OpenVMS Compiler
Update

John Reagan
April 2025

BBl VMS Software

History and Design

BBl VMS Software

OpenVMS ltanium Compilers

C
COBOL GEM IR GEM .0BJ LIBRARIAN .OLB LINKER EX

Fortran

PASCAL

IMACRO A

BBl VMS Software

v|m|s

HP licensed OpenVMS to VMS Software Inc in 2014 for future platform

support which included porting to x86-64
Legacy GEM backend is stale and doesn't know x86-64

Instead of throwing money at GEM, we picked LLVM to get modern code base

and not have to chase all possible chip features

Still need to provide “recompile and go” for customers
Leverage existing frontends which generate GEM IR/symtab
Create a GEM IR to LLVM IR converter (G2L)

L everage clang as our C++ offering

BBl VMS Software

v|m|s

OpenVMS x86-64 Compilers

Internal Representation Converter Backend Code Generator

: / /
Standard Interface
COBOL : GEM IR G2L LLVM IR LIBRARIAN

A

Fortran

MClnst
Interface

PASCAL

XMACRO

LINKER

C++
* = ELF like Itanium

BBl VMS Software

vimls

« Map GEM IR nodes (~275) to LLVM IR nodes

Needed about 240 GEM IR nodes for BLISS and C with remainder used by
other frontends

Many GEM nodes have nice simple mappings, but some result in interesting
IR sequences or converter abstractions (strings, packed decimal, complex,
uplevel accesses, BASIC, etc)

Converter currently about 36K lines of C++ (source & headers & comments)
long double is still in progress
GEM's static memory initialization quite different than LLVM

BBl VMS Software

v|m|s

* A handful of OpenVMS additions to LLVM
« Mixed pointer size linker relocations
« Memory model changes
 .note section generation for module name, compilation date/time, etc
 AMDG64 ABI additions for argument count in RAX register
» Additional DWARF language tags
 Additional EH unwind descriptors for Macro-32 VAX register emulation

* Use the LLVM libc++ and libc++abi libraries including updating the abi library to
use the libS Calling Standard routines

e Build various LLVM tools

BBl VMS Software

v|m|s

We had early cross-compilers (Itanium-host, x86-target) built with an older
LLVM 3.4.2 code-base. No C++ and no BASIC. These are used to build the OS
and included in the cross-tools kits. These provide no optimization.

We have a Linux-hosted LLVM 10 clang with the OpenVMS object additions.

We use the Linux compiler to compile clang/LLVM, move the OBJ files to
OpenVMS, and create x86-native object libraries and the C++ compiler.

We used the cross-compilers to build the various frontends to link with the
LLVM 10 libraries to create the first generation of native compilers including
BASIC

We used those native compilers to build themselves natively.

These compilers are built with optimized native compilers and generate
optimized code. There are still several areas under investigation for
optimization (routine inliner, better pointer alias analysis, etc.)

BBl VMS Software

v|m|s

Compiler Status

BBl VMS Software

Compiler

Current Version

Field Tests

BASIC

V1.10

Soon — Bugfixes

BLISS

V1.14

X1.15 — Bugfixes

C

V7.6

X7.7 — Bugfixes

C++
<more slides below>

V10.1-2 (new)

A10.1-3

COBOL

V3.3

X3.4 — Bugfixes

Fortran

V8.6

X8.7 — Bugfixes

Macro

X6.0-111 (V9.2 thru V9.2-2)
V6.0-115 (V9.2-3)

V6.0-117 (V9.2-3U1)
- Improved debug support
- Bugfixes

Pascal

V6.4

Soon — Bugfixes

X86ASM (native assembler)

V10.0

A10.1-3 — Bugfixes

BBl VMS Software

Debug

BBl VMS Software

Itanium GEM generates DWARF 2+3

Debugger only processes the GEM DWARF, not full DWARF
LLVM generates DWARF 4 but doesn’t know legacy compiler info
Teaching debugger about new C++ tags

