REMQHIQ (void *head, void **removed_entry); /* At head, interlocked */
head

A pointer to the queue header. The header must be aligned on an octaword
boundary.

removed_entry
A pointer to the address of the entry removed from the queue.

There are four possible return values:

e -1 if the entry cannot be removed because the secondary interlock failed
e 0 if the queue was empty

e 1 if the entry was removed and the queue has remaining entries

e 2 if the entry was removed and the queue is now empty

__PAL_REMQHIQR

This function removes the first entry from a quadword queue in an indivisible
manner. This operation is interlocked against similar operations by other
processors or devices in the system. This function must have write access to
the header and queue entries. All parts of the queue must be memory resident.

This function has the following format:

int __PAL_REMQHIQR (void *head, void **removed_entry); ~ /* At head, interlocked resident */

head
A pointer to the queue header. The header must be aligned on an octaword
boundary.

removed_entry
A pointer to the address of the entry removed from the queue.

6-50 Predefined Macros and Built-In Functions

6.2.1.77

6.2.1.78

There are four possible return values:

e 1 if the entry cannot be removed because the secondary interlock failed
e 0 if the queue was empty

e 1 if the entry was removed and the queue has remaining entries

e 2 if the entry was removed and the queue is now empty

__PAL_REMQTIL

This function removes the last entry from a longword queue in an indivisible
manner. This operation is interlocked against similar operations by other
processors or devices in the system. This function must have write access to
the header and queue entries.

This function has the following format:

int __PAL_REMAQTIL (void *head, void **removed_entry); /* At tail, interlocked */

head
A pointer to the queue header. The header must be aligned on a quadword
boundary.

removed_entry

A pointer to the address of the entry removed from the queue.

There are four possible return values:

e -1 if the entry cannot be removed because the secondary interlock failed
e 0 if the queue was empty

e 1 if the entry was removed and the queue has remaining entries

e 2 if the entry was removed and the queue is now empty

__PAL_REMQTILR

This function removes the last entry from a longword queue in an indivisible
manner. This operation is interlocked against similar operations by other
processors or devices in the system. This function must have write access to
the header and queue entries. All parts of the queue must be memory resident.

This function has the following format:

int __PAL_REMQTILR (void *head, void **removed_entry); ~ /* At tail, interlocked resident */

Predefined Macros and Built-In Functions 6-51

head

A pointer to the queue header. The header must be aligned on a quadword
boundary.

removed_entry

A pointer to the address of the entry removed from the queue.

There are four possible return values:

e -1 if the entry cannot be removed because the secondary interlock failed
e 0 if the queue was empty

e 1 if the entry was removed and the queue has remaining entries

e 2 if the entry was removed and the queue is now empty

6.2.1.79 __PAL_REMQTIQ

This function removes the last entry from a quadword queue in an indivisible
manner. This operation is interlocked against similar operations by other
processors or devices in the system. This function must have write access to
the header and queue entries.

This function has the following format:

int __PAL_REMQTIQ (void *head, void **removed_entry); ~ /* At tail, interlocked */

head

A pointer to the queue header. The header must be aligned on an octaword
boundary.

removed_entry
A pointer to the address of the entry removed from the queue.

There are four possible return values:

e 1 if the entry cannot be removed because the secondary interlock failed
e 0 if the queue was empty

e 1 if the entry was removed and the queue has remaining entries

e 2 if the entry was removed and the queue is now empty

6-52 Predefined Macros and Built-In Functions

6.2.1.80

6.2.1.81

__PAL_REMQTIQR

This function removes the last entry from a quadword queue in an indivisible
manner. This operation is interlocked against similar operations by other
processors or devices in the system. This function must have write access to
the header and queue entries. All parts of the queue must be memory resident.

This function has the following format:

int __PAL_REMQTIQR (void *head, void **removed_entry); ~ /* At tail, interlocked resident */

head
A pointer to the queue header. The header must be aligned on an octaword
boundary.

removed_entry
A pointer to the address of the entry removed from the queue.

There are four possible return values:

e 1 if the entry cannot be removed because the secondary interlock failed
e 0 if the queue was empty

e 1 if the entry was removed and the queue has remaining entries

e 2 if the entry was removed and the queue is now empty

__PAL_REMQUEL

This function removes an entry from a longword queue. This function must
have write access to header and queue entries.

This function has the following format:

int _PAL_REMQUEL (void *entry, void **removed_entry);

entry
A pointer to the queue entry to be removed.

removed_entry
A pointer to the address of the entry removed from the queue.

There are three possible return values:
e 1 if the queue was empty
e 0 if the entry was removed and the queue is now empty

e 1 if the entry was removed and the queue has remaining entries

Predefined Macros and Built-In Functions 6-53

6.2.1.82 PAL_REMQUEL_D

This function removes an entry from a longword queue deferred. This function
must have write access to header and queue entries.

This function has the following format:

int __PAL_REMQUEL_D (void **entry, void **removed_entry); [* Deferred */

entry
A pointer to a pointer to the queue entry to be removed.

removed_entry
A pointer to the address of the entry removed from the queue.

There are three possible return values:

e 1 if the queue was empty

e 0 if the entry was removed and the queue is now empty

e 1 if the entry was removed and the queue has remaining entries

6.2.1.83 __PAL_REMQUEQ

This function removes an entry from a quadword queue. This function must
have write access to header and queue entries.

