Compaq BASIC for OpenVMS
Alpha and VAX Systems

User Manual

Order Number: AA-HY15E-TK

April 2000

This manual describes how to develop Compaq BASIC programs and use
Compag BASIC features on OpenVMS systems.

Revision/Update Information: This revised manual supersedes the DEC
BASIC and VAX BASIC for OpenVMS
Systems User’s Manual.

Software Version: Compag BASIC Version 1.4
for OpenVMS Alpha Systems

Compag BASIC Version 3.8
for OpenVMS VAX Systems

Operating System and Version: OpenVMS Alpha Version 7.1 or higher
(with IEEE floating-point support);
OpenVMS Alpha Version 6.1 or higher
(without IEEE floating-point support); or
OpenVMS VAX Version 5.5-2 or higher

Compaqg Computer Corporation
Houston, Texas

© 2000 Compaqg Computer Corporation

COMPAQ, VAX, VMS, the Compaq logo, and the DIGITAL logo Registered in U.S. Patent and
Trademark Office.

Alpha, DEC BASIC, OpenVMS, and VAX BASIC are trademarks of Compaq Information
Technologies Group, L.P.

Motif is a trademark of The Open Group.

All other product names mentioned herein may be the trademarks or registered trademarks of
their respective companies.

Confidential computer software. Valid license from Compaq or authorized sublicensor required
for possession, use, or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer
Software, Computer Software Documentation, and Technical Data for Commercial Items are
licensed to the U.S. Government under vendor’s standard commercial license.

Compag shall not be liable for technical or editorial errors or omissions contained herein.

The information in this publication is subject to change without notice and is provided "AS 1S"
WITHOUT WARRANTY OF ANY KIND. THE ENTIRE RISK ARISING OUT OF THE USE
OF THIS INFORMATION REMAINS WITH RECIPIENT. IN NO EVENT SHALL COMPAQ
BE LIABLE FOR ANY DIRECT, CONSEQUENTIAL, INCIDENTAL, SPECIAL, PUNITIVE,
OR OTHER DAMAGES WHATSOEVER (INCLUDING WITHOUT LIMITATION, DAMAGES
FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, OR LOSS OF BUSINESS
INFORMATION), EVEN IF COMPAQ HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. THE FOREGOING SHALL APPLY REGARDLESS OF THE NEGLIGENCE OR
OTHER FAULT OF EITHER PARTY AND REGARDLESS OF WHETHER SUCH LIABILITY
SOUNDS IN CONTRACT, NEGLIGENCE, TORT, OR ANY OTHER THEORY OF LEGAL
LIABILITY, AND NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY
LIMITED REMEDY.

The limited warranties for Compag products are exclusively set forth in the documentation
accompanying such products. Nothing herein should be construed as constituting a further or
additional warranty.

ZK5424

The Compag OpenVMS documentation set is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface

Part | Developing BASIC Programs on OpenVMS Systems

1 Overview of the BASIC Language

2 Developing Programs in the VAX BASIC Environment

2.1
2.2
2.3
2.4
2.5
251
252
253
254
255
2.5.6
257
258
259
2.5.10
2511
2.5.12
2.5.13
2514
2.5.15
2.5.16
2.5.17
2.5.18
2.5.19

Entering the Environment . . .

Creating and Running Programsv ...

Immediate Mode

Debugging in Immediate Mode

Compiler Commands
Entering Comments
Entering DCL Commands
APPEND Command
ASSIGN Command
COMPILE Command
CONTINUE Command . .
DELETE Command
EDIT Command
EXIT Command
HELP Command
IDENTIFY Command ...

LIST and LISTNH Commands.c......

LOAD Command
LOCK Command
NEW Command
OLD Command
RENAME Command
REPLACE Command
RESEQUENCE Command

XiX

II\)NII\)I\)I\J

N
R R R | ||L
AP WWWNNRPPOOOOMOWNNNRPEPONONPE

I\)I\)I\JI\JNI\)NI\JITJNNI\)I\JI\JI\)NNI\)
NNNNNNNNNNNNRPRPRPRPRPRPRPRERR

2.5.20 RUN and RUNNH Commands

25.21 SAVE Command. e
2.5.22 SCALE Command
2.5.23 SCRATCH Command
2.5.24 SEQUENCE Command
2.5.25 SET Command e
2.5.26 SHOW Command e
2.5.27 UNSAVE Command

3 Developing BASIC Programs at the DCL Command Level

3.1 Compiling a BASIC Programt i i
3.1.1 BASIC Command
3.1.2 BASIC Command Qualifiers
3.13 Declining Qualifiers and Their Recommended

Replacements
3.14 Compiler Listings.
3.2 Linkinga BASIC Program i
3.21 LINK Command.y
3.2.2 LINK Command Qualifiers
3.2.3 Linker Input Files
3.2.4 Linker Output Files
3.25 Using an Object Module Library
3.2.6 Linker Error Messages.ot
3.3 Running a BASIC Program,
3.3.1 Improving Run-Time Performance of Alpha BASIC

Programs
3311 Dataltems
3.3.1.2 Qualifiers
3.3.1.3 Statements.

4 Using the OpenVMS Debugger with BASIC

4.1 Overview of the Debugger
4.2 Compiling and Linking to Prepare for Debugging
4.3 Viewing Your Source Code
4.3.1 Noscreen Mode
432 Screen Mode.
4.4 Controlling and Monitoring Program Execution..............
441 Starting and Resuming Program Execution
442 Determining the Current Location of the Program

CoUNter . . .
4.4.3 Suspending Program Execution

NNNNNNDNDDN

NNDNDNDNNDNN
O ~NOOO O U b

® @ w
W R

PLPLLLELLT
NNNNNDNDNDNDNN
OO UTUTWNNEFEO

4.4.4
4.4.5
4.5
45.1
45.2
45.3
4.6
46.1
4.7
4.8

Tracing Program Execution
Monitoring Changes in Variables
Examining and ManipulatingData
Displaying the Values of Variables
Changing the Values of Variables.
Evaluating EXpressions
Stepping Into BASIC Routines.
Controlling Symbol References.
A Sample Debugging Session
Hints for Using the OpenVMS Debugger with Alpha BASIC

Part I Compaq BASIC Programming Concepts

5 BASIC Concepts and Elements

5.1
51.1
5.1.2
513
5.14
5.2
5.3
5.4
5.5
551
5.5.2
5.6
5.7
5.7.1
5.7.2
5.7.3
5.7.4
5.7.5
5.7.6
5.8
5.9
5.10

Line Numbers
Programs with Line Numbers
Programs Without Line Numbers
Labels
Continuation of Long Program Statements

Identifying Program Units

BASIC Character Set

Program Documentation,

Declarationsand Data Types i,
Implicit Data Typing
Explicit Data Typing

Constants

Variables
Floating-Point Variables.
Integer Variables
Packed Decimal Variables
String Variables
Subscripted Variables.
Initialization of Variables.

Keywords and Reserved Words

Operands, Operators, and Expressions

Assignment Statements

4-9
4-10
4-11
4-11
4-12
4-13
4-13
4-15
4-15
4-18

PRPPOOOO~NOOOUITORA,WNEBRE

U'lclnc.n
e ol o

U'lcno'lclflmmm
PR RRRRPR
GORADMWNNDN

6 Simple Input and Output

6.1
6.1.1
6.1.1.1
6.1.1.2
6.1.1.3
6.1.2
6.1.2.1
6.1.2.2
6.2
6.2.1
6.2.2
6.3
6.3.1
6.3.2

7 Arrays

vi

7.1
7.2
7.2.1
7.2.2
7.2.2.1
7.2.2.2
7.2.3
7.2.4
7.3
7.4
7.5
7.5.1
7.5.2
7.6
7.6.1
7.6.2
7.6.3
7.6.4
7.6.5
7.6.6
7.7

Program Input . .

Providing Input Interactively
INPUT Statement
INPUT LINE and LINPUT Statements
Enabling and Disabling the Question Mark Prompt

Providing Input from the Source Program
READ and DATA Statements.
RESTORE Statement.

Program Output.

Print Zones—The Comma and the Semicolon
Output Format for Numbers and Strings.
Terminal-Format Files
Opening and Closing a Terminal-Format File
Writing Records to a Terminal-Format File

Overview of Arrays
Creating Arrays Explicitly
Creating Arrays with the DECLARE Statement
Creating Arrays with the DIM Statement
Declarative DIM Statements
Executable DIM Statements
Creating Arrays with the COMMON Statement
Creating Arrays with the MAP Statement...............
Creating Arrays Implicitly
Determining the Bounds of an Array
Assigning and Displaying Array Values
Assigning Values with the LET Statement
Listing Array Elements with the PRINT Statement
Using MAT Statements
MAT Statement
MAT READ Statement.
MAT INPUT [#] Statement
MAT LINPUT [#] Statement
MAT PRINT [#] Statement
Matrix 1/0O Functions (NUM and NUM2)

Matrix Operators

[|1 1
RWrRr PP

CIDCDOCT)CIDCDCD@CT)CD
AR WNOO~NOOOG

|
e o

(I R P
AwnN PR

NN R A B I B B I

NN NN NN NN
PR RRRE LR
©CONORMRMNOOO®OO®N~NO®G A

7.7.1 Arithmetic Matrix Operations 7-19
7.7.1.1 Assignment e 7-19
7.7.1.2 Addition and Subtraction 7-20
7.7.1.3 Multiplication. 7-20
7.7.2 Matrix FUnctions 7-21
7.7.2.1 TRN Function 7-21
7.7.2.2 INV Function 7-22
7.7.2.3 DET Function 7-23
8 Data Definition
8.1 Declarative Statements 8-1
8.2 Data TYPES o 8-1
8.3 Setting the Default Data Type and Size. 8-2
8.4 Declaring Variables 8-3
8.5 Declaring Named Constants 8-3
8.6 Operations with Multiple Data Types 8-3
8.7 Allocating Dynamic and Static Storage 8-4
8.7.1 COMMON Statement. 8-5
8.7.2 MAP Statement 8-6
8.7.2.1 Single Maps 8-6
8.7.2.2 Multiple Maps 8-8
8.7.3 FILL ItemsS. . . . 8-9
8.7.4 Using COMMON and MAP Statements in Subprograms 8-11
8.7.5 Dynamic Mapping i 8-13
9 Creating and Using Data Structures
9.1 RECORD Statement 9-1
9.11 Grouping RECORD Components 9-5
9.1.2 RECORD Variantsy 9-5
9.1.3 Accessing RECORD Components 9-8
10 Program Control
10.1 Statement Modifiers. 10-1
10.11 IF Modifier 10-2
10.1.2 UNLESS Modifier i 10-2
10.1.3 FOR Modifier e 10-2
10.1.4 UNTIL Modifier e 10-2
10.1.5 WHILE Modifier 10-2
10.1.6 Nesting Modifiers. 10-3
10.2 LOOPS .« ottt 10-3

Vii

10.2.1 FOR..NEXT LOOPS. 10-3

10.2.2 WHILE..NEXT LOOPS . . . oottt e 10-6
10.2.3 UNTIL...NEXT LOOPS . .« o vttt e e e 10-7
10.2.4 Nesting LOOPS . . . o oot 10-8
10.3 Unconditional Branching (GOTO Statement). 10-8
10.4 Conditional Branching 10-9
10.4.1 ON...GOTO...OTHERWISE Statement 10-9
10.4.2 IF.. THEN...ELSE Statement 10-10
10.4.3 SELECT...CASE Statement 10-12
10.5 EXIT and ITERATE Statements 10-14
10.6 Executing Local Subroutines 10-16
10.6.1 GOSUB and RETURN Statements 10-16
10.6.2 ON...GOSUB...OTHERWISE Statement. 10-17
10.7 Suspending and Halting Program Execution 10-18
10.7.1 SLEEP Statement 10-18
10.7.2 WAIT Statement 10-19
10.7.3 STOP Statement 10-19
10.7.4 END Statement 10-20

11 Functions

11.1 Built-In Functions 11-1
11.1.1 Numeric Functions. i 11-2
11.1.1.1 ABS Function. 11-2
11.1.1.2 INT and FIX Functions 11-2
11.1.1.3 SIN, COS, and TAN Functions. 11-3
11.1.1.4 SQRFuUNction 11-4
11.1.1.5 LOGI0 Function 11-4
11.1.1.6 EXP Function. i 11-5
11.1.1.7 RND Function 11-5
11.1.2 Data Conversion Functions 11-6
11.1.2.1 ASCII Function 11-6
11.1.2.2 CHR$ Function 11-7
11.1.3 String Numeric Functions 11-7
11.1.3.1 FORMATS$ Function 11-8
11.1.3.2 NUM$ and NUM1$ Functions 11-8
11.1.3.3 VAL% and VAL Functions 11-9
11.1.4 String Arithmetic Functions 11-10
11.1.4.1 SUM$ and DIF$ Functions 11-11
11.1.4.2 QUOS, PLACES, and PRODS Functions 11-11

viii

11.1.5 Date and Time Functions.

11.1.5.1 DATES$ Function
11.1.5.2 DATE4S$ Functiont
11.1.5.3 TIMES Function.
11.1.5.4 TIME Function i,
11.1.6 Terminal Control Functions
11.1.6.1 CTRLC and RCTRLC Functions
11.1.6.2 ECHO and NOECHO Functions
11.1.6.3 INKEYS$ Function
11.2 User-Defined Functions
11.2.1 Single-Line DEF Functions
11.2.2 Multiline DEF Functions

12 String Handling

13

12.1 Overview of Strings
12.2 Using Dynamic Stringsc. .
12.3 Using Fixed-Length Strings
12.4 Using String Virtual Arrays. i
125 Assigning StringData
12.5.1 LET Statement
12.5.2 LSET Statement
12.5.3 RSET Statement
1254 MID$ Assignment Statement
12.6 Manipulating String Data with String Functions
12.6.1 LEN Function
12.6.2 POS Function.
12.6.3 SEGS$ Function.
12.6.4 MID$ Function.
12.6.5 STRINGS$ Function
12.6.6 SPACES$ Function
12.6.7 TRMS$ Function i
12.6.8 EDITS Function e
12.7 Manipulating String Data with Multiple Maps

Program Segmentation

13.1 BASIC Subprograms
13.1.1 SUB Subprograms
13.1.2 FUNCTION Subprogramsc..uuiiinne...
13.2 Declaring Subprograms and Parameters
13.3 Compiling Subprograms
13.4 Invoking Subprograms

11-13
11-14
11-14
11-14
11-15
11-15
11-16
11-16
11-17
11-18
11-18
11-20

12-1
12-2
12-3
12-4
12-5
12-5
12-6
127
12-8
12-9
12-9
12-10
12-12
12-14
12-15
12-16
12-16
12-16
12-18

14

13.4.1 Invoking SUB Subprograms. 13-8
13.4.2 Invoking FUNCTION Subprograms 13-9
13,5 Returning Program Status. 13-10

File Input and Output

141 Record Formats 14-1
1411 Fixed-Length Records oo o.... 14-1
14.1.2 Variable-Length Records 14-2
14.1.3 Stream Records 14-2
14.2 File Organizationst 14-2
14.2.1 Terminal-Format Files 14-3
14.2.2 Sequential Files 14-3
14.2.3 Relative Files 14-3
14.2.4 Indexed Files 14-4
14.2.5 Virtual Files 14-4
14.3 Record Access and Record Context. 14-5
144 1/Oand Record Buffers. 14-6
145 Accessing the Contentsof a Record 14-6
145.1 MAP Statement 147
145.2 MAP DYNAMIC and REMAP Statements 14-7
14.5.3 MOVE Statement. 14-9
14.6 File and Record Operationsc.cu ... 14-11
14.6.1 Opening Files. 14-11
14.6.2 Creating Virtual Array Files 14-14
14.6.3 Locating Records 14-14
14.6.4 Reading Records. 14-16
14.6.5 Writing Records 14-19
14.6.6 Deleting Records iy 14-21
14.6.7 Updating Records. 14-21
14.6.8 Controlling Record AcCeSst 14-23
14.6.9 Gaining Access to Locked Records 14-25
14.6.10 Accessing Records by Record File Address 14-27
14.6.11 Transferring Data to Terminal-Format Files 14-29
14.6.12 Resetting the File Position 14-29
14.6.13 Truncating Files. 14-30
14.6.14 Renaming Files 14-30
14.6.15 Closing Filesand Ending /O 14-31
14.6.16 Deleting Files. 14-31
14.7 File-Related Functions 14-31
14.7.1 FSPS FuNnction e 14-32
14.7.2 RECOUNT Function 14-33
14.7.3 STATUS, VMSSTATUS, and RMSSTATUS Functions 14-33

15

14.8
14.8.1
14.8.2
14.8.3
14.8.4
14.8.5
14.8.6
14.8.7
14.8.8
14.8.9
14.8.10
14.8.11
14.8.12

OPEN Statement Options
BUCKETSIZEClause
BUFFER Clause
CONNECTClause
CONTIGUOQUS Clause
DEFAULTNAME Clause
EXTENDSIZE Clause
FILESIZEClause.
NOSPAN Clause
RECORDTYPEClause
TEMPORARY Clause
USEROPENClause
WINDOWSIZE Clause

Formatting Output with the PRINT USING Statement

151
15.2
15.3
15.3.1
15.3.2
15.3.3
15.3.3.1
15.3.3.2
15.3.3.3
15.3.34
15.3.35
15.3.3.6
15.3.3.7
15.3.3.8
154
1541
15.4.2
15.4.3
15.4.4
155

Overview of the PRINT USING Statement

Using Format Strings
Printing Numbers
Specifying the Number of Digits
Specifying Decimal Point Location

Printing Numbers with Special Symbols

Commas
Asterisk-Fill Fields
Currency Symbols
Negative Fields

E (Exponential) Format
Leading Zeros
Blank-If-Zero Fields
Debits and Credits
Printing Strings
Left-Justified Format
Right-Justified Format.
Centered Fields
Extended Fields

PRINT USING Statement Error Conditions

14-34
14-34
14-36
14-36
14-37
14-37
14-38
14-38
14-39
14-39
14-40
14-40
14-43

15-1
15-2
15-3
154
15-5
15-6
15-7
15-8
15-9
15-9
15-10
15-11
15-11
15-12
15-12
15-14
15-14
15-15
15-15
15-16

Xi

16 Handling Run-Time Errors

16.1
16.2
16.2.1
16.2.2
16.2.3
16.2.3.1
16.2.3.2
16.2.3.3
16.2.4
16.2.5
16.2.5.1
16.2.5.2
16.2.5.3
16.2.5.4
16.2.5.5
16.2.5.6
16.2.6
16.2.7
16.2.8
16.3

Default Error Handling
User-Supplied Error Handlers
Protected Regions.
Handlers
Exiting from Handlers

RETRY Statement
CONTINUE Statement
EXIT HANDLER Statement

Selecting the Severity of Errors to Handle.
Identifying Errors,

Determining the Error Number (ERR).
Determining the Error Line Number (ERL) . .

Determining Where the Error Occurred (ERN$)

Determining the Error Message Text (ERTS$) .
Determining OpenVMS Error Information. . .
Determining RMS Error Information.

Ctrl/C Trapping
Handling Errors in Multiple-Unit Programs
Forcing Errors
Using the ON ERROR Statements.

17 Compiler Directives

Xii

17.1

17.2

17.2.1
17.2.2
17.2.3
17.2.4
17.2.5

17.3 Accessing External Source Files
Controlling Compilation
%LET Directive
%VARIANT Directive
%ABORT Directive.
%PRINT Directive
%IF-%THEN-%ELSE-%END %IF Directive

17.4

1741
17.4.2
17.4.3
17.4.4
17.45
17.4.6
17.5

Overview of Compiler Directives
Controlling the Compilation Listing.
%TITLE and %SBTTL Directives.
%IDENT Directive
%PAGE Directive
%LIST and %NOLIST Directives

%CROSS and %NOCROSS Directives

%DEFINE and %UNDEFINE Directives
Record Dependency Relationships in CDD/Repository

16-1
16-2
16-3
164
16-6
16-8
16-8
16-10
16-11
16-12
16-12
16-13
16-14
16-14
16-15
16-16
16-17
16-18
16-20
16-20

17-1
17-2
17-2
17-4
17-4
17-5
17-6
17-7
17-8
17-9
17-10
17-10
17-10
17-10
17-12
17-12

18 Data Representation

18.1

18.1.1
18.1.2
18.1.3
18.1.4
18.2

18.2.1
18.2.2
18.2.3
18.2.4

18.2.5

18.2.6

18.2.7

18.3
18.4
18.4.1
18.4.2
18.5
18.6

Integer Format.
Byte-Length Integer Format
Word-Length Integer Format
Longword Integer Format
Quadword Integer Format (Alpha BASIC Only)

Real Number Format
SINGLE Floating-Point Number Format (F_floating)
DOUBLE Floating-Point Number Format (D_floating)
GFLOAT Floating-Point Number Format (G_floating)
HFLOAT Floating-Point Number Format (H_floating)—VAX
BASIC ONly
SFLOAT Floating-Point Number Format (S_floating)—Alpha
BASIC ONly
TFLOAT Floating-Point Number Format (T_floating)—Alpha
BASIC ONly
XFLOAT Floating-Point Number Format (X_floating)—Alpha
BASIC ONly

Packed Decimal Number Format

String and Array Descriptor Format
Fixed-Length String Descriptor Format
Dynamic String Descriptor Format

Array DesCriptors.t

Decimal Scalar String Descriptor (Packed Decimal String

DeSCriptor) . . . oo

Part Il Using BASIC Features on OpenVMS Systems

19 Advanced File Input and Output

191

19.11
19.1.2
19.1.3
19.1.4
19.1.5
19.1.6
19.1.7
19.1.8
19.1.9
19.2

19.21

RMS I/O to Magnetic Tapeot
Allocating and Mountinga Tape
Opening a Tape FileforOutput
Opening a Tape Filefor Input
Positioninga Tape
Writing Recordstoa File
Reading Records fromaFile
Controlling Tape Output Format
Rewindinga Tape iy
Closinga File..

Device-Specific 1/O
Device-Specific 1/0 to Unit Record Devices.

18-1
18-1
18-2
18-2
18-2
18-3
18-3
184
18-5

18-6

18-6

18-7

18-7
18-8
18-9
18-9
18-9
18-10

18-10

19-1
19-2
19-2
19-3
19-3
194
19-5
19-5
19-6
19-6
19-7
19-7

Xii

20

Xiv

19.2.2 Device-Specific 1/0 to Magnetic Tape Devices

19.2.2.1 Allocating and Mountinga Tape
19.2.2.2 Opening a Tape File for Output
19.2.2.3 Opening a Tape File for Input
19.2.2.4 Writing Recordstoa File
19.2.25 Reading Records fromaFile
19.2.2.6 Rewindinga Tape
19.2.2.7 ClosingaTape e
19.2.3 Device-Specific /O toDisks
19.2.3.1 Assigning and Mountinga Disk
19.2.3.2 Opening a Disk File for Output
19.2.3.3 Opening a Disk File for Input
19.2.34 Writing Recordstoa Disk File

19.2.3.5 Reading Records from a Disk File

19.3 I1/0O to Mailboxes.
19.4 Network I/O
19.4.1 Remote File Access

19.4.2 Task-to-Task Communication
19.4.3 Accessing a VAX Rdb/VMS Database

Using BASIC in the Common Language Environment

20.1 Specifying Parameter-Passing Mechanisms

20.1.1 Passing Parameters by Reference
20.1.2 Passing Parameters by Descriptor
20.1.3 Passing Parameters by Value
20.1.4 BASIC Default Parameter-Passing Mechanisms

20.1.5 Creating Local Copiesc. ...

20.1.6 Passing Arrays. . .

20.2 Calling External Routines,
20.2.1 Determining the Typeof Call
20.2.2 Declaring an External Routine and Its Arguments

20.2.3 Calling the Routine

20.3 Calling BASIC Subprograms from Other Languages
20.4 Calling System Routines

204.1 OpenVMS Run-Tim

e Library Routines

20.4.2 System Service Routines
20.4.3 System Routine Arguments

20.4.4 Including Symbolic
20.4.5 Condition Values .

Definitions.

20.5 Examples of Calling System Routines
20.6 The OpenVMS Calling Standard

20.7 Additional Information

19-7
19-7
19-8
19-8
19-9
19-9
19-10
19-10
19-10
19-11
19-11
19-11
19-11
19-12
19-13
19-15
19-15
19-16
19-18

20-2
20-2
20-2
20-3
20-3
20-5
20-5
20-6
20-6
20-6
20-7
20-8
20-10
20-11
20-11
20-12
20-17
20-19
20-19
20-22
20-23

21 Libraries and Shareable Images

21.1 Overview of Libraries. 21-1
21.2 System-Supplied Libraries o 21-2
21.3 Creating User-Supplied Object Module Libraries............. 21-3
21.3.1 Accessing User-Supplied Object Module Libraries in the

BASIC Environment 21-3
21.3.2 Accessing User-Supplied Object Module Libraries at DCL

Level ... 21-3
21.4 Shareable Images. 21-4
21.4.1 Accessing Shareable Images in the BASIC Environment 21-5
21.4.2 Accessing Shareable Images at DCL Level 21-6

22 Using CDD/Repository with BASIC

22.1 Overview of CDD/RepoSitory, 22-1
22.2 CDD/Repository Concepts 22-1
22.2.1 Dictionary Formats 22-2
22.2.2 Dictionary Path Names 22-2
22.2.3 Dictionary Entities. 22-4
22.2.4 Dictionary Relationships 22-4
22.2.5 Extracting CDD/Repository Data Definitions 22-4
22.3 Using CDD/Repository with BASIC 227
2231 /DEPENDENCY_DATA Qualifier 22-7
22.3.2 Creating Relationships with Included Record Definitions . . . 22-7
22.4 Creating Relationships for Referenced Dictionary Entities 22-10
22,5 Specifyinga CDD History ListEntry 22-11
22.6 CDD/REPOSITOrY Arrays v vttt e et et e e 22-12
22.7 CDDJ/Repository Variants 22-14
228 NAME FORBASICClauseo .. 22-15
229 CDD/Repository Data Types.ot 22-16
22.9.1 Character String Data Types i 22-21
22.9.2 Integer Data Typest e e 22-22
2293 Floating-Point Data Types 22-25
2294 Decimal String Data Types, 22-28
2295 Other Data TYpeS oo it e e 22-30

XV

23 Using DECwindows Motif Bindings with BASIC

23.1 Overview of DECwindows Motif Concepts
23.2 Using DECwindows Motif Bindings with BASIC
23.3 DECwindows Motif Programming Examples Using BASIC
23.4 Special Considerations for Handling Strings with DECwindows
Motif ..

A Compile-Time Error Messages

Al Compile-Time Errors e

B Run-Time Messages

B.1 BASIC Run-Time Errors by Mnemonic
B.2 BASIC Run-Time Errors by Number
B.3 Errors Not Generated by BASIC

C Optional Programming Productivity Tools
C.l1 Language Sensitive Editor (LSE) and Source Code Analyzer

(SCA) .o
Cli1 Preparing an SCA Library
C.l.2 Compiling from within LSE
C.13 BASIC Support for LSE and SCA Features
C.1.31 Programming Language Placeholders and Tokens
C.1.3.2 Placeholder and Design Comment Processing

Cc.2 CDD/REPOSITONY . . v
C3 Database Management System (DBMS).
c4 Compaq Digital Test Manager for OpenVMS
C5 Compaq Code Management System for OpenVMS (CMS)

Index
Examples
10-1 Assigning Values to Consecutive Array Elements
10-2 Assigning Consecutive Multiples to Odd-Numbered Elements
OF ANTAY . o o
14-1 Creating a USEROPEN Routine
20-1 BASIC Main Program
20-2 FORTRAN Subprogramy

XVi

B-1
B-30
B-37

O0000O00O000O0OO0

|
NNNNDAOWOWNNPR

20-3
204
22-1
22-2
C-1

Figures

2-1

8-1

18-1
18-2
18-3
18-4
18-5
18-6
18-7
18-8
18-9

Tables

1
2
2-1
2-2
3-1

4-1
5-1
7-1
7-2
8-1

11-1
11-2
12-1

Calling System Servicest
Program Displaying the $QIOW System Service Routine . ..

Translated RECORD Statement.
LSE Placeholders in a BASIC Program

Running Multiple-Module Programs
Multiple Maps
Byte-Length Integer Format
Word-Length Integer Format
Longword Integer Format
Quadword Integer Format
Single-Precision Real Number Format
Double-Precision Real Number Format
Fixed-Length String Descriptor Format
Dynamic String Descriptor Format
Decimal Scalar String Descriptor.