Teaching LLVM about legacy compiler tags

Better debugger in V9.2-3

Even better debugger in V9.2-3 update 1

Some fixes require better compilers

BBl VMS Software

v|m|s

Macro

BBl VMS Software

Unlike Alpha and Itanium, there are not enough hardware registers to map RO-
R31

Use memory locations for these Alpha pseudo registers managed by the
system

Operations like ADDL3 R2,R3,R4 are two memory reads, the addition, and a
memory write

RET instructions put the results both into RO and %rax

BLISS LINKAGE, C pragma linkage, DEBUG, and EH unwinding code also know
about the pseudo registers

Porting Macro-32 should not require any changes

BBl VMS Software

v|m|s

Legacy (non-C++)
Compilers

BBl VMS Software

Well-written programs port with little modification needed

Early compiler bugs are with things that are difficult to describe to LLVM such
as static data initialization and COMMON blocks

Programs that use target-specific knowledge need to be updated
Most common program mistakes include
« Alignment holes added by GEM protect code with buffer overruns and

32/64 bit assignment mistakes. LLVM provides no such alignment for x86.

« Any assumption about location of code in 32-bit space vs 64-bit space.

BBl VMS Software

v|m|s

C++

17

BBl VMS Software

Itanium only at C++03 standard but many open source applications now

demand a higher level

Itanium compiler is EDG/Intel-based with license/support issues
Itanium STL is old with a non-portable license

Need to update to a modern C++ for OpenVMS x86-64

Obvious choice is the clang frontend from LLVM

BBl VMS Software

v|m|s

Differences from Itanium

« Size of long, size_t, nullptr_t, ptrdiff_t == 64 with no option to change

« Pointer size is 64 unless changed to 32

 Names is “as-is” unless changed

« Names is “no length limit” unless changed

« Message names for pragma are different

« Current pointer-size affects new operator

* No global new/delete

* No VAX floating

« Two compilers: one with DCL interface; one with Linux interface

BBl VMS Software

v|m|s

Several new features including

 Listing file support similar to the Itanium compiler

« New[] now looks at current pointer size to allocate in 32-bit vs 64-bit heap
A10.1-3 field test includes

« Assorted bugfixes for 32-bit strings; listing files; MMS dependencies
LIBCXX/LIBCXXABI RTLs bundled with V9.2-3
CXXFIXUP kit included in kit to help with RTL transition for V9.2-2 systems

BBl VMS Software

v|m|s

Compiler Futures

BBl VMS Software

Complete long double support

Improved optimization

Continued work on debugger support

» Legacy compilers require OpenVMS-unique DWARF

» Debugger requires better C++ knowledge

Missing /MACHINE_CODE listing

« Choice #1 — add hooks into LLVM for code and static data
« Choice #2 — add metadata into OBJ for ANAL/OBJ/DISA
Refresh LLVM

e Currently using 10.0.1. Current version is 20.1.2.
Provide buffer overflow detection from LLVM

More work for libcxx for C++17 and beyond

Investigate TLS (thread local symbols)

Investigate various LLVM sanitizers

BBl VMS Software

v|m|s

Thanks!

BBl VMS Software

	Slide 1: OpenVMS Compiler Update John Reagan April 2025
	Slide 2: History and Design
	Slide 3
	Slide 4: OpenVMS x86-64
	Slide 5
	Slide 6: GEM Meets LLVM
	Slide 7: LLVM Meets OpenVMS
	Slide 8: Cross-compilers and Native Bootstrapping
	Slide 9: Compiler Status
	Slide 10
	Slide 11: Debug
	Slide 12: Debug
	Slide 13: Macro
	Slide 14: Macro-32
	Slide 15: Legacy (non-C++) Compilers
	Slide 16: Legacy Compilers
	Slide 17: C++
	Slide 18: C++ Update
	Slide 19: Clang Meets OpenVMS
	Slide 20: C++ V10.1-2
	Slide 21: Compiler Futures
	Slide 22
	Slide 23: Thanks!