This function has the following format:

int __PAL_REMQUEAQ (void *entry, void **removed_entry);

entry
A pointer to the queue entry to be removed.

removed_entry
A pointer to the address of the entry removed from the queue.

There are three possible return values:
e 1 if the queue was empty
e 0 if the entry was removed and the queue is now empty

e 1 if the entry was removed and the queue has remaining entries

6-54 Predefined Macros and Built-In Functions

6.2.1.84

6.2.1.85

6.2.1.86

__PAL_REMQUEQ_D

This function removes an entry from a quadword queue deferred. This function
must have write access to header and queue entries.

This function has the following format:

int __PAL_REMQUEQ_D (void **entry, void **removed_entry); ~ /* Deferred */

entry
A pointer to a pointer to the queue entry to be removed.

removed_entry
A pointer to the address of the entry removed from the queue.

There are three possible return values:
e 1 if the queue was empty
e 0 if the entry was removed and the queue is now empty

e 1 if the entry was removed and the queue has remaining entries

__PAL_SWPCTX

This function returns ownership of the data structure that contains the current
hardware privileged context (the HWPCB) to the operating system and passes
ownership of the new HWPCB to the processor.

This function has the following format:

void __PAL_SWPCTX (void *address);

address
A pointer to the new HWPCB.

__PAL_SWASTEN

This function swaps the previous state of the Asynchronous System Trap (AST)
enable bit for the new state. The new state is supplied in bit 0 of new_state_
mask. The previous state is returned, zero-extended.

A check is made to determine if an AST is pending. If the enabling conditions
are present for an AST at the completion of this instruction, the AST occurs
before the next instruction.

This function has the following format:

unsigned int __PAL_SWASTEN (int new_state_mask);

Predefined Macros and Built-In Functions 6-55

new_state_mask
An integer whose 0 bit is the new state of the AST enable bit.

6.2.1.87 __PAL_WR_PS_SW

This function writes the low-order three bits of mask into the Processor Status
software field (PS<SW>).

This function has the following format:

void __PAL_WR_PS_SW (int mask);

mask
An integer whose low-order three bits are written into PS<SW>.

6.2.1.88 _popcnt

The _popent built-in function returns the number of "1" bits (0 to 64) in its
argument. For example, _popcnt(12) returns 2.

This function has the following format:
int64 _popcnt (unsigned int64);

6.2.1.89 _poppar

The _poppar built-in function returns 1 if the number of "1" bits in its
argument is odd; otherwise it returns 0. For example, _poppar(12) returns
0.

This function has the following format:
int64 _poppar (unsigned int64);
6.2.1.90 Read Process Cycle Counter (__RPCC)
The __RPCC function reads the current process cycle counter.
This function has the following format:
uinté4 __RPCC (void);

6.2.1.91 Sine (__SIN)

The _ _SIN built-in is functionally equivalent to its counterpart, sin, in the
standard header file <math.h>.

Its format is also the same:

#include <math.h>
double _ _SIN (double x);

6-56 Predefined Macros and Built-In Functions

6.2.1.92

6.2.1.93

X
A radian value.

This built-in offers performance improvements because there is less call
overhead associated with its use.

If you include <math.h>, the built-in is automatically used for all occurrences of
sin. To disable the built-in, use #undef sin.

Single-Precision, Floating-Point Arithmetic Built-in Functions

The following built-in functions provide single-precision, floating-point chopped
arithmetic:

__ADDF_C __ADDS_C __SUBF_C __SUBS_C
__MULF_C __MULS_C __DIVF_C __DIVS_C

They have the following format:
float _ _op{F,S}_C (float operand1, float operand?);

Where op is one of ADD, SUB, MUL, DIV, and {F,S} represents VAX or IEEE
floating-point arithmetic, respectively.

The result of the arithmetic operation is returned.

Test for Bit Clear then Clear Bit Interlocked
(__INTERLOCKED_TESTBITCC_QUAD)

The _ _INTERLOCKED_TESTBITCC_QUAD function performs the following
functions in interlocked fashion:

1. Returns the complement of the specified bit before being cleared.
2. Clears the bit.
This function has the following formats:

int __INTERLOCKED_TESTBITCC_QUAD (volatile void *address, int bit_position);

int __INTERLOCKED_TESTBITCC_QUAD_RETRY (volatile void *address, int bit_position, int retry,
int *status);

address
The quadword-aligned base address of the bit field.

bit_position

The position within the field of the bit that you want cleared, in the range of 0
to 63.

Predefined Macros and Built-In Functions 6-57

retry

A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the quadword.

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

6.2.1.94 Test for Bit Clear then Clear Bit Interlocked (__TESTBITCCI)

The __TESTBITCCI function performs the following operations in interlocked
fashion:

e Returns the complement of the specified bit before being cleared
e C(Clears the bit
This function has the following format:

int __TESTBITCCI (void *address, int position, ...);

address
The base address of the field.

position
The position within the field of the bit that you want cleared.

An optional retry count of type int. If specified, the retry count indicates the
number of times the operation is attempted (which will be at least once, even if
the count argument is 0).