Conventions Used in ThisManual
Mnemonics and Other Terms Used in Syntax
VAX BASIC Compiler Commands
Examples of Editing in Line Mode

Natural Boundaries For Supported Alpha BASIC Data
TYPES o

Resultant Behavior of the STEP/INTO Command
Predefined Constants
MAT Statements
MAT Statement Keywords

FILL Item Formats, Representations, and Default
Allocations

String Arithmetic Functions
Precision of String Arithmetic Functions
String Modification o

20-20
20-21
22-21
22-22

C-5

XVii

Xviii

12-2
14-1
14-2
14-3
14-4
15-1
15-2
20-1
20-2
20-3
20-4
22-1
22-2

EDITS Optionso
Record Context After a FIND Operation
Record Context After a GET Operation
Record Context After a PUT Operation
RMS Control Structures Set for the USEROPEN Clause. . . .
Format Characters for Numeric Fields
Format Characters for String Fields
Valid Parameter-Passing Mechanisms
Run-Time Library Facilities
SYSteM ServiCes
OpenVMS USagesot
Supported CDD/Repository Data Types
Unsupported CDD/Repository Data Types
BASIC Run-Time Errors
Errors Not Generated by BASIC
Types of LSE Placeholders

LSE Commands Used to Manipulate Tokens and
Placeholders

Preface

Compaq BASIC for OpenVMS Alpha is the new name for DEC BASIC. Compaq
BASIC for OpenVMS VAX is the new name for VAX BASIC. Any references

to the former names in product documentation or other components should

be construed as references to the Compagq BASIC names. Any references to
BASIC or to Compaq BASIC apply to both products unless otherwise specified.
References to Alpha BASIC mean Compaq BASIC for OpenVMS Alpha, and
references to VAX BASIC mean Compaq BASIC for OpenVMS VAX.

This manual describes how to develop and use BASIC programs on OpenVMS
systems and describes BASIC language features.

Intended Audience

This manual is intended for programmers who compile, link, and execute
BASIC programs on OpenVMS systems. Users should have a working
knowledge of BASIC or another high-level programming language, the Digital
Command Language (DCL), and DCL command procedures.

Document Structure
This manual contains the following chapters and appendixes:
Part | Developing BASIC Programs on OpenVMS Systems

e Chapter 1 provides a brief overview of BASIC.

= Chapter 2 describes how to develop programs in the VAX BASIC
Environment (VAX BASIC only).

e Chapter 3 describes how to develop programs at DCL command level and
how to generate a compiler listing.

e Chapter 4 describes how to use the OpenVMS Debugger to debug BASIC
programs.

Xix

Part 1l BASIC Programming Concepts

Chapter 5 explains how to get started with BASIC.
Chapter 6 explains simple input and output procedures.
Chapter 7 shows how to use arrays.

Chapter 8 explains data definitions.

Chapter 9 explains how to create user-defined data structures with the
RECORD statement.

Chapter 10 shows how to control the flow of program execution.
Chapter 11 explains how to use functions.

Chapter 12 explains how to handle strings.

Chapter 13 describes structured programming techniques.
Chapter 14 explains how to manage files.

Chapter 15 describes how to format output with the PRINT USING
statement.

Chapter 16 explains error-handling techniques.
Chapter 17 shows how to use compiler directives.

Chapter 18 describes how BASIC represents data.

Part 11l Using BASIC Features on OpenVMS Systems

Chapter 19 describes additional 1/0O considerations on OpenVMS systems.

Chapter 20 describes OpenVMS System Services and Run-Time Library
routines.

Chapter 21 describes the use of user-supplied libraries and shareable
images.

Chapter 22 describes how to use CDD/Repository capabilities.
Chapter 23 describes using standard Motif Bindings with BASIC.

Appendixes

XX

Appendix A lists compile-time error messages.
Appendix B lists run-time error messages.

Appendix C provides an overview of the optional productivity tools.

Platform Labels

A platform is a combination of operating system and central processing unit
(CPU) that provides a distinct environment in which to use a product (in this
case, a language). This manual contains information for the following language
platforms:

e OpenVMS Alpha
e OpenVMS VAX

Information in this manual applies to both supported platforms, unless it
is otherwise noted. Platform-specific information is noted in the manual as
follows:

< Alpha BASIC refers to information that is correct for Compaq BASIC for
OpenVMS Alpha systems.

e VAX BASIC refers to information that is correct for Compaqg BASIC for
OpenVMS VAX systems.
Related Documents

For more information about language elements, syntax, and reference
information, see the Compaq BASIC for OpenVMS Alpha and VAX Systems
Reference Manual.

For additional information about OpenVMS products and services, access the
following World Wide Web address:

http:/Awww.compag.com/

Reader’'s Comments

Compaq welcomes your comments on this manual. Please send comments to
either of the following addresses:

Internet basic_docs@compag.com

Mail Compag Computer Corporation
OSSG Documentation Group, ZK0O3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

XXi

How to Order Additional Documentation

If you have access to the World Wide Web, please visit our website at
http://www.openvms.digital.com/commercial/basic/basic_index.html

Click Software Product Description, and read the ordering information. Note
the order numbers of the documents you want. For pricing and further
information, call 1-800-282-6672.

Use the following World Wide Web address for information about how to order
OpenVMS operating system documentation:

http://www.compag.com/

If you need help deciding which documentation best meets your needs, call
1-800-282-6672.

Conventions

XXii

In this manual, every use of the name Compaq BASIC or the name BASIC
applies to both Compag BASIC for OpenVMS Alpha and Compaqg BASIC for
OpenVMS VAX software.

Table 1 shows the conventions used in this manual.

Table 1 Conventions Used in This Manual

Convention Description

$ A dollar sign ($) represents the OpenVMS DCL
system prompt.

In examples, a key name enclosed in a box

indicates that you press that key on the
keyboard. (In text, a key name is not enclosed
in a box.)

In the HTML version of this document, this
convention appears as brackets, rather than a
box.

Ctrl/x The key combination Ctrl/x indicates that you
must hold down the key labeled Ctrl while you
press another key, for example Ctrl/Y or Ctrl/Z.

(continued on next page)

Table 1 (Cont.) Conventions Used in This Manual

Convention

Description

KPn

PF1 x

0

[l

{}

boldface text

The phrase KPn indicates that you must press
the key labeled with the number or character

n on the numeric keypad, for example, KP3 or
KP-.

A sequence such as PF1 x indicates that you
must first press and release the key labeled
PF1, then press and release another key.

A lowercase italic n indicates the generic use
of a number.

A horizontal ellipsis in examples indicates one
of the following possibilities:

= Additional optional arguments in a
statement have been omitted.

= The preceding item or items can be
repeated one or more times.

= Additional parameters, values, or other
information can be entered.

A vertical ellipsis indicates the omission

of items from a code example or command
format; the items are omitted because they are
not important to the topic being discussed.

In format descriptions, parentheses indicate
that you must enclose the options in
parentheses if you choose more than one.

In format descriptions, brackets indicate
optional elements; you can select none, one, or
all of the elements.

In format descriptions, braces indicate that one
element in a list is required. You must choose
one and only one from the list.

Boldface text is used for the introduction of a
new term.

(continued on next page)

XXiii

XXIV

Table 1 (Cont.) Conventions Used in This Manual

Convention

Description

italic text

UPPERCASE

Italic text represents parameters, arguments,
and information that can vary in system
messages (for example, Internal error number),
as well as book titles and emphasized
information.

Uppercase indicates the name of a command,
routine, file, or file protection code, or the
abbreviation for a system privilege.

Table 2 defines mnemonics and other terms used in the syntax diagrams.

Table 2 Mnemonics and Other Terms Used in Syntax

Term Meaning

angle Angle in radians or degrees

array Array; syntax rules specify whether the bounds or
dimensions can be specified

chnl 1/0 channel associated with a file

chnl-exp Numeric expression that specifies a channel number

com Specific to a COMMON block

cond Conditional expression; indicates that an expression can
be either logical or relational

cond-exp Conditional expression

const Constant value

data-type Data type keyword

decimal-var Decimal variable

decl-item Array, record, or variable

def Specific to a DEF function

delim Delimiter

equiv-name File specification, device, or logical name to be assigned
a logical name

err-num Run-time error number

(continued on next page)

Table 2 (Cont.) Mnemonics and Other Terms Used in Syntax

Term Meaning
exp Expression
ext-routine External function

external-param
file-spec

func

int

int-const
int-exp

int-var

label

lex

lex-exp
lex-var
line
line-num
lit
log-exp
log-name

macro-id
map
matrix
name

num
num-lit

param-list
pass-mech

External parameter

File specification

Specific to a FUNCTION subprogram
Integer value

Integer constant

Expression that represents an integer value
Variable that contains an integer value
Alphanumeric statement label

Lexical; used to indicate a component of a compiler
directive

Lexical expression

Lexical variable

Statement line; may or may not be numbered
Statement line number

Literal value, in quotation marks

Logical expression

1- to 63-character logical name to be associated with
equiv-name

User identifier following the rules for BASIC identifiers
Specific to a MAP statement
Two-dimensional array

Name or identifier; indicates the declaration of a name
or the name of a BASIC structure, such as a SUB
subprogram

Numeric value
Numeric literal
Parameter list, such as for a SUB subprogram
Valid BASIC passing mechanism
(continued on next page)

XXV

XXVi

Table 2 (Cont.) Mnemonics and Other Terms Used in Syntax

Term Meaning

prog-name Program name

real Floating-point value
real-exp Real expression
real-var Real variable

rel-exp Relational expression

relationship-type
replacement-token

routine
str
str-exp
str-lit
str-var
sub
target

ung-str
unsubs-var

var

Oracle CDD/Repository protocol

Identifier, keyword, compiler directive, literal constant,
or operator

SUB subprogram or other callable procedure
Character string

Expression that represents a character string
String literal

Variable that contains a character string
Specific to a SUB subprogram

Target point of a branch statement; either a line number
or a label

Unique string
Unsubscripted variable, as opposed to an array element
Variable

Part |

Developing BASIC Programs on OpenVMS
Systems

Part | provides an overview of BASIC and describes how to develop and debug
BASIC programs. It shows you how to get started on the OpenVMS system
and how to develop programs both at DCL command level and within the VAX
BASIC Environment.

1

Overview of the BASIC Language

This brief overview highlights features of Compaq BASIC for OpenVMS
Alpha (referred to as Alpha BASIC) and Compaq BASIC for OpenVMS
VAX (referred to as VAX BASIC). (The term Compag BASIC applies to both
implementations.) The features are described fully in subsequent chapters.

BASIC was originally developed for students with little or no programming
experience. Since then, BASIC has become one of the most widely used
programming languages and is available on almost every computer system.
The OpenVMS implementations of BASIC have evolved beyond the original
design but still support all of the traditional features of the original language
in addition to more recent programming techniques. Compag BASIC has
become much more than a teaching tool and is used in a wide variety of
sophisticated applications.

Compaq BASIC is a powerful structured programming language designed
for novice and application programmers alike. The language provides both
a highly interactive programming environment (VAX BASIC only) and a
high-performance development language. Compaq BASIC supports the
following language constructs:

= Code without line numbers (traditional line numbers are optional)
= Control structures, such as SELECT CASE

= Explicit variable declarations

= Capabilities for handling dynamic strings

= Adaptable file-handling capabilities for terminal-format files, and the full
range of RMS facilities

= Global and local run-time error handling with WHEN ERROR blocks
= Compile-time directives

= A variety of data types, including packed-decimal, user-defined records,
and (for Alpha BASIC) three IEEE floating-point data types: SFLOAT,
TFLOAT, and XFLOAT.

Overview of the BASIC Language 1-1

Overview of the BASIC Language

= Extensive error checking with meaningful error messages

= Thirty-one character names for variables, labels, functions, and
subprograms

Compaq BASIC uses the OpenVMS operating system to its full advantage and
is integrated with many other Compaq products. In particular, Compaq BASIC
supports:

e The OpenVMS systems standard calling procedures

= Record definitions included from the OpenVMS Common Data Dictionary
= Code analysis with the Performance and Coverage Analyzer (PCA)

= Creation of code with the Language-Sensitive Editor (LSE)

= Extensive online language help

= Interactive graphics (VAX BASIC only)!

< Exchange of data with other systems using DECnet

Compaq BASIC supports features of other versions of BASIC, including PDP-11
BASIC-PLUS-2. Compaqg BASIC is a functional superset of BASIC-PLUS-2.
Compatibility flags for BASIC-PLUS-2 and ANSI Minimal BASIC allow you to
check whether the programs will run on other systems.

When you write programs in VAX BASIC, you can choose between two
program development methods: developing programs at DCL command level
or developing programs from within the VAX BASIC Environment 2. When
you develop programs at DCL level, you write your source program with a
text editor, then compile, link, and run the program with commands to the
OpenVMS operating system. Alternatively, when you develop programs within
the VAX BASIC Environment, you type the DCL command BASIC to enter the
environment, enter your program, then execute it with the BASIC command
RUN.

1 The optional graphics capabilities are discussed in Programming with VAX BASIC

Graphics.
2 Alpha BASIC does not support the VAX BASIC Environment.

1-2 Overview of the BASIC Language

2

Developing Programs in the VAX BASIC
Environment

The VAX BASIC Environment provides for interactive VAX BASIC program
development. This chapter describes how to work within the VAX BASIC
Environment.

The information in this chapter is specific to Compaq BASIC for OpenVMS
VAX (VAX BASIC). The VAX BASIC Environment is not supported by Compaq
BASIC for OpenVMS Alpha (Alpha BASIC). (For more information about the
differences between Alpha BASIC and VAX BASIC, see the Compaq BASIC for
OpenVMS Alpha and VAX Systems Reference Manual, Appendix C.)

2.1 Entering the Environment

To enter the VAX BASIC Environment, type the DCL command BASIC and
press Return. An identification line and the Ready prompt appear.

$ BASIC
VAX BASIC \h.n

Ready

In the VAX BASIC Environment, you can interact directly with the compiler.
In this mode of operation, you can enter any of the following:

< BASIC program lines
= Immediate mode statements
e Compiler commands and qualifiers

When you enter program statements, VAX BASIC stores them in ascending
line number sequence as part of the current program in memory. If you enter a
program line with the same line number as an existing program line, the new
line replaces the old line.

Developing Programs in the VAX BASIC Environment 2-1

Developing Programs in the VAX BASIC Environment
2.1 Entering the Environment

When you create a program in the Environment, the first line of the program
must have a line number. If you enter a subsequent program line without

a line number, you must precede it with a space or a tab. Inside the
Environment, only those program lines that begin with line numbers can
start in the first character position on a line.

Note

To develop programs in the Environment that have no line numbers,
you must use an editor or copy your program into the Environment
with the OLD command.

If a program line is too long for one text line, you can continue it by typing an
ampersand (&) and pressing Return. (Note that only spaces and tabs are valid
between the ampersand and the carriage return.)

See Section 2.3 for more information about immediate mode statements and
Section 2.5 for more information about BASIC compiler commands.

2.2 Creating and Running Programs

Within the VAX BASIC Environment, there are two ways to create and edit a
program. You can create and edit the program directly using line mode, or you
can use the compiler command EDIT to invoke a text editor when you are in
the Environment.

The EDIT command invokes the default text editor for your system. After
entering the VAX BASIC Environment, you can enter the EDIT command,
create a program using a text editor, and then exit from the editor back to the
Environment. At this point, the program you created is the current program in
memory, and you can type RUN or RUNNH to compile, link, and execute your
program. (RUNNH suppresses header information such as the name of the
program and the time of day.)

You can also create a program using a text editor accessed from DCL. After

creating the program, you can either use the OLD command from within the
VAX BASIC Environment to read your program into memory, or compile your
program from DCL. Chapter 3 discusses how to compile programs from DCL.

The following example shows a simple program that accepts three numbers
entered at the terminal, averages them, and displays the result:

2-2 Developing Programs in the VAX BASIC Environment

Developing Programs in the VAX BASIC Environment
2.2 Creating and Running Programs

$ BASIC

VAX BASIC \h.n

Ready

NEW FIRSTTRY

Ready

10 PRINT "Please enter three numbers"
INPUT A, B, C
PRINT "Their average is", (A +B + C) /3
END

RUNNH

Output

Please enter three numbers

?5

? 10.3

? 47

Their average is 6.66667

Ready

In the previous example, the DCL command BASIC places you in the VAX
BASIC Environment. The Environment command NEW informs VAX BASIC
that you want to create a new program and assigns the program a name. Here
the program is named FIRSTTRY. If you do not enter a program name with
the NEW command, VAX BASIC assigns the name NONAME by default. The
default file type is .BAS.

The RUNNH command compiles, links, and executes the program you create.
To save this program, enter the SAVE command at the Ready prompt.

You can execute multiple-module programs while in the VAX BASIC
Environment. To execute multiple-module programs, follow these steps:

1. Compile all subprograms to generate object modules.
2. Use the OLD command to read the main program into memory.

3. Use the LOAD command to read the subprogram object modules into
memory.

4. Enter the RUN command.

Figure 2—-1 shows how to execute multiple-module programs.

Developing Programs in the VAX BASIC Environment 2-3

Developing Programs in the VAX BASIC Environment
2.2 Creating and Running Programs

Figure 2-1 Running Multiple-Module Programs

/\

Source
Program
(Subprogram
One)

OLD

/\
/\

OLD

v

Source
Program
(Subprogram
Two)

/\

v

BASIC

TN

Object
Module

COMPILE;

COMPILE_

PR
TN

LOAD

LOAD

Object
Module

LN
TN

Source
Program
(Main
Program)

PR

> BASIC

RUN

OLD

The following example program contains multiple units:

REM This program calls SUBPROGRAM SB1
PRINT "NOW IN MAIN PROGRAM"

CALL SB1
PRINT "BACK IN MAIN PROGRAM"

10
20
30
40
50

10
20
30

END

SUB SB1
PRINT "NOW IN SUBPROGRAM"

SUBEND

ZK-5169-GE

To execute this program in the VAX BASIC Environment, enter the following

commands:

Ready

OLD

SB1

Ready

2-4 Developing Programs in the VAX BASIC Environment

Developing Programs in the VAX BASIC Environment
2.2 Creating and Running Programs

COMPILE
Ready

OLD MAIN
Ready

LOAD SB1
Ready

RUN

Output

NOW IN MAIN PROGRAM
NOW IN SUBPROGRAM
BACK IN MAIN PROGRAM
Ready

If a STOP statement or Ctrl/C is encountered in a module other than
the currently compiled module, VAX BASIC signals “Compiled procedure
is currently not active.” At this point, you cannot use immediate mode
statements.

When you run multiple-module programs in the VAX BASIC Environment, only
one module is currently compiled. Normally, the currently compiled program is
the one you read into memory with the OLD command. However, if a source
file contains more than one program module, the last one (the one closest to
the end of the source file) is the currently compiled module. In the previous
example, MAIN is the currently compiled module.

For more information about loading multiple object modules, see Section 2.4.

2.3 Immediate Mode

You do not have to write a complete program in VAX BASIC. Many statements
are executable in immediate mode.

Immediate mode statements are BASIC statements that are executed
immediately after you press the Return key. Immediate mode statements
cannot be preceded by a line number, space, or tab and can be used only if you
are working directly in the Environment.

In the following example, VAX BASIC interprets the first line as a comment
because it begins with an exclamation point (!). VAX BASIC interprets the
second line as part of a larger program because it begins with a line number.
This line does not execute until a RUN command is specified. The third line
does not begin with a line number, a space, or an exclamation point. Therefore,
VAX BASIC treats the line as an immediate mode statement and immediately
displays the specified text.

Developing Programs in the VAX BASIC Environment 2-5

Developing Programs in the VAX BASIC Environment
2.3 Immediate Mode

lIn the Environment, this is a comment

10 PRINT 'This is an executable BASIC statement’ [Return]
PRINT 'THIS IS AN IMMEDIATE MODE STATEMENTReturn]
Output

THIS IS AN IMMEDIATE MODE STATEMENT

Ready

The Ready prompt indicates that VAX BASIC is ready to receive compiler
commands, immediate mode statements, or new program lines.

You can precede each executable statement with a backslash (\). You can also
have more than one BASIC statement on a line if you separate the statements
with a backslash character as in the following example:

Ready
A= (5437 /125)\ B =(32815"2) \ PRINT (B /A)
2475.69

Unless a STOP statement is executed, VAX BASIC compiles and executes
each immediate mode statement as if it were a self-contained program. For
example:

Ready
PRINT PI * 67.3
211.429

Even if the current program executes a STOP statement, you can perform
independent calculations. However, after a stop, any immediate mode
statement referencing program variables uses the values assigned in the
program. Note that you cannot create new program variables after a STOP
statement has been executed.

If the current program does not execute a STOP statement, each immediate
mode line exists by itself, and any variables used by the statements on that
line are temporary. For example:

Ready
A = 25\ PRINT A
32

READY

PRINT A
0

The second PRINT statement instructs VAX BASIC to display zero because the
compiler treats A as a new variable and initializes it to zero.

2-6 Developing Programs in the VAX BASIC Environment

Developing Programs in the VAX BASIC Environment
2.3 Immediate Mode

You can use the IF, WHILE, UNTIL, UNLESS, and FOR statement modifiers
in immediate mode statements. The following example shows how you can
generate a table of square roots by using the immediate mode statement:

Ready

PRINT I, SQR (I) FOR | = 1 TO 10
1 1

2 1.41421
3 1.73205
4 2

5 2.23607
6 2.44949
7 2.64575
8 2.82843
9 3

10 3.16228
Ready

Certain statements are invalid in immediate mode. In general, statements
are invalid that require the allocation of new storage, or statements that do
not make sense in the context of a single line. If you try to execute such a
statement, VAX BASIC signals the error “lllegal in immediate mode.”

2.4 Debugging in Immediate Mode

To debug in immediate mode, you insert STOP statements in your program
at the points where you wish to examine the values of variables. When VAX
BASIC encounters a STOP statement, program execution is interrupted. You
can use immediate mode statements to display the values of variables or to
assign them new values. After changing or examining data, you can use the
CONTINUE command to resume program execution.

The following restrictions apply when you are debugging in immediate mode:

= You cannot continue execution if you change any program code; for
example, you cannot create new variables after VAX BASIC encounters a
STOP statement.

< You can debug only one module at a time. You can examine and change
variables only in the current module (the most recently compiled module)
of a multiple-module program.

When you are debugging multiple program units in the Environment, follow
these guidelines:

e Use the OLD command to read in the source file for the module you want
to debug. This source file becomes the current module—the one available
for immediate mode debugging.

Developing Programs in the VAX BASIC Environment 2-7

Developing Programs in the VAX BASIC Environment
2.4 Debugging in Immediate Mode

e Use the LOAD command to read in the object files for the remaining
program modules.

An object module is the file that results from compiling a source file; its format
is an intermediate step between a source file and an executable image. The
LOAD command removes any previously loaded object modules, whether or
not the command specifies any object module files. Therefore, you must use a
single LOAD command to specify all the object files you need. In addition, you
must separate multiple object modules with a plus sign (+).

The object files are not linked with the current program or executed until you
issue the RUN command. Therefore, run-time errors in the loaded modules are
not detected until you execute the program.

When you want to run a program, you can load all the object modules for that
program and then execute the program with the RUN command. If you want
to debug a program, use the OLD command for the module you want to debug
and then load the remaining program modules. The module to be debugged
can be either a main program or a subprogram because, when you enter the
RUN command, VAX BASIC transfers control to the main program, whether it
is in object-module format or source-program format.

For information about using the OpenVMS Debugger, see Chapter 4.

2.5 Compiler Commands

Compiling is the process of translating a source program to an object module.
An object module is an intermediate step between source code and an
executable image. It contains information that the linker uses to create an
image.

VAX BASIC has certain defaults that are in effect each time you enter the
VAX BASIC Environment. Unless you explicitly override these defaults, they
remain in effect until you leave the Environment. You can see a listing of
these defaults by entering the SHOW command when in the VAX BASIC
Environment. The following example displays the standard VAX BASIC
Environment defaults:

Ready
SHOW

2-8 Developing Programs in the VAX BASIC Environment

Developing Programs in the VAX BASIC Environment

2.5 Compiler Commands

VAX BASIC Vn.n Current Environment Status dd-mmm-yyyy 10:12:12.05

DEFAULT DATA TYPE INFORMATION:
Data type : REAL
Real size : SINGLE
Integer size : LONG
Decimal size : (15,2)
Scale factor : 0
NO Round decimal numbers

COMPILATION QUALIFIERS IN EFFECT:
Object file
Overflow check integers
Overflow check decimal numbers
Bounds checking
NO Syntax checking
Line
Variant : 0
Warnings
Informationals
Setup
Object Libraries : NONE
Ready

LISTING FILE INFORMATION INCLUDES:
NO List
NO Cross reference
CDD Definitions
Environment
NO Override of %NOLIST
NO Machine code
Map
INCLUDE files

FLAGGERS:
NO Declining features
NO BASIC PLUS 2 subset
NO Alpha AXP subset

DEBUG INFORMATION:
Traceback records
NO Debug symbol records

You can override any of these defaults with qualifiers to the COMPILE or
SET commands, or with the OPTION statement in your program. Table 2-1
lists and describes all the VAX BASIC compiler commands. The sections
that follow describe the commands in detail, including the qualifiers to the
COMPILE, SET, and RUN commands. For more information about the
OPTION statement, see the Compaq BASIC for OpenVMS Alpha and VAX

Systems Reference Manual.

Table 2-1 VAX BASIC Compiler Commands

Command Description

I comment Identifies a comment.

$ command Starts a subprocess to execute the specified DCL command.

APPEND Merges the specified program with the program currently in memory.

ASSIGN Assigns a logical name to a complete file specification (the equivalence
name).

COMPILE Generates an object module (file type .OBJ) from a VAX BASIC source
program.

CONTINUE Resumes execution after a STOP statement or Ctrl/C.

(continued on next page)

Developing Programs in the VAX BASIC Environment 2-9

Developing Programs in the VAX BASIC Environment
2.5 Compiler Commands

Table 2-1 (Cont.) VAX BASIC Compiler Commands

Command Description
DELETE Erases the specified line or lines from the program currently in memory.
EDIT Changes source text or calls a text editor.
EXIT Returns to DCL command level.
HELP Displays HELP text.
IDENTIFY Causes VAX BASIC to print an identification header on the terminal.
LIST Displays the current source program on the terminal.
LISTNH Displays the current source program without header information.
LOAD Loads an object module into memory.
LOCK Specifies default values for compiler command qualifiers (identical to the
SET command).
NEW Clears memory for the creation of a new program and assigns a new
program name.
OLD Reads a specified VAX BASIC source program into memory.
RENAME Changes the name of the program currently in memory.
REPLACE Writes the program currently in memory to a file, using the file
specification in the OLD or RENAME command.
RESEQUENCE Supplies new line numbers for the program currently in memory.
RUN Executes the program currently in memory, or a specified VAX BASIC
source program. The program in memory can be any of the following:
= A VAX BASIC source program placed in memory with the OLD
command

= One or more object modules placed in memory with the LOAD
command

= A combination of the first two

RUNNH Similar to RUN but does not display header information.

SAVE Copies the current source program to a file.

SCALE Controls accumulated round-off errors for numeric operations.

(continued on next page)

2-10 Developing Programs in the VAX BASIC Environment

Developing Programs in the VAX BASIC Environment
2.5 Compiler Commands

Table 2-1 (Cont.) VAX BASIC Compiler Commands

Command Description

SCRATCH Erases the current program and any loaded object modules.
SEQUENCE Generates line numbers for input text.

SET Specifies default values for compiler command qualifiers.
SHOW Displays the current default compiler qualifiers.

UNSAVE Deletes a specified file.

The following sections describe these commands. For more detailed
information, see the Compaq BASIC for OpenVMS Alpha and VAX Systems
Reference Manual.

2.5.1 Entering Comments

VAX BASIC allows you to enter comments into the VAX BASIC Environment
by specifying an exclamation point. Any text that follows the exclamation point
(1) is treated as a comment. For example:

$ TYPE hbuild_special.com
$ SET VERIFY
$ BASIC

I+

I Set the compilation unit options by uncommenting
I the appropriate ones
ISET LIST

SET WORD

SET DEBUG

I+

I Get the source module.
I-

OLD SPECIAL

I+

I Compile it.

I-

COMPILE

I+

I All done.

I-
EXIT

Developing Programs in the VAX BASIC Environment 2-11

Developing Programs in the VAX BASIC Environment
2.5 Compiler Commands

2.5.2 Entering DCL Commands

You can enter DCL commands while in the VAX BASIC Environment. To do
so, precede each DCL command with a dollar sign ($). VAX BASIC passes the
command to DCL for execution. The program currently in memory does not
change.

VAX BASIC starts a subprocess to execute the command, and the command
executes in the context of that subprocess. This can sometimes produce
unexpected results. For example, entering the SET DEFAULT command sets
the default for the subprocess but not for the process in which VAX BASIC
executes. The newly set default exists only until control returns to VAX
BASIC.

2.5.3 APPEND Command

The APPEND command merges a VAX BASIC source program with the
program currently in memory. The program in memory must be a VAX BASIC
source program that has been placed in memory with the OLD command or
entered in the Environment. The program must also contain at least one line
number.

If both programs contain a line with the same number, the appended program
line replaces the current program line.

If you type APPEND without specifying a file name, VAX BASIC prompts with:
Append file name--

You should respond with a file name. If you respond by pressing Return, VAX
BASIC searches for a file called NONAME with the default file type of .BAS. If
the compiler cannot find the file, it signals an error.

The APPEND command does not change the name of the program in memory.

2.5.4 ASSIGN Command

The ASSIGN command equates a logical name to a complete file specification,
a device, or another logical name.

If the logical name translates to a device name and is used in place of a device
name in a file specification, end the equivalence name with a colon.

The following example uses the ASSIGN command to make the system HELP
library available from within VAX BASIC:

Ready
ASSIGN SYS$HELP:HELPLIB HLP$LIBRARY

2-12 Developing Programs in the VAX BASIC Environment

Developing Programs in the VAX BASIC Environment
2.5 Compiler Commands

The ASSIGN command does not support search lists. To assign a logical name
to a search list from within the Environment, use the system command to
execute the DCL command ASSIGN with the /JOB qualifier. For example:

$ ASSIGN/JOB DUAO:[MR.X],DUAQ:[MR.Y] TWO$DIRECTORIES:

2.5.5 COMPILE Command

When compiling a program in the VAX BASIC Environment, there are three
levels at which you can specify options for the compiler:

= Accept the defaults of the VAX BASIC Environment as options
= Specify options with qualifiers to the COMPILE or SET command
e Specify options in the source program with the OPTION statement

The COMPILE command creates an object module from a source program in
memory. You can control the compilation of your program with the COMPILE
command and its qualifiers. These qualifiers duplicate many of the qualifiers
available to the DCL command BASIC. You can abbreviate all COMPILE
qualifiers to four letters. For example, you can compile a program currently in
memory and specify the creation of a listing file:

COMPILE/LIST

The following two commands both specify that a listing file is created. Note
that the SET command sets a particular default until you leave the VAX
BASIC Environment or until you specify a different default for that value,
and the qualifiers to the COMPILE command set the defaults only for that
particular compilation.

SET/LIST
COMPILE/LIST

If you do not specify any qualifiers with the SET command, VAX BASIC resets
the defaults to the values that were in effect when you entered the VAX BASIC
Environment.

The qualifiers to the COMPILE command are shown in the following list. Note
that you can also use these qualifiers with the SET command to establish
compiler options. The qualifiers are described fully in the Compag BASIC for
OpenVMS Alpha and VAX Systems Reference Manual.

e The /[[NOJANSI_STANDARD qualifier instructs VAX BASIC to compile
the program according to ANSI Minimal BASIC rules and to flag
statements that do not conform to the ANSI Minimal BASIC standard.
The /ANALYSIS_DATA qualifier cannot be in effect when you compile with
the /ANSI_STANDARD qualifier.

Developing Programs in the VAX BASIC Environment 2-13

Developing Programs in the VAX BASIC Environment
2.5 Compiler Commands

The default is NOANSI_STANDARD.

e The /[[NOJAUDIT qualifier instructs VAX BASIC to include a history
entry in the CDD/Repository database when a CDD/Repository definition is
extracted.

The default is INOAUDIT.

= The /[[NO]BOUNDS qualifier instructs VAX BASIC to perform range
checks on array subscripts. This qualifier checks that all array references
are to addresses within the array boundaries.

The default is /BOUNDS.

= The /BYTE qualifier specifies that integers not explicitly typed with a data
type keyword use 8 bits of storage, which lets you use integer values from
-128 to 127.

The default is /INTEGER_SIZE=LONG.

The /BYTE qualifier is a declining feature. Instead, /INTEGER_
SIZE=BYTE is recommended.

e The /[[NO]JCROSS_REFERENCE[=[NO]KEYWORDS] qualifier
instructs VAX BASIC to generate a cross-reference listing. If you
specify KEYWORDS, VAX BASIC provides a cross-reference list of its
keywords. If you specify /CROSS_REFERENCE, the default is /CROSS_
REFERENCE=NOKEYWORDS.

The default is NOCROSS_REFERENCE.

e The /[[NO]DEBUG qualifier provides the debugger with local symbol
definitions for program variables, constants, line numbers, and labels. If
you make changes to a program within the Environment, you must first
save or replace the program before attempting to compile the program with
the /DEBUG qualifier; otherwise, VAX BASIC signals the error “Unsaved
changes, no source line debugging available.”

The default is / DEBUG=(TRACEBACK,NOSYMBOLYS).

e The /IDECIMAL_SIZE qualifier specifies the default size and precision
for all DECIMAL data not explicitly assigned size and precision in the
program. You specify the total number of digits (d) and the number of
digits to the right of the decimal point (s). VAX BASIC signals the error
“Decimal error or overflow” (ERR=181) when DECIMAL values are outside
the range specified with this qualifier.

The default is /IDECIMAL_SIZE=(15,2).

2-14 Developing Programs in the VAX BASIC Environment

Developing Programs in the VAX BASIC Environment
2.5 Compiler Commands

The /IDOUBLE qualifier specifies that floating-point data use 64 bits of
storage in D_float format, which lets you use floating-point values in the
range 2.9 * 10739 to 1.7 * 1038 and with up to 16 digits of precision.

The default is /REAL_SIZE=SINGLE.
The /DOUBLE qualifier is a declining feature. Instead, /REAL
SIZE=DOUBLE is recommended.

The /[NO]JFLAG[=([NOJAXPCOMPATIBILITY,
[NO]BP2COMPATIBILITY,[NO]DECLINING)] qualifier instructs VAX
BASIC to issue informational messages when your program includes
statements that are not compatible with the features you specify. You can
specify a flag for compatibility with Alpha BASIC (AXPCOMPATIBILITY),
BASIC-PLUS-2 (BP2COMPATIBILITY), and declining VAX BASIC
language features (DECLINING).

The default is INOFLAG.

The /GFLOAT qualifier specifies that floating-point data use 64 bits of
storage in G_float format, which lets you use floating-point values in the
range 5.6 * 107398 t0 9.0 * 10399 and with up to 15 digits of precision.

The default is /REAL_SIZE=SINGLE.

The /GFLOAT qualifier is a declining feature. Instead, /REAL _
SIZE=GFLOAT is recommended.

The /HFLOAT qualifier specifies that floating-point data use 128 bits of
storage in H_float format, which lets you use floating-point values in the
range 8.4 * 104933 t0 5.9 * 10933 and with up to 33 digits of precision.

The default is /REAL_SIZE=SINGLE.

The /HFLOAT qualifier is a declining feature. Instead, /REAL
SIZE=HFLOAT is recommended.

The /[NOJLINES qualifier enables the executing program to report the line
number of statements causing errors and to use the RESUME statement
without specifying a line number.

The default is /LINES.

The /[NO]JLIST qualifier creates a program listing with a default file type
of .LIS.

The default is /NOLIST.

The /LONG qualifier specifies that untyped integers use 32 bits of storage,
which lets you use integer values from -2147483648 to 2147483647.

The default is /INTEGER_SIZE=LONG.

Developing Programs in the VAX BASIC Environment 2-15

Developing Programs in the VAX BASIC Environment
2.5 Compiler Commands

The /LONG qualifier is a declining feature. Instead, /INTEGER_
SIZE=LONG is recommended.

= The /[INO]JMACHINE_CODE qualifier includes the compiler-generated
assembly code listing.

The default is /NOMACHINE_CODE.

= The /[NO]JOBJECT qualifier generates a linkable object module. This
object module has the same file name as the VAX BASIC source program
and a default file type of .OBJ.

The default is /OBJECT.

e The /[INOJOVERFLOW[=([NO]INTEGER,[NO]DECIMAL)] qualifier
enables the detection of arithmetic overflow on integer or packed decimal
data. If you do not supply a value, OVERFLOW affects both data types.

The default is /OVERFLOW=(INTEGER,DECIMAL).

e The /[[NO]JROUND qualifier specifies whether VAX BASIC rounds or
truncates packed decimal numbers.

The default is /NOROUND.

e The /[NO]SETUP qualifier causes VAX BASIC to optimize the executable
image by omitting certain calls to the Run-Time Library at the start and
end of each program unit. Note that variables are not initialized when
INOSETUP is in effect.

The default is /SETUP.

e The /[NO]JSHOW qualifier allows you to specify what is included in the
listing file. For a list of items you can include in the listing file, see the
Compaq BASIC for OpenVMS Alpha and VAX Systems Reference Manual.

The default is /[SHOW.

= The /SINGLE qualifier specifies that floating-point data use 32 bits of
storage, which lets you use floating-point values in the range 2.9 * 10739 to
1.7 * 1038 and with up to 6 digits of precision.

The default is /REAL_SIZE=SINGLE.

The /SINGLE qualifier is a declining feature. Instead, /REAL _
SIZE=SINGLE is recommended.

e The /[[NO]JSYNTAX_CHECK qualifier enables line-by-line syntax checking.
Because VAX BASIC automatically performs syntax checking when you
compile a program, you normally use /SYNTAX_CHECK with the SET
command to enable line-by-line syntax checking while you are typing
program lines.

2-16 Developing Programs in the VAX BASIC Environment

Developing Programs in the VAX BASIC Environment
2.5 Compiler Commands

The default is INOSYNTAX_CHECK.

= The /[[NOJTRACEBACK qualifier provides line numbers for the debugger
and error reporter so they can translate virtual addresses into source
program module names and line numbers.

The default is /TRACEBACK.

e The /ITYPE_DEFAULT qualifier allows you to specify the default data type
for all data not explicitly typed in your program. See the Compaq BASIC
for OpenVMS Alpha and VAX Systems Reference Manual for a list of data
types you can include.

The default is /TYPE_DEFAULT=REAL.

e The /IVARIANT=value qualifier provides a value to be tested in conditional
compilations.

The default is /VARIANT=0.

e The /[[INOJWARNINGS[=[NO]JWARNINGS,[NO]JINFORMATIONALS]
qualifier tells VAX BASIC whether to display warning or informational
error messages. The INOWARNINGS qualifier instructs VAX BASIC to not
display any informational or warning errors.

The default is WARNINGS=WARNINGS,INFORMATIONALS.

= The /WORD qualifier specifies that all integer data not explicitly typed use
16 bits of storage, which lets you use integer values from -32768 to 32767.

The default is /INTEGER_SIZE=LONG.

The /WORD qualifier is a declining feature. Instead, /INTEGER _
SIZE=WORD is recommended.

If you use these qualifiers with the COMPILE command, the VAX BASIC
Environment default values remain the same, but your program is compiled
using the qualifiers and values you specify. When you use these qualifiers
with the SET command, you set the defaults while you are in the VAX BASIC
Environment. You can also set compiler options from inside the source program
by using the OPTION statement. See the Compaq BASIC for OpenVMS Alpha
and VAX Systems Reference Manual for more information about the OPTION
statement.

If you specify the IDIAGNOSTICS qualifier or the /ANALYSIS_DATA qualifier
with the BASIC command, then make changes to a program and attempt to
compile the program before saving or replacing it, VAX BASIC signals the
error “Unsaved changes, no diagnostics file produced” or “Unsaved changes,
no analysis file produced.” You must save or replace the program before you
compile it to generate a diagnostics or data analysis file.

Developing Programs in the VAX BASIC Environment 2-17

Developing Programs in the VAX BASIC Environment
2.5 Compiler Commands

2.5.6 CONTINUE Command

The CONTINUE command resumes program execution after VAX BASIC
encounters a STOP statement or a Ctrl/C. After a STOP statement or a Ctrl/C
is encountered, you can enter immediate mode statements to display or change
program variables. Enter CONTINUE to resume execution with the new
values.

2.5.7 DELETE Command

The DELETE command removes a specified line or lines from the source
program currently in memory. If you separate line numbers with commas, VAX
BASIC deletes only the specified program lines. If you separate line numbers
with a hyphen (-), VAX BASIC deletes the specified program lines and all
program lines between them. For example:

DELETE 10 Removes line 10 from the program

DELETE 50, 100 Removes lines 50 and 100 from the program

DELETE 50, 100-190 Removes line 50 and lines 100 to 190 from the program
If you do not specify a line number, the DELETE command is ignored.

2.5.8 EDIT Command

The EDIT command replaces text in the current program with text you supply
in the command. If you type EDIT with no argument, VAX BASIC invokes a
text editor and reads the current program into the editor’s buffer.

Table 2—2 shows examples of editing in line mode.

Table 2—-2 Examples of Editing in Line Mode

EDIT 100 /LEFT$/RIGHTS$/ Replaces the first occurrence of LEFT$ with
RIGHTS$ on line 100.

EDIT Invokes the default editor and reads the current
program into the editor’s buffer.

EDIT 2000 Lists line 2000 (line 2000 becomes the default
EDIT line).

EDIT 30 /LEFT$/RIGHT$/,3 Starts the search on the third text line of

program line 30 and replaces the first occurrence
of LEFTS$ with RIGHTS.

(continued on next page)

2-18 Developing Programs in the VAX BASIC Environment

Developing Programs in the VAX BASIC Environment
2.5 Compiler Commands

Table 2-2 (Cont.) Examples of Editing in Line Mode

EDIT 300/LEFT$//2 Removes the second occurrence of the string
LEFT$ from line 300. Note that you must
specify delimiters around the null replacement
string; otherwise, the EDIT command replaces
the first occurrence of LEFT$ with 2.

Entering EDIT with no argument instructs VAX BASIC to save your program
temporarily in a file called BASEDITMP.BAS. The editor is then invoked and
you can edit the program. Exiting from the editor causes the changed program
to become the current program. VAX BASIC then displays the Ready prompt.

Note

VAX BASIC deletes all versions of BASEDITMP.BAS when control
returns from the editor.

VAX BASIC supports the following callable text editors:
- EDT

= Text Processing Utility (TPU)

= Language-Sensitive Editor (LSE)

The default editor for VAX BASIC is EDT. In DCL, you can override this
default by defining the logical name BASIC$EDIT. To find out if a system
assignment exists, enter the following DCL command:

$ SHOW LOGICAL BASICSEDIT

The name you assign to BASIC$EDIT must be in the form nnn$EDIT, (nnn
represents the acronym for the editor). For example, you can assign LSE to be
the default editor with the following command:

$ ASSIGN "LSESEDIT" BASICS$EDIT

If the translation of BASICSEDIT does not conform to nnn$EDIT, VAX BASIC
creates a temporary file containing your source code and spawns a subprocess.
VAX BASIC passes the translation of BASICSEDIT to the subprocess.

Developing Programs in the VAX BASIC Environment 2-19

Developing Programs in the VAX BASIC Environment
2.5 Compiler Commands

2.5.9 EXIT Command

The EXIT command clears memory and returns control to DCL command level.
If you modify a program and enter the EXIT command before you copy it to
disk with the SAVE or REPLACE command, VAX BASIC signals “Unsaved
change has been made, Ctrl/Z or EXIT to exit.” This message warns you that
any changes will be lost if you do not save the program. You can then store
the program or reenter the EXIT command (or press Ctrl/Z) to exit from VAX
BASIC.

2.5.10 HELP Command

The HELP command lets you display the contents of the VAX BASIC HELP
library. A list of commands and language topics for which there is help
available is displayed. You are prompted to name a command or topic with the
following prompt:

Topic?

To obtain help on the Environment commands, enter COMMANDS at the
Topic? prompt. A list of commands is displayed on your terminal followed
by the prompt COMMANDS Subtopic?. When you type a command name in
response to this prompt, the HELP facility displays the following:

< An explanation of the command’s purpose
= An example of its use
= Alist of any further subtopics available

You can also display help text for VAX BASIC errors. The help texts for
the VAX BASIC error messages are grouped under two categories: compile-
time errors and run-time errors. A run-time error refers to any error that
occurs during program execution. All other errors are referred to as compile-
time errors. Entering HELP RUN displays a list of the 3- to 9-character
error mnemonics for the VAX BASIC list of run-time errors, and entering
HELP COMPILE displays a list of the 3- to 9-character compile-time error
mnemonics.

For example, if your program invokes a user-defined DEF function with a null
argument, this causes VAX BASIC to signal the following error message:

%BASIC-E-ACTARGMUS, actual argument must be specified
You display the help text by entering the following command:
HELP COMPILE ACTARGMUS

2-20 Developing Programs in the VAX BASIC Environment

2511

2.5.12

Developing Programs in the VAX BASIC Environment
2.5 Compiler Commands

The following text displays on your screen:

ACTARGMUS

ERROR - A DEF function reference contains a null argument, for
example FNA(1,,2). Specify all arguments when referencing a DEF
function.

You can access run-time errors with either the mnemonic or the error number.
You specify the error number with the letters “ERR” followed by the error
number. For example, you can display the HELP text for the end-of-file error
by using the mnemonic as follows:

HELP RUN ENDFILDEV

If you know only the error number, enter the following:

HELP RUN ERR11

VAX BASIC displays the appropriate mnemonic for that error.

IDENTIFY Command

The IDENTIFY command prints a header containing the VAX BASIC compiler
name and version number. For example:

IDENTIFY
VAX BASIC \Vh.n
Ready

LIST and LISTNH Commands

The LIST and LISTNH commands display a specified line or lines. If you type
LIST or LISTNH without specifying line numbers, VAX BASIC displays a copy
of the source program currently in memory, in ascending line number order.

The LIST command prints a header displaying the program name and the
current time and date before displaying the specified lines. The LISTNH
command suppresses the header information and prints the specified lines
only. For example:

LIST 10 Displays header information, then displays line 10
LISTNH 50, 100 Displays lines 50 and 100
LIST 50, 90, 100-190 Displays header information, then displays lines 50, 90,

and 100 to 190

Developing Programs in the VAX BASIC Environment 2-21

Developing Programs in the VAX BASIC Environment
2.5 Compiler Commands

2.5.13 LOAD Command

The LOAD command makes an object module available for execution with the
RUN command. You can only load object files created by VAX BASIC.

The LOAD command accepts multiple device, directory, and file specifications.
The LOAD command deletes all previously loaded object files; therefore, to load
several files at the same time, you must separate the file specifications with

a plus sign (+). Multiple file specifications separated with commas cause each
file to be loaded separately, thereby deleting the previously loaded file.

If you do not specify any file specification, the LOAD command erases any
previously loaded object files.

LOAD OLD1 + OLD2 + OLD3
Ready
RUN

The previous example loads the files OLD1.0BJ, OLD2.0BJ, and OLD3.0BJ
for execution. These object files are not linked with the current program or
executed until you issue the RUN command. Therefore, run-time errors in the
loaded modules are not detected until you execute the program.

Each device and directory specification applies to all following file specifications
until you specify a new directory or device. For example:

LOAD DUAL:[SMITH]JPROG3+JONES|PROG4+DUA2:PROG5

This command loads three object files:

e PROG3 from the directory SMITH on the device DUAL:
e PROG4 from the directory JONES on DUAZ1:

= PROGS from the directory JONES on DUAZ2:

2.5.14 LOCK Command

The LOCK command changes default values for COMPILE command qualifiers.
It is equivalent to the SET command. The following command specifies that
all subsequent compilations use double-precision, floating-point numbers as the
default. You can use any valid COMPILE command qualifier as an argument
to LOCK.

LOCK /DOUBLE
Ready

2-22 Developing Programs in the VAX BASIC Environment

2.5.15

2.5.16

2.5.17

Developing Programs in the VAX BASIC Environment
2.5 Compiler Commands

NEW Command

The NEW command clears the memory and assigns a name to a program to
be entered. The following command assigns the name PROG1 to the program.
You can then enter program lines.

NEW PROG1
If you do not specify a name, VAX BASIC issues the following prompt:
New file name--

You should respond with a file name. If you press the Return key in response
to the prompt, VAX BASIC assigns the name NONAME.

OLD Command

The OLD command brings a previously created VAX BASIC source file into
memory. The following command reads PROG1.BAS into memory:

OLD PROG1
If you do not specify a file name, VAX BASIC issues the prompt:
Old file name--

You should respond with a file name. If you do not specify a file type, VAX
BASIC reads a file with the specified file name and the default file type. If you
press the Return key in response to the prompt, VAX BASIC searches for a file
with the default file name and default file type: NONAME.BAS.

RENAME Command

The RENAME command assigns a new name to the program currently in
memory. For example, the following command sequence brings a program
named PROGL1 into memory and changes its name and directory:

OLD [KELLY]JPROG1

Ready

RENAME [MCKAY.BASIC]PROG2

The name of the program is changed to PROG2. If you perform a REPLACE
operation, PROG?2 is copied to the subdirectory [MCKAY.BASIC] instead of
[KELLY]. The remaining portion of the specification is unchanged. If you do

not specify a program name, VAX BASIC renames the current program to
NONAME.

Developing Programs in the VAX BASIC Environment 2-23

Developing Programs in the VAX BASIC Environment
2.5 Compiler Commands

2.5.18

2.5.19

2.5.20

REPLACE Command

The REPLACE command writes a copy of the current program back to disk. It
replaces it using the file specification specified in the last OLD command. Part
or all of this file specification can be overwritten with the RENAME command;
whatever parts are not specifically changed remain the same. RENAME

is similar to SAVE except that while SAVE copies the current program to

the default directory, REPLACE copies the current program to the location
specified in the program’s current file specification.

After execution of a REPLACE command, VAX BASIC issues an informational
message confirming the file specification.

RESEQUENCE Command

The RESEQUENCE command allows you to resequence the line numbers of
the program currently in memory. VAX BASIC also changes all references to
the old line numbers so they reference the new line numbers. You can specify
a starting line number and a value by which to increase each subsequent line
number. The following command resequences the line numbers from 10 to
10000, making the first line number 100 and increasing each subsequent line
number by 20:

RESEQUENCE 10-10000 100 STEP 20

The RESEQUENCE command is not allowed on programs without line
numbers.

RUN and RUNNH Commands

The RUN command executes a program. This program can be any one of the
following:

= The current program
= One or more object modules placed in memory with the LOAD command

= A combination of the current and one or more object modules placed in
memory with the LOAD command

= A specified VAX BASIC source program

If you do not supply an alternative file specification, VAX BASIC executes the
program in memory.

2-24 Developing Programs in the VAX BASIC Environment

2.5.21

Developing Programs in the VAX BASIC Environment
2.5 Compiler Commands

Ready

OLD
Old file name--PROG1
Ready

RUN

The RUN command compiles, links, and executes PROG1. It prints a header
displaying the program name and the current date and time. To execute a
program without displaying this header, enter RUNNH.

The RUN command does not create an object module file or a list file. It uses
qualifiers that have been set. The following qualifiers are always in effect for
the RUN and RUNNH commands:

NOCROSS
NODEBUG
NOLIST
NOMACHINE
NOOBJECT
SETUP

The RUN command invokes only VAX BASIC procedures and other procedures
that reside in shareable image libraries. See Chapter 21 for more information
on creating shareable images.

SAVE Command

The SAVE command copies a VAX BASIC source program from memory to a
file. You can specify a storage device, a file name, and a file type in the SAVE
file specification. In the following program, a SAVE command instructs VAX
BASIC to arrange the program in ascending line number order and copy it to
a file on MTAL: in the current default directory with file name TEST and the
default file type of .BAS.

10 REM THIS IS A TEST
30 PRINT "THIS IS A TEST"
SAVE MTALTEST

If the program in memory has no name, and you issue the SAVE command
with no argument, VAX BASIC copies the program to a file named NONAME
with the default file type in your current default device and directory.

Developing Programs in the VAX BASIC Environment 2-25

Developing Programs in the VAX BASIC Environment
2.5 Compiler Commands

2.5.22

2.5.23

2.5.24

2.5.25

SCALE Command

The SCALE command overcomes accumulated round-off errors by multiplying
double-precision, floating-point values by 10 raised to the specified scale factor
before storing them.

SCRATCH Command
The SCRATCH command clears memory by doing the following:

= Resetting the program name to NONAME
< Removing any object files previously loaded with the LOAD command

= Removing the source file currently in memory

SEQUENCE Command

The SEQUENCE command automatically generates line numbers for input
text. After a SEQUENCE command, VAX BASIC prompts with a line number
and prompts again after each source line you enter. If you press Ctrl/Z (either
in response to the line number prompt or at the end of a program line), VAX
BASIC stops prompting, and you can enter source text in the normal way. If
you specify a starting line number that already contains a statement, VAX
BASIC signals “Attempt to sequence over existing statement” and returns to
normal input mode.

Note that the SEQUENCE command is not allowed on programs without line
numbers.
SET Command

The SET command specifies defaults for compiler command qualifiers. For
example:

SET /SINGLE
Ready

This command makes /SINGLE the default for the COMPILE or RUN
command, thereby making SINGLE the default data type for all untyped
values. Entering the SET command with no arguments resets the defaults to
their state when you entered the VAX BASIC Environment.

For a full list of options, see the COMPILE command.

2-26 Developing Programs in the VAX BASIC Environment

Developing Programs in the VAX BASIC Environment
2.5 Compiler Commands

2.5.26 SHOW Command
The SHOW command displays the current default qualifiers and user libraries.

For example:
SHOW
VAX BASIC Vn.n Current Environment Status dd-mmm-yyyy 10:12:12.05
DEFAULT DATA TYPE INFORMATION: LISTING FILE INFORMATION INCLUDES:
Data type : REAL List
Real size : SINGLE NO Cross reference
Integer size : LONG CDD Definitions
Decimal size : (15,2) Environment
Scale factor : 0 NO Override of %NOLIST
NO Round decimal numbers NO Machine code
Map
COMPILATION QUALIFIERS IN EFFECT: INCLUDE files
Object file
Overflow check integers FLAGGERS:
NO Overflow check decimal numbers Declining features
Bounds checking NO BASIC PLUS 2 subset
NO Syntax checking NO Alpha AXP subset
Line
Variant : 0 DEBUG INFORMATION:
NO Warnings Traceback records
NO Informationals NO Debug symbol records
Setup

Object Libraries : NONE
Ready

The DEFAULT DATA TYPE INFORMATION display in the previous example
contains the following information:

e The default data type is REAL.

= The default size for floating-point numbers is SINGLE, the default size
for integers is LONG, and the default size for packed decimal numbers is
(15,2).

e There is no scale factor in effect.
e Packed decimal numbers are truncated rather than rounded.

The LISTING FILE INFORMATION display tells you which parts of the
program listing are included if you create a compilation listing:

= The source program is listed.
< No cross-reference information is listed.

= CDD definitions are displayed as RECORD statements.

Developing Programs in the VAX BASIC Environment 2-27

Developing Programs in the VAX BASIC Environment
2.5 Compiler Commands

The qualifiers in effect when the program was compiled are listed. This
means that the program listing contains the equivalent of this SHOW
command.

The %NOLIST compiler directive is not overridden.
No compiler-generated machine code is listed.

An allocation map is listed. This contains the sizes and offsets of any
variables.

Files accessed with the %INCLUDE directive are listed.

The COMPILATION QUALIFIERS IN EFFECT display contains the following
information:

An object file is produced.

Overflow checking for integers is enabled.

Overflow checking for packed decimal numbers is disabled.

Bounds checking is enabled.

Line-by-line syntax checking is disabled.

Line number information is included in the object file.

The VARIANT value is zero.

No warning or informational error messages are displayed.

VAX BASIC performs normal initialization calls at run time (SETUP).

No user-supplied object module libraries are searched.

The FLAGGERS display contains the following information:

Declining features are reported.
BP2 compatibility issues are not reported.

Compatibility issues with Alpha BASIC for OpenVMS Alpha are not
reported.

The DEBUG INFORMATION section gives you the following information:

Traceback information is included in the object module.

No debug records are included in the object module. This means you
cannot access program symbols with the OpenVMS Debugger.

See Chapter 21 for more information about user libraries.

2-28 Developing Programs in the VAX BASIC Environment

Developing Programs in the VAX BASIC Environment
2.5 Compiler Commands

2.5.27 UNSAVE Command

The UNSAVE command deletes the specified version of a file from disk. If you
do not specify a file, UNSAVE deletes the disk file associated with the program
currently in memory. If you do not specify a version number, UNSAVE deletes
the previous version. For example:

OLD PROGI1
Ready
UNSAVE
Ready

The OLD command copies a program named PROG1.BAS from disk to memory.
The UNSAVE command deletes the program from disk.