6.2.1.95 Test for Bit Set Then Set Bit Interlocked
(__INTERLOCKED_TESTBITSS_QUAD)

The _ _INTERLOCKED_TESTBITSS_QUAD function performs the following
functions in interlocked fashion:

1. Returns the value of the specified bit before being set.
2. Sets the bit.
This function has the following formats:

int _ _INTERLOCKED_TESTBITSS_QUAD (volatile void *address, int bit_position);

int __INTERLOCKED_TESTBITSS_QUAD_RETRY (volatile void *address, int expression, int retry,
int *status);

6-58 Predefined Macros and Built-In Functions

6.2.1.96

address
The quadword-aligned base address of the bit field.

bit_position
The position within the field of the bit that you want cleared, in the range of 0
to 63.

retry

A retry count of type int that indicates the number of times the operation
is attempted (which is at least once, even if the retry argument is 0). If the
operation cannot be performed successfully in the specified number of retries,
the function returns without updating the longword.

status
A pointer to an integer that is set to 0 if the operation did not succeed within
the specified number of retries, and set to 1 if the operation succeeded.

Test for Bit Set then Set Bit Interlocked (__TESTBITSSI)

The __TESTBITSSI function performs the following operations in interlocked
fashion:

e Returns the value of the specified bit before being set
e Sets the bit
This function has the following format:

int __TESTBITSSI (void *address, int position, ...);

address
The base address of the field.

position

The position within the field of the bit that you want set.

An optional retry count of type int. If specified, the retry count indicates the
number of times the operation is attempted (which will be at least once, even if
the count argument is 0).

Predefined Macros and Built-In Functions 6-59

6.2.1.97

6.2.1.98

6.2.1.99

_trailz

The _trailz built-in function returns the number of trailing zeros (counting
after the least significant set bit to the least significant bit position) in its
argument. For example, _trailz(2) returns 1, and _trailz(0) returns 64.

This function has the following format:

int64 _trailz (unsigned int64);

Trap Barrier Instruction (__TRAPB)

The __TRAPB function allows software to guarantee that, in a pipeline
implementation, all previous arithmetic instructions will be completed without
incurring any arithmetic traps before any instructions after the TRAPB
instruction are issued.

This function has the following format:

void __TRAPB (void);

Unsigned Quadword Multiply High (__UMULH)

The __UMULH function performs a quadword multiply high instruction.
This function has the following format:

uinté4 __UMULH (uint64 operand1, uinté4 operand?);

operand1
A 64-bit unsigned integer.

operand2
A 64-bit unsigned integer.

The two operands are multiplied as unsigned integers to produce a 128-bit
result. The high-order 64 bits are returned. Note that uint64 is a typedef for
the Alpha data type unsigned _ _int64.

6.2.2 Built-In Functions for 164 Systems s oniy)

The HP C built-in functions available on OpenVMS Alpha systems are also
available on 164 systems, with some differences, as described in this section.
This section also describes built-in functions that are specific to 164 systems.

6-60 Predefined Macros and Built-In Functions

6.2.2.1 Builtin Differences on 164 Systems

The <builtins.h> header file contains comments noting which built-in
functions are not available or are not the preferred form for 164 systems.
The compiler issues diagnostics where using a different built-in function for
164 systems would be preferable.

Note

The comments in <builtins.h> reflect only what is explicitly present
in that header file itself, and in the compiler implementation. You
should also consult the content and comments in <pal_builtins.h>
to determine more accurately what functionality is effectively
provided by including <builtins.h>. For example, if a program
explicitly declares one of the Alpha built-in functions and invokes

it without having included <builtins.h>, the compiler might issue
the BIFNOTAVAIL error message, regardless of whether or not the
function is available through a system service. If the compilation
does include <builtins.h>, and BIFNOTAVAIL is issued, then either
there is no support at all for the built-in function or a new version of
<pal_builtins.h> is needed.

Here is a summary of these differences on 164 systems:

There is no support for the asm, fasm, and dasm intrinsics (declared in the
<c_asm.h> header file).

The functionality provided by the special-case treatment of R26 in an Alpha
system asm, as in asm("MOV R26,R0"), is provided by a new built-in function
for 164 systems:

__int64 __ RETURN_ADDRESS (void) ;

This built-in function produces the address to which the function containing
the built-in call will return (the value of R26 on entry to the function on
Alpha systems; the value of BO on entry to the function on 164 systems).
This built-in function cannot be used within a function specified to use
nonstandard linkage.

The only PAL function calls implemented as built-in functions within the
compiler are the 24 queue-manipulation builtins. The queue manipulation
builtins generate calls to new OpenVMS system services SYS$<name>,
where <name> is the name of the builtin with the leading underscores
removed.

Predefined Macros and Built-In Functions 6—61

Any other OpenVMS PAL calls are supported through macros defined in
the <pal_builtins.h> header file included in the <builtins.h> header
file. Typically, the macros in <pal_builtins.h> transform an invocation of
an Alpha system builtin into a call to a system service that performs the
equivalent function on an 164 system. Two notable exceptions are __PAL_
GENTRAP and __PAL_BUGCHK, which instead invoke the 164 specific
compiler builtin __break2.

e There is no support for the various floating-point built-in functions used by
the OpenVMS math library (for example, operations with chopped rounding
and conversions).

¢ For most built-in functions that take a retry count, the compiler issues
a warning message, evaluates the count for possible side effects, ignores
it, and then invokes the same function without a retry count. This is
necessary because the retry behavior allowed by Alpha load-locked/store-
conditional sequences does not exist on 164 systems. There are two
exceptions to this: __LOCK_LONG_RETRY and __ACQUIRE_SEM_
LONG_RETRY; in these cases, the retry behavior involves comparisons of
data values, not just load-locked/store-conditional.

e The __CMP_STORE_LONG and __CMP_STORE_QUAD built-in functions
produce either a warning or an error, depending on whether or not the
compiler can determine if the source and destination addresses are
identical. If the addresses are identical, the compiler treats the builtin
as the new __CMP_SWAP_ form and issues a warning. Otherwise it is an
error.