You can delete a VAX BASIC source program other than the one in memory by
specifying the program name. The following command deletes the most recent
version of the file PROG2.BAS:

UNSAVE PROG2

To delete a file other than a source program, specify the file name and file
type. The following command deletes the previous version of the object module
generated from the compilation of PROG2:

UNSAVE PROG2.0BJ

Developing Programs in the VAX BASIC Environment 2-29

3

Developing BASIC Programs at the DCL
Command Level

A programmer needs to know how to create, compile, link, and run a program.
This chapter describes compiling, linking, and running a BASIC program.

The shortened name Alpha BASIC refers to Compag BASIC for OpenVMS
Alpha, and VAX BASIC refers to Compaq BASIC for OpenVMS VAX.

For information about using a text editor to create and edit files, see the
OpenVMS User’s Manual.
3.1 Compiling a BASIC Program
The BASIC compiler performs the following functions:
e Detects errors in your source program
= Generates any appropriate error messages
= Generates machine language instructions from the source statements
= Groups these language instructions into an object module for the linker

To invoke the compiler, you use the DCL command BASIC. With the BASIC
command, you can specify command qualifiers. The next sections discuss the
BASIC command in detail as well as the command qualifiers available.

3.1.1 BASIC Command

When you compile your source program, use the BASIC command, which has
the following format:

BASIC [/qualifier...][file specification [/qualifier..]],...

Developing BASIC Programs at the DCL Command Level 3-1

Developing BASIC Programs at the DCL Command Level
3.1 Compiling a BASIC Program

/qualifier

Indicates a specific action to be performed by the compiler on all files or specific
files listed. When a qualifier appears directly after the BASIC command, it
affects all files listed.

file specification

Indicates the name of the input source file that contains the program or
module to be compiled. You are not required to specify a file extension; the
BASIC compiler assumes the default file type .BAS.

In VAX BASIC, if you enter the command BASIC without a file specification,
you enter the interactive VAX BASIC Environment. Alpha BASIC does not
support the Environment. For more information about the Environment, see
Chapter 2.

Most of the command qualifiers to the BASIC command affect all files specified
in the command line, no matter where the qualifiers are placed; these are
called global qualifiers. However, the qualifiers /LISTING, /OBJECT,
/IDIAGNOSTICS, and /ANALYSIS_DATA are positional qualifiers; that is,
depending on their position in the command line, they can affect all or only
some of the specified files. The rules for positional qualifiers are as follows:

= If the positional qualifier is located directly following the command name,
it affects all the specified files.

= If the file specifications are separated by commas, then any positional
qualifier directly following a file specification affects only that file.

= If the file specifications are separated by plus signs, then any positional
qualifier directly following a list of file specifications affects only the
resulting appended file.

= The rightmost qualifier overrides any conflicting qualifier previously
specified in the command line.

The placement of these positional qualifiers causes BASIC to produce or not
produce listing files, object files, and diagnostics files. For example:

$ BASIC/LIST/OBJ PROG1/NOOBJ/DIAG,PROG2+PROG3/NOLIST

This command does the following:

e Compiles PROG1 and produces a listing file called PROGL.LIS
= Produces no object file for PROG1

= Produces a diagnostics file for PROG1 called PROG1.DIA

= Appends PROG2 and PROG3 for compilation, producing a temporary
source file called PROG2

3-2 Developing BASIC Programs at the DCL Command Level

Developing BASIC Programs at the DCL Command Level
3.1 Compiling a BASIC Program

e Compiles the new PROG2 and produces an object file called PROG2.0BJ
= Produces no listing file for the new PROG2

VAX BASIC requires that source files using the plus sign (+) to append source
files, use line numbers within the files, or an error message is printed.

Alpha BASIC does not require line numbers in either of the source files.
The "+" operator is treated as an OpenVMS append operator. Alpha BASIC
appends and compiles the separate files as if they were a single source file.

3.1.2 BASIC Command Qualifiers

The following list shows the BASIC command qualifiers and their defaults. A
description of each qualifier follows the list.

Qualifiers marked by an asterisk (*) are not supported by Alpha BASIC
with the following exception: /[NO]JFLAG[=(DECLINING)]. Alpha BASIC
does support the DECLINING option of the /FLAG qualifier but not the
BP2COMPATIBILITY or AXPCOMPATIBILITY options.

The qualifiers that are "declining features” and no longer recommended are
separately described in Section 3.1.3.

Qualifiers marked by a double asterisk (**) are not supported by VAX BASIC,
with two exceptions: /[NOJOPTIMIZE, which VAX BASIC supports without
any level options; and /[NOJWARNINGS, which VAX BASIC supports without
the [NOJALIGNMENT option but with the other options.

Default

/INOANALYSIS_DATA
/NOANSI_STANDARD
/INOAUDIT

Command Qualifier

/INOJANALYSIS_DATA [= file specification]
/[NOJANSI_STANDARD*

/[NOJAUDIT [= text-entry]

/[NO]JCHECK [= (check-clause,...)]
/[NO]JCROSS_REF [= [NOJKEYWORDS]
/[NO]DEBUG [= (debug-clause,...)]
/IDECIMAL_SIZE = (d,s)
/INO]DEPENDENCY_DATA
/[INO]DESIGN*

/INO]DIAGNOSTICS [= file specification]
[[NOJFLAG [= (flag-clause,...)]*

/INTEGER_SIZE = data-type
/[INO]JLINES

/[NOJLISTING [= file specification]
/INOJMACHINE_CODE
/[NO]JOBJECT [= file specification]

Developing BASIC Programs at the DCL Command Level

/CHECK=(BOUNDS,OVERFLOW)
INOCROSS_REF
/DEBUG=(TRACEBACK,SYMBOLS)
IDECIMAL_SIZE=(15,2)
/INODEPENDENCY_DATA
/NODESIGN

/NODIAGNOSTICS

/FLAG = (NODECLINING,
NOBP2COMPATIBILITY,
NOAXPCOMPATIBILITY)
/INTEGER_SIZE = LONG

ILINES (VAX) /NOLINES (DEC)
/INOLISTING (from terminal) /LISTING (batch)
/INOMACHINE_CODE
/OBJECT

3-3

Developing BASIC Programs at the DCL Command Level
3.1 Compiling a BASIC Program

/INOJOLD_VERSION[=CDD_ARRAYS] /NOOLD_VERSION
/[NO]JOPTIMIZE[=level=n]** /OPTIMIZE=level=4
/REAL_SIZE = data-type /REAL_SIZE = SINGLE
/INOJROUND_DECIMAL /INOROUND_DECIMAL
/ISCALE =n /ISCALE =0
/[NO]SEPARATE_COMPILATION** /INOSEPARATE_COMPILATION
/[NOJSHOW [= (show-item,...)] /SHOW
/[INO]SYNCHRONOUS_EXCEPTIONS** /INOSYNCHRONOUS_EXCEPTIONS
/[NO]JSYNTAX_CHECK* INOSYNTAX_CHECK
/ITYPE_DEFAULT = default-clause /ITYPE_DEFAULT = REAL
/VARIANT = int-const IVARIANT =0
/[INOJWARNINGS [= (warn-clause,...) J** /WARNINGS = (INFORMATIONALS,
WARNINGS,
NOALIGNMENT)

/[NOJANALYSIS_DATA [= file specification |

/NOANALYSIS_DATA (default)

The /ANALYSIS_DATA qualifier generates a file containing data analysis
information. This file has the file type .ANA. The Source Code Analyzer (SCA)
library uses these files to display cross-reference information and to analyze
source code.

Remarks
1. SCA must be installed.
2. IANALYSIS_DATA cannot be used with /ANSI_STANDARD.

/[NOJANSI_STANDARD

/INOANSI_STANDARD (default)

The /ANSI_STANDARD qualifier causes the compiler to allow only valid ANSI
Minimal BASIC statements and to compile programs according to the ANSI
Minimal BASIC rules. It also allows extensions and implementation-defined
features. For more information about ANSI standard BASIC, see the Compaq
BASIC for OpenVMS Alpha and VAX Systems Reference Manual.

Remarks
1. Alpha BASIC does not support this qualifier.
2. /ANSI_STANDARD cannot be used with /ANALYSIS_DATA.

3—-4 Developing BASIC Programs at the DCL Command Level

Developing BASIC Programs at the DCL Command Level
3.1 Compiling a BASIC Program

| strlit
/[INOJAUDIT [= {ﬁmspmﬁmmmn }]

/NOAUDIT (default)

The /AUDIT qualifier causes the compiler to include a history entry in
CDD/Repository when extracting a CDD/Repository definition. You can specify
either a string literal or a file specification with the /AUDIT qualifier. If you
specify a string literal, BASIC includes it as part of the history entry. If

you specify a file specification, BASIC includes up to the first 64 lines of the
specified file. When you specify /AUDIT, BASIC also includes the following
information about the CDD/Repository record extraction in the history entry:

= The name of the program module making the extraction

= The time and date of the extraction

< A note that access was made by way of a BASIC program

= A note that the access was an extraction

= The username and UIC of the process accessing CDD/Repository
Remarks

1. /NOAUDIT causes the compiler not to include a history entry in
CDD/Repository when extracting a CDD/Repository definition.

[NOJBOUNDS
[NOJOVERFLOW [=([NO]INTEGER,
/INOJCHECK [= ([INOIDECIMAL)] ¢ - - -)]
ALL
NONE

/CHECK=(BOUNDS,OVERFLOW) (default)
The /ICHECK qualifier causes the compiler to test for arithmetic overflow and
for array references outside array boundaries when the program executes.

Remarks

1. In Alpha BASIC, specifying /CHECK=NOBOUNDS causes bounds checking
not to be performed on array parameters received by descriptor.

2. /ICHECK=NOBOUNDS should only be used for thoroughly debugged
programs and when execution time is critical. The program is smaller
and runs faster, but no error is signaled for an array reference outside the
array boundaries. The program might get a memory management or access
violation error at run time.

Developing BASIC Programs at the DCL Command Level 3-5

Developing BASIC Programs at the DCL Command Level
3.1 Compiling a BASIC Program

3. /ICHECK=0OVERFLOW enables checking for integers and packed decimal
numbers.

4. |CHECK=NOOVERFLOW disables overflow checking.

INOCHECK causes the compiler not to test for arithmetic overflow or for
array references outside array boundaries when the program executes.

6. /CHECK=ALL is the same as /CHECK=(BOUNDS, OVERFLOW).
7. ICHECK = NONE is the same as INOCHECK.

/[NOJCROSS_REFERENCE [= [NOJKEYWORDS]

/INOCROSS_REFERENCE (default)

The /ICROSS_REFERENCE qualifier causes the compiler to generate a cross-
reference listing. The cross-reference list shows program symbols, classes, and
the program lines in which they are referenced.

Remarks

1. /CROSS_REFERENCE=KEYWORDS specifies that the cross-reference
listing includes all references to BASIC keywords. In Alpha BASIC, if the
/LIST qualifier is not specified as well, /CROSS_REFERENCE is ignored.

2. The default for /CROSS_REFERENCE is NOKEYWORDS. See Chapter 17
for more information about cross-reference listings.

3. /INOCROSS REFERENCE specifies that no cross-reference listing be

produced.
[NO]SYMBOLS
/INOJDEBUG | = ([NOJTRACEBACK Y
ALL
NONE

/DEBUG = (TRACEBACK,SYMBOLS) (default)

The /DEBUG qualifier causes the compiler to provide information for the
OpenVMS Debugger and the system run-time error traceback mechanism.
Neither TRACEBACK nor SYMBOLS affects a program’s executable code. For
more information about debugging, see Chapter 4.

3-6 Developing BASIC Programs at the DCL Command Level

Developing BASIC Programs at the DCL Command Level
3.1 Compiling a BASIC Program

Remarks

1. /NODEBUG causes the compiler to suppress information for the OpenVMS
Debugger and the system run-time error traceback mechanism.

2. /DEBUG = ALL is the same as /IDEBUG = (TRACEBACK,SYMBOLS).
3. /DEBUG = NONE is the same as /INODEBUG.

IDECIMAL_SIZE = (d,s)

/IDECIMAL_SIZE = (15,2) (default)

The /DECIMAL_SIZE qualifier lets you specify the default size for packed
decimal data. You specify the total number of digits in the number and the
number of digits to the right of the decimal point.

/IDECIMAL_SIZE = (15,2) is the default. This default decimal size applies to
all decimal variables for which the total number of digits and digits to the
right of the decimal point are not explicitly declared. See the Compag BASIC
for OpenVMS Alpha and VAX Systems Reference Manual for more information
about packed decimal numbers.

/[NO]DEPENDENCY_DATA

/INODEPENDENCY_DATA (default)
The /IDEPENDENCY_DATA qualifier generates a compiled module entity in
the CDD$DEFAULT for each compilation unit.

Remarks

1. A compiled module entity is generated only if CDD/Plus Version 4.0 or
higher or CDD/Repository Version 5.0 or higher is installed on your system
and if your current CDD$DEFAULT is a CDO-format dictionary.

2. You must specify this qualifier if you want %INCLUDE %FROM %CDD
and %REPORT %DEPENDENCY directives to establish dependency
relationships.

3. /NODEPENDENCY_DATA causes the compiler not to generate a compiled
module entity.

COMMENTS
/INOIDESIGN [= ({ PLACEHOLDERS } v)]

Developing BASIC Programs at the DCL Command Level 3-7

Developing BASIC Programs at the DCL Command Level
3.1 Compiling a BASIC Program

/NODESIGN (default)

The /DESIGN qualifier enables Program Design Facility (PDF) processing.
Therefore, if you specify the /DESIGN qualifier on the BASIC command line,
the BASIC compiler recognizes PDF placeholders and comments as valid
program elements.

Remarks
1. Alpha BASIC does not support this qualifier.

2. Using /IDESIGN=PLACEHOLDERS on Alpha BASIC, causes an -E- level
error message.

3. The Compaq Language-Sensitive Editor and Source Code Analyzer must be
installed on your system.

4. If you specify the /ANALYSIS _DATA qualifier, the compiler includes
information about comments and placeholders in the analysis data file.

5. /DESIGN=COMMENTS enables comment processing.

6. /DESIGN=PLACEHOLDERS enables placeholder processing in place of
BASIC syntax.

7. If you specify the /IDESIGN qualifier but do not select an option, the default
is IDESIGN=(COMMENTS,PLACEHOLDERS); otherwise, the default is
/INODESIGN.

/[NO]DIAGNOSTICS [= file specification |

/NODIAGNOSTICS (default)

The /DIAGNOSTICS qualifier creates a diagnostics file containing compiler
messages and diagnostic information. The diagnostics file is used by LSE to
display diagnostic error messages and to position the cursor on the line and
column where a source error exists.

Remarks
1. The Language-Sensitive Editor (LSE) must be installed.

2. If you do not supply a file specification with the /IDIAGNOSTICS qualifier,
the diagnostics file has the same name as its corresponding source file
and the file type .DIA. All other file specification attributes depend
on the placement of the qualifier in the command. See the OpenVMS
documentation set for more information.

3. /INODIAGNOSTICS specifies that no diagnostics file is created.

3-8 Developing BASIC Programs at the DCL Command Level

Developing BASIC Programs at the DCL Command Level
3.1 Compiling a BASIC Program

[NOJAXPCOMPATIBILITY
[NO]BP2COMPATIBILITY

/INOJFLAG [= ({ [NO]DECLINING coo)]
ALL
NONE

/[FLAG = (NODECLINING,NOBP2COMPATIBILITY,NOAXPCOMPATIBILITY)
(default)

The /FLAG qualifier lets you specify whether BASIC warns you about declining
features and compatibility with PDP-11 BASIC-Plus-2 and Alpha BASIC.

Remarks

1. /FLAG = (AXPCOMPATIBILITY) is not supported by Alpha BASIC. In
VAX BASIC, it issues a warning message about VAX BASIC features not
supported in Alpha BASIC.

2. IFLAG = (BP2COMPATIBILITY) is not supported by Alpha BASIC. In VAX
BASIC, it causes the compiler to send a warning message about declining
features and incompatibility with PDP-11 BASIC-Plus-2.

3. /NOFLAG causes the compiler to issue no warnings about declining
features and compatibility with PDP-11 BASIC-Plus-2.

4. /FLAG = ALL is the same as /[FLAG = (BP2COMPATIBILITY,DECLINING,
AXPCOMPATIBILITY).

5. /FLAG = NONE is the same as /INOFLAG.

BYTE
WORD
LONG
QUAD

/INTEGER_SIZE =

/INTEGER_SIZE = (LONG) (default)
The /INTEGER_SIZE qualifier lets you specify the default size for integer
data.

Remarks

1. The default integer size (LONG) applies to all integer variables whose data
type is not explicitly declared. See the Compaq BASIC for OpenVMS Alpha
and VAX Systems Reference Manual for more information about integer
data types.

2. The QUAD option is not available in VAX BASIC.

Developing BASIC Programs at the DCL Command Level 3-9

Developing BASIC Programs at the DCL Command Level
3.1 Compiling a BASIC Program

/[NOJLINES
JLINES (VAX BASIC default)

/NOLINES (Alpha BASIC default)

The /LINES qualifier makes line number information available for the
ERL function and the BASIC error reporter. In VAX BASIC, the RESUME
statement with no target requires the /LINES qualifier, also.

Remarks

1. In VAX BASIC, if your program contains a RESUME statement with no
target or a reference to the error-handling function ERL, the compiler
overrides NOLINES and signals “ERL overrides NOLINE” or “RESUME
overrides NOLINE.” Note that the BASIC error-reporting facility is
separate from that of system traceback.

2. INOLINES causes line number information to be unavailable for the ERL
function, the RESUME statement with no target (VAX BASIC only), and
the BASIC error reporter. Specifying /INOLINES makes your program run
faster and reduces program size. However, specifying /INOLINES causes
the following restrictions to be in effect:

e You cannot use RESUME without a line number (VAX BASIC only).
= You cannot use the ERL function.

= No BASIC line number is given in run-time error messages.
/[NO]JLISTING [= file specification]
/LISTING (default in batch mode)

/NOLISTING (default in interactive mode)
The /LISTING qualifier causes BASIC to produce a source listing file.

Remarks

1. /LISTING = file specification produces a file with an explicit file
specification. Omitting the file specification produces a listing file with
the same name as its corresponding source file and a file type of .LIS.

2. All other file specification attributes depend on the placement of the
qualifier in the command. See the OpenVMS User’s Manual for more
information.

3. /LISTING only controls whether or not the compiler produces a listing file
and is the default in batch mode.

3-10 Developing BASIC Programs at the DCL Command Level

Developing BASIC Programs at the DCL Command Level
3.1 Compiling a BASIC Program

4. /SHOW controls which parts of the listing are produced.

5. /NOLISTING specifies that no source listing file be produced and is the
default at a terminal.

/[NOJMACHINE_CODE

/INOMACHINE_CODE (default)
The IMACHINE_CODE qualifier specifies that the listing file includes the
compiler-generated object code.

Remarks

1. /MACHINE_CODE specifies that the compiler include a listing of the
compiler-generated object code in the listing file. In Alpha BASIC, if the
/ILISTING qualifier is not specified as well, MACHINE is ignored.

2. /INOMACHINE_CODE specifies that the listing file not include compiler-
generated object code.

/[NOJOBJECT [= file specification]

/OBJECT (default)

The /OBJECT qualifier causes the compiler to produce an object module and
optionally specifies its file name. By default, the compiler generates object files
as follows:

= If you specify one source file, BASIC generates one object file.

< If you specify multiple source files separated by plus signs (+), BASIC
appends the files and generates one object file.

= If you specify multiple source files separated by commas (,), BASIC
compiles and generates a separate object file for each source file.

e You can use both plus signs and commas in the same command line to
produce different combinations of appended and separated object files.

Remarks

1. /OBJECT = file specification produces an object file with an explicit file
specification. Omitting file specification causes the compiler to produce
an object file having the same name as its corresponding source file and
the file type .OBJ. All other file specification attributes depend on the
placement of the qualifier in the command. See the OpenVMS User’s
Manual for more information.

Developing BASIC Programs at the DCL Command Level 3-11

Developing BASIC Programs at the DCL Command Level
3.1 Compiling a BASIC Program

2. /INOOBJECT suppresses the creation of an object file. During the early
stages of program development, you might find it helpful to suppress the
production of object files until your source program compiles without errors.

/[NOJOLD_VERSION[=CDD_ARRAYS]

/NOOLD_VERSION (default)

The /OLD_VERSION qualifier causes the compiler to change the lower bound
to zero and adjusts the upper bound of the array. For example,

Array 2:5 in CDD/Repository is translated by the compiler to be an array
with a lower bound of 0 and an upper bound of 3. The compiler issues an
informational message to confirm the array bounds.

The /INOOLD_VERSION qualifier causes the compiler to extract an array from
the CDD/Repository with the bounds as specified in the data definition. For
example, Array 2:5 in CDD/Repository is translated by the compiler to be an
array with a lower bound of 2 and an upper bound of 5.

Remarks

1. /OLD_VERSION[=CDD_ARRAYS] is provided for compatibility with
previous versions of BASIC.

2. CDD/Repository assumes a default lower bound of 1, if none is specified.
Therefore, if no lower bound is specified, the compiler translates the
CDD/Repository array to have a lower bound of 1. For example, Array 5 in
CDD/Repository is translated by BASIC to be an array with a lower bound
of 1 and an upper bound of 5.

/[NOJOPTIMIZE[=LEVEL= n]

/OPTIMIZE=LEVEL=4 (default)

The /OPTIMIZE qualifier causes the compiler to optimize the program to
generate more efficient code for optimum run-time performance. Specifying
INOOPTIMIZE causes the compiler to perform minimal optimizations.

The level options are available in Alpha BASIC only. The qualifier has no
options in VAX BASIC.

The following list describes the level options:
= 0 has the same effect as INOOPTIMIZE. Most optimizations are turned off.
= 1 has some optimizations (such as instruction scheduling).

= 2 adds more optimizations (such as loop unrolling and split lifetime
analysis) to those in level 1.

= 3 adds more optimizations.

3-12 Developing BASIC Programs at the DCL Command Level

Developing BASIC Programs at the DCL Command Level
3.1 Compiling a BASIC Program

e 4 is the default level. /OPTIMIZE=LEVEL=4 is equivalent to /OPTIMIZE
or not specifying the qualifier. Level 4 is the maximum optimization level.

Remarks
1. VAX BASIC does not support the [=LEVEL=n] option.

2. Specify INOOPTIMIZE if you specify /IDEBUG when compiling a program.
INOOPTIMIZE expedites and simplifies the debugging session by putting
the machine code in the same order as the lines in the source program.
Optimizations can cause unexpected and confusing behavior in a debugging
session.

3. Specifying /OPTIMIZE, the default, usually makes programs run faster.
However, using /OPTIMIZE produces extra instructions to perform the
optimization, which might result in larger object modules and longer
compile times than the /NOOPTIMIZE qualifier.

4. To speed compilations during program development, compile with
/INOOBJECT qualifier to check syntax, with /NOOPTIMIZE to check
for correct execution, and finally with /OPTIMIZE for the final check.

SINGLE

DOUBLE
GFLOAT
/REAL_SIZE = { HFLOAT
SFLOAT
TFLOAT
XFLOAT

/IREAL_SIZE = SINGLE (default)
The /REAL_SIZE qualifier specifies the default size for floating-point data.

Remarks

1. Alpha BASIC does not support HFLOAT. If HFLOAT is specified, the
program is compiled but causes an -E-level error message, and no .OBJ file
is produced.

2. VAX BASIC does not support the IEEE floating-point types, which are
SFLOAT, TFLOAT, and XFLOAT. These Alpha BASIC types are available
for OpenVMS Alpha Version 7.1 or higher.

3. The default floating-point size (SINGLE) applies to all floating-point
variables whose size is not explicitly declared.

See the Compag BASIC for OpenVMS Alpha and VAX Systems Reference
Manual for more information about floating-point data types.

Developing BASIC Programs at the DCL Command Level 3-13

Developing BASIC Programs at the DCL Command Level
3.1 Compiling a BASIC Program

/[NOJROUND_DECIMAL

/NOROUND_DECIMAL (default)
The /ROUND_DECIMAL qualifier causes the compiler to round packed decimal
numbers rather than truncate them.

The /INOROUND_DECIMAL qualifier causes the compiler to truncate packed
decimal numbers rather than round them.

The /ROUND_DECIMAL qualifier causes the INTEGER function to round
rather than truncate the decimal part.

/ISCALE = n

/SCALE = 0 (default)

The /SCALE qualifier specifies a scale factor from zero to six, inclusive. The
scale factor affects only double-precision numbers. The SCALE qualifier helps
to control accumulated round-off errors by multiplying floating-point values by
10 raised to the scale factor before storing them in variables. It is ignored for
all but double-precision (DOUBLE) floating-point numbers.

Remarks

The /ISCALE qualifier is provided for compatibility with existing programs and
with other implementations of BASIC. It is recommended that you do not use
this feature for new program development. Accumulated round-off errors can
be better controlled with packed decimal numbers. See the Compag BASIC
for OpenVMS Alpha and VAX Systems Reference Manual for more information
about packed decimal numbers.

/INO]SEPARATE_COMPILATION

INOSEPARATE_COMPILATION (default)

The /SEPARATE_COMPILATION qualifier causes the compiler to place indi-
vidual compilation units in separate modules in the object file. INOSEPARATE_
COMPILATION, the default, groups individual compilation units in a source
file as a single module in the object file.

When creating modules for use in an object library, consider using /SEPARATE_
COMPILATION to minimize the size of the routines included by the linker as
it creates the executable image. /SEPARATE_COMPILATION also reduces

the compiler virtual memory requirements when a source contains several
compilation units.

3-14 Developing BASIC Programs at the DCL Command Level

Developing BASIC Programs at the DCL Command Level
3.1 Compiling a BASIC Program

Remarks

1. VAX BASIC does not support this qualifier.

2. ISEPARATE_COMPILATION causes the Alpha BASIC compiler to place
each routine in a separate module within the output object, which is
consistent with VAX BASIC behavior.

3. /INOSEPARATE_COMPILATION, in most cases, allows more interprocedu-
ral optimizations.

[NO]CDD_DEFINITIONS
[NOJENVIRONMENT
[NOJINCLUDE

/INOJSHOW [= ({ [NOJMAP coo)]
[NOJOVERRIDE
ALL
NONE

/SHOW = (CDD_DEFINITIONS, ENVIRONMENT, INCLUDE, MAP, NOOVERRIDE)

(default)

The /[SHOW qualifier determines which parts of the compilation listing are

created.

Remarks

1. In Alpha BASIC, the size value for dynamically mapped arrays is the

size of the actual array. In VAX BASIC, the size value is the size of the
descriptors.

/LISTING must be specified for /SHOW to be effective.

CDD_DEFINITIONS controls whether the translation of a CDD/Repository
record is displayed in the listing.

ENVIRONMENT lets you display all defaults that were in effect when the
program was compiled. This is the compilation listing equivalent of the
SHOW command in the environment.

INCLUDE controls whether files accessed with the %INCLUDE directive
are displayed in the listing.

MAP determines whether the listing contains an allocation map. The
allocation map lists all program variables, their size, and their data type.

OVERRIDE helps you debug code by disabling the effect of the %NOLIST
directive.

INOSHOW causes the compiler to display only the source listing.

Developing BASIC Programs at the DCL Command Level 3-15

Developing BASIC Programs at the DCL Command Level
3.1 Compiling a BASIC Program

9. /SHOW = ALL is the same as /SHOW = (CDD_DEFINITIONS,
ENVIRONMENT, INCLUDE,MAP, OVERRIDE).

10. /SHOW = NONE is the same as /INOSHOW.
/[NO]SYNCHRONOUS_EXCEPTIONS

/INOSYNCHRONOUS_EXCEPTIONS (default)

In Alpha BASIC, the default /NOSYNCHRONOUS_EXCEPTIONS qualifier
allows the compiler to reorder the execution of certain arithmetic instructions
to improve performance on the Alpha hardware. If a program generates an
arithmetic exception, such as an overflow or divide by zero, certain statements
surrounding the offending statement may or may not be executed as a result of
this reordering. Consider this example:

A=B
C=DI/E
G=F

If the value of E is zero, the second statement will generate a divide by zero
error. As a result of instruction reordering, it is possible that the assignment
A = B will not take place. Further, it is possible that the assignment G = F will
take place even though the previous statement generated an error.