6.2.2.2 Built-in Functions Specific to 164 Systems

The <builtins.h> header file contains a section at the top conditionalized
to just __ia64 with the support for built-in functions specific to 164 systems.
This includes macro definitions for all of the registers that can be specified
to the __getReg, __setReg, __getIndReg, and __setIndReg built-in functions.
Parameters that are const-qualified require an argument that is a compile-
time constant.

The following sections describe the HP C built-in functions available on
OpenVMS 164 systems.

6-62 Predefined Macros and Built-In Functions

6.2.2.3 Get Hardware Register Value (__getReg)

The __getReg function gets the value from a hardware register based on
the register index specified. This function produces a corresponding mov = r
instruction.

This function has the following format:
unsigned __inté4 __getReg (const int whichReg);
whichReg

The index of the hardware register from which the value is obtained. The
__getReg and __setReg functions can access the following registers:

Register Name whichReg
_IA64_REG_IP 1016
_IA64_REG_PSR 1019
_IA64_REG_PSR_L 1019

General Integer Registers:

Register Name whichReg
_IA64_REG_GP 1025
_IA64_REG_SP 1036
_IA64_REG_TP 1037

Application Registers:

Register Name whichReg
_IA64_REG_AR_KRO 3072
_IA64_REG_AR_KR1 3073

Predefined Macros and Built-In Functions 6—63

_IA64_REG_AR KR2 3074

_IA64_REG_AR_KR3 3075
_IA64_REG_AR KR4 3076
_IA64_REG_AR_KR5 3077
_IA64_REG_AR_KR6 3078
_IA64_REG_AR_KR7 3079
_IA64_REG_AR_RSC 3088
_IA64_REG_AR_BSP 3089
_IA64_REG_AR BSPSTORE 3090
_IA64_REG_AR_RNAT 3091
_IA64_REG_AR_FCR 3093
_IA64_REG_AR_EFLAG 3096
_IA64_REG_AR_CSD 3097
_IA64_REG_AR_SSD 3098
_IA64_REG_AR_CFLAG 3099
_IA64_REG_AR_FSR 3100
_IA64_REG_AR_FIR 3101
_IA64_REG_AR_FDR 3102
_IA64_REG_AR_CCV 3104
_IA64_REG_AR_UNAT 3108
_IA64_REG_AR_FPSR 3112
_IA64_REG_AR_ITC 3116
_IA64_REG_AR_PFS 3136
_IA64_REG_AR_LC 3137
_IA64_REG_AR_EC 3138

Control Registers:

Register Name whichReg
_IA64_REG_CR_DCR 4096
_IA64_REG_CR_ITM 4097
_IA64_REG_CR_IVA 4098
_IA64_REG_CR_PTA 4104
_IA64_REG_CR_IPSR 4112
_IA64_REG_CR_ISR 4113
_IA64_REG_CR_IIP 4115
_IA64_REG_CR_IFA 4116
_IA64_REG_CR_ITIR 4117
_IA64_REG_CR_IIPA 4118
_IA64_REG_CR_IFS 4119
_IA64_REG_CR_IIM 4120
_IA64_REG_CR_IHA 4121
_IA64_REG_CR_LID 4160
_IA64_REG_CR_IVR 4161 *
_IA64_REG_CR_TPR 4162
_IA64_REG_CR_EOI 4163
_IA64_REG_CR_IRRO 4164 *
_IA64_REG_CR_IRR1 4165 *
_IA64_REG_CR_IRR2 4166 *
_IA64_REG_CR_IRR3 4167 *
_IA64_REG_CR_ITV 4168

6-64 Predefined Macros and Built-In Functions

_IA64_REG_CR_PMV 4169

_IA64_REG_CR_CMCV 4170
_IA64_REG_CR_LRRO 4176
_IA64_REG_CR_LRR1 4177

* getReg only

6.2.2.4 Set Hardware Register Value (__setReg)

The __setReg function sets the value for a hardware register based on the
register index specified. This function produces a corresponding mov = r
instruction.

This function has the following format:

void __setReg (const int whichReg, unsigned _ _int64 value);

whichReg
The index of the hardware register whose value is being set. See the __getReg
functions for the list of registers that can be accessed.

value
The value to which the register is set.

6.2.2.5 Get Index Register Value (__getindReg)

The __getIndReg function returns the value of an indexed register. The
function accesses a register (index) in a register file (whichIndReg) of 64-bit
registers.

This function has the following format:

unsigned __int64 _ _getindReg (const int whichindReg, _ _int64 index);

whichindReg
The register file.

index

The index in the register file of the hardware register whose value is being
requested. See the __getReg functions for the list of registers that can be
accessed.

Indirect Registers for getIndReg and setIndReg:

Predefined Macros and Built-In Functions 6—65

Register Name whichReg

_IA64_REG_INDR_CPUID 9000 *

_IA64_REG_INDR_DBR 9001
_IA64_REG_INDR_IBR 9002
_IA64_REG_INDR_PKR 9003
_IA64_REG_INDR_PMC 9004
_IA64_REG_INDR_PMD 9005
_IA64_REG_INDR_RR 9006

_IA64 REG_INDR_RESERVED 9007
* getIndReg only

6.2.2.6 Set Index Register Value (__setindReg)

The __setIndReg function copies a value into an indexed register. The function
accesses a register (index) in a register file (whichIndReg) of 64-bit registers.