The /SYNCHRONOUS_EXCEPTIONS qualifier disables reordering and
produces compatible behavior with VAX BASIC. Use this qualifier for programs
that rely on arithmetic exceptions to occur at precise times during program
execution.

The /SYNCHRONOUS _EXCEPTIONS qualifier impacts only arithmetic
exceptions and variable assignments in the immediate area of the excepting
statement.

Very few programs should require the /SYNCHRONOUS_EXCEPTIONS
qualifier to produce correct results.

Remarks
1. VAX BASIC does not support this qualifier.

/[NO]SYNTAX_CHECK

/INOSYNTAX_CHECK (default)

The /ISYNTAX qualifier causes the compiler to perform line-by-line syntax
checking. When syntax checking is enabled, BASIC checks the syntax of every
text line as you press Return.

3-16 Developing BASIC Programs at the DCL Command Level

Developing BASIC Programs at the DCL Command Level
3.1 Compiling a BASIC Program

Remarks
1. Alpha BASIC does not support this qualifier.

2. INOSYNTAX CHECK causes the compiler to suppress line-by-line syntax
checking. When syntax checking is disabled, the compiler does not perform
syntax checking until you COMPILE or RUN the program.

INTEGER
REAL

DECIMAL
EXPLICIT

ITYPE_DEFAULT =

ITYPE_DEFAULT = REAL (default)
The /TYPE_DEFAULT qualifier lets you specify the default data type for
numeric variables.

Remarks

1. EXPLICIT specifies that all program variables must be explicitly declared
in DECLARE, EXTERNAL, COMMON, MAP, or DIM statements.

2. INTEGER, REAL, or DECIMAL specify that only variables and data which
are not explicitly declared default to integer, real, or packed decimal.

3. INTEGER_SIZE, REAL_SIZE, and DECIMAL_SIZE cause the compiler to
specify the actual size of variables and data.

/IVARIANT = int-const

The /VARIANT qualifier lets you specify the value associated with the lexical
function %VARIANT. See Chapter 17 for more information about VARIANT
and the %VARIANT lexical function.

Remarks

1. If VARIANT is not specified, the default value is 0.

2. If IVARIANT is specified without a value, the default is 1.
[NOJWARNINGS
[NOJINFORMATIONALS

/INOJWARNINGS [= ({ [NOJALIGNMENT (Alpha BASIC only) .

ALL
NONE

IWARNINGS = (INFORMATIONAL,WARNINGS) (VAX BASIC default)

Developing BASIC Programs at the DCL Command Level 3-17

Developing BASIC Programs at the DCL Command Level
3.1 Compiling a BASIC Program

/WARNINGS = (INFORMATIONAL,WARNINGS,NOALIGNMENT) (Alpha BASIC
default)

The /WARNINGS qualifier lets you specify whether BASIC displays
informational and warning messages.

Remarks

1.

Only the ALIGNMENT option is specific to Alpha BASIC. The other options
are supported by both Alpha BASIC and VAX BASIC.

/WARNINGS=NOWARNINGS causes the compiler to display informational
messages but not warning messages.

/WARNINGS=NOINFORMATIONALS causes the compiler to display
warning messages but not informational messages.

INOWARNINGS causes the compiler to suppress any informational or
warning messages.

/WARNINGS=ALIGNMENT causes the Alpha BASIC compiler to flag all
occurrences of non-naturally aligned RECORD fields, variables within
COMMONSs and MAPs, and RECORD arrays.

An aligned data item starts on an address that is natural for that
data type. Unaligned data accesses on Alpha can significantly reduce
performance. Table 3-1 lists the natural boundaries for the supported data

types.

Table 3-1 Natural Boundaries For Supported Alpha BASIC Data Types

Data Type Natural Boundary
BYTE BYTE

DECIMAL BYTE

DOUBLE QUADWORD
DYNAMIC STRING BYTE

GFLOAT QUADWORD

LONG LONGWORD
QUAD QUADWORD
RECORD Depends on contents
RFA BYTE

(continued on next page)

3-18 Developing BASIC Programs at the DCL Command Level

Developing BASIC Programs at the DCL Command Level
3.1 Compiling a BASIC Program

Table 3—1 (Cont.) Natural Boundaries For Supported Alpha BASIC Data Types

Data Type Natural Boundary
SFLOAT LONGWORD
SINGLE LONGWORD
STATIC STRING BYTE

TFLOAT QUADWORD
WORD WORD
XFLOAT OCTAWORD

/WARNINGS=NOALIGNMENT, the Alpha BASIC default, causes the
compiler not to issue any warning messages about unaligned data.

The Alpha BASIC compiler naturally aligns all local variables and arrays,
but it is the responsibility of the BASIC programmer to naturally align
COMMONSs, MAPS, and RECORDs. The /IWARNING=ALIGNMENT
qualifier flags all occurrences of non-naturally aligned items. This helps
the programmer identify and correct unaligned entities.

An entity can be unaligned in the following ways:

The entity does not start on a natural boundary for its data type. There
are several actions a programmer can take to resolve this:

— Rearrange the RECORD, MAP, or COMMON so that all entities
start on natural boundaries.

— Force proper alignment with fill items, as needed.

Note that the natural alignment for a RECORD is equal to the largest
alignment required by any of its fields. As an example, if a RECORD
has a byte, long, and double field, the alignment of the RECORD would
be quadword.

For arrays of RECORDs and GROUPs, items can be unaligned if

the size of a RECORD or GROUP is not a multiple of the alignment
requirements of that RECORD or GROUP. For example, if a RECORD
has a natural alignment of quadword, the size of the RECORD must be
a multiple of eight. Otherwise, all array elements after the first might
start on an unaligned boundary. Avoid unaligned accesses by padding
the end of the RECORD with fill items.

Developing BASIC Programs at the DCL Command Level 3-19

Developing BASIC Programs at the DCL Command Level
3.1 Compiling a BASIC Program

6. For VAX BASIC, /IWARNINGS = ALL is the same as /WARNINGS =
(INFORMATIONAL, WARNINGS). For Alpha BASIC, /IWARNINGS =
ALL is the same as /WARNINGS = (INFORMATIONAL, WARNINGS,
ALIGNMENT).

7. /WARNINGS = NONE is the same as /NOWARNINGS.

3.1.3 Declining Qualifiers and Their Recommended Replacements
The following qualifiers are declining features:

/IBYTE
/DOUBLE
IGFLOAT
IHFLOAT
/ILONG
ISINGLE
ITIE
/WORD

It is recommended that you replace them with newer qualifiers, as follows:

Old Qualifier Recommended Replacement
/IBYTE /[INTEGER_SIZE=BYTE
/DOUBLE /REAL_SIZE=DOUBLE
/IGFLOAT /IREAL_SIZE=GFLOAT
/HFLOAT /IREAL_SIZE=HFLOAT
/LONG /[INTEGER_SIZE=LONG
/SINGLE /IREAL_SIZE=SINGLE
/WORD /[INTEGER_SIZE=WORD

See the description of the /[[NOJFLAG=[NO]DECLINING qualifier in this
chapter. Also see the descriptions of the /INTEGER_SIZE and /REAL_SIZE
qualifiers in this chapter. The descriptions of the old qualifiers are in the
Compaqg BASIC for OpenVMS Alpha and VAX Systems Reference Manual.

3-20 Developing BASIC Programs at the DCL Command Level

Developing BASIC Programs at the DCL Command Level
3.1 Compiling a BASIC Program

3.1.4 Compiler Listings

A compiler listing provides information that can help you debug your BASIC
program. To generate a listing file, specify the /LISTING qualifier when you
compile your BASIC program interactively. For example:

$ BASICILISTING prog-name

If the program is compiled as a batch job, the listing file is created by default;
specify the INOLISTING qualifier to suppress creation of the listing file. By
default, the name of the listing file is the name of the source program followed
by the file type .LIS. You can include a file specification with the /LISTING
qualifier to override this default.

A compiler listing generated by the /LISTING qualifier has the following major
sections:

= Source Program Listing

The source program section contains the source code and line numbers
generated by the compiler.

e Cross Reference

The cross reference section is present if the /CROSS REFERENCE
qualifier was specified. It contains cross references of variables, symbols,
and so forth.

= Allocation Map

The allocation map section contains summary information about program
sections, variables, and arrays.

e Qualifier Summary

The qualifier summary section lists the qualifiers used with the BASIC
command and the compilation statistics.

e Machine Code

The machine code section is present if the /MACHINE_CODE qualifier was
specified. It contains a symbolic representation of the machine instructions
generated for the program section.

Developing BASIC Programs at the DCL Command Level 3-21

Developing BASIC Programs at the DCL Command Level
3.2 Linking a BASIC Program

3.2 Linking a BASIC Program

On OpenVMS systems, the OpenVMS Linker (linker) simplifies the job of each
language compiler because the logic needed to resolve symbolic references need
not be duplicated. The main advantage to a system that has a linker, however,
is that individual program modules can be separately written and compiled,
and then linked together. This includes object modules produced by different
language compilers.

The linker performs the following functions:

= Resolves local and global symbolic references in the object code
< Assigns values to the global symbolic references

= Signals an error message for any unresolved symbolic reference
= Produces an executable image

When you link a program in development, in order to enable debugging,

use the /DEBUG qualifier with the LINK command. The /DEBUG qualifier
appends to the image all the symbol and line number information appended to
the object modules plus information about global symbols, and forces the image
to run under debugger control when you execute it (unless you then specify
/NODEBUG).

The LINK command produces an executable image by default; however, you
can also use the LINK command to obtain shareable images and system
images. The /ISHAREABLE qualifier directs the linker to produce a shareable
image; the /ISYSTEM qualifier directs the linker to produce a system image.
See Section 3.2.2 for a complete description of these and other LINK command
qualifiers.

For a complete discussion of the OpenVMS Linker, see the OpenVMS Linker
Utility Manual.
3.2.1 LINK Command

Once you have compiled your source program or module, you link it by using
the DCL command LINK. The LINK command combines your object modules
into one executable image, which can then be executed by the OpenVMS
system. A source program or module cannot run on the OpenVMS system until
it is linked. The format of the LINK command is as follows:

LINK[/command-qualifien... {file specification [/file-qualifier...]},...

3-22 Developing BASIC Programs at the DCL Command Level

Developing BASIC Programs at the DCL Command Level
3.2 Linking a BASIC Program

/command-qualifier
Specifies one or more output file options.

file specification
Specifies the input file or files to be linked.

[file-qualifier
Specifies one or more input file options.

If you specify more than one input file, you must separate the input file
specifications with plus signs (+) or commas (,). By default, the linker creates
an output file with the name of the first input file specified and the file type
.EXE. When you link more than one file, list the file containing the main
program first. This way, the name of your output file will have the same name
as that of your main program module.

The following command line links the object files DANCE.OBJ, CHACHA.OBJ,
and SWING.OBJ to produce one executable image called DANCE.EXE:

$ LINK DANCE.OBJ, CHACHA.OBJ, SWING.OBJ

3.2.2 LINK Command Qualifiers

The LINK command qualifiers can be used to modify linker output, as well as
to invoke the debugging and traceback facilities. Linker output consists of an
image file and an optional map file. Image file qualifiers, map file qualifiers,
and debugging and traceback qualifiers are described in this section.

This section summarizes some of the most commonly used LINK command
qualifiers. For a complete list and description of LINK qualifiers, see the
OpenVMS Linker Utility Manual.

/BRIEF

The /BRIEF qualifier causes the linker to produce a summary of the image’s
characteristics and a list of contributing modules. This qualifier is used with
IMAP.

/[NOJCROSS_REFERENCE

/INOCROSS_REFERENCE (default)

The /CROSS_REFERENCE qualifier causes the linker to produce cross-
reference information for global symbols; the /NOCROSS REFERENCE
qualifier causes the linker to suppress cross-reference information.

/[NO]JDEBUG

Developing BASIC Programs at the DCL Command Level 3-23

Developing BASIC Programs at the DCL Command Level
3.2 Linking a BASIC Program

/NODEBUG (default)

The /DEBUG qualifier causes the linker to include the OpenVMS Debugger
information in the executable image and generates a symbol table; the
INODEBUG qualifier causes the linker to prevent debugger control of the
program. The default is /NODEBUG.

/[[NO]JEXECUTABLE [= file-spec]

/EXECUTABLE (default)

The /[EXECUTABLE qualifier causes the linker to produce an executable image;
the /INOEXECUTABLE qualifier suppresses production of an image file. If a
file-spec is given, the resulting image is given the name of the file-spec.

/FULL

The /FULL qualifier causes the linker to produce a summary of the image’s
characteristics, a list of contributing modules, listings of global symbols by
name and by value, and a summary of characteristics of image sections in the
linked image. This qualifier is used with /MAP.

/[NO]MAP [= file-spec]
INOMAP (default interactive mode)

IMAP (default batch mode)

The /MAP qualifier causes the linker to generate a map file; the /NOMAP
qualifier suppresses the map. If a file-spec is given, the map file is given the
name of the file-spec.

/[NO]SHAREABLE

/INOSHAREABLE (default)
The /ISHAREABLE qualifier causes the linker to create a shareable image; the
INOSHAREABLE qualifier generates an executable image.

/[NOJTRACEBACK

/ITRACEBACK (default)

The /TRACEBACK qualifier causes the linker to generate symbolic traceback
information when error messages are produced; the /NOTRACEBACK qualifier
suppresses traceback information.

3-24 Developing BASIC Programs at the DCL Command Level

Developing BASIC Programs at the DCL Command Level
3.2 Linking a BASIC Program

3.2.3 Linker Input Files

You can specify the object modules to be included in an executable image in
any of the following ways:

= Specify input file specifications for the object modules.

If no file type is specified, the linker assumes that an input file is an object
file with the file type .OBJ.

e Specify one or more object module library files.

You can either specify the name of an object module library with the
/LIBRARY qualifier, or specify the names of object modules contained in
an object module library with the /INCLUDE qualifier. The uses of object
module libraries are described in Section 3.2.5.

= Specify an options file.

An options file can contain additional file specifications for the LINK
command as well as special linker options. You must use the /OPTIONS
qualifier to specify an options file. For more information about options files,
see the OpenVMS Linker Utility Manual.

The linker uses the following default file types for input files:

File File Type
Object module .OBJ
Object library .OLB
Options file .OPT

3.2.4 Linker Output Files

When you enter the LINK command interactively and do not specify any
qualifiers, the linker creates only an executable image file. By default, the
resulting image file has the same file name as the first object module specified,
and the file type .EXE.

In a batch job, the linker creates both an executable image file and a storage
map file by default. The default file type for map files is .MAP.

To specify an alternative name for a map file or image file, or to specify an
alternative output directory or device, you can include a file specification on
the /IMAP or [EXECUTABLE qualifier. For example:

$ LINK UPDATE/MAP=TEST

Developing BASIC Programs at the DCL Command Level 3-25

Developing BASIC Programs at the DCL Command Level
3.2 Linking a BASIC Program

3.2.5 Using an Object Module Library

In a large development effort, the object modules for subprograms are often
stored in an object module library. By using an object module library, you

can make program modules contained in the library available to other
programmers. To link modules contained in an object module library, use

the /INCLUDE qualifier and specify the specific modules you want to link. For
example:

$ LINK GARDEN, VEGGIES/INCLUDE=(EGGPLANT,TOMATO,BROCCOLI,ONION)

This example directs the linker to link the object modules EGGPLANT,
TOMATO, BROCCOLI, and ONION with the main object module GARDEN.

Besides program modules, an object module library can also contain a symbol
table with the names of each global symbol in the library, and the name of the
module in which they are defined. You specify the name of the object module
library containing symbol definitions with the /LIBRARY qualifier. When you
use the /LIBRARY qualifier during a link operation, the linker searches the
specified library for all unresolved references found in the included modules
during compilation.

In the following example, the linker uses the library RACQUETS to resolve
undefined symbols in BADMINTON, TENNIS, and RACQUETBALL.:

$ LINK BADMINTON, TENNIS, RACQUETBALL, RACQUETS/LIBRARY

You can define an object module library, such as LNKS$LIBRARY, to be your
default library by using the DCL command DEFINE. The linker searches
default user libraries for unresolved references after it searches modules and
libraries specified in the LINK command. See the OpenVMS DCL Dictionary
for more information about the DEFINE command.

For more information about object module libraries, see the OpenVMS Linker
Utility Manual.
3.2.6 Linker Error Messages

If the linker detects any errors while linking object modules, it displays
messages indicating the cause and severity of the error. If any error or fatal
error conditions occur (errors with severities of E or F), the linker does not
produce an image file.

3-26 Developing BASIC Programs at the DCL Command Level

Developing BASIC Programs at the DCL Command Level
3.2 Linking a BASIC Program

The messages produced by the linker are descriptive, and you do not usually
need additional information to determine the specific error. Some common
errors that occur during linking are as follows:

An object module has compilation errors.

This error occurs when you attempt to link a module that has warnings
or errors during compilation. You can usually link compiled modules for
which the compiler generated messages, but you should verify that the
modules will actually produce the output you expect.

The input file has a file type other than .OBJ and no file type was specified
on the command line.

If you do not specify a file type, the linker assumes the file has a file type
of .OBJ by default. If the file is not an object file and you do not identify it
with the appropriate file type, the linker signals an error message and does
not produce an image file.

You tried to link a nonexistent module.

The linker signals an error message if you misspell a module name on the
command line or if the compilation contains fatal diagnostics.

A reference to a symbol name remains unresolved.

An error occurs when you omit required module or library names
from the command line and the linker cannot locate the definition

for a specified global symbol reference. For example, a main program
module OCEAN.OBJ calls the subprograms located in object modules
REEF.OBJ, SHELLS.OBJ, and SEAWEED.OBJ. However, the following
LINK command does not reference the object module SEAWEED.OBJ:

$ LINK OCEAN, REEF, SHELLS
This example produces the following error messages:

%LINK-W-NUDFSYMS, 1 undefined symbol

%LINK-I-UDFSYMS, SEAWEED

%LINK-W-USEUNDEF, module "OCEAN" references undefined symbol "SEAWEED"
%LINK-W-DIAGISUED, completed but with diagnostics

If an error occurs when you link modules, you can often correct the error by
reentering the command string and specifying the correct modules or libraries.

See the OpenVMS System Messages and Recovery Procedures Reference Manual
for a complete list of linker messages.

Developing BASIC Programs at the DCL Command Level 3-27

Developing BASIC Programs at the DCL Command Level
3.3 Running a BASIC Program

3.3 Running a BASIC Program

After you link your program, use the DCL command RUN to execute it. The
RUN command has the following format:

RUN [[NOJDEBUG] file-spec [/[NOJDEBUG]

/[NO]DEBUG

The /[NO]DEBUG qualifier is optional. Specify the /DEBUG qualifier to
request the debugger if the image is not linked with it. You cannot use
/DEBUG on images linked with the NOTRACEBACK qualifier. If the image
is linked with the /DEBUG qualifier, and you do not want the debugger to
prompt, use the /NODEBUG qualifier. The default action depends on whether
the file is linked with the /DEBUG qualifier.

file-spec
The name of the file you want to execute.

The following example executes the image SAMPLE.EXE without invoking the
debugger:

$ RUN SAMPLE/NODEBUG
See Chapter 4 for more information about debugging programs.

During program execution, an image can generate a fatal error called an
exception condition. When an exception condition occurs, BASIC displays
an error message. Run-time errors can also be issued by other facilities, such
as the OpenVMS operating system. For more information about run-time
errors, see Appendix B.

3.3.1 Improving Run-Time Performance of Alpha BASIC Programs

OpenVMS Alpha can substantially improve BASIC run-time performance
relative to OpenVMS VAX. In addition to the performance gains that the Alpha
hardware provides, the Alpha BASIC compiler produces highly optimized code.

Even with faster hardware and an optimizing compiler, you can still tune
your code for run-time performance. This section provides recommendations to
consider if further performance improvements are desirable.

To achieve the best performance for your application, it is important to let
both the hardware and the optimizer/code generator take advantage of their
full capabilities. This can be accomplished by minimizing, and in some cases
avoiding, the use of language features and qualifiers that block optimal
program execution.

3-28 Developing BASIC Programs at the DCL Command Level

Developing BASIC Programs at the DCL Command Level
3.3 Running a BASIC Program

3.3.1.1 Data Items
Choose data types and align data items with the following in mind:

Align data items in MAP, COMMON, and RECORD statements. This is
the recommended first step to improve performance. For more information
on alignment, see Section 3.1.2 under /WARNING = ALIGNMENT.

Use LONG or QUAD data items instead of BYTE and WORD; accessing
LONG or QUAD items is faster than BYTE and WORD, which require
multiple hardware instructions.

Use GFLOAT or TFLOAT data items instead of DOUBLE; operations are
faster on GFLOAT and TFLOAT items. Operations on DOUBLE operands
are performed by converting to GFLOAT, performing the operation in
GFLOAT, and converting back to DOUBLE.

Choose packed decimal lengths that are the most efficient while still
meeting the needs of the application. The most efficient sizes are the
default size of 15 digits (which fits exactly in a quadword) and 7 digits
(which fits exactly in a longword). If you use one of these preferred sizes, it
should be aligned on a quadword or longword boundary.

Use packed decimal only when it is the appropriate data type. For
example, do not use packed decimal to specify array subscripts, which
are integers.

Minimize mixed data type expressions, especially when you use packed
decimal.

3.3.1.2 Qualifiers

On your BASIC command line, consider the following when you specify
qualifiers:

Use overflow and bounds checking only if they are needed. (See

Section 3.1.2; bounds checking is needed if your program is not thoroughly
debugged.) Both of these /CHECK options are on by default and will hinder
performance.

The use of the /LINES qualifier can impede optimization. /LINES is
needed in Alpha BASIC only for the ERL function and to print BASIC line
numbers in run-time error messages. /NOLINES is the default in Alpha
BASIC.

The default optimization level, /OPTIMIZATION=LEVEL=4, provides the
highest level of optimization.

Developing BASIC Programs at the DCL Command Level 3-29

Developing BASIC Programs at the DCL Command Level
3.3 Running a BASIC Program

The /ISYNCHRONOUS_EXCEPTIONS qualifier inhibits many optimiza-
tions. For more information on /SYNCHRONOUS EXCEPTIONS, see
Section 3.1.2.

3.3.1.3 Statements
The statements used in a program can affect performance, as follows:

If you use error handling, the default ON ERROR GO BACK has the least
impact on performance. ON ERROR GOTO ({target} and WHEN blocks
have a greater impact. If the application spends a large percentage of time
in one routine, consider writing the routine with default error handling, if
possible.

RESUME without a target impedes optimization. (This applies only to
RESUME statements that do not specify a target.)

A MOVE TO or FIELD statement limits optimizations in the entire routine
(SUB, FUNCTION, or main) where the statement is found. There is no
additional cost for any statement after the first.

OPTION INACTIVE = SETUP can dramatically minimize routine startup
times by omitting RTL calls that initialize and close down routines. For
small BASIC routines, the overhead of these RTL calls can be significant.
Use this option for routines that are frequently called.

If your routine contains any of the following elements, the compiler
provides an informational diagnostic and emits calls to the RTL
initialization and close-down routines.

CHANGE statements

DEF statements

Dynamic string variables
Executable DIM statements
EXTERNAL string functions
MAT statements

MOVE statements for an entire array
ON ERROR statements
READ statements

REMAP statements
RESUME statements
WHEN blocks

String concatenation
Built-in string functions
Virtual arrays

3-30 Developing BASIC Programs at the DCL Command Level

Developing BASIC Programs at the DCL Command Level
3.3 Running a BASIC Program

Routines using OPTION INACTIVE = SETUP cannot perform 1/0O and
have no error-handling capabilities. If an error occurs in such a routine,
the error is resignaled to the calling routine.

Using OPTION INACTIVE = SETUP instructs the compiler not to emit
code to initialize local variables. This also improves run-time performance,
but impacts routines that rely upon the automatic initialization of local
variables.

CONTINUE without a target and RETRY can limit optimizations within
the scope of the WHEN blocks associated with the handler that contains
these statements. This impact can be significant if the handler is
associated with a large WHEN block. The code within the associated
WHEN blocks will be minimally optimized.

Developing BASIC Programs at the DCL Command Level 3-31

A

Using the OpenVMS Debugger with BASIC

This chapter discusses OpenVMS Debugger information that is specific to the
BASIC language. For more information about the OpenVMS Debugger, see
the OpenVMS Debugger Reference Manual. Online help is available during
debugging sessions.

The shortened name Alpha BASIC means Compaq BASIC for OpenVMS Alpha,
and VAX BASIC means Compag BASIC for OpenVMS VAX.

4.1 Overview of the Debugger

A debugger is a tool to help you locate run-time errors quickly. It is used with
a program that has already been compiled and linked successfully, with no
errors reported, but that does not run correctly. For example, the output might
be obviously wrong, the program goes into an infinite loop, or the program
terminates prematurely. The debugger enables you to observe and manipulate
the program’s execution interactively, step by step, until you locate the point at
which the program stopped working correctly.

The OpenVMS Debugger is a symbolic debugger, which means that you can
refer to program locations by the symbols (names) you used for those locations
in your program—the names of variables, routines, labels, and so on. You do
not have to use virtual addresses to refer to memory locations.

The debugger recognizes the syntax, expressions, data typing, and other
constructs of BASIC.

4.2 Compiling and Linking to Prepare for Debugging

The following example shows how to compile and link a BASIC program
(consisting of a single compilation unit named INVENTORY) so that
subsequently you will be able to use the debugger:

$ BASIC/DEBUG INVENTORY
$ LINK/DEBUG INVENTORY

Using the OpenVMS Debugger with BASIC 4-1

Using the OpenVMS Debugger with BASIC
4.2 Compiling and Linking to Prepare for Debugging

The /DEBUG qualifier with the BASIC command instructs the compiler to
write the debug symbol records associated with INVENTORY into the object
module, INVENTORY.OBJ. These records allow you to use the names of
variables and other symbols declared in INVENTORY in debugger commands.
(If your program has several compilation units, you must compile each unit
that you want to debug with the /IDEBUG qualifier.)

The /IDEBUG qualifier with the LINK command instructs the linker to include
all symbol information that is contained in INVENTORY.OBJ in the executable
image. The qualifier also causes the OpenVMS image activator to start the
debugger at run time. (If your program has several object modules, you might
need to specify other modules in the LINK command.)

4.3 Viewing Your Source Code

The debugger provides two methods for viewing source code: noscreen mode
and screen mode. By default when you invoke the debugger, you are in
noscreen mode, but you might find that it is easier to view your source code
with screen mode. Both modes are described in the following sections.

4.3.1 Noscreen Mode

Noscreen mode is the default, line-oriented mode of displaying input and
output. To get into noscreen mode from screen mode, enter SET MODE
NOSCREEN. See the sample debugging session in Section 4.7 for a
demonstration of noscreen mode.

In noscreen mode, you can use the TYPE command to display one or more
source lines. For example, the following command displays line 3 of the module
that is currently executing:

DBG> TYPE 3
3 EXTERNAL SUB TRIPLE &
DBG>

The display of source lines is independent of program execution. You can use
the TYPE command to display source code from a module other than the one
currently executing. In that case, you need to use a directory specification to
specify the module. For example, the following command displays lines 16 to
21 of module TEST:

DBG> TYPE TEST\16:21

4-2 Using the OpenVMS Debugger with BASIC

Using the OpenVMS Debugger with BASIC
4.3 Viewing Your Source Code

4.3.2 Screen Mode

To invoke screen mode, press PF3. In screen mode, by default the debugger
splits the screen into three displays called SRC, OUT, and PROMPT.

--SRC: module SAMPLE$MAIN -scroll-source

1: 10 ISAMPLE
2.
3 EXTERNAL SUB TRIPLE &
4 ,PRINT_SUB
5:
6: WHEN ERROR USE HANDLER 1
> T CALL TRIPLE
8 CALL PRINT_SUB
9:
- OUT -output

stepped to SAMPLESMAIN\%LINE 7

- PROMPT -error-program-prompt
DBG> STEP
DBG>

The SRC display, at the top of the screen, shows the source code of the module
(compilation unit) that is currently executing. An arrow in the left column
points to the next line to be executed, which corresponds to the current location
of the program counter (PC). The line numbers, which are assigned by the
compiler, match those in a listing file.

Note

BASIC line numbers are treated as text by the debugger. In this
chapter, line numbers refer to the sequential line numbers generated
by the compiler. When a program includes or appends code from
another file, the included lines of code are also numbered in sequence
by the compiler. These line numbers are on the extreme left of a listing
file. An explanation of the listing file format is in Chapter 3.

The PROMPT display, at the bottom of the screen, shows the debugger prompt
(DBG>), your input, debugger diagnostic messages, and program output. In
the example, the debugger commands that have been issued are shown.

The OUT display, in the center of the screen, captures the debugger’s output in
response to the commands that you issue.

Using the OpenVMS Debugger with BASIC 4-3

Using the OpenVMS Debugger with BASIC
4.3 Viewing Your Source Code

The SRC and OUT displays are scrollable so that you can see whatever
information scrolls beyond the display window's edge. Press KP8 to scroll
up and KP2 to scroll down. Press KP3 to change the display to be scrolled
(by default, the SRC display is scrolled). Scrolling a display does not affect
program execution.

If the debugger cannot locate source lines for the currently executing module,
it tries to display source lines in the next module down on the call stack for
which source lines are available and issues the following message:

%DEBUG-I-SOURCESCOPE, Source lines not available for .0\%PC.
Displaying source in a caller of the current routine.

Source lines might not be available for the following reasons:

= The PC is within a system routine, or a shareable image routine for which
no source code is available.

e The PC is within a routine that was compiled without the /IDEBUG
compiler command qualifier (or with /NODEBUG).

= The source file was moved to a different directory after it was compiled (the
location of source files is embedded in the object modules). Use the SET
SOURCE command to direct the debugger to the new location.

4.4 Controlling and Monitoring Program Execution
This section discusses the following:
e Starting and resuming program execution with the GO command
= Stepping through the program’s code with the STEP command

= Determining the current location of the program counter (PC) with the
SHOW CALLS command

= Suspending program execution with breakpoints
= Tracing program execution with tracepoints
= Monitoring changes in variables with watchpoints

4.4.1 Starting and Resuming Program Execution

There are two commands for starting or resuming program execution: GO
and STEP. The GO command starts execution. The STEP command lets you
execute a specified number of source lines or instructions.

4-4 Using the OpenVMS Debugger with BASIC

Using the OpenVMS Debugger with BASIC
4.4 Controlling and Monitoring Program Execution

GO Command

The GO command starts program execution, which continues until forced to
stop. You will probably use the GO command most often in conjunction with
breakpoints, tracepoints, and watchpoints. If you set a breakpoint in the path
of execution and then enter the GO command (or press the keypad comma
key that executes the GO command), execution will be suspended when the
program reaches that breakpoint. If you set a tracepoint, the path of execution
through that tracepoint will be monitored. If you set a watchpoint, execution
will be suspended when the value of the watched variable changes.

You can also use the GO command to test for an exception condition or an
infinite loop. If an exception condition that is not handled by your program
occurs, the debugger will take over and display the DBG> prompt so that you
can issue commands. If you are using screen mode, the pointer in the source
display will indicate where execution stopped. You can then use the SHOW
CALLS command (see Section 4.4.2) to identify the currently active routine
calls (the call stack).

In the case of an infinite loop, the program will not terminate, so the debugger
prompt will not reappear. To obtain the prompt, interrupt the program by
pressing Ctrl/Y and then issue the DCL command DEBUG. You can then look
at the source display and a SHOW CALLS display to locate the PC.

STEP Command

The STEP command (which you can use either by entering STEP or by pressing
KPO) allows you to execute a specified number of source lines or instructions,
or to execute the program to the next instruction of a particular kind, for
example, to the next CALL instruction.

By default, the STEP command executes a single source line at a time. In the
following example, the STEP command executes one line, reports the action
(“stepped to ... "), and displays the line number (27) and source code of the
next line to be executed:

DBG> STEP

stepped to TEST\COUNTER\%LINE 27
27 X =X+1

DBG>

The PC is now at the first machine code instruction for line 27 of the
module TEST; line 27 is in COUNTER, a routine within the module TEST.
TEST\COUNTER\%LINE 27 is a directory specification. The debugger uses
directory specifications to refer to symbols. (However, you do not need to
use a path name in referring to a symbol, unless the symbol is not unique;
in that case, the debugger will issue an error message.) See the OpenVMS

Using the OpenVMS Debugger with BASIC 4-5

Using the OpenVMS Debugger with BASIC
4.4 Controlling and Monitoring Program Execution

Debugger Reference Manual or online help for more information about resolving
multiple-defined symbols.

You can specify a number of lines for the STEP command to execute. In the
following example, the STEP command executes three lines:

DBG> STEP 3

Note that only those source lines for which code instructions were generated by
the compiler are recognized as executable lines by the debugger. The debugger
skips over any other lines—for example, comment lines.

Also, if a line has more than one statement on it, the debugger will execute all
the statements on that line as part of the single step.

You can specify different stepping modes, such as stepping by instruction
rather than by line (SET STEP INSTRUCTION). To resume to the default
behavior, enter the SET STEP LINE command. Also by default, the debugger
steps over called routines—execution is not suspended within a called routine,
although the routine is executed. By entering the SET STEP INTO command,
you tell the debugger to suspend execution within called routines as well as
within the currently executing module. To resume the default behavior, enter
the SET STEP OVER command.

4.4.2 Determining the Current Location of the Program Counter

The SHOW CALLS command lets you determine the current location of the
program counter (PC) (for example, after returning to the debugger following a
Ctrl/Y interrupt). The command shows a traceback that lists the sequence of
calls leading to the currently executing routine. For example:

DBG> SHOW CALLS

module name routine name line rel PC abs PC

*TEST PRODUCT 18 00000009 0000063C

*TEST COUNTER 47 00000009 00000647

*MY_PROG MY_PROG 21 0000000D 00000653
DBG>

For each routine (beginning with the currently executing routine), the debugger
displays the following information:

e The name of the module that contains the routine

e The name of the routine

4-6 Using the OpenVMS Debugger with BASIC

Using the OpenVMS Debugger with BASIC
4.4 Controlling and Monitoring Program Execution

e The line number at which the call was made (or at which execution is
suspended, in the case of the current routine)

= The corresponding PC addresses (the relative PC address from the start of
the routine and the absolute PC address of the program)

This example indicates that execution is currently at line 18 of routine
PRODUCT (in module TEST), which was called from line 47 of routine
COUNTER (in module TEST), which was called from line 21 of routine
MY_PROG (in module MY_PROG).

4.4.3 Suspending Program Execution

The SET BREAK command lets you select breakpoints, which are locations
at which the program will stop running. When you reach a breakpoint, you
can enter commands to check the call stack, examine the current values of
variables, and so on.

A typical use of the SET BREAK command is shown in the following example:

DBG> SET BREAK COUNTER
DBG> GO

break at TEST\COUNTER
34: SUB COUNTER(LONG X,Y)
DBG>

In this example, the SET BREAK command sets a breakpoint on the
subprogram COUNTER; the GO command starts execution. When the
subprogram COUNTER is encountered, execution is suspended, the debugger
announces that the breakpoint at COUNTER has been reached (break at . . .),
displays the source line (34) where execution is suspended, and prompts you for
another command. At this breakpoint, you can step through the subprogram
COUNTER, using the STEP command, and use the EXAMINE command (see
Section 4.5.1) to check on the current values of X and Y.

When using the SET BREAK command, you can specify program locations
using various kinds of address expressions (for example, line numbers,
routine names, instructions, virtual memory addresses). With high-level
languages, you typically use routine names, labels, or line numbers, possibly
with directory specifications to ensure uniqueness.

Routine names and labels should be specified as they appear in the source code.
Line numbers may be derived from either a source code display or a listing
file. When specifying a line number, use the prefix %LINE. (Otherwise, the
debugger will interpret the line number as a memory location.) For example,

Using the OpenVMS Debugger with BASIC 4-7

Using the OpenVMS Debugger with BASIC
4.4 Controlling and Monitoring Program Execution

the next command sets a breakpoint at line 41 of the currently executing
module; the debugger will suspend execution when the PC is at the start of
line 41:

DBG> SET BREAK %LINE 41

Note that you can set breakpoints only on lines that resulted in machine code
instructions. The debugger warns you if you try to do otherwise (for example,
on a comment line). If you want to pick a line number in a module other
than the one currently executing, you need to specify the module’s name in a
directory specification. For example:

DBG> SET BREAK SCREEN_IO\%LINE 58

You do not always have to specify a particular program location, such as

line 58 or COUNTER, to set a breakpoint. You can set breakpoints on events,
such as exceptions. You can use the SET BREAK command with a qualifier,
but no parameter, to break on every line, or on every CALL instruction, and so
on. For example:

DBG> SET BREAKI/LINE
DBG> SET BREAK/CALL

You can conditionalize a breakpoint (with a WHEN clause) or specify that a list
of commands be executed at the breakpoint (with a DO clause on the debugger
command). For example, the next command sets a breakpoint on the label
LOOP3. The DO (EXAMINE TEMP) clause causes the value of the variable
TEMP to be displayed whenever the breakpoint is triggered.

DBG> SET BREAK LOOP3 DO (EXAMINE TEMP)
DBG> GO

break at COUNTER\LOOP3

3r: LOOP3: FOR | = 1 TO 10
COUNTER\TEMP: 284.19
DBG>

To display the currently active breakpoints, enter the SHOW BREAK
command:

DBG> SHOW BREAK
breakpoint at SCREEN_IO\%LINE 58
breakpoint at COUNTER\LOOP3

do (EXAMINE TEMP)

DBG>

4-8 Using the OpenVMS Debugger with BASIC

Using the OpenVMS Debugger with BASIC
4.4 Controlling and Monitoring Program Execution

To cancel a breakpoint, enter the CANCEL BREAK command, specifying
the program location exactly as you did when setting the breakpoint. The
CANCEL BREAK/ALL command cancels all breakpoints.

4.4.4 Tracing Program Execution

The SET TRACE command lets you select tracepoints, which are locations
for tracing the execution of your program without stopping its execution.
After setting a tracepoint, you can start execution with the GO command and
then monitor the PC'’s path, checking for unexpected behavior. By setting a
tracepoint on a routine, you can also monitor the number of times the routine
is called.

As with breakpoints, every time a tracepoint is reached, the debugger issues
a message and displays the source line. It can also display other information
that you have specified (as shown in the last example in this section, in which
the value of a specified variable is displayed). However, at tracepoints, unlike
breakpoints, the program continues executing, and the debugger prompt is not
displayed. For example:

DBG> SET TRACE COUNTER
DBG> GO

trace at TEST\COUNTER
34: SUB COUNTER(LONG X.Y)

When using the SET TRACE command, you specify address expressions,
qualifiers, and optional clauses exactly as with the SET BREAK command.

The /LINE qualifier instructs the SET TRACE command to trace every line
and is a convenient means of checking the execution path. By default, lines are
traced within all called routines as well as the currently executing routine. If
you do not want to trace system routines or routines in shareable images, use
the INOSYSTEM or /INOSHARE qualifiers. For example:

DBG> SET TRACE/LINE/NOSYSTEM/NOSHARE

Using the OpenVMS Debugger with BASIC 4-9

Using the OpenVMS Debugger with BASIC
4.4 Controlling and Monitoring Program Execution

The /SILENT qualifier suppresses the trace message and source code display.
This is useful when you want to use the SET TRACE command to execute a
debugger command at the tracepoint. For example:

DBG> SET TRACE\SILENT %LINE 83 DO (EXAMINE STATUS)
DBG> GO

SCREEN_IO\CLEAR\STATUS: 'OFF

4.4.5 Monitoring Changes in Variables

The SET WATCH command lets you set watchpoints that will be monitored
continuously as your program executes.

If the program modifies the value of a watched variable, the debugger suspends
execution and displays the old and new values.

DBG> SET WATCH TOTAL

Subsequently, every time the program modifies the value of TOTAL, the
watchpoint is triggered. The debugger monitors watchpoints continuously
during program execution.

The next example shows what happens when your program modifies the
contents of a watched variable:

DBG> SET WATCH TOTAL
DBG> GO

watch of SCREEN_IO\TOTAL\%LINE 13
13: TOTAL = TOTAL + 1
old value: 16
new value: 17
break at SCREEN_I0.%LINE 14
14: CALL Pop_rtn(TOTAL)
DBG>

In this example, a watchpoint is set on the variable TOTAL and the GO
command starts execution. When the value of TOTAL changes, execution is
suspended. The debugger announces the event (watch of . . .), identifying
where TOTAL changed (line 13) and the associated source line. The debugger
then displays the old and new values and announces that execution has been
suspended at the start of the next line (14). (The debugger reports break

4-10 Using the OpenVMS Debugger with BASIC

Using the OpenVMS Debugger with BASIC
4.4 Controlling and Monitoring Program Execution

at ..., but this is not a breakpoint; it is still the effect of the watchpoint.)
Finally, the debugger prompts for another command.

When a change in a variable occurs at a point other than the start of a source
line, the debugger gives the line number plus the byte offset from the start of
the line.

4.5 Examining and Manipulating Data

This section explains how to use the EXAMINE, DEPOSIT, and EVALUATE
commands to display and modify the contents of variables, and evaluate
expressions in BASIC programs.

4.5.1 Displaying the Values of Variables

To display the current value of a variable, use the EXAMINE command as
follows:

DBG> EXAMINE variable_name

The debugger recognizes the compiler-generated data type of the specified
variable and retrieves and formats the data accordingly. The following
examples show some uses of the EXAMINE command:

Examine a string variable:

DBG> EXAMINE EMPLOYEE_NAME
PAYROLL\EMPLOYEE_NAME: "Peter C. Lombardi"
DBG>

Examine three integer variables:
DBG> EXAMINE WIDTH, LENGTH, AREA

SIZEWIDTH: 4
SIZE\LENGTH: 7
SIZE\AREA: 28
DBG>

Examine a two-dimensional array of integers (two rows and three columns):

DBG> EXAMINE INTEGER_ARRAY
PROG2\INTEGER_ARRAY

(0,0): 27

(0,2): 31

(0,2): 12

(,0): 15

(1,2): 22

1,2): 18
DBG>

Using the OpenVMS Debugger with BASIC 4-11

Using the OpenVMS Debugger with BASIC
4.5 Examining and Manipulating Data

Examine element 4 of a one-dimensional string array:

DBG> EXAMINE CHAR_ARRAY(4)
PROG2\CHAR_ARRAY(4): 'm'’
DBG>

Note that the EXAMINE command can be used with any kind of address
expression (not just a variable name) to display the contents of a program
location. The debugger associates certain default data types with untyped
locations. You can override the defaults for typed and untyped locations if you
want the data to be interpreted and displayed in some other data format. The
debugger supports the data types and operators of BASIC including RECORDs
and RFAs.

See Section 4.5.3 for an explanation of how the EXAMINE and the EVALUATE
commands differ.

4.5.2 Changing the Values of Variables
To change the value of a variable, use the DEPOSIT command as follows:

DBG> DEPOSITvariable name = value
The DEPOSIT command is like an assignment statement in BASIC.

In the following examples, the DEPOSIT command assigns new values to
different variables. The debugger checks that the value assigned, which may
be a language expression, is consistent with the data type and dimensional
constraints of the variable.

Deposit a string value (it must be enclosed in quotation marks or apostrophes):
DBG> DEPOSIT PARTNUMBER = "WG-7619.3-84"

Deposit an integer expression:

DBG> DEPOSIT WIDTH = CURRENT_WIDTH + 10

Deposit element 12 of an array of characters (you cannot deposit an entire
array aggregate with a single DEPOSIT command, only an element):

DBG> DEPOSIT C_ARRAY(12) = K

You can specify any kind of address expression, not just a variable name,
with the DEPOSIT command (as with the EXAMINE command). You can
override the defaults for typed and untyped locations if you want the data to
be interpreted in some other data format.

4-12 Using the OpenVMS Debugger with BASIC

Using the OpenVMS Debugger with BASIC
4.5 Examining and Manipulating Data

4.5.3 Evaluating Expressions
To evaluate a language expression, use the EVALUATE command as follows:

DBG> EVALUATE lang_exp

The debugger recognizes the operators and expression syntax of the currently
set language. In the following example, the value 45 is assigned to the integer
variable WIDTH; the EVALUATE command then obtains the sum of the
current value of WIDTH plus 7:

DBG> DEPOSIT WIDTH = 45
DBG> EVALUATE WIDTH + 7
52

DBG>

Following is an example of how the EVALUATE and the EXAMINE commands
are similar. When the expression following the command is a variable name,
the value reported by the debugger is the same for either command.

DBG> DEPOSIT WIDTH = 45
DBG> EVALUATE WIDTH

45

DBG> EXAMINE WIDTH
SIZEWIDTH: 45

Following is an example of how the EVALUATE and EXAMINE commands are
different:

DBG> EVALUATE WIDTH + 7
52

DBG> EXAMINE WIDTH + 7
SIZEWIDTH: 131584

With the EVALUATE command, WIDTH + 7 is interpreted as a language
expression, which evaluates to 45 + 7, or 52. With the EXAMINE command,
WIDTH + 7 is interpreted as an address expression: 7 bytes are added to the
address of WIDTH, and whatever value is in the resulting address is reported
(in this example, 131584).

4.6 Stepping Into BASIC Routines

This section provides details of the STEP/INTO command that are specific to
BASIC.

In the following example, the debugger is waiting to proceed at source

line 63. If you enter a STEP command at this point, the debugger will proceed
to source line 64 without stopping during the execution of the function call.
To step through the source code in the DEF function deffun, you must use the
STEP/INTO command. A STEP/INTO command entered while the debugger

Using the OpenVMS Debugger with BASIC 4-13

Using the OpenVMS Debugger with BASIC
4.6 Stepping Into BASIC Routines

has stopped at source line 63 causes the debugger to display the source code
for deffun and stop execution at source code line 3.

DECLARE LONG FUNCTION deffun (LONG)
DECLARE LONG A
DEF LONG deffun (LONG x)
deffun = x
END DEF

S ORWN

563 A = deffun (6%)
64 Print "The value of A is: "; A

The STEP/INTO command is useful for stepping into external functions and
DEF functions in Alpha BASIC and DEF functions in VAX BASIC. In Alpha
BASIC and VAX BASIC, if you use this command to step into GOSUB blocks,
the debugger steps into Run-Time Library (RTL) routines, providing you with
no useful information. In VAX BASIC, if you use this command to step into
external functions, the debugger steps into RTL routines, providing you with
no useful information.

In the following program, the debugger has suspended execution at source
line 8. If you now enter a STEP/INTO command, the debugger steps into the
relevant RTL code and informs you that no source lines are available.

1 10 RANDOMIZE

->8 GOSUB Print_routine
9 STOP
20 Print_routine:
21 IF Competition = Done
22 THEN PRINT "The winning ticket is #";Winning_ticket
23 ELSE PRINT "The game goes on."
24 END IF
25 RETURN

As in the previous example, a STEP command alone will cause the debugger
to proceed directly to source line 9. In VAX BASIC, to step through the
source code of GOSUB blocks or external functions, use the SET BREAK
command. The SET BREAK command is described in Section 4.4.3. In this
case, a breakpoint set at the label Print_routine allows you step through the
subroutine beginning at source line 20.

4-14 Using the OpenVMS Debugger with BASIC

Using the OpenVMS Debugger with BASIC
4.6 Stepping Into BASIC Routines

Table 4-1 summarizes the resultant behavior of the STEP/INTO command
when used to step into external functions, DEF functions, and GOSUB blocks
in Alpha BASIC and VAX BASIC.

Table 4-1 Resultant Behavior of the STEP/INTO Command

Alpha BASIC VAX BASIC
Action Results Results
STEP/INTO DEF function Steps into function Steps into function
STEP/INTO DEF* function Steps into RTL Steps into function
STEP/INTO external function or Steps into function Steps into RTL
SUB routine!
STEP/INTO GOSUB block Steps into RTL Steps into RTL

1with Alpha BASIC, unless the subroutine is compiled with the /NOSETUP qualifier or equivalent,
it will appear to step into RTL code, because an environment setup RTL routine is normally called
as the very first thing of the subroutine.

4.6.1 Controlling Symbol References

When using the OpenVMS Debugger, all BASIC variable and label names
within a single program unit must be unique; otherwise, the debugger will be
unable to determine the symbol to which you are referring.

4.7 A Sample Debugging Session

This section shows a sample debugging session using a BASIC program that
contains a logic error.

The following program compiles and links without diagnostic messages from
either the compiler or the linker. However, after printing the headers, the
program is caught in a loop printing the same figures indefinitely.

1 10 ISAMPLE program for DEBUG illustration

2 DECLARE INTEGER Number

3 Print_headers:

4 PRINT "NUMBER", "SQUARE", "SQUARE ROOT"
5 PRINT

6 Print_loop:

7 FOR Number = 10 TO 1 STEP -1

8 PRINT Number, Number*2, SQR(Number)
9 Number = Number + 1

10 NEXT Number

11 PRINT

12 END

Using the OpenVMS Debugger with BASIC 4-15

Using the OpenVMS Debugger with BASIC
4.7 A Sample Debugging Session

The following text shows the terminal dialogue for a debugging session, which
helps locate the error in the program SAMPLE. The callouts are keyed to
explanatory notes that follow the dialogue.

$ BASIC/LIST/DEBUG SAMPLE 1
$ LINK/DEBUG SAMPLE2
$ RUN SAMPLE

VAX DEBUG Version n.n

%DEBUG-I-INITIAL, language is BASIC module set to 'SAMPLESMAIN’ 3
DBG>STEP 24
NUMBER SQUARE SQUARE ROOT
stepped to SAMPLE$MAIN\%line 7

7. FOR Number = 10 TO 1 STEP -1 5
DBG> STEP 46
10 100 3.16228
stepped to SAMPLESMAIN\%LINE 7

7. FOR Number = 10 TO 1 STEP -1
DBG> EXAMINE Number7
SAMPLESMAIN\NUMBER: 108
DBG> STEP 49

10 100 3.16228
stepped to SAMPLESMAIN\%LINE 7
7. FOR Number = 10 TO 1 STEP -1

DBG> EXAMINE Numberzio
SAMPLESMAIN\NUMBER: 1011
DBG> DEPOSIT Number = 912
DBG> STEP 413
9 81 3
stepped to SAMPLESMAIN\%LINE 7

FOR Number = 10 TO 1 STEP -1
DBG> EXAMINE Number1 4
SAMPLESMAIN\NUMBER: 915
DBG> STEP1s
9 81 3
stepped to SAMPLESMAIN\%LINE 8

PRINT Number, Number2, SQR(Number) 17

DBG> STEP18
stepped to SAMPLESMAIN\%LINE 9

Number = Number + 1 19
DBG> EXIT 20

The following explains the terminal dialogue in the above example:

1 Compile SAMPLE.BAS with the /LIST and /DEBUG qualifiers. The listing
file can be useful while you are in the debugging session.

2 Link SAMPLE.BAS with the /DEBUG qualifier.

3 The debugger identifies itself and displays the debugger prompt after you
invoke the debugger with the RUN command.

4-16 Using the OpenVMS Debugger with BASIC

10

11

12

13

14

15

16

17

18

19

20

Using the OpenVMS Debugger with BASIC
4.7 A Sample Debugging Session

Step through 2 executable statements to the FOR statement.

The headers print successfully and the program reaches the FOR
statement.

Step through one iteration of the loop.

Request the contents of the variable Number.

The debugger shows the contents of the loop index to be 10.
Step through another iteration of the loop.

Examine the value of the loop index again.

The debugger shows that the loop index is still 10. The loop index has not
changed from its initial setting in the FOR statement.

Deposit the correct value into Number.

Step through another iteration of the loop.
Examine the contents of Number again.

Observe that the number has not been changed yet.

Step through just one statement to discover what is interfering with the
value of Number during execution of the loop.

Observe that this statement does not affect the value of Number.
Step through another statement in the loop.
Observe that this statement counteracts the change in the loop index.

Exit from the debugger. You can now edit the program to delete
line 9 and reprocess the program. Alternatively, you could use the EDIT
command while in the debugger environment.

This debugging session shows that the FOR...NEXT loop index (Number) is not
being changed correctly. An examination of the statements in the loop shows
that the variable Number is being decreased by one during each execution of
the FOR statement, but incremented by one with each execution of the loop
statements. From this you can determine that the loop index will not change
at all and the program will loop indefinitely. To correct the problem, you must
delete the incorrect statement and recompile the source program.

Using the OpenVMS Debugger with BASIC 4-17

Using the OpenVMS Debugger with BASIC
4.8 Hints for Using the OpenVMS Debugger with Alpha BASIC

4.8 Hints for Using the OpenVMS Debugger with Alpha
BASIC

When the debugger STEP command is used in source code containing an
error, differences occur in the debugger behavior between OpenVMS VAX and
OpenVMS Alpha. These differences are due to architectural differences in the
hardware and software of the two systems.

In Alpha BASIC, a STEP at a statement that causes an exception might
never return control to the debugger. The debugger cannot determine what
statement in the BASIC source code will execute after the exception occurs.
Therefore, set explicit breaks if STEP is used on statements that cause
exceptions.

The following hints should help when you use the STEP command to debug
programs that handle errors:

< When you STEP at a statement that takes an error, the debugger will not
regain control unless the program reaches an explicit breakpoint or the
next statement that would have executed if no error had occurred. Set
explicit breaks if you want the program to stop in any other place.

= Use of the STEP command at a statement that takes an error does not
return control to the debugger when the program reaches the error handler
code. If you want the program to break when program execution enters an
error handler, explicitly set a breakpoint at the error handler. This applies
to both ON ERROR handlers and WHEN handlers.

e If you are within a WHEN handler, a STEP at a statement that terminates
execution within the WHEN handler (CONTINUE, RETRY, END WHEN,
END HANDLER, EXIT HANDLER) will not stop unless program flow
reaches a point where an explicit breakpoint is set.

e STEP at a RESUME statement in an ON ERROR handler results in the
program execution stopping at the first line of non-error-handler code.

e Use SET BREAK/EXCEPTION at the beginning of the debugging session to
prevent unexpected errors from occurring. This breakpoint is not necessary
if you have set explicit breakpoints at all error handlers. However, use
of this command will break at all exceptions, allowing you to check that
you have the proper breakpoints to stop program execution following the
exception.

4-18 Using the OpenVMS Debugger with BASIC

Part Il

Compaq BASIC Programming Concepts

Part Il explains Compaq BASIC programming concepts including input and
output, arrays, data definition, program control, and functions.

5

BASIC Concepts and Elements

A BASIC program is a series of instructions for the compiler. These
instructions are built using the fundamental elements of BASIC. This chapter
describes these elements or building blocks.

5.1 Line Numbers

BASIC gives you the option of developing programs with line numbers or
without line numbers.

5.1.1 Programs with Line Numbers
If you use line numbers in your program, you must follow these rules:

= A line number must be a unique integer from 1 to 32767. In VAX BASIC, if
a program contains duplicate line numbers, the last line with that number
replaces the previous one. Alpha BASIC does not allow programs to have
duplicate line numbers.

= A line number can contain leading zeros; however, embedded spaces, tabs,
and commas are invalid in line numbers.

e There must be a line number on the first line of the program.

= If a source file contains subprograms, then each subprogram must begin on
a numbered line.

In a multiple-unit program with line numbers, any comments following an
END, END SUB, or END FUNCTION statement become a part of the previous
subprogram during compilation unless they begin on a numbered line. This is
not the case in multiple-unit programs without line numbers.

Although line numbers are not required, you might want to use them on every
line that can cause a run-time error, depending on the type of error handling
you use. See Chapter 16 for more information about handling run-time errors.

BASIC Concepts and Elements 5-1

BASIC Concepts and Elements
5.1 Line Numbers

5.1.2 Programs Without Line Numbers
If you do not use line numbers in your program, follow these rules:

= Use a text editor to enter and edit the program; you cannot enter programs
without line numbers directly in the environment.

< No line numbers are allowed anywhere in the program module.
= The ERL function is not allowed.
e REM statements are not allowed.

< In VAX BASIC, other files cannot be appended, because appended files
must contain at least one line number.

In a multiple-unit program without line numbers, any comments following an
END, END SUB, or END FUNCTION statement become a part of the next
subprogram during compilation (unless there is no next subprogram). This is
not the case in multiple-unit programs with line numbers.

You can avoid all of these restrictions by placing a line number on the first line
of your program; no additional line numbers are required. The line number
on the first program line causes the compiler to compile your program as a
program with line numbers.

When you enter a program with or without line numbers, you can begin your
program statements in the first character position on a line. While these
statements would be considered immediate mode statements if entered in the
VAX BASIC Environment, they are valid in a program that is created with a
text editor.

For example, you can enter the following program directly into the
environment:

10 !This is a short program that you can enter
land run in the VAX BASIC Environment
!