This function has the following format:

void __setindReg (const int whichindReg, _ _int64 index, unsigned _ _int64 value);

whichindReg
The register file.

index
The index in the register file of the hardware register to be set. See the
__getIndReg function for the list of registers that can be accessed.

value
The value to which the register is set.

6.2.2.7 Generate Break Instruction (__break)
The __break function generates a break instruction with an immediate.

This function has the following format:

void __break (const int __break_arg);

__break_arg
An immediate value for the __break instruction to use.

6.2.2.8 Serialize Data (__dsrlz)
The __dsrlz function serializes data. Maps to the srlz.d instruction.

This function has the following format:

void __dsriz (void);

6-66 Predefined Macros and Built-In Functions

6.2.2.9 Flush Cache Instruction (__fc)

6.2.2.10

6.2.2.11

6.2.2.12

6.2.2.13

6.2.2.14

The __fc function flushes a cache line associated with the address given by the
argument. Maps to the fcr instruction.

This function has the following format:

void _ _fc (__int64 __address);

__address
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

Flush Write Buffers (__fwb)
The __fwb function flushes the write buffers. Maps to the fwb instruction.

This function has the following format:

void __fwb (void);

Invalidate ALAT (__invalat)

The __invalat function invalidates ALAT. Maps to the invala instruction.
This function has the following format:

void __invalat (void);

Invalidate ALAT (__invala)
The __invala function is the same as the __invalat function.

Execute Serialize (__isrlz)

The __isrlz function executes the serialize instruction. Maps to the srlz.i
instruction.

This function has the following format:
void __istlz (void);

Insert Data Address Translation Cache (__itcd)

The __ited function inserts an entry into the data translation cache. Maps to
the itc.d instruction.

This function has the following format:

void __itcd (__int64 pa);

Predefined Macros and Built-In Functions 6—67

pa
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

6.2.2.15 Insert Instruction Address Translation Cache (_ _itci)
The _ _itci function inserts an entry into the instruction translation cache.
Maps to the itc.i instruction.

This function has the following format:

void __itci (__int64 pa);

pa
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

6.2.2.16 Insert Data Translation Register (__itrd)
The __itrd function maps to the itr.d instruction.

This function has the following format:

void __itrd (__int64 whichTransReg, __int64 pa);

whichTransReg
The data translation register to be used by the itr.d instruction.

pa
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

6.2.2.17 Insert Instruction Translation Register (_ _itri)
The __itri function maps to the itr.i instruction.

This function has the following format:

void __itri (__int64 whichTransReg, __int64 pa);

whichTransReg
The data translation register to be used by the itr.i instruction.

pa
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

6-68 Predefined Macros and Built-In Functions

6.2.2.18

6.2.2.19

6.2.2.20

6.2.2.21

Purge Translation Cache Entry (__ptce)
The __ptce function maps to the ptc.e instruction.

This function has the following format:

void __ptce (__int64 va);

va
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

Purge Global Translation Cache (__ptcg)

The __ptcg function purges the global translation cache. Maps to the ptc.g r,r
instruction.

This function has the following format:

void _ _ptcg (__int64 va, __int64 pagesz);

[R——

va
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

pagesz
The address range of the purge.

Purge Local Translation Cache (__ptcl)
The _ _ptcl function purges the local translation cache. Maps to the ptc.l r,r
instruction.

This function has the following format:

void __ptcl (__int64 va, __int64 pagesz);

) ——

va
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

pagesz
The address range of the purge.

Purge Global Translation Cache and ALAT (__ptcga)

The __ptcga function purges the global translation cache and ALAT. Maps to
the ptc.ga r,r instruction.

This function has the following format:

void _ _ptcga (__int64 va, __int64 pagesz);

Predefined Macros and Built-In Functions 6-69

6.2.2.22

6.2.2.23

6.2.2.24

va
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

pagesz

The address range of the purge.

Purge Data Translation Register (__ptrd)

The __ptrd function purges the data translation register. Maps to the ptr.d r,r
instruction.

This function has the following format:

void __ptrd (__int64 va, __int64 pagesz);

| J—

va
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

pagesz

The address range of the purge.

Purge Instruction Translation Register (_ _ptri)

The _ _ptri function purges the instruction translation register. Maps to the
ptr.i r,r instruction.

This function has the following format:

void _ _ptri (__int64 va, __int64 pagesz);

va
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

pagesz
The address range of the purge.

Reset System Mask (__rsm)

The __rsm function resets the system mask bits of the PSR. Maps to the rsm
imm24 instruction.

This function has the following format:

void __rsm (int mask);

6-70 Predefined Macros and Built-In Functions

6.2.2.25

6.2.2.26

6.2.2.27

6.2.2.28

6.2.2.29

mask
An integer value inserted into the instruction as a 24-bit immediate value.

Reset User Mask (__rum)
The __rum function resets the user mask.

This function has the following format:

void __rum (int mask);

mask
An integer value inserted into the instruction as a 24-bit immediate value.

Set System Mask (__ssm)
The __ssm function sets the system mask.

This function has the following format:

void __ssm (int mask);

mask
An integer value inserted into the instruction as a 24-bit immediate value.

Set User Mask (__sum)

The __sum function sets the user mask bits of the PSR. Maps to the sum
imm24 instruction.

This function has the following format:

void __sum (int mask);

mask
An integer value inserted into the instruction as a 24-bit immediate value.

Enable Memory Synchronization (__synci)

The __synci function enables memory synchronization. Maps to the sync.i
instruction.

This function has the following format:
void __synci (void);

Translation Hashed Entry Address (__thash)

The __thash function generates a translation hash entry address. Maps to the
thash r = r instruction.

This function has the following format:

void __thash(__int64 __address);

Predefined Macros and Built-In Functions 6-71

__address
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

6.2.2.30 Translation Hashed Entry Tag (__ttag)
The __ttag function generates a translation hash entry tag. Maps to the ttag
r=r instruction.

This function has the following format:

void __ttag(__inté4 __address);

__address
A 64-bit address, as opposed to a 32-bit or 64-bit pointer, that is loaded into a
64-bit general register used by the instruction to be generated.

6.2.2.31 Atomic Compare and Exchange (_InterlockedCompareExchange_acq)
The _InterlockedCompareExchange_acq function atomically compares and
exchanges the value specified by the first argument (a 64-bit pointer). This
function maps to the cmpxchg4.acq instruction with appropriate setup.

This function has the following format:

unsigned __int64 _InterlockedCompareExchange_acq (volatile unsigned int *Destination,
unsigned __int64 Newval, unsigned __int64 Comparand);

The value at *Destination is compared with the value specified by Comparand.
If they are equal, Newval is written to *Destination, and Oldval is returned.
The exchange will have taken place if the value returned is equal to the
Comparand. The following algorithm is used:

ar.ccv = Comparand;

Oldval = *Destination; //Atomic
if (ar.ccv == *Destination) //Atomic
*Destination = Newval; //Atomic

return Oldval;

Those parts of the algorithm that are marked "Atomic" are performed
atomically by the cmpxchg4.acq instruction. This instruction has acquire
ordering semantics; that is, the memory read/write is made visible prior to
all subsequent data memory accesses of the Destination by other processors.

Destination
The value to be compared with Comparand and, if equal, replaced with the
value of Newval.

Newval
The new value to replace the value in Destination.

6-72 Predefined Macros and Built-In Functions

6.2.2.32

6.2.2.33

6.2.2.34

6.2.2.35

Comparand
The value with which to compare Destination.

Atomic Compare and Exchange (_InterlockedCompareExchange64_acq)

The _InterlockedCompareExchange64_acq function is the same as the _
InterlockedCompareExchange_acq function, except that those parts of the
algorithm that are marked "Atomic" are performed by the cmpxchg8.acq
instruction.

This function has the following format:

unsigned __int64 _InterlockedCompareExchange64_acq (volatile unsigned _ _int64 *Destination,
unsigned __int64 Newval, unsigned __int64 Comparand);

Atomic Compare and Exchange (_InterlockedCompareExchange_rel)

This function is the same as the _InterlockedCompareExchange_acq function
except that those parts of the algorithm that are marked "Atomic" are
performed by the cmpxchg4.rel instruction with release ordering semantics;
that is, the memory read/write is made visible after all previous memory
accesses of the Destination by other processors.

This function has the following format:

unsigned __inté4 _InterlockedCompareExchange_rel (volatile unsigned int *Destination,
unsigned __int64 Newval, unsigned _ _inté4 Comparand);

Atomic Compare and Exchange (_InterlockedCompareExchange64_rel)
This function is the same as the _InterlockedCompareExchange_rel function,
except that those parts of the algorithm that are marked "Atomic" are
performed by the cmpxchg8.rel instruction.

This function has the following format:

unsigned __int64 _InterlockedCompareExchange64_rel (volatile unsigned _ _int64 *Destination,
unsigned __int64 Newval, unsigned _ _inté4 Comparand);

Conditional Atomic Compare and Exchange Longword
(__CMP_SWAP_LONG)

The __CMP_SWAP_LONG function performs a conditional atomic compare and
exchange operation on a longword. The longword pointed to by source is read
and compared with the longword old_value. If they are equal, the longword
new_value is written into the longword pointed to by source. The read and
write is performed atomically, with no intervening access to the same memory
region.

The function returns 1 if the write occurs, and 0 otherwise.

Predefined Macros and Built-In Functions 6-73

This function has the following format:

int __CMP_SWAP_LONG (volatile void *source, int old_value, int new_value);

source
The longword value to be compared with old_value.

old_value
The longword value source is compared with.

new_value
The longword value written into source if source and old_value are equal.

6.2.2.36 Conditional Atomic Compare and Exchange Quadword
(__CMP_SWAP_QUAD)
The __CMP_SWAP_QUAD function performs a conditional atomic compare and
exchange operation on a quadword. The quadword pointed to by source is read
and compared with the quadword old_value. If they are equal, the quadword
new_value is written into the quadword pointed to by source. The read and
write is performed atomically, with no intervening access to the same memory
region.

The function returns 1 if the write occurs, and 0 otherwise.
This function has the following format:

int __CMP_SWAP_QUAD (volatile void *source, int old_value, int new_value);

source
The quadword value to be compared with old_value.

old_value
The quadword value source is compared with.

new_value
The quadword value written to source if source and old_value are equal.