PRINT "This program will convert pound weight to kilograms"
INPUT "How many pounds™;A

IHere is the conversion step

B=A*22

PRINT "For ";A;" pounds, the kilogram weight is ";B

END

5-2 BASIC Concepts and Elements

BASIC Concepts and Elements
5.1 Line Numbers

Output

This program will convert pound weight to kilograms
How many pounds? 10
For 10 pounds, the kilogram weight is 22

To develop the following program, you have to use a text editor, and you must
observe the restrictions previously listed:

IThis is a short program that does not contain any
IBASIC line numbers.

IThis program must be entered using a text editor;
lit cannot be entered directly into the environment.
|

PRINT "This program converts kilogram weight to pounds”
INPUT "How many kilograms";A

IThis is the conversion factor

B=A/22

PRINT "For ";A;" kilograms, the pound weight is ";B

END

Output

This program converts kilogram weight to pounds
How many kilograms? 11
For 11 kilograms, the pound weight is 5

You can use exclamation comment fields instead of REM statements to insert
comments into programs without line numbers. An exclamation point in
column 1 in the environment causes the BASIC compiler to ignore the rest of
the line. You can also identify program statements in programs without line
numbers by using labels.

5.1.3 Labels

A label is a 1- to 31-character identifier that you use to identify a block

of statements. All label names must begin with a letter; the remaining
characters, if any, can be any combination of letters, digits, dollar signs ($),
underscores (_), or periods (.), but the final character cannot be a dollar sign.

Labels have the following advantages over line numbers:
< Meaningful label names provide documentation.
= You can use labels in programs with or without line numbers.

When you use a label to mark a program location, you must end the label with
a colon (:). The colon is used to show that the label name is being defined
instead of referenced. When you reference the label, do not include the colon.

BASIC Concepts and Elements 5-3

BASIC Concepts and Elements
5.1 Line Numbers

In the following example, the label names end with colons when they mark a location,
but the colons are not present when the labels are referenced:

OPTION TYPE = EXPLICIT I Require declarations
DECLARE INTEGER A

Outer_loop:
IFA<>B
THEN
Inner_loop:
IFB=C
THEN
A=A+1
GOTO Outer_loop
ELSE
B=B+1
GOTO Inner_loop
END IF
END IF

Labels have no effect on the order in which program lines are executed; they
are used to identify a statement or block of statements.

5.1.4 Continuation of Long Program Statements

If a program line is too long for one line of text, you can continue the program
line by typing an ampersand (&) and pressing Return at the end of the line.
Note that only spaces and tabs are valid between the ampersand and the
carriage return.

A single statement that spans several text lines requires an ampersand at the
end of each continued line. For example:

OPEN "SAMPLE.DAT" AS FILE #2%, &
SEQUENTIAL VARIABLE, &
RECORDSIZE 80%

In an IF...THEN...ELSE construction, ampersands (&) are not necessary. If a
continuation line begins with THEN or ELSE, then no ampersand is necessary.
Similarly, in a line following a THEN or an ELSE, there is no ampersand.

IF (A$ = B%)
THEN

PRINT "The two values are equal"
ELSE

PRINT "The two values are different"
END IF

5-4 BASIC Concepts and Elements

BASIC Concepts and Elements
5.1 Line Numbers

Several statements can be associated with a single program line. If there are
several statements on one line, they must be separated by backslashes (\).
For example:

PRINT A\ PRINT V \ PRINT G

Because all statements are on the same program line, any reference to this
program line refers to all three statements.

5.2 Identifying Program Units

You can delimit a main program compilation unit with the PROGRAM and
END PROGRAM statements. This allows you to identify a program with a
name other than the file name. The program name must not duplicate the
name of a SUB, FUNCTION, or PICTURE subprogram. For example:

PROGRAM Sort_out

END PROGRAM

If you include the PROGRAM statement in your program, the name you specify
becomes the module name of the compiled source. This feature is useful when
you use object libraries because the librarian stores modules by their module
name rather than the file name. Similarly, module names are used by the
OpenVMS Debugger and the OpenVMS Linker.

For more information about PROGRAM units, see Chapter 13.

5.3 BASIC Character Set
BASIC uses the full ASCII character set, which includes the following:
e The letters A to Z, both uppercase and lowercase
e Thedigits0to 9
e Special characters

See the Compaq BASIC for OpenVMS Alpha and VAX Systems Reference
Manual for a complete list of the ASCII character set and character values.

The compiler does not distinguish between uppercase and lowercase letters,

except for letters inside quotation marks (called string literals) or letters in
a DATA statement. The compiler also does not process characters in a REM
statement or comment field.

BASIC Concepts and Elements 5-5

BASIC Concepts and Elements
5.3 BASIC Character Set

You can use nonprinting characters in your program—for example, in string
literals and constants—but to do so you must do one of the following:

= Use a predefined constant such as ESC or DEL
= Use the CHR$ function to specify an ASCII value

See Section 5.6 for more information about predefined constants. See Chapter
11 for more information about the CHR$ function.

5.4 Program Documentation

Documenting a program is the process of putting explanatory text (comments)
into your code to make the program more understandable. Program
documentation does not affect the way a program executes. You can add
comments throughout a program; however, programs that are neatly structured
need fewer comments. You can clarify your code by doing the following:

= Using meaningful variable names
< Including sufficient white space
= Indenting your program lines according to the structure of your code

A comment field starts with an exclamation point (!) and ends with another
exclamation point or a carriage return. The following example contains both
comments and program statements. Any text that follows an exclamation point
is ignored.

IDROGRAM sample

E+ Require that all variables be declared
;éPTION TYPE = EXPLICIT
E+ Set up error handler
}/;\rIHEN ERROR USE Error_routine

I Declarations
|-

END PROGRAM

5-6 BASIC Concepts and Elements

BASIC Concepts and Elements
5.4 Program Documentation

You can also mix comments and code on the same line. For example:

DECLARE &
INTEGER &
Print_page, I Current page number &
Print_line, I Current line number &
Print_column I Current column number

All text between the exclamation point and the carriage return is ignored,
with one exception: the ampersand is still recognized. This is a continuation
character that specifies that a single statement is being continued on the next
line. Only spaces and tabs are valid between the ampersand and the carriage
return.

Note

Although you can also terminate a comment field with an exclamation
point, this practice is not recommended. Any text that follows the
second exclamation point is treated as part of your program code.

5.5 Declarations and Data Types
Following are methods for creating variables and specifying data types:
< Implicit data typing
= Explicit data typing

With implicit data typing, BASIC creates and specifies a data type for a
variable the first time you reference it in your program. With explicit data
typing, you must use one of four declarative statements (see Section 5.5.2) to
name and type your program values.

Following are the data types you can specify:
= Integer (INTEGER)

e Floating-point (REAL)

e String (STRING)

= Packed Decimal (DECIMAL)

e Record File Address (RFA)

BASIC Concepts and Elements 5-7

BASIC Concepts and Elements
5.5 Declarations and Data Types

Within the INTEGER and REAL data types there are further subdivisions:
BYTE, WORD, LONG, or QUAD for INTEGER and SINGLE, DOUBLE,
GFLOAT, HFLOAT, SFLOAT, TFLOAT, or XFLOAT for REAL.! Choosing one
of these subtypes lets you control the following:

= The amount of storage required for the value; its container size
< The range and precision that the value can accept

For more information about data types, see Chapter 8.

5.5.1 Implicit Data Typing

With implicit data typing, a data type for a variable is created and specified
the first time you reference it. You specify the data type of the variable by a
suffix on the variable name as follows:

= A percent sign suffix (%) specifies the INTEGER data type.
= A dollar sign suffix ($) specifies the STRING data type.
= Any other ending character specifies a variable of the default data type.

The default data type is SINGLE; however, you can specify your own default at
DCL command level, inside the VAX BASIC Environment, or with the OPTION
statement in your program. For more information about establishing default
data types, see Chapter 2 (VAX BASIC only) and Chapter 3 in this manual,
and the OPTION statement in the Compaq BASIC for OpenVMS Alpha and
VAX Systems Reference Manual.

The first time the variable is referenced, it creates a variable with that name
and data type and allocates storage for that variable.

In the following example, two INTEGER variables are created, A% and B%.
Even though the values assigned to these variables are REAL,

the values are converted to INTEGER to match the data type specified for the
variables. The sum of these two values is therefore 30, not 30.6, as it would be
if the variables were named A and B.

A% = 10.1

B% = 20.5
PRINT A% + B%
30

1 Alpha BASIC does not support HFLOAT. VAX BASIC does not support QUAD,
SFLOAT, TFLOAT, or XFLOAT.

5-8 BASIC Concepts and Elements

BASIC Concepts and Elements
5.5 Declarations and Data Types

5.5.2 Explicit Data Typing

With explicit data typing, you use a declarative statement to name and specify
a data type for your program values.

BASIC provides the following declarative statements. These statements create
variables and allocate storage.

DECLARE
DIMENSION
COMMON
MAP

The statement you choose depends on the way in which you will use the
variables:

e DECLARE and DIMENSION allocate dynamic storage for variables;
storage is allocated when the program executes.

e COMMON and MAP statements allocate storage for variables statically;
storage is allocated when the program is compiled.

All declarative statements associate a data type with a variable. For more
information, see Chapter 8.

5.6 Constants

A constant is a value that does not change during program execution.
Constants can be either literals or named constants and can be of any data
type except RFA. You can use the DECLARE CONSTANT statement to create
named constants. Constants can be of the following types:

= Integer

= Floating-point

= Packed decimal

e String

In addition, predefined constants are provided and are useful for the following:
e Formatting program output to improve clarity

= Making source code easier to understand

e Using nonprinting characters without having to look up their ASCII values

BASIC Concepts and Elements 5-9

BASIC Concepts and Elements
5.6 Constants

Table 5-1 lists the predefined constants.

Table 5-1 Predefined Constants

Decimal
ASCII
Constant Value Description
BEL (Bell) 7 Sounds the terminal bell
BS (Backspace) 8 Moves cursor one position to the left
HT (Horizontal Tab) 9 Moves cursor to the next horizontal tab stop
LF (Line Feed) 10 Moves cursor to the next line
VT (Vertical Tab) 11 Moves cursor to the next vertical tab stop
FF (Form Feed) 12 Moves cursor to the start of the next page
CR (Carriage Return) 13 Moves cursor to the beginning of the current line
SO (Shift Out) 14 Shifts out for communications networking, screen
formatting, and alternate graphics
SI (Shift In) 15 Shifts in for communications networking, screen
formatting, and alternate graphics
ESC (Escape) 27 Marks the beginning of an escape sequence
SP (Space) 32 Inserts one blank space in program output
DEL (Delete) 127 Deletes the last character entered
Pl None Represents the number Pl with the precision of the

default floating-point data type

These predefined constants simplify the task of using nonprinting characters
in your programs. For example, the following statement causes a bell to sound

on your terminal:
PRINT BEL

You can also create your own predefined constants with the DECLARE

CONSTANT statement.

For more information about constants, see Chapter 8 and the Compaq BASIC
for OpenVMS Alpha and VAX Systems Reference Manual.

5-10 BASIC Concepts and Elements

BASIC Concepts and Elements
5.7 Variables

5.7 Variables

A variable is a storage location that is referred to by a variable name.
Variable values can change during program execution. Each named location
can hold only one value at a time.

A variable name can have up to 31 characters. The name must begin with
a letter; the remaining characters, if any, can be any combination of letters,
digits, dollar signs ($), underscores (_), and periods (.).

Variables can be grouped in an orderly series (such as a list or table) under
a single name, called an array. You refer to a single variable in an array by
using one or more subscripts that specify the variable’s position in the array.
(See Section 5.7.5 for more information on arrays.)

5.7.1 Floating-Point Variables

A floating-point variable is a named location that stores a floating-point
value. The storage space required to hold the value depends on the variable’s
REAL subtype. For example, each SINGLE floating-point variable requires 32
bits (4 bytes) of storage, while each DOUBLE floating-point variable requires
64 bits (8 bytes) of storage.

Note that if any integer value is assigned to a floating-point variable,
the value is converted to a floating-point number.

5.7.2 Integer Variables

An integer variable is a named location that stores a whole number. The
storage space required to hold the value depends on the variable’s INTEGER
subtype. For example, each BYTE integer variable requires 8 bits (1 byte) of
storage, while each LONG integer variable requires 32 bits (4 bytes) of storage.

If you assign a floating-point value to an integer variable, the fractional portion
of the value is trunctated; it does not round to the nearest integer. In the
following example, the value -5, not -6, is assigned to the integer variable.

B% = -5.7

Although the integer data types QUAD,? LONG, WORD, and BYTE allow
the minimum values -9223372036854775808, -2147483648, -32768, and -128,
respectively, you cannot use these constants explicitly, because BASIC reports
an integer overflow error while attempting to parse the literal constant. To
use these values, you must use either radix notation, such as —“32768"L, or a
constant expression. For example:

2 QUAD is not supported by VAX BASIC.

BASIC Concepts and Elements 5-11

BASIC Concepts and Elements
5.7 Variables

DECLARE WORD CONSTANT Word_const = -32767 - 1

5.7.3 Packed Decimal Variables

A packed decimal (DECIMAL data type) variable is made up of several
storage locations, the number of which depends on the declared size of the
variable. However, a packed decimal variable is still referred to by a single
variable name.

When you declare a packed decimal variable, you specify the total number of
digits and the number of digits to the right of the decimal place that you want.

The following statement creates a packed decimal variable named My_decimal,
which can contain up to 8 digits: 6 digits to the left of the decimal point and
2 digits to the right of the decimal point.

OPTION TYPE = EXPLICIT
DECLARE DECIMAL (8,2) My_decimal

Packed decimal numbers are most useful for dollars-and-cents calculations.

5.7.4 String Variables

Unlike some of the numeric variables described so far, a string variable does
not correspond to a single location in memory because a string variable is more
likely to exceed a single location in memory. Therefore, the value of a string
variable can be contained in any number of memory locations. However, a
string variable is still referred to by a single name. For example:

DECLARE STRING Employee name

5.7.5 Subscripted Variables

A subscripted variable is a floating-point, integer, packed decimal, RFA, or
string variable that is part of an array. Chapter 7 describes arrays in more
detail.

An array is a set of data organized in one or more dimensions. A one-
dimensional array is called a list or vector. A two-dimensional array is
called a matrix. Arrays can have up to 32 dimensions.

When you create an array, its size is determined by the number of dimensions

and the maximum size, called the bound, of each dimension. Subscripts begin
by default with 0, not 1. That is, when calculating the number of elements in a
dimension, you count from zero to the bound specified.

5-12 BASIC Concepts and Elements

BASIC Concepts and Elements
5.7 Variables

The following DECLARE statement creates an 11 by 11 array of integers.
Therefore, the array contains a total of 121 array elements.

DECLARE INTEGER My array (10, 10)

There are many applications where you need to reference data for a particular
range of values. You can specify a lower bound other than zero for your arrays.
The following example declares an array containing the birth rates for the
years from 1945 to 1985:

OPTION TYPE = EXPLICIT, &
SIZE = REAL SINGLE

DECLARE REAL Birth_rates(1945 TO 1985)

Subscripts define the position of an element in an array; the expression
Birth_rates(1970) refers to the 26th value of the array Birth_rates. For more
information about arrays, see Chapter 7.

Note

By default, the compiler signals an error if a subscript is larger than
the allowable range. Also, the amount of storage that the system can
allocate depends on available memory. Therefore, very large arrays can
cause an internal allocation error.

5.7.6 Initialization of Variables

BASIC sets variables to zero or null values at the start of program execution.
Variables initialized include the following:

< Numeric variables and array elements (except those in MAP or COMMON
statements).

= String variables and array elements (except those in MAP or COMMON
statements).

= \Variables in subprograms. Subprogram variables (except those in MAP or
COMMON statements) are initialized to zero or the null string each time
the subprogram is called.

= Arrays created with an executable DIMENSION statement. The array is
reinitialized each time the array is redimensioned.

BASIC Concepts and Elements 5-13

BASIC Concepts and Elements
5.8 Keywords and Reserved Words

5.8 Keywords and Reserved Words

Keywords are elements of the BASIC language. Keywords that are not
reserved can be used as user identifiers such as labels, variable or constant
names, or names of MAP or COMMON areas. Depending upon the location of
the keyword in your program statement, the compiler will treat it as either a
keyword or a user identifier. Your programs use keywords and reserved words
to:

e Define data
= Perform operations
< |nvoke functions

See the Compaq BASIC for OpenVMS Alpha and VAX Systems Reference
Manual for a list of keywords and reserved words.

Keywords determine whether the statement is executable or nonexecutable.
Executable statements such as PRINT, GOTO, and READ perform operations.
Nonexecutable statements such as DATA, DECLARE, and REM describe the
characteristics and arrangement of data, usage information, and comments.

Every statement except LET must begin with a keyword. A keyword cannot
have embedded spaces or be split across lines of text. There must be a space or
tab between the keyword and any other variables or operators.

There are also phrases of keywords. In this case, the spacing requirements
vary.
5.9 Operands, Operators, and Expressions

An operand contains a value. An operand can be a scalar, subscripted
variable, named constant, literal, and so on. An operator specifies a procedure
to be carried out by one or more operands. An expression consists of operands
separated by operators.

5-14 BASIC Concepts and Elements

BASIC Concepts and Elements
5.9 Operands, Operators, and Expressions

The following are types of operators:

Arithmetic
String
Relational
Logical

When combined with operands, these operators can produce:

= Numeric expressions

= String expressions

= Conditional expressions

For more information about operands, operators, and expressions, see the

Compaq BASIC for OpenVMS Alpha and VAX Systems Reference Manual.
5.10 Assignment Statements

The following statements assign values to variables:

- LET
= INPUT
= LINPUT

= INPUT LINE

LET and INPUT statements allow you to assign values to any type of variable,
while LINPUT and INPUT LINE allow you to assign values to string variables.
For example:

LET A =125

LET is an optional keyword. You can assign a value to more than one
variable at a time, although this is not recommended. Instead, use a separate
assignment statement each time you assign a value to a variable.

Whenever you assign a value to a numeric variable, BASIC converts the value
to the data type of the variable. If you assign a floating-point value to an
integer variable, BASIC truncates the value at the decimal point. If you assign
an integer value to a floating-point variable, BASIC converts the value to
floating-point format.

You can also assign values to variables with the DATA and READ statements;
however, this method requires that you know all input data values while you
are coding your program.

BASIC Concepts and Elements 5-15

BASIC Concepts and Elements
5.10 Assignment Statements

The INPUT, LINPUT, and INPUT LINE statements all assign values in the
context of data being read into the program. These statements are discussed
in Chapter 6.

5-16 BASIC Concepts and Elements

6

Simple Input and Output

This chapter explains how to use BASIC statements to move data to and from
your program.

6.1 Program Input
BASIC programs receive data in the following ways:

< You can enter data interactively while the program runs. You do this with
the INPUT, INPUT LINE, and LINPUT statements.

= If you know all the information your program will require, you can enter
it as you write the program. You do this with the READ, DATA, and
RESTORE statements, or you can name constants with the known values.

< You can read data from files outside the program. You do this with the
INPUT #, INPUT LINE #, and LINPUT # statements.

The following sections describe how to use these statements in detail.

6.1.1 Providing Input Interactively

The INPUT, INPUT LINE, and LINPUT statements prompt a user for data
while the program runs.

6.1.1.1 INPUT Statement

The INPUT statement interactively prompts the user for data. You can use the
optional prompt string to clarify the input request by specifying the type and
number of data elements required by the program. This is especially useful
when the program contains many variables, or when someone else is running
your program. For example:

INPUT "PLEASE TYPE 3 INTEGERS" ;B% ,C% ,D%

A% = B% + C% + D%

PRINT "THEIR SUM IS"; A%

END

Simple Input and Output 6-1

Simple Input and Output
6.1 Program Input

Output

PLEASE TYPE 3 INTEGERS? 25,50,75
THEIR SUM IS 150

When your program runs, BASIC stops at each INPUT, LINPUT, or INPUT
LINE statement, prints a string prompt, if specified, and an optional question
mark (?)! followed by a space; it then waits for your input. By using either a
comma or semicolon, you can affect the format of your string prompt as follows:

< If you have a semicolon separating the input prompt string from the
variable, BASIC prints the question mark and space immediately after the
input prompt string.

< If you have a comma separating the input prompt string from the variable,
BASIC prints the input prompt string, skips to the next print zone, and
then prints the question mark and space.

See Section 6.2.1 for more information about print zones. For more information
about formatting string prompts, see Section 6.1.1.3.

You must provide one value for each variable in the INPUT request. If you do
not provide enough values, BASIC prompts you again. For example:

INPUT AB
END

Output

?5

? 6

BASIC interprets a carriage return (null input) as a zero value for numeric
variables and as a null string for string variables. For example:

25 [Feun]
?

These responses assign the value 5 to variable A and zero to variable B. In
contrast, if you provide more values than there are variables, BASIC ignores
the excess.

In the following example, BASIC ignores the extra value (8). You can type
multiple values if you separate them with commas. Because commas separate
variables in the PRINT statement, BASIC prints each variable at the start of a
print zone.

1 The SET NO PROMPT statement turns off the optional question mark; see
Section 6.1.1.3.

6—2 Simple Input and Output

6.1.1.2

Simple Input and Output
6.1 Program Input

INPUT A,B,C
PRINT A,B,C
END

Output
? 56,7,8
5 6 7

If you name a numeric variable in an INPUT statement, you must supply
numeric data. If you supply string data to a numeric variable, BASIC signals
“lllegal number” (ERR=52). If you supply a floating-point number for an
integer variable, BASIC signals “Data format error” (ERR=50).

If you name a string variable in an INPUT statement, you can supply either
numbers or letters, but BASIC treats the data you supply as a string.
Because digits and a decimal point are valid text characters, numbers can
be interpreted as strings. For example:

INPUT "Please type a number"; A$
PRINT A$

Output

Please type a number? 25.5
25.5

BASIC interprets the response as a 4-character string instead of as a numeric
value.

You can type strings with or without quotation marks. However, if you want to
input a string containing a comma, you should enclose the string in quotation
marks or use the INPUT LINE or LINPUT statement. If you do not, BASIC
treats the comma as a delimiter and assigns only part of the string to the
variable. If you use quotation marks, be sure to type both beginning and
ending marks. If you leave out the end quotation mark, BASIC signals “Data
format error” (ERR=50).

INPUT LINE and LINPUT Statements

The INPUT LINE and LINPUT statements prompt you for string data while
your program runs. You can respond with strings that contain commas,
semicolons, and quotation marks, which are characters that the INPUT
statement interprets as delimiters.

The INPUT LINE statement accepts and stores all characters, including
quotation marks, semicolons, and commas, up to and including the line
terminator or terminators. LINPUT accepts all characters up to, but not
including, the line terminator or terminators.

Simple Input and Output 6-3

Simple Input and Output
6.1 Program Input

In the following example, because both INPUT LINE and LINPUT treat your
input as a string literal, BASIC interprets quotation marks, commas, and
semicolons as characters, not as string delimiters. When A$ is input with
the INPUT LINE statement, the carriage return line terminator is stored as
part of the string. The first PRINT statement tells BASIC to print all three
variables on one line, starting each one in a new print zone. However, when
BASIC prints the three strings, it prints the carriage return character at the
end of string A$; this terminates the current line and causes B$ to begin on a
new line.

INPUT LINE A$
LINPUT B$
LINPUT C$

PRINT A$, BS, C$
PRINT "DONE"
END

Output
? SINGLE, DOUBLE

? "GFLOAT"
? HFLOAT; REAL Data Types

SINGLE, DOUBLE
"GFLOAT" HFLOAT, REAL Data Types
DONE

The INPUT, INPUT LINE, and LINPUT statements can accept data from a
terminal or a terminal-format file. See Section 6.3 for information about 1/O to
terminal-format files.

6.1.1.3 Enabling and Disabling the Question Mark Prompt

With the SET PROMPT statement, BASIC allows you to enable and disable
the question mark prompt.

By default, BASIC displays the question mark prompt. The following example
displays the default prompt string:

INPUT "Please input 3 integer values";A%, B%, C%

Output
Please input 3 integer values?

You can, however, disable the question mark prompt by specifying the SET NO
PROMPT statement.

SET NO PROMPT
INPUT "Please input 3 integer values"';A%, B%, C%

6—4 Simple Input and Output

Simple Input and Output
6.1 Program Input

Output
Please input 3 integer values

When you disable the question mark prompt, you can specify your own prompt
at the end of each prompt string. The following example inserts a colon at the
end of the prompt string:

SET NO PROMPT
INPUT "Please enter your name; ";Employee_name$

Output
Please enter your name:

Now, if the SET PROMPT statement is specified, BASIC displays both the
colon and a question mark.

SET PROMPT
INPUT "Please enter your name: “;Employee_name$

Output
Please enter your name: ?

The SET [NO] PROMPT statement is valid for INPUT, LINPUT, INPUT
LINE, and MAT INPUT statements. If the prompt is disabled, any one of the
following commands reenables it:

e The SET PROMPT statement
= The CHAIN statement
e The NEW, OLD, RUN, or SCRATCH compiler command

6.1.2 Providing Input from the Source Program

The following sections describe the READ, DATA, and RESTORE statements.
To use READ and DATA statements, you must know what data is required
when writing the program. These statements do not stop to request data while
the program runs; therefore, your program runs faster than with the INPUT
statements.

The RESTORE statement lets you use the same data items more than once.

Simple Input and Output 6-5

Simple Input and Output
6.1 Program Input

6.1.2.1 READ and DATA Statements

The READ statement reads values from a data block. A data pointer keeps
track of the data read. Each time the READ statement requests data, BASIC
retrieves the next available constant from a DATA statement. The DATA
statement contains the values that the READ statement reads. In a DATA
statement, integer constants are whole numbers; they cannot be followed by
a percent sign. In the following example, BASIC signals an error because the
integer constants in the DATA statement contain percent signs:

10 WHEN ERROR USE catch_it
DATA 1%, 2%, 3%
20 READ A%, B%, C%
END WHEN
400 HANDLER catch_it
PRINT "ERROR NUMBER IS "; ERR
PRINT "ERROR AT LINE ", ERL
PRINT "ERROR MESSAGE IS "; ERT$(ERR)
END HANDLER
500 END

Output

ERROR NUMBER IS 50
ERROR AT LINE 20
ERROR MESSAGE IS %Data format error

A READ statement is not valid without at least one DATA statement. If your
program contains a READ statement but no DATA statement, BASIC signals
the compile-time error “READ without DATA".

READ statements can appear either before or after their corresponding DATA
statements. The only restriction is that the DATA statements must be in the
same order as their corresponding READ statements.

You can have more than one DATA statement in a program. DATA statements
are ignored without at least one READ statement. You can use an ampersand
to continue a DATA statement. For example:

10 DATA "ABRAMS", BAKER, CHRISTENSON, &
DOBSON, "EISENSTADT", FOLEY

Comment fields are not allowed in DATA statements. For example, the
following statements cause A$ to contain the string “ABC ICOMMENT":

READ A$
DATA ABC !COMMENT

When you compile a program, BASIC creates one data block for each program
unit. Each data block is local to the program or subprogram containing it; this
means that you cannot share DATA statements between program modules.

6—6 Simple Input and Output

Simple Input and Output
6.1 Program Input

The data block contains the values in all DATA statements in that program
unit. These values are stored in line number order. Each time BASIC executes
a READ statement, it retrieves the next value in the data block.

BASIC signals an error if you do one of the following:

= Assign alphabetic characters to a numeric variable. BASIC signals “Data
format error” (ERR=50).

< Have more variables in the READ statements than there are values in the
DATA statements. BASIC signals “Out of data” (ERR=57).

BASIC ignores excess data in DATA statements.

The following example of READ and DATA mixes string and floating-point data
types. The first READ statement reads the first data item in the program:
“The circumference is”. The second READ statement reads the second data
item: 40.5.

DATA "The circumference is"

DATA 405

READ text$

READ radius

CIRCUMFERENCE = PI * radius * 2
PRINT text$; CIRCUMFERENCE
END

Output
The circumference is 254.469

6.1.2.2 RESTORE Statement

The RESTORE statement lets you read the same data more than once. It has
no effect without READ and DATA statements.

RESTORE resets the data pointer to the beginning of the first DATA statement
in the program unit. You can then read data values again. Consider the
following program:

10 READ B,C,D

20 RESTORE

30 READ EF,G

40 DATA 6,3,4,7,9,2
50 END

The READ statement in line 10 reads the first three values in the DATA
statement:

B=6

C=3

D=4

Simple Input and Output 6-7

Simple Input and Output
6.1 Program Input

The RESTORE statement resets the pointer to the beginning of line 40. During
the second READ statement (line 30), the first three values are read again:

E=6
F=3
G=4
Without the RESTORE statement, line 30 would assign the following values:
E=7
F=9
G=2

6.2 Program Output

The PRINT statement displays data on your terminal during program
execution. BASIC evaluates expressions before displaying results. You can also
print and format data with the PRINT USING statement. For information
about the PRINT USING statement, see Chapter 15.