6.2.2.37 Conditional Atomic Compare and Exchange Longword with Acquire
Semantics (__CMP_SWAP_LONG_ACQ)
The __CMP_SWAP_LONG_ACQ function performs a conditional atomic
compare and exchange operation with acquire semantics on a longword. The
longword pointed to by source is read and compared with the longword old_
value. If they are equal, the longword new_value is written into the longword
pointed to by source. The read and write is performed atomically, with no
intervening access to the same memory region.

6-74 Predefined Macros and Built-In Functions

6.2.2.38

Acquire memory ordering guarantees that the memory read/write is made
visible before all subsequent data accesses to the same memory location by
other processors.

The function returns 1 if the write occurs, and 0 otherwise.
This function has the following format:

int __CMP_SWAP_LONG_ACQ (volatile void *source, int old_value, int new_value);

source
The longword value to be compared with old_value.

old_value
The longword value source is compared with.

new_value
The longword value written into source if source and old_value are equal.

Conditional Atomic Compare and Exchange Quadword with Acquire
Semantics (__CMP_SWAP_QUAD_ACQ)

The __CMP_SWAP_QUAD_ACQ function performs a conditional atomic
compare and exchange operation with acquire semantics on a quadword.
The quadword pointed to by source is read and compared with the quadword
old_value. If they are equal, the quadword new_value is written into the
quadword pointed to by source. The read and write is performed atomically,
with no intervening access to the same memory region.

Acquire memory ordering guarantees that the memory read/write is made
visible before all subsequent memory data accesses to the same memory
location by other processors.

The function returns 1 if the write occurs, and 0 otherwise.
This function has the following format:

int __CMP_SWAP_QUAD_ACQ (volatile void *source, int old_value, int new_valug);

source
The quadword value to be compared with old_value.

old_value
The quadword value source is compared with.

new_value
The quadword value written into source if source and old_value are equal.

Predefined Macros and Built-In Functions 6-75

6.2.2.39 Conditional Atomic Compare and Exchange Longword with Release
Semantics (__CMP_SWAP_LONG_REL)
The __CMP_SWAP_LONG_REL function performs a conditional atomic
compare and exchange operation with release semantics on a longword. The
longword pointed to by source is read and compared with the longword old_
value. If they are equal, the longword new_value is written into the longword
pointed to by source. The read and write is performed atomically, with no
intervening access to the same memory region.

Release memory ordering guarantees that the memory read/write is made
visible after all previous data memory acceses to the same memory location by
other processors.

The function returns 1 if the write occurs, and 0 otherwise.
This function has the following format:

int __CMP_SWAP_LONG_REL (volatile void *source, int old_value, int new_value);

source
The longword value to be compared with old_value.

old_value
The longword value source is compared with.

new_value
The longword value written into source if source and old_value are equal.

6.2.2.40 Conditional Atomic Compare and Exchange Quadword with Release
Semantics (__CMP_SWAP_QUAD_REL)
The __CMP_SWAP_QUAD_REL function performs a conditional atomic
compare and exchange operation with release semantics on a quadword. The
quadword pointed to by source is read and compared with the quadword old_
value. If they are equal, the quadword new_value is written into the quadword
pointed to by source. The read and write is performed atomically, with no
intervening access to the same memory region.

Release memory ordering guarantees that the memory read/write is made
visible after all previous data memory acceses to the same memory location by
other processors.

The function returns 1 if the write occurs, and 0 otherwise.
This function has the following format:

int __CMP_SWAP_QUAD_REL (volatile void *source, int old_value, int new_value);

6-76 Predefined Macros and Built-In Functions

6.2.2.41

6.2.2.42

source
The quadword value to be compared with old_value.

old_value
The quadword value source is compared with.

new_value
The quadword value written into source if source and old_value are equal.

Return Address (__RETURN_ADDRESS)

The __RETURN_ADDRESS function produces the address to which the
function containing the built-in call will return as a 64-bit integer (on Alpha
systems, the value of R26 on entry to the function; on 164 systems, the value of
BO on entry to the function).

This built-in function cannot be used within a function specified to use
nonstandard linkage.

This function has the following format:
__int64 __RETURN_ADDRESS (void);

Implement Alpha __PAL_GENTRAP and __PAL_BUGCHK Builtins
(__break2)

The __break2 function is used to implement the Alpha __PAL_GENTRAP and
__PAL_BUGCHKXK built-in functions on OpenVMS 164 systems.

The __break2 function is equivalent to the __break function with the second
parameter passed in general register 17:

R17 = _ _R17 value; __ _break (___ break_code);

This function has the following format:

void __break2 (__Integer_Constant _ _break_code, unsigned __inté4 _ _r17_value);

breakcode

The particular software condition that has occurred.

__r17_value

The value of R17, a volatile general register reserved by the OpenVMS Itanium
calling standard for use by compiled code to communicate with specialized
compiler support routines that require out-of-band information passing.

Predefined Macros and Built-In Functions 6-77

6.2.2.43

6.2.2.44

6.2.2.45

6.2.2.46

Flush Register Stack (__flushrs)

The __flushrs function flushes the register stack.
This function has the following format:

void __flushrs (void);

Load Register Stack (__loadrs)

The __loadrs function loads the register stack.
This function has the following format:

void __loadrs (void);

Probe Read-Access Permission (__prober)

The __prober function determines whether read access to the virtual address
specified by __address bits {60:0} and the region register indexed by __address
bits {63:61} is permitted at the privilege level given by __mode bits {1:0}. It
returns 1 if the access is permitted, and 0 otherwise.

This function can probe only with equal or lower privilege levels. If the
specified privilege level is higher (lower number), then the probe is performed
with the current privilege level.

This function is the same as the Intel __probe_r function.
This function has the following format:
int __prober (__int64 __address, unsigned int __mode);

__address
Virtual address for which read-access permission is being checked.

__mode
Privilege level for which read-access permission is being checked.

Probe Write-Access Permission (__probew)

The __probew function determines whether write access to the virtual address
specified by __address bits {60:0} and the region register indexed by _ _address
bits {63:61}, is permitted at the privilege level given by __mode bits {1:0}. It
returns 1 if the access is permitted, and 0 otherwise.

This function can probe only with equal or lower privilege levels. If the
specified privilege level is higher (lower number), then the probe is performed
with the current privilege level.

This function is the same as the Intel __probe_w function.

6-78 Predefined Macros and Built-In Functions

This function has the following format:

int __probew (__int64 _ _address, unsigned int __mode);

__address
Virtual address for which write-access permission is being checked.

__mode
Privilege level for which write-access permission is being checked.

6.2.2.47 Translation Access Key (__tak)
The __tak function returns the translation access key.

This function has the following format:

unsigned int __tak (__int64 _ _address);

__address
Virtual address for translation key is being returned.

6.2.2.48 Translate to Physical Address (__tpa)
The __tpa function translates a virtual address to a physical address.

This function has the following format:

__inté4 __tpa(__int64 __address);

_ _address
Virtual address to be translated.

6.2.3 Built-In Functions for OpenVMS VAX Systems vax oniy

The following sections describe the HP C built-in functions available on
OpenVMS VAX systems.

The HP C built-in functions use enumerated typedefs to define possible
return values. We recommend that you use the enumerated types to store and
compare return values.

6.2.3.1 Allocate Bytes from Stack (__ALLOCA)
The __ALLOCA function allocates n bytes from the stack.

This function has the following format:

void *__ALLOCA (unsigned int n);

Predefined Macros and Built-In Functions 6-79

n
The number of bytes to be allocated.

A pointer to the allocated memory is returned.

6.2.3.2 Add Aligned Word Interlocked (_ADAWI)

The _ADAWI function adds its source operand to the destination. This function
is interlocked against similar operations by other processors or devices in the
system.

The _ADAWI function has the following format:

typedef enum { _adawi_sum_neg=-1, _adawi_sum_zero, _adawi_sum_pos} _ADAWI_STATUS;

_ADAWI_STATUS _ADAWI (short __src, short *_ _dest);

__Src
The value to be added to the destination.

__dest

A pointer to the destination. The destination must be aligned on a word
boundary. (You can achieve alignment using the _align or __align storage-
class modifier.)

There are three possible return values:

e adawi_sum_neg (1) if the sum when considered to be a signed number is
negative

e adawi_sum_zero (0) if the sumis 0
e adawi_sum_pos (1) if the sum is positive

6.2.3.3 Branch on Bit Clear-Clear Interlocked (_BBCCI)
The _BBCCI function performs the following functions in interlocked fashion:

e Returns the complement of the bit specified by the two arguments
e (Clears the bit specified by the two arguments

The _BBCCI function has the following format:

typedef enum { _bbcci_oldval_1, _bbcci_oldval_0} _BBCCI_STATUS;

_BBCCI_STATUS _BBCCI (int __position, void *__address);

6-80 Predefined Macros and Built-In Functions

_ _position
The position of the bit within the field.

__address
The base address of the field.

The return value of bbcci oldval 1 (0) or _bbcci_oldval 0 (1) is the
complement of the value of the specified bit before being cleared.

6.2.3.4 Branch on Bit Set-Set Interlocked (_BBSSI)
The _BBSSI function performs the following functions in interlocked fashion:

e Returns the status of the bit specified by the two arguments
e Sets the bit specified by the two arguments

The _BBSSI function has the following format:

typedef enum { _bbssi_oldval_0, _bbcci_oldval_1} _BBSSI_STATUS;

_BBSSI_STATUS _BBSSI (int __position, void *__address);

__position
The position of the bit within the field.

_ _address
The base address of the field.

The return value of _bbssi_oldval_0 (0) or _bbssi_oldval_1 (1) is the value
of the specified bit before being set.

6.2.3.5 Find First Clear Bit (_FFC)

The _FFC function finds the position of the first clear bit in a field. The bits
are tested for clear status starting at bit 0 and extending to the highest bit in
the field.

The _FFC function has the following format:
typedef enum { _ff_bit_not_found, _ff_bit found} _FF_STATUS;

_FF_STATUS _FFC (int __start, char __size, constvoid *__base, int*__position);

__start
The start position of the field.

__size
The size of the field, in bits. The size must be a value from 0 to 32 bits.

Predefined Macros and Built-In Functions 6-81

__base
The address of the field.

_ _position
The address of an integer to receive the position of the clear bit. If no bit is
clear, the integer is set to the position of the first bit past the last bit tested.

There are two possible return values:
e ff bit_not_found (0) if all bits in the field are set
e ff bit_found (1) if a bit with value 0 is found

6.2.3.6 Find First Set Bit (_FFS)

The _FFS function finds the position of the first set bit in a field. The bits are
tested for set stat