When you use the PRINT statement, BASIC does the following:

= Precedes positive numbers with a space and negative numbers with a
minus sign

e Prints a space after every number
= Prints strings without leading or trailing spaces

When an element in a list is not a simple variable or constant, BASIC
evaluates the expression before printing the value. For example:

A =45

B =255
PRINT A + B
END

Output
100

However, BASIC interprets text inside quotation marks as a string literal.

A =45

B =55

PRINT "A + B"
END

6—8 Simple Input and Output

Simple Input and Output
6.2 Program Output

Output
A+B

The PRINT statement without an expression prints a blank line.

PRINT "This example leaves a blank line"
PRINT

PRINT "between two lines."

END

Output
This example leaves a blank line

between two lines.

6.2.1 Print Zones—The Comma and the Semicolon

< A terminal line contains zones that are 14 character positions wide. The
number of zones in a line depends on the width of your terminal: a 72-
character line contains 5 zones, which start in columns 1, 15, 29, 43, and 57.
A 132-character line has additional print zones starting at columns 71, 85, 99,
and 113.

The PRINT statement formats program output into these zones in different
ways, depending on the character that separates the elements to be printed. If
a comma precedes the PRINT item, BASIC prints the item at the beginning of
the next print zone. If the last print zone on a line is filled, BASIC continues
output at the first print zone on the next line. For example:

INPUT A B ,CDEF
PRINTA B ,C D E F

END

Output

? 5,10,15,20,25,30
5 10 15 20 25
30

BASIC skips one print zone for each extra comma between list elements. For
example, the following program prints the value of A in the first zone and the
value of B in the third zone:

A=5

B =10

PRINT "first zone",,"third zone"
PRINT A, B

END

Simple Input and Output 6-9

Simple Input and Output
6.2 Program Output

Output
first zone third zone
5 10

If you separate print elements with a semicolon, BASIC does not move to the
next print zone. In the following example, the first PRINT statement prints
two numbers. (Printed numbers are preceded by a space or a minus sign and
followed by one space.) The second PRINT statement prints two strings.

PRINT 10; 20
PRINT "ABC"; "XYZ"
END

Output

10 20
ABCXYZ

Whether you use a comma or a semicolon at the end of the PRINT statement,
the cursor remains at its current position until BASIC encounters another
PRINT or INPUT statement. In the following example, BASIC prints the
current values of X, Y, and Z on one line because a comma follows the last item
in the line PRINT X, VY:

INPUT X)Y,Z
PRINT XY,
PRINT Z
END

Output
? 510,15
5 10 15

The following example shows PRINT statements using a comma, a semicolon,
and no formatting character after the last print item:

INo comma after 1%, so each element
IPrints on its own line
I

PRINT 1% FOR 1% = 1% TO 10%
PRINT
|

IA comma follows J%, so each
lelement prints in a separate zone
I

MARGIN 80%

PRINT J%, FOR J% = 1% TO 10%
PRINT

6-10 Simple Input and Output

Simple Input and Output
6.2 Program Output

IA semicolon follows K%, so print
lelements are packed together
|

PRINT K% FOR K% = 1% TO 10%
END

Output
1

© 00 N o O A W N

[
o

2 3 4 5
6 7 8 9 10
123 456789 10

[EEN

Commas and semicolons also let you control the placement of string output.
For example:

PRINT "first zone",,"third zone",,"fifth zone"
END

Output
first zone third zone fifth zone

The extra comma between strings causes BASIC to skip another print zone.
In the following example, the first string is longer than the print zone. When
the two strings are printed, the second string begins in the third print zone
because that is the next available print zone after the first string is printed.

PRINT "abcdefghijkimnopgrstuvwxyz","pizza"

PRINT "first zone","second zone","third zone'

Output

abcdefghijkimnopgrstuvwxyz pizza
first zone second zone third zone

Simple Input and Output 6-11

Simple Input and Output
6.2 Program Output

6.2.2 Output Format for Numbers and Strings

BASIC prints strings exactly as you type them, with no leading or trailing
spaces. It does not print quotation marks unless they are delimited by another
matching pair. For example:

PRINT 'PRINTING "QUOTATION" MARKS'
END

Output
PRINTING "QUOTATION" MARKS

BASIC follows these rules for printing numbers:

< When you print numeric fields, BASIC precedes each number with a space
or a minus sign and follows it with a space.

= BASIC does not print trailing zeros to the right of the decimal point. If all
digits to the right of the decimal point are zeros, BASIC omits the decimal
point as well.

< When you print LONG integers, BASIC prints up to 10 significant digits.
= When you print DECIMAL values, BASIC prints up to 31 digits.
BASIC follows these rules for printing floating-point numbers:

< If a floating-point number can be represented exactly by 6 decimal digits
(or fewer) and, optionally, a decimal point, BASIC prints it that way.

= When you print a floating-point number whose integer portion is 6 decimal
digits or less (for example, 1234.567), BASIC rounds the number to 6 digits
(1234.57). If the integer portion of the number is 7 decimal digits or larger,
BASIC rounds the number to 6 digits and prints it in E format. See the
Compaq BASIC for OpenVMS Alpha and VAX Systems Reference Manual
for more information about E format.

= When you print a floating-point number with magnitude from 0.1
to 1, BASIC rounds it to 6 digits. When you print a floating-point number
with more than 6 digits, and with magnitude smaller than 0.1, BASIC
rounds it to 6 digits and prints it in E format.

The PRINT statement displays only up to 6 digits of precision for floating-point
numbers. This corresponds to the precision of the SINGLE data type. To
display the extra digits in DOUBLE, GFLOAT, HFLOAT, TFLOAT, or XFLOAT
numbers, you must use the PRINT USING statement. See Chapter 15 for
more information about the PRINT USING statement.

6-12 Simple Input and Output

Simple Input and Output
6.2 Program Output

The following example shows how BASIC prints various numbers with single

precision:
FOR 1 =1 TO 20
PRINT 27(-1),1,2M
NEXT |
END
Output
5 1 2
25 2 4
125 3 8
0625 4 16
03125 5 32
.015625 6 64
.78125E-02 7 128
.390625E-02 8 256
.195313E-02 9 512
.976563E-03 10 1024
488281E-03 11 2048
244141E-03 12 4096
.12207E-03 13 8192
.610352E-04 14 16384
.305176E-04 15 32768
.152588E-04 16 65536
.7167939E-05 17 131072
.38147E-05 18 262144
.190735E-05 19 524288
.953674E-06 20 .104858E+07

6.3 Terminal-Format Files

Terminal-format files let you perform simple 1/O to disk files. The records in
a terminal-format file must be accessed sequentially. That is, you must access
the records in the file one by one, from the first to the last. You can add new
records only at the end of the file.

Just as the INPUT, LINPUT, and INPUT LINE statements receive information
from a terminal, the INPUT #, LINPUT #, and INPUT LINE # statements
receive information from a terminal-format file. And, as the PRINT statement
sends information to the terminal, the PRINT # statement sends information
to a terminal-format file.

Terminal-format files are useful for creating files to be printed on a line
printer, or for supplying a program with moderate amounts of input. However,
if you want to use the same file for both input and output, you should not use
terminal-format files. Instead, use sequential, relative, or indexed files. For
more information, see Chapter 14.

Simple Input and Output 6-13

Simple Input and Output
6.3 Terminal-Format Files

You do not have to use a program to create a terminal-format file. You can use
a text editor to create a file and insert data, then use a BASIC program to open
the file and retrieve the data.

6.3.1 Opening and Closing a Terminal-Format File

You use the OPEN statement to create a file, or to gain access to an existing
file. If you do not specify either FOR INPUT or FOR OUTPUT in the OPEN
statement, BASIC tries to open an existing file. If the file does not exist,
BASIC creates a new one.

The channel specification lets you associate a number with the file for as long
as the file is open. All 1/O operations to or from the file use this number.

When you are finished accessing a file, you close it with the CLOSE
statement.

6.3.2 Writing Records to a Terminal-Format File

The following example receives information from a terminal, then writes the
information to a terminal-format file as a report:

PRINT "This program creates a daily sales report file named SALES.DAT"
OPEN "SALES.DAT" FOR OUTPUT AS FILE #4%
PRINT #4%, "Salesperson”,"Sales Area","ltems Sold"
PRINT #4%
INPUT "How many salespersons for today's report"; sales_persons%
FOR 1% = 1% TO sales_persons%
INPUT "Salesperson’s name"; s_name$
INPUT "Sales area"; area$
INPUT "Number of items sold"; items_sold%
PRINT #4%, s_name$, area$, items_sold%
NEXT 1%
CLOSE #4%
END

Output

This program creates a daily sales report file named SALES.DAT
How many salespersons for today's report? 3
Salesperson’s name? JONES

Sales area? NJ

ltems sold? 5

Salesperson’s name? SMITH

Sales area? NH

ltems sold? 6

Salesperson’s name? BAINES

Sales area? VT

ltems sold? 8

6-14 Simple Input and Output

Simple Input and Output
6.3 Terminal-Format Files

This program first prints a header explaining its purpose, then opens a
terminal-format file on channel 4. After this file is opened, the two

PRINT # statements place an explanatory header followed by a blank line into
the file.

The program then prompts you for the number of salespersons for which data
is to be entered. The FOR...NEXT loop prompts for the name, sales area, and
items sold for each salesperson. The FOR...NEXT loop executes only as many
times as there are salespersons. See Chapter 10 for more information about
FOR...NEXT loops.

After the data has been entered for each salesperson, the program writes
this information to the terminal-format file. Because the response to the first
guestion was 3, the FOR...NEXT loop executes three times.

After the last item has been printed to the file, the program closes the file and
ends. When you display the file with the DCL command TYPE, you see that
the information is printed under the proper headers. You can also print the file
on a line printer. The PRINT # statement formats the output in print zones as
the PRINT statement does.

$ TYPE SALES.DAT
Salesperson Sales Area ltems Sold

JONES NJ 5
SMITH NH 6
BAINES VT 8

Simple Input and Output 6-15

v

Arrays

An array is a set of data that is ordered in any number of dimensions. This
chapter describes how to create and use BASIC arrays.

7.1 Overview of Arrays

A one-dimensional array is called a list or vector. A two-dimensional array is
called a matrix. BASIC arrays can have up to 32 dimensions, and a specific
type of BASIC arrays can be redimensioned at run time. In addition, you can
specify the data type of the values in an array by using data type keywords or
suffixes.

The subscript of an element in an array defines that element’s position in the
array. When you create an array, you specify:

e The number of dimensions that the array contains
= The range of values for the subscripts in each dimension of the array

BASIC arrays are zero-based by default; that is, when calculating the number
of elements in a dimension, you count from zero to the number of elements
specified. For example, an array with an upper bound of 10 and no specified
lower bound has 11 elements: 0 to 10, inclusive. The array My _array(3,3) has
16 elements: 0 to 3 in each dimension, or 42.

BASIC also lets you specify a lower bound for any or all dimensions in an
array, unless the array is a virtual array. By specifying lower and upper
bounds for arrays, you can make your array subscripts meaningful. For
example, the following array contains sales information for the years 1990 to
1999:

DECLARE REAL Sales_data(1990 TO 1999)

To refer to an element in the array Sales_data, you need only specify the year
you are interested in. For example, to print the information for the year 1999,
you would type:

PRINT Sales_data(1999)

Arrays 7-1

Arrays

7.1 Overview of Arrays

You can create arrays either implicitly or explicitly. You implicitly create
arrays having any number of dimensions by referencing an element of the
array. If you implicitly create an array, BASIC sets the upper bound to 10
and the lower bound to zero. Therefore, any array that you create implicitly
contains 11 elements in each dimension.

The following example refers to the array Student_grades. If the array has not
been previously declared, BASIC will create a one-dimensional array with that
name. The array contains 11 elements.

Student_grades(8) = "B"

You create arrays explicitly by declaring them in a DIM, DECLARE,
COMMON, or MAP statement, or record declaration. Note that if you
want to specify lower bounds for your array subscripts, you must declare the
array explicitly.

When you declare an array explicitly, the value that you give for the upper
bound determines the maximum subscript value in that dimension. If you
specify a lower bound, then that is the minimum subscript value in that
dimension. If you do not specify a lower bound, BASIC sets the lower bound in
that dimension to zero. You can specify bounds as either positive or negative
values. However, the lower bound of each dimension must always be less than
or equal to the upper bound for that dimension.

You can use MAT statements to create and manipulate arrays; however, MAT
statements are valid only on arrays of one or two dimensions. In addition, the
lower bounds of all dimensions in an array referenced in a MAT statement
must be zero.

7.2 Creating Arrays Explicitly

You can create arrays explicitly with four BASIC statements: DECLARE,
DIMENSION, COMMON, and MAP.

In addition, you can declare arrays as components of a record data type. See
Chapter 9 for more information about records.

Normally, you use the DECLARE statement to create arrays. However, you
might want to create the array with another BASIC statement as follows:

= Use the DIM statement to create virtual arrays and arrays that can be
redimensioned at run time.

e Use the COMMON statement to create arrays that can be shared among
program modules or to create arrays of fixed-length strings.

7-2 Arrays

Arrays
7.2 Creating Arrays Explicitly

e Use the MAP statement to create an array and associate it with a record
buffer, or to overlay the storage for an array, thus accessing the same
storage in different ways.

When you create an array, the bounds you specify determine the array’s size.
The maximum value allowed for a bound can be as large as 2147483467,
however, this number is actually limited by the amount of virtual storage
available to you. Very large arrays and arrays with many dimensions can
cause fatal errors at both compile time and run time.

The following restrictions apply to arrays:

< When referencing an array, you must use the same number of subscripts as
was specified when the array was created.

= You can use identical names for a simple variable and an array; for
example, A% and A%(5,5). However, this is not a recommended
programming practice. If you use identical names for arrays with a
different number of subscripts, for example, A(5), and A(10,10), BASIC
prints the error “Inconsistent subscript usage” at compile time.

= If subscript checking is enabled, BASIC signals the error “Subscript out of
range” (ERR=55) if you reference an array element whose subscripts are
one of the following:

— Greater than the current upper bound of the array
— Less than the current lower bound of the array

— Less than zero where no lower bound was specified

7.2.1 Creating Arrays with the DECLARE Statement

The DECLARE statement creates and names variables and arrays. All
elements of arrays created with the DECLARE statement are initialized to
zero or the null string. The following statement creates a longword integer
array with 11 elements:

DECLARE LONG FIRST_ARRAY(1980 TO 1990)

Note that the STRING data type with the DECLARE statement causes the
creation of an array of dynamic strings. To create an array of fixed-length
strings, declare the array in a COMMON or MAP statement or as part of a
RECORD structure.

Arrays 7-3

Arrays

7.2 Creating Arrays Explicitly

7.2.2 Creating Arrays with the DIM Statement

The DIM statement creates and names one or more arrays. Use the DIM
statement to create an array when you want to:

e Redimension the array at run time
= Create a virtual array

When creating arrays with the DIM statement, you specify the data type of the
array elements with a data type keyword, a special suffix on the array name,
or both. The array name can be any valid variable name. If you do not supply
a data type keyword, the data type is determined by the suffix of the array
name:

= If the array name ends with a dollar sign ($), the array stores string data.

= If the array name ends with a percent sign (%), the array stores integer
data.

= If the array name does not end with either a percent sign or a dollar
sign, the array stores data of the default type. The default type is single-
precision, floating-point unless you change the default. See Chapter 5 for
more information about default data types.

Even if the DIM statement contains a data type keyword, the array name can
still end in the appropriate data type suffix. This makes the data type of the
array immediately obvious.

The DIM statement can be either executable or declarative. If the specified
bounds are constants, the DIM statement is declarative. This means that the
storage is allocated at compile time, and the array cannot appear in any other
DIM statement.

However, if any of the specified bounds are variables (simple or subscripted),
the DIM statement is executable. This means that the storage for the array
is allocated at run time, and the array can be redimensioned with a DIM
statement any number of times.

Note

In the DIM statement, bounds can be either constants or variables
(simple or subscripted), but not expressions.

When an array is redimensioned with the executable DIM statement, the array
can become larger or smaller than it was. However, redimensioning an array
in this way causes it to be reinitialized, and all data in the array is lost.

7-4 Arrays

Arrays
7.2 Creating Arrays Explicitly

In contrast, MAT statements let you redimension an array to be the same size
or smaller than it was. However, MAT statements redimension arrays only
when assigning values or performing matrix 1/O; therefore, the fact that MAT
statements reinitialize the array does not matter. See Section 7.6 for more
information about MAT statements.

7.2.2.1 Declarative DIM Statements
Declarative DIM statements have integer constants as bounds. The percent
sign is optional for bounds; however, BASIC signals the error “Integer
constant required” if a constant bound contains a decimal point. The following
statement creates a 101-element virtual array containing string data. The
elements of this array can each have a maximum length of 256 characters.

DIM #1%, STRING VIRT_ARRAY(100) = 256%
The following restrictions apply to the use of declarative DIM statements:

< A declarative DIM statement must lexically precede any reference to the
array it dimensions.

= The lower bounds of all virtual array dimensions must be zero.

< You must open a VIRTUAL file on the specified channel before you can
access elements of the virtual array.

7.2.2.2 Executable DIM Statements
Executable DIM statements have at least one variable bound. Bounds can be
constants or simple variables, but at least one bound must be a variable.
Executable DIM statements let you redimension an array at run time.
The bounds of the array can become larger or smaller, but the number of
dimensions cannot change. For example, you cannot redimension a four-
dimensional array to be five-dimensional.

The executable DIM statement cannot be used on arrays in COMMON, MAP,
DECLARE, or declarative DIM statements, nor on virtual arrays or arrays
received as formal parameters.

Whenever an executable DIM statement executes, it reinitializes the array. If
you change the values of an executable DIM statement, the initial values are
reset each time the DIM statement is executed.

Arrays 7-5

Arrays
7.2 Creating Arrays Explicitly

In the following example, the second DIM statement reinitializes the array
real_array; therefore, real_array(1%) equals zero in the second PRINT

statement:
X% = 10%
Y% = 20%

DIM real_array(X%)
real_array(1%) = 100
PRINT real_array(1%)
DIM real_array(Y%)
PRINT real_array(1%)
END

Output

100
0

You cannot reference an array named in an executable DIM statement until
after the DIM statement executes. If you reference an array element declared
in an executable DIM statement whose subscripts are larger than the bounds
specified in the last execution of the DIM statement, BASIC signals the run-
time error “Subscript out of range” (ERR = 55), provided subscript checking is
enabled.

7.2.3 Creating Arrays with the COMMON Statement

Create arrays with the COMMON statement when you need an array of fixed-
length strings, or when you want to share an array among program modules.
Program modules can share arrays in COMMON statements by defining a
common block with the same name.

The COMMON statements in the following programs create a 100-element
array of fixed-length strings, each element 10 characters long. Because the
main program and subprograms use the same common name, the storage
for these arrays is overlaid when the programs are linked; therefore, both
programs can read and write data to the array.

IMain Program
COMMON (ABC) STRING access_list(1 TO 100) = 10

ISubprogram

SUB SUBL
COMMON (ABC) STRING new_list(1 TO 100) = 10

7—6 Arrays

Arrays
7.2 Creating Arrays Explicitly

7.2.4 Creating Arrays with the MAP Statement

Create arrays with the MAP statement only when you want the array to be
part of a record buffer, or when you want to overlay the storage containing the
array. Note that string arrays in maps are always fixed-length.

You associate the array with a record buffer by naming the map in the MAP
clause of the OPEN statement.

In the following example, the MAP statement creates two arrays:

an 11-element fixed-length string array named team and a 33-element array of
WORD integers named bowling_scores. Because the OPEN statement specifies
MAP ABC, the storage for these arrays is used as the record buffer for the
open file.

MAP (ABC) STRING team(10) = 20, WORD howling_scores(0 TO 32)
OPEN "BOWLING.DAT" AS FILE #1%, SEQUENTIAL VARIABLE, MAP ABC

7.3 Creating Arrays Implicitly
Create arrays implicitly as follows:
= By referencing an element of an array that has not been explicitly declared
= By using MAT statements

When you first create an implicit array, the lower bound is zero and the upper
bound is 10. An array created by referencing an element can have up to 32
dimensions in BASIC. An array created with a MAT statement can have only
one or two dimensions.

Note

The ability to create arrays implicitly exists for compatibility with
previous implementations of BASIC. However, it is better programming
practice to declare all arrays explicitly before using them.

If you reference an element of an array that has not been explicitly declared,
BASIC creates a new array with the name you specify. Arrays created by
reference have default subscripts of (0 TO 10), (0 TO 10,0 TO 10), (0 TO 10, 0
TO 10, 0 TO 10), and so on, depending on the number of dimensions specified
in the array reference. For example, the following program implicitly creates
three arrays and assigns a value to one element of each:

Arrays 7-7

Arrays

7.3 Creating Arrays Implicitly

LET A(5,5) = 3.14159

LET B%(3) = 33

LET C$(2,2) = "Russell Scott"
END

The first LET statement creates an 11-by-11-by-11 array that stores floating-
point numbers and assigns the value 3.14159 to element (5,5,5). The second
LET statement creates an 11-element list that stores integers and assigns
the value 33 to element (3), and the third LET statement creates an 11-by-11
string array and assigns the value “Russell Scott” to element (2,2).

When you create an implicit numeric array by referring to an element, BASIC
initializes all elements (except the one assigned a value) to zero. For implicit
string arrays, BASIC initializes all elements (except the one assigned a value)
to a null string. When you implicitly create an array, you cannot specify

a subscript greater than 10. An attempt to do so causes BASIC to signal
“Subscript out of range” (ERR = 55), provided that subscript checking is
enabled.

Note that you cannot create an array implicitly, then redimension the array
with an executable DIM statement. The DIM statement must execute before
any reference to the array.

An array name cannot appear in a declarative statement after the array has
been implicitly declared by a reference. The following DECLARE statement

is therefore illegal and causes BASIC to signal the compile-time error “illegal
multiple definition of name NEW_ARRAY.”

new_array (5,5,5) = 1
DECLARE LONG new_array (15,10,5)

7.4 Determining the Bounds of an Array

BASIC provides two built-in functions, LBOUND and UBOUND, that allow
you to determine the lower and upper bounds, respectively, for any dimension
in an array.

The following example sets up four variables that contain the lower and
upper bounds of both dimensions of the array Sales_data. These variables
represent the years and months for which there is sales data available. The
two FOR...NEXT loops print all the sales information in the array, starting
with the first year and month, and ending with the last year and month.

7-8 Arrays

Arrays
7.4 Determining the Bounds of an Array

DECLARE Sales_data(1900 TO 1999, 1 TO 12)

Month_start% = LBOUND (Sales_data, 2)
Year_start% = LBOUND (Sales_data, 1)
Month_end% = UBOUND (Sales data, 2)
Year_end% = UBOUND (Sales_data, 1)
FOR Year% = Year start% TO Year_end%

FOR Month% = Month_start% TO Month_end%
PRINT Sales_data(Year%, Month%)
NEXT Month%

NEXT Year%

Note

You cannot implicitly declare arrays with the LBOUND and UBOUND
functions. These functions can be used only with arrays that have been
previously declared.

7.5 Assigning and Displaying Array Values

The following sections explain how to access and write to BASIC arrays with
the LET and PRINT statements.

7.5.1 Assigning Values with the LET Statement
The LET statement assigns values to individual array elements. For example:

DIM voucher_num%(100)
LET voucher_num%(20) = 3253%

END

You can also assign values to a portion of an array with the LET statement and
a FOR...NEXT loop. In the following example, the FOR...NEXT loop assigns
zero to array elements (1,5) to (1,10), (2,5) to (2,10), and (3,5) to (3,10):

Arrays 7-9

Arrays
7.5 Assigning and Displaying Array Values

DIM po_number%(100,100)

FOR 1% = 1% TO 3%
FOR J% = 5% TO 10%
LET po_number%(1%,J%) = 0%
NEXT J%
NEXT 1%

END

7.5.2 Listing Array Elements with the PRINT Statement

You print individual array elements by naming those elements in the PRINT
statement. For example:

PRINT parts_list$(35%)
With a FOR...NEXT loop, you can print all or part of an array. For example:
DIM capture_ratio(10,10)

FOR Y% = 7% TO 10%
FOR X% = 7% TO 10%
PRINT capture_ratio(X%,Y%)
NEXT X%
NEXT Y%

7.6 Using MAT Statements
Note

The MAT statements discussed in this section are not related to
the MAT GRAPH and MAT PLOT graphics statements. For more
information about these statements, see Programming with VAX
BASIC Graphics.

MAT statements let you assign values to or display entire arrays with a single
statement. They also let you do the following:

= Implicitly create arrays
= Assign names to arrays

= Specify array dimensions

7-10 Arrays

Arrays
7.6 Using MAT Statements

< Redimension existing arrays (to equal or smaller sizes)
= Assign element values

= Print the contents of arrays

= Perform matrix arithmetic

MAT statements are valid only on arrays of one or two dimensions. When
MAT statements execute, they use row and column zero to store intermediate
calculations. This means that MAT statements can overwrite data stored in
row and column zero of your arrays, and you should not depend on data in
these elements if your program uses MAT statements.

Note

MAT statements cannot be used with arrays that have lower bounds
other than zero. An attempt to specify a lower bound other than zero
for an array in a MAT statement results in a compile-time error.

The default subscripts for arrays created implicitly with MAT statements are
(10) or (10,10). The default is two dimensions. This means that if you create
an array with a MAT statement and do not specify any subscripts, BASIC
creates a two-dimensional, 11-by-11 array. If you specify a single subscript,
BASIC creates a one-dimensional array with 11 elements.

Table 7-1 lists MAT statements and explains their functions.

Table 7-1 MAT Statements

Statement Function

MAT Assigns values of zero, 1, or a null string to array elements.
Also copies the values of one array to another and performs
matrix arithmetic.

MAT READ Assigns DATA statement values to array elements.

MAT INPUT [#] Assigns values to array elements from your terminal or a
terminal-format file.

MAT LINPUT [#] Assigns string values to string array elements from your
terminal or from a terminal-format file.

MAT PRINT [#] Displays the contents of an array on your terminal, or writes
array element values to a terminal-format file.

In the following example, the first MAT statement creates the string array
z_array$ with eight rows and eight columns and assigns a null string to all

Arrays 7-11

Arrays

7.6 Using MAT Statements

elements. The second MAT statement redimensions the array to six rows and
six columns. The third MAT statement adds the values in each corresponding
element of arrays B and C and stores the values in the corresponding elements
of array A.

MAT z_array$ = NULS$(7,7)
MAT z_array$ = NUL$(5,5)
MAT A=B+C

END

7.6.1 MAT Statement

The MAT statement can create an array and optionally assign values to all
elements in that array. By specifying one of the MAT statement keywords, you
can initialize arrays in one of four ways. Table 7-2 lists the MAT statement
keywords and their functions.

Table 7-2 MAT Statement Keywords

MAT Keyword Function
ZER Sets the value of all elements in a numeric array to zero.
CON Sets the value of all elements in a numeric array to 1, except

those in row and column zero.

IDN Sets the array to the identity matrix, that is, it sets the value
of all elements in real or integer arrays to zero, except for those
elements on the diagonal from element (1,1) to element (n,n),
where n is the largest subscript in the array. The elements on
the diagonal are set to 1. IDN applies to square arrays only.

NUL$ Sets the value of all elements in a string array to the null
string, except those in row and column zero.

The array name can specify an existing array. MAT statements do not assign
values to row and column zero.

Note that the MAT statement does not require subscripts. In the case of
existing arrays:

< If you do not specify subscripts, BASIC does not change the current
subscripts.

= If you specify subscripts, BASIC redimensions the array to the specified
subscripts. When redimensioning arrays with MAT, you cannot increase
the total number of array elements (including those in row and column
Zero).

7-12 Arrays

Arrays
7.6 Using MAT Statements

When you are creating arrays with MAT:

< If you do not supply subscripts, BASIC assigns two subscripts, each with a
value of 10.

= If you specify subscripts, they define the dimensions of the array being
implicitly created. Subscript values cannot exceed 10. Consider the
following example:

DIM A(10,10), B(15), C(20,20)
MAT A = ZER ISets all elements of A to 0

MAT B = CON(10) ISets elements of B to 1; redimensions B

MAT C = IDN(10,10) IRedimensions C to 10x10 identit